

DICOM metadata as RDF

Michael Brunnbauer

Bonubase GmbH
Wingertstraße 58

68809 Neulußheim
brunni@netestate.de

Abstract: DICOM (Digital Imaging and Communications in Medicine) is an
industry standard for medical imaging. We present an OWL ontology for DICOM
metadata and dicom2rdf - a tool to extract RDF metadata out of DICOM files
(Media type application/dicom, filename extension .dcm). We discuss benefits, use
cases, limitations and possible enhancements.

1 The DICOM standard

DICOM objects consist of sets of attribute-value pairs that allow nesting (the values can
be other DICOM objects). There are several thousand official attributes, an extension
mechanism for private attributes and 27 data types called value representations (VR) for
the values [1]. The data type for each official attribute is fixed.

The entity an attribute applies to is determined by its context: Attributes are organized
into macros and modules of several attributes. An attribute can be used in several macros
or modules.

Modules are organized into information object definitions (IOD), describing one or more
real world objects called information entities (IE) like patient, study, series or image. The
standard defines the IE (real world entity) a module describes in every IOD.

1.1 DICOM sequences

Sequence attributes in DICOM allow nesting of data. They create attributes containing
sequences of one or more sequence items, effectively nesting DICOM objects. A
sequence item is a set of attribute/value-pairs and does not necessarily correspond to an
information object definition. It can also represent some kind of real world entity that is
only implicitly defined by DICOM or some kind of abstract entity created by the
particular organization of information in DICOM.

1.2 Official and private attributes

Official attributes are identified by a group and element number (16bit unsigned integers
usually in hexadecimal notation). Additionally, every official attribute has a unique
keyword:

Group/element number

Keyword Name

(0010,0010) PatientName Patient Name

All official attributes have an even group number. Odd group numbers are used for
private extensions. In order to organize private extensions without collisions, the
following approach is used: The element numbers for each group are organized into 256
slices of 256 attributes. The first 16 slices are reserved. The first slice is used to store the
implementor identification code for the 240 usable slices. Attribute gggg,0010 defines
the implementor for the first usable slice gggg,1000-10FF (gggg is the group number)
etc.

When creating data, software using a private extension searches for an unused slice N,
stores its implementor identification code with the attribute gggg,N and maps its private
attributes to the attribute slice N. As long as the implementor identification code is
unique, the private attribute can be uniquely identified by this code, the group number
and the attribute number within the slice (the first byte of the element number).

2 Modelling approach and related work

The modelling approach is a 1:1 mapping from the DICOM data model using real world
entities from the DICOM ERM instead of abstract data entities where possible. We chose
this approach as a compromise between a very easy mapping using only abstract data
entities and a very complex mapping using a clean knowledge representation and
existing ontologies.

The ontology is generated automatically from data extracted out of the DICOM standard
documents and seems to be the first with a usable public RDF namespace.

In a similar approach, Kahn et al. have shown how a DICOM ontology could be
modelled using the CT Image IOD as example [2].

The Stanford Center for Biomedical Informatics Research has started a project for a
DICOM ontology at least 3 years ago but nothing seems to have been published and the
current status is unclear [3].

The German company SOHARD is developing a product called SeDI (Semantic
DICOM), which provides a SPARQL endpoint for a DICOM PACS (Picture Archiving
and Communication System) using on the fly query transformation into DICOM C-Find

or Move requests. The query and result transformation uses an ontology that has not
been published yet [4].

3 Generating the OWL ontology from the standard

This section highlights important design decisions for the ontology and how the ontology
was generated automatically.

The attribute dictionary from the pydicom Python module [5] contains a list of DICOM
attributes with group/element number, name, keyword and data type (VR). We used it to
generate our own dictionary adding some missing attributes. This dictionary is used to
generate URIs, labels and ranges for the attributes.

3.1 Official attribute URIs

The official attribute URIs use two equivalent variants of fragment identifier:

 #Tag.<group>.<element>

or (owl:sameAs)

 #<keyword>

<group> and <element> is the upper case hexadecimal group and element number (4 hex
digits each) of the attribute. <keyword> is the unique keyword assigned by DICOM to
the attribute, if available.

3.2 Private attribute URIs

Although private data elements are not yet part of the ontology, we created a URI
scheme for them so the dicom2rdf tool can extract metadata using private extensions:
Private attributes with odd group number and element number > 0x1000 use these
fragment identifiers:

 #PTag.<implementor>.<group>.<nelement>

<nelement> is the element number & 0xff (& = logical and). <implementor> is the
normalized identification code (value of attribute <group>,<element1> - where
<element1> is the element number right-shifted by 8 bits). The normalized form of the
implementor identification code is produced by removing all whitespace, encoding it
with UTF8 and escaping anything not a letter, digit or '_.-/' using a $xx escape (Python
function urllib.quote() with % replaced by $ in the result).

