grant

Novel G-protein coupled receptor interactions and complexes with distinct function and pharmacology [ 2002 - 2004 ]

Also known as: Novel G-protein coupled receptor interactions

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/212065]

Researchers: Karin Eidne (Principal investigator)

Brief description G protein coupled receptors (GPCRs) are the target in the human body for most of today's medicines. Almost all pharmaceutical companies market drugs that are GPCR agonists or antagonists aimed at diverse disease states. Our research is focused on the molecular basis of drug recognition and signalling by GPCRs. We use genetic engineering techniques to create new receptors and mutant receptors in order to identify the functional domains of these signalling molecules. We have recently established a novel approach based on proximity-dependent fluorescent technologies to explore receptor interactions and have described the formation of functional G-protein coupled complexes in living cells. This project is to discover new receptor combinations which could potentially affect signalling pathways and redirect cellular responses. Investigation of the mechanisms involved in turning on and off the body s response to stimuli would provide valuable information for drug design and treatment of GPCR-related conditions. We have chosen to use two GPCRs as models for our study of the mechanisms controlling receptor driven cellular responses and the interactions between cellular components-proteins behind this control. Firstly, the gonadotropin releasing hormone receptor (GnRHR), a protein located in the pituitary which is pivotal in the control of reproduction and secondly, the thyrotropin releasing hormone receptor (TRHR), similarly located and involved in modulating thyroid and metabolic function. We will investigate the way these receptors interact with other cellular proteins in order for them to function. Ultimately this will provide a better understanding of how these clinically important proteins function and pave the way for the development of clinical applications that target these receptor systems, resulting in the effective treatment of a wide range of conditions and diseases, including pain, migraine, certain forms of cancer, neurological and reproductive disorders.

Funding Amount $AUD 246,760.00

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]