Mondex in Z/Eves

Leo Freitas and Jim Woodcock
University of York May 2006

Introduction

- formalising Mondex in Z/Eves
- suggesting improvements
- Z/Eves idioms and specification patterns
- how to drive Z/Eves, fast!
- problems found in Mondex models
- benchmarks
- conclusions and future work

How faithful is it?

- carbon copy of Oxford PRG-126
- implicit finiteness information made explicit
- AuxWorld elements (Chapter 5)
- chosenLost components (Chapter 10)
- theorems to discharge such choice are included

How faithful is it?

Auxiliary toolkit (Appendix D)

- inappropriate for mechanisation
- proposed alternative using sequences and induction
- avoids finiteness problems
- avoids specificity of instantiation
- can rely on toolkit theorems for sequences

```
    totalAbBalance : (NAME # AbPurse) }->\mathbb{N
```

 totalAbBalance \(\emptyset=0\)
 \(\forall w:(\) NAME \(\rightarrow\) AbPurse \() ; n:\) NAME; AbPurse |
 \(n \notin \operatorname{dom} w \bullet\) totalAbBalance \((\{n \mapsto \theta A b P u r s e\} \cup w)\)
 $=$ balance + totalAbBalance w

How faithful is it?

Suggestion: inductive update over sequences

```
update : \(\operatorname{seq} \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \rightarrow \operatorname{seq} \mathbb{Z}\)
\(\forall i, n: \mathbb{Z} \bullet \operatorname{update}(\langle \rangle, i, n)=\langle \rangle\)
\(\forall i, x, n: \mathbb{Z} \bullet \operatorname{update}(\langle x\rangle, i, n)=\) if \(i=1\) then \(\langle n\rangle\) else \(\langle x\rangle\)
\(\forall s, t: \operatorname{seq} \mathbb{Z} ; i, n: \mathbb{Z} \bullet u p d a t e\left(\left(s^{\frown} t\right), i, n\right)=\)
    if \(i \in \operatorname{dom} s\) then update \((s, i, n)^{\frown} t\)
    else if \(i-\# s \in \operatorname{dom} t\) then \(s{ }^{\frown}\) update \((t,(i-\# s), n)\)
    else \(s^{\frown} t\)
```


How faithful is it?

Suggestion: inductive summation of sequences

```
sum \(: \operatorname{seq} \mathbb{Z} \rightarrow \mathbb{Z}\)
    \(\operatorname{sum}\rangle=0\)
    \(\forall n: \mathbb{Z} \bullet \operatorname{sum}\langle n\rangle=n\)
    \(\forall s, t: \operatorname{seq} \mathbb{Z} \bullet \operatorname{sum}\left(s^{\frown} t\right)=\operatorname{sum} s+\operatorname{sum} t\)
```

theorem tSumUpdate
$\forall s: \operatorname{seq} \mathbb{Z} ; i, n: \mathbb{Z} \mid i \in \operatorname{dom} s \bullet$

$$
\operatorname{sum}(\operatorname{update}(s, i, n))=\operatorname{sum} s-s i+n
$$

theorem rule rSumPos
$\forall s: \operatorname{seq} \mathbb{N} \bullet \operatorname{sum} s \in \mathbb{N}$

How complete is it?

Models

- A model (Chapter 3)
- \mathcal{B} model: purse, world, init., final. (Chapters 4, 5, 6)
- C model (Chapter 7)
- applicability proofs (Chapter 8)

How complete is it?

Refinement: \mathcal{A} to \mathcal{B}

- retrieve definitions (Chapter 10)
- \mathcal{A} to \mathcal{B} initialisation (Chapter 11)
- \mathcal{A} to \mathcal{B} finalisation (Chapter 12)
- \mathcal{A} to \mathcal{B} applicability (Chapter 13)

How complete is it?

Security properties (Chapter 2)

- all definitions (but Section 2.4)
- proofs in Section 2.4 contain informal arguments
- totalAbBalance (Appendix D) is inadequate for mechanisation
- mechanisable using suggested model of sequences

Retrieve definitions (Chapter 10)

- steps for existential proof is unclear
- end up requiring that at least one payment has been made

$$
R a b C l \Rightarrow(\exists \text { pdThis }: \text { PayDetails } \bullet \text { true })
$$

Suggestions of improvement

Auxiliary lemmas from Chapter 8

- several lemmas needed for precondition proofs
- promoted operations
- appropriate instantiations
- textual proofs avoids promoted operations via Ignore
- other lemmas are stated but not used (yet)
- no explanation is given for harder proofs

Suggestions of improvement

Well explained proofs are worthwhile (so far)

- later chapters proofs are thoroughly explained
- the mechanised proofs are mostly the same as the explanation

Suggestions of improvement

Z idioms: one-point-mu!