3.3 Attribute ranges

The ranges of the attributes are based on their DICOM value representations (VR):

 Textual VRs (AE,CS,LO,SH,LT,ST,UT,PN) should be represented by plain
literals. FF should be replaced by \r\n\r\n and ESC should be replaced by the
unicode replacement character to enable RDF/XML serialization. PN (Person
Name) values consist of several delimited components and should not be
decomposed for the attributes of the ontology with VR PN. More popular
attributes like foaf:familyName and foaf:givenName can be used for the
components if the attribute applies to the corresponding person.

 Integer VRs (IS,SL,SS,UL,US,AT) should be represented by xsd:long (even if
the VR defines them as int or short. This approach simplifies SPARQL
querying).

 Decimal/Floating point VRs (DS,FL,OF,FD) should be represented by
xsd:double (even if the VR defines them as float to simplify SPARQL querying).

 VRs representing time (DA,TM,DT,AS) are represented as xsd:date, xsd:time,
xsd:dateTime and xsd:duration, respectively. DICOM has a notion of
approximate dateTime or time: You start with the year/hour and leave out more
specific elements if they are unknown. The information about what is not
known is sacrificed with this representation in favor of usability and the
potential performance benefit of xsd:dateTime and xsd:time.

 The UID VR (UI) should be represented by the corresponding urn:oid: URI.

 The sequence VR (SQ) should be represented by a List from the Collection
ontology (http://purl.org/co/List).

 The unknown VR (UN) should be represented by one of the above types if the
application knows the VR implicitly or by a plain literal if the VR is not known
and the actual value is within the ASCII range.

 The OB and OW VR should be represented by individuals (not literals) with no
restrictions on modelling.

Values of Attributes that can have multiple values (value multiplicity!=1) are represented
by a List from the Collection ontology so those attributes have range
http://purl.org/co/List. The list items have the type corresponding to the VR from the list
above.

3.4 Attribute domains

As explained in 1., the entity an attribute applies to is defined by its context. If we know
the information object definition (IOD) of the current data object, we can determine the

relevant information entity (patient, study, series, image, etc.) for the attributes in that
data object. The relevant IOD for a data object is identified by the „SOP Class
UID“ attribute (0008,0016).

We have created a parser to extract macro, module and information object definitions
from a text version of part PS 3.3 of the DICOM standard [6]. This information is used
to determine the relevant IE when extracting data with dicom2rdf and to define the
attribute domains in the ontology.

Therefore, the domains for many attributes are information entity classes like patient,
study, series, image or unions of several of these classes.

The URIs of information entity classes use

 #IE.<IE>

fragment identifiers where <IE> is the name of the information entity with whitespaces
removed.

Unfortunately, sequence items do not have to be information objects. In this case, the
entities to which the attributes in the sequence apply are not clearly defined by the
standard.

To resolve this messy situation and create a clean knowledge representation for
information within sequence items is a gigantic task nobody has undertaken yet. As a
first step, we decided to treat sequence items as independent entities and the attributes
within a sequence item apply to the sequence item (unless the sequence item happens to
be another information object).

We have given every sequence attribute a corresponding class of possible sequence items
with the following fragment identifier:

 #SequenceItem.<keyword>

or (owl:sameAs)

 #SequenceItem.Tag.<group>.<element>

or

 #SequenceItem.PTag.<implementor>.<group>.<nelement>

The part after "SequenceItem." is identical with the attribute fragment identifier of the
sequence attribute.

The object of a sequence attribute should be a http://purl.org/co/List with the sequence
items as list members.

3.5 The Ontology

You can find the ontology at http://purl.org/healthcarevocab/v1

It currently has 1593 classes, 2529 object properties, 4504 data properties and no
individuals. It has been validated to be OWL DL compliant with the Pellet OWL 2
reasoner version 2.3.1 using the "lint" command.

4 dicom2rdf

dicom2rdf can be downloaded at https://github.com/Bonubase/dicom2rdf and has a BSD
license.

The distribution also contains the parsers used to extract information out of the DICOM
standard documents and the tool used to generate the OWL ontology.

DICOM test files can be obtained at:

http://www.dclunie.com/images/FluoroWithDisplayShutter.dcm.zip

http://www.dclunie.com/images/charset/korean_agfa_infinitt_2008-3.dcm.bz2

http://www.osirix-viewer.com/datasets/

RDF/XML files generated with dicom2rdf from these DICOM files can be found at:

http://www.netestate.de/dicom/

4.1 Entity URIs

DICOM allows entities to be identified by OIDs [7]. The OID of a data object is stored
with the SOP Instance UID attribute (0008,0018). The corresponding urn:oid URI will
be used for the data object if the attribute is present.

