
Key Lessons in the Efficient Archive of Small Files to the CCLRC MSS Using
SRB

Bonny Strong
CCLRC e-Science,

U.K.
b.strong@rl.ac.uk

David Corney
CCLRC e-Science,

U.K.
d.corney@rl.ac.uk

Peter Berrisford
CCLRC e-Science,

U.K.
p.berrisford@rl.ac.uk

Tim Folkes
CCLRC e-Science,

U.K.
t.folkes@rl.ac.uk

Chris Moreton-Smith
CCLRC ISIS, U.K.
c.m.moreton-smith@rl.ac.uk

Kerstin Kleese-Van-Dam
CCLRC e-Science, U.K.
k.kleese-van-dam@rl.ac.uk

Abstract*

High volume data projects within the CCLRC and the
wider UK academic community (ISIS, BADC, and
BBSRC) are increasingly looking to implement access to
a "limitless" data archive through an SRB infrastructure.
This paper describes the recent development of SRB
containers as an efficient solution to the "small file
problem", and the benefits this has brought to these
scientific communities as it opens up high volume
archives and Mass Storage Systems as vital components
of SRB-based data management infrastructures. By
tracing the development of container implementation into
the Atlas Petabyte Data Store (based at CCLRC in the
UK), across three specific projects (CMS, BBSRC and
especially ISIS), the paper identifies and describes key
lessons learned, both for CCLRC's particular projects
and also for archival systems in general.

1 Introduction: Mass Storage Systems and
the Small File Problem

In archiving data into a mass storage system (MSS), a
common problem develops when users want to archive a
large number of small files. Small files typically make
very inefficient use of mass storage capabilities. Tape
drives in particular suffer poor performance with small
files. Each write operation requires a seek operation to
the position on the tape to begin writing, and then writing
a tape header. Furthermore, if files are not being written
sequentially to the same tape, it may be necessary to load
a new tape onto the drive for each file. For small files,
the tape mount may take longer than the write itself.

Figure 1 shows an analysis of tape drive performance
as a function of file size, using data gathered from files
transferred into the CCLRC MSS during the 2004 data
challenge performed by the CMS particle physics
experiment. It can be seen that at file sizes of greater
than 200 MB, the tape drive throughput levels off at 25-
30 MB/sec, but at sizes below 200 MB, drive throughput
remains at less than 15 MB/sec, and falls off dramatically
with very small file sizes.

Tape Drive Performance as a Function of File Size

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

File Size (MB)

Ta
pe

 D
riv

e
Th

ro
ug

hp
ut

 (M
B

/s
ec

)

Figure 1. Tape drive performance and file size.

Large numbers of small files into an MSS can have a

disastrous effect on overall system throughput.
Managing this small-file problem becomes a critical part
of managing a data archive system.

2 Brief history of the development of SRB
and the Atlas Petabyte MSS at CCLRC

The CCLRC Atlas Data Store (ADS) [1] is a mass
storage system built around an STK Powderhorn tape
robot, with a current capacity of one petabyte, expected
to grow to ten petabytes within five years. It is managed

 101

with software developed at CCLRC, which is very strong
on efficiency and reliability, but has only a very basic
user interface. The ADS provides an efficient tool for
scientific archiving, but not data management.

CCLRC Data Management Group (DMG) [2] has
been researching issues around the management of
scientific data and associated metadata, and has built and
managed Data Access, Metadata Schema and Databases.
They have, as well, managed services for the San Diego
Supercomputer Center (SDSC) Storage Resource Broker
(SRB) – a software package that provides a uniform
interface for connecting to heterogeneous data resources
over a network [3]. SRB has provided a critical tool for
managing geographically distributed data across different
computational platforms, and has provided much-
requested desktop accessible tools for data management.
But many users also need the capability to archive large
quantities of data managed by SRB.

We have found that the integration of the data
management using SRB services and archiving
capabilities using the ADS provides a facility much more
powerful than either facility alone, and one that has
proven to be of major interest to scientific users with
large-scale data archival needs. Figure 2 shows the
typical architecture used for this managed archive
facility. Currently the ADS and DMG groups are
building or managing such an archival platform for ISIS
(the CCLRC Centre for pulsed neutron and muon
research), for the Biotechnology and Biological Sciences
Research Council (BBSRC), for the British Atmospheric
Data Group (BADC), and for the grid-enabling of other
CCLRC facilities. We have had other groups indicate an
interest in exploring this type of facility.