- inadequacy of some θ and μ expressions used
- θ equivalence for Mondex μ expressions
- function application equivalence for θ expressions
- extra housekeeping rules for free types, and schema
- partial injectivity and/or functionality
- relational property and/or maximal types
- trivial repetition of schema component types as theorems

Suggestions of improvement

e.g., precondition proofs for StartFromPurseEafromOkay use

PayDetails $\hat{=}[$ TransferDetails; fromSeqNo, toSeqNo $: \mathbb{N} \mid$ from \neq to $]$ CounterPartyDetails $\widehat{=}$ [name : NAME; value : $\mathbb{N} ;$ nextSeqNo : $\mathbb{N}]$
theorem rule rStartFromMuPayDetailsValue
\forall name : NAME; nextSeqNo : $\mathbb{N} ;$ cpd : CounterPartyDetails
\mid name \neq cpd.name $\bullet(\mu$ PayDetails \mid from $=$ name \wedge to $=$ cpd.name \wedge value $=c p d . v a l u e \wedge$ fromSeqNo $=$ nextSeqNo \wedge toSeqNo $=$ cpd.nextSeqNo)
$=\theta$ PayDetails[from $:=$ name, to $:=$ cpd.name, value $:=$ cpd.value, fromSeqNo $:=$ nextSeqNo, toSeqNo := cpd.nextSeqNo]

Suggestions of improvement

- minor $A T_{E} X$ mistakes on strokes (Chapters 7 and 10)
- more explicit applicability theorems and proofs (Chapter 8)
- misleading name of operation given in proof on p. 63 (Chapter 8)
- more explicit referencing to used lemmas in proofs (Chapter 10)
- explicit state finiteness properties
- AuxWorld invariant (Chapter 5)
- chosenLost components (Chapter 10)

Driving Z/Eves

- extra type rules for free types and bindings
- extra type rules for schema components
- encoding of finiteness as predicates
- expansion lemmas for complex schemas (e.g., BetweenWorld)
- additional lemmas for promoted schemas precondition

Extending Z/Eves

Theory for functional overriding (Chapter 8)
theorem rule rPFunElement $[X, Y$]

$$
\forall f: X \rightarrow Y ; x: X ; y: Y \mid x \in \operatorname{dom} f \wedge y=f x \bullet(x, y) \in f
$$

theorem rule rPFunSubsetOplusRel $[X, Y]$

$$
\forall f, g: X \rightarrow Y \mid g \subseteq f \bullet f \oplus g=f \oplus(\operatorname{dom} g \triangleleft f)
$$

theorem lPFunSubsetOplusUnitRel $[X, Y]$

$$
\begin{aligned}
& \forall f: X \rightarrow Y ; x: X ; y: Y \mid x \in \operatorname{dom} f \wedge y=f x \bullet \\
& \quad f=f \oplus\{(x \mapsto y)\}
\end{aligned}
$$

Problem: are after purses authentic?

- abAuthPurse' is not authentic in AbTransferOkayTD and AbTransferLostTD (p.20,21)
- necessity proof that Δ Authentic is needed
- it should give a counter example
- requires complex μ expression equivalence
_ AbTransferOkayTD AbWorldSecureOp

Authentic[from? $/$ name? $] \wedge$ Authentic $[$ to? $/$ name? $] \wedge \cdots$
$\forall x, y: N A M E ; x P, y P: A b P u r s e \mid x \neq y \wedge(\forall n: N A M E \bullet n \in\{x, y\})$

- \forall Ab WorldSecureOp \mid Authentic[from?/name?] \wedge abAuthPurse ${ }^{\prime}=\{(x, x P),(y, y P)\} \bullet$ from $? \in \operatorname{dom}$ abAuthPurse ${ }^{\prime}$

Problem: 4 missing properties of BetweenWorld (p.42)

