Mondex in Z/Eves

Leo Freitas and Jim Woodcock University of York May 2006

Introduction

- formalising Mondex in Z/Eves
- suggesting improvements
- Z/Eves idioms and specification patterns
- how to drive Z/Eves, fast!
- problems found in Mondex models
- benchmarks
- conclusions and future work

- carbon copy of Oxford PRG-126
- implicit finiteness information made explicit
 - AuxWorld elements (Chapter 5)
 - chosenLost components (Chapter 10)
- theorems to discharge such choice are included

Auxiliary toolkit (Appendix D)

- inappropriate for mechanisation
- proposed alternative using sequences and induction
 - avoids finiteness problems
 - avoids specificity of instantiation
 - can rely on toolkit theorems for sequences

```
totalAbBalance : (NAME \implies AbPurse) \rightarrow \mathbb{N}
```

 $\begin{aligned} totalAbBalance \ \emptyset &= 0 \\ \forall \ w : (NAME \implies AbPurse); \ n : NAME; \ AbPurse \ | \\ n \notin \text{dom } w \bullet totalAbBalance (\{ n \mapsto \theta AbPurse \} \cup w) \\ &= balance + totalAbBalance \ w \end{aligned}$

Suggestion: inductive update over sequences

 $update : seq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \to seq \mathbb{Z}$ $\forall i, n : \mathbb{Z} \bullet update(\langle \rangle, i, n) = \langle \rangle$ $\forall i, x, n : \mathbb{Z} \bullet update(\langle x \rangle, i, n) = \mathbf{if} \ i = 1 \mathbf{then} \ \langle n \rangle \mathbf{else} \ \langle x \rangle$ $\forall s, t : seq \mathbb{Z}; \ i, n : \mathbb{Z} \bullet update((s \cap t), i, n) =$ $\mathbf{if} \ i \in dom \ s \mathbf{then} \ update(s, i, n) \cap t$ $\mathbf{else} \ \mathbf{if} \ i - \#s \in dom \ t \mathbf{then} \ s \cap update(t, (i - \#s), n)$ $\mathbf{else} \ s \cap t$

Suggestion: inductive summation of sequences

 $sum : \operatorname{seq} \mathbb{Z} \to \mathbb{Z}$ $sum \langle \rangle = 0$ $\forall n : \mathbb{Z} \bullet sum \langle n \rangle = n$ $\forall s, t : \operatorname{seq} \mathbb{Z} \bullet sum (s \frown t) = sum s + sum t$

theorem tSumUpdate $\forall s : seq \mathbb{Z}; i, n : \mathbb{Z} \mid i \in dom s \bullet$ sum(update(s, i, n)) = sum s - s i + n

theorem rule rSumPos

 $\forall s : \operatorname{seq} \mathbb{N} \bullet sum \ s \in \mathbb{N}$

How complete is it?

Models

- *A* model (Chapter 3)
- *B* model: purse, world, init., final. (Chapters 4, 5, 6)
- *C* model (Chapter 7)
- applicability proofs (Chapter 8)

How complete is it?

Refinement: \mathcal{A} to \mathcal{B}

- retrieve definitions (Chapter 10)
- \mathcal{A} to \mathcal{B} initialisation (Chapter 11)
- \mathcal{A} to \mathcal{B} finalisation (Chapter 12)
- \mathcal{A} to \mathcal{B} applicability (Chapter 13)

How complete is it?

Security properties (Chapter 2)

- all definitions (but Section 2.4)
- proofs in Section 2.4 contain informal arguments
- totalAbBalance (Appendix D) is inadequate for mechanisation
- mechanisable using suggested model of sequences

Retrieve definitions (Chapter 10)

- steps for existential proof is unclear
- end up requiring that at least one payment has been made

 $RabCl \Rightarrow (\exists pdThis : PayDetails \bullet true)$

Auxiliary lemmas from Chapter 8

- several lemmas needed for precondition proofs
 - promoted operations
 - appropriate instantiations
- textual proofs avoids promoted operations via Ignore
- other lemmas are stated but not used (yet)
- no explanation is given for harder proofs

Well explained proofs are worthwhile (so far)

- later chapters proofs are thoroughly explained
- the mechanised proofs are mostly the same as the explanation

Z idioms: one-point-mu!

- inadequacy of some θ and μ expressions used
- θ equivalence for Mondex μ expressions
- function application equivalence for θ expressions
- extra housekeeping rules for free types, and schema
 - partial injectivity and/or functionality
 - relational property and/or maximal types
 - trivial repetition of schema component types as theorems

e.g., precondition proofs for StartFromPurseEafromOkay use

 $\begin{aligned} PayDetails &\cong [TransferDetails; fromSeqNo, toSeqNo : \mathbb{N} \mid from \neq to] \\ CounterPartyDetails &\cong [name : NAME; value : \mathbb{N}; nextSeqNo : \mathbb{N}] \end{aligned}$

theorem rule rStartFromMuPayDetailsValue

 $\forall name : NAME; nextSeqNo : \mathbb{N}; cpd : CounterPartyDetails \\ | name \neq cpd.name \bullet (\mu PayDetails | from = name \land \\ to = cpd.name \land value = cpd.value \land \\ fromSeqNo = nextSeqNo \land \\ toSeqNo = cpd.nextSeqNo) \\ = \theta PayDetails[from := name, to := cpd.name, \\ value := cpd.value, fromSeqNo := nextSeqNo, \\ toSeqNo := cpd.nextSeqNo] \\ \end{cases}$