User Systems

SRB Local
Disk Server

SRB
Client

SRB MCAT
Database

SRB MCAT
Server

Data Management Group

Atlas Data
Store
MSS

Figure 2. CCLRC Data Archival Management Architecture

SRB ADS
Server ADS Cache

Disk

Atlas Data Store

 102

3 Developing the effective use of SRB
Containers

In order to address the small-file problem, we have
used an SRB facility for bundling data called
“containers”. From the SRB website
(http://www.sdsc.edu/srb/faq.html):

“The SRB container is a like a tarball in the sense that
it stores multiple files as one single file. It grows the
container on the fly by adding new files as they are
ingested into the container. Hence, unlike a tarball, the
container can be grown as needed. Also, unlike a tarball,
users can read individual files without downloading the
container on to their desktops. Containers are normally
assigned a logical resource that has two physical
components: an archive resource and a cache resource
such as a unix file system. Containers grow in size and
are pinched off into physical pieces by the SRB so that a
container might look really long, but is actually multiple
files of smaller sizes. ”

When containers are “pinched off into pieces” they
form a family of containers in SRB nomenclature. If a
file holding a container fills beyond its maximum size, it
is closed and copied to another file specified as part of
this container family. Then a new file container-file is
opened. Thus, to users containers appear infinitely large,
while at a physical level, containers are broken into sizes
manageable by the system, while SRB maintains all the
information needed to link the pieces of a container
family together.

3.1 How it started: CMS 2003

We first encountered the small-file problem while
working with the CMS particle physics experiment.
They developed a prototype data management system
using SRB, which transferred data between a number of
internationally distributed sites and RAL. To support
their work, we developed a driver to provide SRB access
into the ADS.

One of the key problems that emerged during the data
challenge arose from the unexpected number of small
files. During their data challenge, from 15 March 2004
to 30 April20 04, CMS entered 434861 data files into the
SRB system, with a total size of 4898.76 GB, giving an
average file size of only 11 MB. The result was very
poor performance in data transfer, and problems
managing a large number of file indices in the SRB
catalogue and in the internal ADS catalogue.

CMS were very keen to use SRB containers to
improve their transfer performance, but at that time we
were transferring data directly to tape, which could not
support the use of containers.

3.2 Specific problems: development for ISIS

Following on from the work done for CMS, ISIS was
interested in developing an archival data management
solution using SRB. ISIS manages 20 instruments that
provide pulsed neutron and muon beams for visiting
teams of scientists to use in their own individual research
programmes. While experiments are running they
produce data 24 hours a day, which must be archived and
made available to the scientists, both immediately during
the running of their experiments and longer term after
they return to their home institutions. Depending on the
science of the experiment, a “run” of data is produced
from the instrument anywhere from every 2 minutes to
every 2 days. A run will produce one large file of data
(about 100 MB) and possibly ten or more small files of
descriptive information.

When testing began, it became evident that the
number of small files was causing a critical problem with
performance in archiving data into the ADS. In one test
a sample 7-day period with 6 active instruments was
analysed. This produced a total of 24.9 GB to be
archived, contained in 14,614 files. Of these, 12,500
files were small files of less than 100 MB, containing a
total of only 86MB of data. These were ingested into
SRB using an Sput command, which was taking 6
seconds per file, giving a total time of 21 hours to
archive just the small files from this sample.

This was judged far too slow for flexible management
of data. ISIS wanted a ratio of real network copy time to
“setup” time to be 10:1 or better. For example, if there
were an unavoidable problem with transfer for a day or
two from ISIS, they would need to be able to rapidly get
the archive back up to date, which implies a much greater
archiving rate than would normally be required (10x or
one order of magnitude as a rule of thumb was deemed
reasonable). Also people could easily restore a few GB
of raw data without that much knowledge of structure
and expect it to come back roughly as fast as the network
would be able to provide it even if there were a lot of
small files in there.