- val purses in the ether refer to authentic from and to purses (B3)

$$
\begin{aligned}
& \forall p d: \text { PayDetails } \mid \text { val } p d \in \text { ether } \bullet p d \in \text { authenticTo } \\
& \forall p d: \text { PayDetails } \mid \text { val } p d \in \text { ether } \bullet p d \in \text { authenticFrom }
\end{aligned}
$$

- ack purses in the ether refer to authentic from and to purses (B4)

$$
\begin{aligned}
& \forall p d: \text { PayDetails } \mid \text { ack } p d \in \text { ether } \bullet p d \in \text { authenticTo } \\
& \forall p d: \text { PayDetails } \mid \text { ack } p d \in \text { ether } \bullet p d \in \text { authenticFrom }
\end{aligned}
$$

- BetweenWorld is inconsistent when val or ack msg. are handled

Benchmarks: Mondex in numbers (so far)

Given sets	2
Free types	4
Axiomatic definitions	5
Schemas	131
Total definitions	$\mathbf{1 4 2}$

Z/Eves rules	47
Lemmas	12
Theorems	21
Proof scripts	80
Domain checks	57
Total proofs	$\mathbf{1 3 7}$

- DC are Z/Eves proof obligations
- DC are sufficient conditions for definedness
- generates proofs even when definitions are not used

Benchmarks: Mondex in numbers (so far)

Automation	grule	frule	rule	Lemmas	Total
Free types	14	0	4	0	$\mathbf{1 8}$
Schemas/bindings	0	14	5	7	$\mathbf{2 6}$
$\mu-\theta$ expressions	0	0	8	0	$\mathbf{8}$
Extended overriding	0	0	2	1	$\mathbf{3}$
Finiteness	0	0	0	4	$\mathbf{4}$
Total	14	14	19	12	$\mathbf{5 9}$

Benchmarks: proof effort explained

- trivial push button steps
- repetitive steps from previous proofs
- intermediate steps requiring $Z /$ Eves expertise
- creative steps requiring domain knowledge (i.e., instantiations)
- hard steps for general (additional/unrelated) theories
- function overriding lemmas
- mu- θ expression equivalences
- to do: finiteness proofs (i.e., induction, bijective, etc.)

Benchmarks: estimated proof effort

Effort	Steps
Trivial (push button)	209
Intermediate (Z/Eves knowledge)	421
Creative (domain knowledge)	89
Total steps	$\mathbf{7 1 9}$

Benchmarks: breakdown of activities (May/2006)

- typesetting
- manually typing Chapters 3 and 4
- PRG-126 sources from Chapter 5
- using ntheorem.sty from $22^{\text {nd }}$ of May
- proof effort
- most effort on preconditions for Chapter 8
- repeated proofs for Z/Eves automation
- extended theory for overriding and $\mu-\theta$ equivalence

Benchmarks: how long it took?

Chapter	Hours	Days of May
$3 — \mathcal{A}$ model	6	$3^{\text {rd }}$
$4 — \mathcal{B}$ purse	10	$3^{\text {rd }}, 4^{\text {th }}$
$5 — \mathcal{B}$ world	4	$5^{\text {th }}$
$6 — \mathcal{B}$ init/final	1	$5^{\text {th }}$
$7 — \mathcal{C}$ world	1	$5^{\text {th }}$
$8 —$ Preconditions	15	$5^{\text {th }}, 16^{\text {th }}, 17^{\text {th }}, 18^{\text {th }}$
$10 —$ Retrieve state	7	$18^{\text {th }}, 22^{\text {nd }}$
ATEX document	10	$3^{\text {rd }}, 4^{\text {th }}, 22^{\text {nd }}, 23^{\text {nd }}$
Total	$\mathbf{5 4}$	$\mathbf{3}^{\text {rd }}-\mathbf{2 3}^{\text {rd }}$

around 7 working days

Benchmarks: how much is left?

- proof effort pending
- finiteness lemmas
- security properties (Section 2.4) proofs
- equivalence lemma for \exists on Chapter 10
- what is next?
- adequate theory/automation for finiteness
- refinement proofs Chapters

Conclusions

- unknown bugs: payback for such effort (?)
- missing properties of BetweenWorld affects around 6 operation
- that means it allows operations over non-authentic purses
- what is the point?
- motivated not by the tool, but by the problem
- suitability of Z: did it helped or got in the way?
- discussion...

Future work

- comparing results
- different bugs or proofs from different formalisations?
- what if no bugs from Between World are found?
- how to assess such scenarios?