- minor \alpha_T_EX mistakes on strokes (Chapters 7 and 10)
- more explicit applicability theorems and proofs (Chapter 8)
- misleading name of operation given in proof on p. 63 (Chapter 8)
- more explicit referencing to used lemmas in proofs (Chapter 10)
- explicit state finiteness properties
 - AuxWorld invariant (Chapter 5)
 - chosenLost components (Chapter 10)

Driving Z/Eves

- extra type rules for free types and bindings
- extra type rules for schema components
- encoding of finiteness as predicates
- expansion lemmas for complex schemas (e.g., BetweenWorld)
- additional lemmas for promoted schemas precondition

Extending Z/Eves

Theory for functional overriding (Chapter 8)

theorem rule rPFunElement [X, Y] $\forall f: X \leftrightarrow Y; x: X; y: Y \mid x \in \text{dom} f \land y = f x \bullet (x, y) \in f$

theorem rule rPFunSubsetOplusRel [X, Y] $\forall f, g : X \leftrightarrow Y \mid g \subseteq f \bullet f \oplus g = f \oplus (\operatorname{dom} g \lhd f)$

theorem lPFunSubsetOplusUnitRel [X, Y] $\forall f : X \leftrightarrow Y; \ x : X; \ y : Y \mid x \in \text{dom} f \land y = f x \bullet$ $f = f \oplus \{(x \mapsto y)\}$

Problem: are after purses authentic?

- *abAuthPurse'* is not authentic in *AbTransferOkayTD* and *AbTransferLostTD* (p.20, 21)
 - necessity proof that $\Delta Authentic$ is needed
 - it should give a counter example
 - requires complex μ expression equivalence

_AbTransferOkayTD _____ AbWorldSecureOp

 $Authentic[from?/name?] \land Authentic[to?/name?] \land \cdots$

 $\forall x, y : NAME; xP, yP : AbPurse \mid x \neq y \land (\forall n : NAME \bullet n \in \{x, y\})$

• $\forall AbWorldSecureOp \mid Authentic[from?/name?] \land$ $abAuthPurse' = \{(x, xP), (y, yP)\} \bullet from? \in \text{dom } abAuthPurse'$

Problem: 4 missing properties of *BetweenWorld* (p.42)

• val purses in the ether refer to authentic from and to purses (B3)

 $\forall pd : PayDetails \mid val pd \in ether \bullet pd \in authenticTo$ $\forall pd : PayDetails \mid val pd \in ether \bullet pd \in authenticFrom$

• ack purses in the ether refer to authentic from and to purses (B4)

 $\forall pd : PayDetails \mid ack pd \in ether \bullet pd \in authenticTo \\ \forall pd : PayDetails \mid ack pd \in ether \bullet pd \in authenticFrom$

• BetweenWorld is inconsistent when val or ack msg. are handled

Benchmarks: Mondex in numbers (so far)

		Z/Eves rules	5 47
Given sets	2	Lemmas	12
Free types	4	Theorems	21
Axiomatic definitions	5		
Schemas	131	Proof scripts	s 80
Total definitions	142	Domain che	c ks 57
	172	Total proofs	137

- DC are Z/Eves proof obligations
- DC are sufficient conditions for definedness
- generates proofs even when definitions are not used

Benchmarks: Mondex in numbers (so far)

Automation	grule	frule	rule	Lemmas	Total
Free types	14	0	4	0	18
Schemas/bindings	0	14	5	7	26
μ - θ expressions	0	0	8	0	8
Extended overriding	0	0	2	1	3
Finiteness	0	0	0	4	4
Total	14	14	19	12	59

Benchmarks: proof effort explained

- trivial push button steps
- repetitive steps from previous proofs
- *intermediate steps requiring Z/Eves expertise*
- creative steps requiring domain knowledge (i.e., instantiations)
- hard steps for general (additional/unrelated) theories
 - function overriding lemmas
 - *mu-* θ *expression equivalences*
- to do: finiteness proofs (i.e., induction, bijective, etc.)

Benchmarks: estimated proof effort

Effort	Steps
Trivial (push button)	209
Intermediate (Z/Eves knowledge)	421
Creative (domain knowledge)	89
Total steps	719

Benchmarks: breakdown of activities (May/2006)

- typesetting
 - manually typing Chapters 3 and 4
 - PRG-126 sources from Chapter 5
 - using ntheorem.sty from 22^{nd} of May
- proof effort
 - most effort on preconditions for Chapter 8
 - repeated proofs for Z/Eves automation
 - extended theory for overriding and μ - θ equivalence

Benchmarks: how long it took?

Chapter	Hours	Days of May
3—A model	6	3^{rd}
4—B purse	10	3^{rd} , 4^{th}
$5-\mathcal{B}$ world	4	5^{th}
$6-\mathcal{B}$ init/final	1	5^{th}
7—C world	1	5^{th}
8—Preconditions	15	5^{th} , 16^{th} , 17^{th} , 18^{th}
10—Retrieve state	7	18^{th} , 22^{nd}
BT _E X document	10	3^{rd} , 4^{th} , 22^{nd} , 23^{nd}
Total	54	$3^{ m rd}$ – $23^{ m rd}$

around 7 working days

Benchmarks: how much is left?

- proof effort pending
 - finiteness lemmas
 - security properties (Section 2.4) proofs
 - equivalence lemma for \exists on Chapter 10
- what is next?
 - adequate theory/automation for finiteness
 - refinement proofs Chapters

Conclusions

- unknown bugs: payback for such effort (?)
 - missing properties of BetweenWorld affects around 6 operation
 - that means it allows operations over non-authentic purses
- what is the point?
 - motivated not by the tool, but by the problem
 - suitability of Z: did it helped or got in the way?
- discussion . . .

Future work

- comparing results
- different bugs or proofs from different formalisations?
- what if no bugs from BetweenWorld are found?
- how to assess such scenarios?