At this point, a decision was made that containers
would be critical to using the ADS archive efficiently in
conjunction with SRB.

3.3 A solution: containers implemented

Our initial understanding of containers led us to
believe that some development work would be necessary
to implement containers for the ADS. In fact, we found
that the only steps necessary were to install an
appropriate disk for cache space, and change the resource
configuration. A 2-TB RAID disk was purchased, and
attached to the host machine that was running the ADS
server. Within SRB a logical resource was configured

 103

which included 2 physical resources: the ADS tape
storage system, and the new cache disk.

Using containers required some additional knowledge
and management on the part of the users. Whereas in the
direct-to-tape implementation, a file could be transferred
into the ADS with a single Sput command, the use of
containers requires 3 steps for a file transfer: 1) create a
container on the ADS logical resource; 2) transfer data
into the container, using Sput or a similar command, and
3) sync the container using the Ssyncont command, with
an option to delete the data from the cache at the same
time.

Users can access the file using the same commands as
used for non-containerised files. When a file in a
container is accessed, SRB checks to see if the container
exists on cache. If not, the container is copied from tape
to cache, and access proceeds from cache, with all the
characteristics of any file stored on a disk resource.

SRB has the capability to do parallel data transfer, but
this cannot be used when writing or reading directly to or
from tape. With containers, parallel transfer can be used
while copying files into the container, followed by an
asynchronous transfer to tape, which speeds up transfer
times into the ADS.

Extensive testing and use of containers by ISIS
uncovered a few bugs in SRB, which were promptly
fixed. At our request, SDSC also provided some
enhanced functionality for information about container
contents and container families, and for administration of
containers.

With containers implemented, ISIS retested the
transfer of small files. Whereas, without containers,
archive time was taking about 6 seconds per file, with
containers this was reduced to about 1 second per file.

3.4 Managing containers for users

Training was prepared by the CCLRC Data
Management Group to teach users how containers work
and how to use them effectively. Users need to
understand how data moves between cache and disk, the
importance of issuing the sync command to actually
initiate transfer to tape, how families of containers work,
and how to set the container size for optimal tape usage.

Administering containers required that we develop a
few administrative scripts to run on the ADS server for
the following functions:

1) Sync containers to tape, to insure that a copy has
been written to tape.

2) Sync-and-delete any containers on cache to clear
out the disk cache. Ideally, this should be done
using an algorithm of deleting the oldest-accessed
files only when additional cache is needed.
Recently used containers are the most likely to be

accessed again, and not deleting them can reduce
tape usage.

3) Monitor that the cache disk is not filling up.
In practice, as this is an archival system, usage

patterns show that a container is created and immediately
filled, then not accessed again for some time. So we
currently have a single script that runs nightly to perform
the functionality of (1) and (2) above, and this has to date
proven quite adequate.

3.5 A few more lessons worthy of note –
BBSRC

Following the implementation of containers for ISIS,
another project has been initiated which takes the use of
containers a step further. CCLRC is undertaking
development for BBSRC to manage an SRB system for
their data archival needs, and to do additional
development to customise SRB for their specialised
needs. This includes a special-purpose GUI to manage
the end-to-end transfer and tracking of archive packages.
Their data transfer must take place in 2 steps: from
BBSRC local sites to a central site over slow network
connections, and then nightly during specified hours
from the central site into the ADS over a higher speed
network. Users then require email notification when 2
copies of their data are resident on tape.

Achieving the best performance possible for data
transfer was a key requirement for this project. After a
series of comparative tests, it was determined that
optimum transfer speeds could be achieved through the
creation of containers on an intermediate disk resource at
the central site, followed by the replication of the
containerised archive package to the ADS SRB cache
resource using the Sreplcont command. Once in a
container, the package is effectively treated as a large
file, enabling full use of SRB’s parallel capabilities. Data
transfer speeds that reflect maximum utilisation of the
available network bandwidth have been consistently
demonstrated.

It has been necessary to expand the logical resource
model previously used with the ADS to cater for the
additional physical cache resource. The Sreplcont
command has been enhanced to allow the explicit
specification of the target resource for the replica. The
final step is to “synchronise” the containerised data to
tape, using the Ssyncont command and remove all
cached replicas.

