grant

The role of c-Cbl in thymic selection. [ 2007 - 2009 ]

Also known as: The role of a protein that regulates the development of T lymphocytes.

Research Grant

[Cite as http://purl.org/au-research/grants/nhmrc/458539]

Researchers: Prof Wallace Langdon (Principal investigator) ,  Dr Christine Thien

Brief description The establishment of an immune system that is able to distinguish between self and non-self is of fundamental importance for good health and survival. How this specificity is achieved has been an area of intense investigation for many years because a breakdown of this process leads to the development of autoimmune diseases, such as diabetes, or an inability to fight pathogenic organisms. It has been known for many years that the development T cells, a subset of cells involved in mounting immune responses, occurs in the thymus. The thymus produces large numbers of immature T cells (called thymocytes) from which a small number receive the appropriate signals to survive and develop into mature T cells. These tailor-made T cells can then enter the blood and peripheral lymphoid organs where they fight infectious organisms without reacting against host (i.e. self) tissues. The work for this project is aimed at determining how proteins inside thymocytes transmit signals that determine whether thymocytes either survive, and develop into T cells, or are eliminated because they react too strongly with self proteins. We have established that a protein called c-Cbl is central to this process as it regulates the initial strength of the signal that determines the fate of thymocytes. Our aim is to identify the putative key protein regulated by c-Cbl that can sense when a signal is too strong following the binding of a thymocyte to a self protein and directs a cell death signalling response. From this critical point of signal splitting we also aim to identify proteins that relay the death signal to the nucleus where they trigger the production of well-characterised proteins required to mediate cell death. By identifying the proteins in this signalling pathway we will have a greater capacity to control the magnitude of immune responses and therefore be able to lessen tissue damage caused by autoimmune reactions.

Funding Amount $AUD 613,801.76

Funding Scheme NHMRC Project Grants

Notes Standard Project Grant

Click to explore relationships graph
Identifiers
Viewed: [[ro.stat.viewed]]