OIDs for information entities are identified by several attributes. The current version of
dicom2rdf searches for 0020,000D for a study, 0020,000E for a series and 0020,0052 for
a frame of reference.

If no urn:oid URI can be found for the data object or information entity, a unique hash
URI relative to the generated RDF/XML file will be generated.

4.2 Possible improvements

There is room for improvement by identifying more inverse functional properties in the
DICOM standard and by using additional properties and classes to create a cleaner
knowledge representation.

5 Discussion

"A data model is not an ontology" may be an argument against our approach from a KR
point of view.

Although we invested some time to be able to connect attributes to the real world entities
they refer to (instead of simply connecting them to the data object), there are still many
topics that could be solved better, for example by going through the official DICOM
attributes one by one, in other words: by further investing large amounts of time. In
order to further improve the ontology as such, the 1:1 mapping between DICOM and
ontology attributes should be further reduced.

However, we think that the transition between data model and ontology is fluent. Our
approach should be seen as a starting point offering immediate benefits.

What are those benefits ?

DICOM offers only limited options to query data in a PACS (Picture Archiving and
Communication System). Search is limited to certain information entities and attributes,
for which the PACS may or may not use a fast search index. In general, DICOM queries
reflect the necessities and workflows of the institutions where the DICOM data is
generated: hospitals and doctor's offices.

By contrast, RDF data in a triple or quad store can be queried with the SPARQL query
language in almost any conceivable way - including graph patterns, aggregates and
transitive queries. Matching of single values uses indexes and more advanced triple/quad
stores also support indexes for value comparisons or full text search. DICOM metadata
can also be easily mixed and queried with other data in a triple store.

An obvious use case would be research in a big archive of DICOM data.

In general, RDF and SPARQL are a good choice when heterogenous sources of (ragged)
data have to be queried in an ad hoc way.

The DICOM standard is big and complex so it is no surprise that attributes are often used
in a context where they are not allowed. It is quite obvious that a relational database is
not a good fit for DICOM - especially when private extensions are considered.

There are limits to the scalability of certain SPARQL queries [8] but those limits also
apply to other powerful query languages like SQL. There is no general purpose

technology that scales for all query problems that can be made scaleable at all. In such
cases, specialized algorithms have to be implemented anyway.

The benefits of RDF pose a danger in some respect when it comes to privacy. RDF is a
Web technology so data may easily end up to be publicly available when it should not be.
The use of anonymizing tools, access control and strong security is vital in every
application handling medical data.

5.1 SPARQL example

To illustrate the benefits, here is a SPARQL example query that is not possible as
standard DICOM query. It calculates the average specific absorption rate for MR images
and the number of images generated with equipment from General Electric between
1990 and 2010 (assuming that the queried set of images is representative for the scope of
the query).

The DICOM data object and the information entities are connected with dcterms:subject.

PREFIX dicom: <http://purl.org/healthcarevocab/v1#>
PREFIX dcterms: <http://purl.org/dc/terms/>
select avg(?sar) count(*) where {
?image dicom:SAR ?sar.
?image dicom:AcquisitionDate ?date
FILTER(
?date >=
"1990-01-01"^^<http://www.w3.org/2001/XMLSchema#date> &&
?date <
"2010-01-01"^^<http://www.w3.org/2001/XMLSchema#date>
)
?io dcterms:subject ?image.
?io a <urn:oid:1.2.840.10008.5.1.4.1.1.4>.
?io dcterms:subject ?equipment.
?equipment a dicom:IE.Equipment.
?equipment dicom:Manufacturer "GE Medical Systems".
}

References

[1] Digital Imaging and Communications in Medicine (DICOM), Part 5: Data Structures and
Encoding, Section 6.2 http://medical.nema.org/Dicom/2011/11_05pu.pdf

[2] Informatics in Radiology: An Information Model of the DICOM Standard
 http://radiographics.rsna.org/content/31/1/295.long
[3] DICOM Ontology (DO) Project
 http://bmir.stanford.edu/projects/view.php/dicom_ontology_do_project
[4] Semantic DICOM http://www.semantic-dicom.org/
[5] pydicom Python module http://code.google.com/p/pydicom/

[6] Digital Imaging and Communications in Medicine (DICOM), Part 3: Information Object
Definitions http://medical.nema.org/Dicom/2011/11_03pu.pdf

[7] Digital Imaging and Communications in Medicine (DICOM), Part 5: Data Structures and
Encoding, Section 9 http://medical.nema.org/Dicom/2011/11_05pu.pdf

[8] Semantics and Complexity of SPARQL
http://users.dcc.uchile.cl/~cgutierr/papers/sparql.pdf
The Complexity of Evaluating Path Expressions in SPARQL
http://www.theoinf.uni-bayreuth.de/download/pods12submission.pdf