Given that the data is staged on its way to the ADS, it
is vital that performance is optimised for all stages of the
data transfer process. While containers are used from the
central site cache onwards, it is still necessary to get the
data into the container. “Bulk” data transfer options had
already existed within SRB for data ingestion and
extraction, but not for data movement within SRB. The

 104

bulk option allows for implicit temporary creation of
containers for efficient data transfer, combined with a
bulk metadata update. SDSC have now added bulk
options to the Sphymove (physical data transfer between
resources) and Scp (copy) commands. To illustrate the
importance of the new command options, the transfer of
a test SRB “collection hierarchy” was taking over twelve
minutes – this has now been reduced to one minute.

One final area in which the BBSRC project has
pushed previous limits is in the size of containers. The
previous 2GB limit is no longer a constraint, with the
new bulk Sphymove option allowing the creation of a
container that will hold a complete archive package far
greater than 2GB in size. The only limitations relate to
the underlying storage system and the practicality of
restoring colossal containers to cache if only a few files
are required.

4 Conclusions

4.1 Lessons learned

Overcoming the small-file problem is critical for an
efficient interface to a mass storage system. Ignoring it
leads to poor utilization of tape, network, and database
resources, and can bring MSS access to a near standstill.

Containers provided by SRB have proved relatively
easy to implement and extremely valuable in managing
the small-file problem and improving transfer rates. SRB
provides the tools necessary to install a cache disk in
front of the MSS and manage the linkage. This gives
users the capability of interacting with the MSS as if it
were a disk file system.

Training users on how to effectively use containers is
important. Some thought about what logical structure to
use when grouping files into containers can lead to
significant improvements in access times.

SRB has a wealth of commands that allow different
approaches to how data is ingested, transferred, and
accessed. It is worthwhile to give some thought and
testing to which of the SRB commands is most
appropriate for a particular project. We have found the
Sreplcont command very useful in improving data
transfer rates.

Our users have dictated to us that the combination of
SRB services together with ADS large-scale archiving
capabilities is required to provide effective tools for their
data management needs.

4.2 Implications for the future

Containers are now an integral part of planning for
new data archiving projects. In order to manage data

transfers and tape handling efficiently, we may make this
the only acceptable path into the ADS from SRB.

Projects that require archival of many small files will
be encouraged to use the SRB interface for
containerisation.

4.3 Where from here?

Some additional development and refinement of SRB
container commands would be useful. For example:

• A facility to automatically sync a container to
tape when it becomes full, and a new container
family member is opened is planned.

• Viewing of container families could be more
user- friendly.

• SRB effectively hides container families from
users. However, from an administrator’s or
developer’s point of view, it would be useful if
they were not quite so effectively hidden.
Identifying container families from internal SRB
transfer names is not always straightforward.

• Better user documentation about containers is
needed.

Improvements in our administration scripts will
probably be required to better manage the cache space
associated with the MSS as usage of containers scales up.

As containers have proved invaluable to us in
managing small files, we will continue to work with
SDSC to test, debug and document containers, and to
expand their capabilities.

References

[1] Atlas Data Store (CCLRC e-Science), http://www.e-
science.clrc.ac.uk/web/services/datastore
[2] Data Management Services (CCLRC e-Science),
http://www.e-
science.clrc.ac.uk/web/projects/data_storage_and_management
[3] SRB: Storage Resource Broker, http://www.sdsc.edu/srb

 105

http://www.e-science.clrc.ac.uk/web/services/datastore
http://www.e-science.clrc.ac.uk/web/services/datastore
http://www.e-science.clrc.ac.uk/web/projects/data_storage_and_management
http://www.e-science.clrc.ac.uk/web/projects/data_storage_and_management
http://www.sdsc.edu/srb

	Introduction: Mass Storage Systems and the Small File Proble
	Brief history of the development of SRB and the Atlas Petaby
	Developing the effective use of SRB Containers
	How it started: CMS 2003
	Specific problems: development for ISIS
	A solution: containers implemented
	Managing containers for users
	A few more lessons worthy of note – BBSRC

	Conclusions
	Lessons learned
	Implications for the future
	Where from here?

	References

