
Mechanizing the Proofs
of the Mondex Challenge with KIV

Gerhard Schellhorn
Holger Grandy, Dominik Haneberg, Wolfgang Reif

University of Augsburg

Overview

� Part 1: The full Mondex case study in KIV

�

Context of Work: Go! Card project

�

The interactive theorem prover KIV

�

Translating Z specifications to algebraic specifications

�

Formal verification of the Mondex refinement in KIV

�

Discussion of results and future work

� Part 2 (optional): Abstract State Machines for Mondex

�

Abstract state machines and ASM refinement

�

A specification of Mondex using ASMs

Context of Work

Topic of Go! Card Project (supported by DFG):
Security critical E-Commerce applications such as

� Electronic Purses (Mondex, Copy Cards, Mensa Cards)

� Ordering cinema tickets with a cell phone

� Getting on-board railway tickets using a PDA

� Getting on-line tickets for railway via WWW

Goal: Develop an approach that integrates

� Classical software engineering using UML (and Java)

� Formal Security Analysis using theorem proving

SW Engineering using UML (e.g. [Larman])

Java Code

Design Model + Comm. Diagrams

Analysis Model + Sequence Charts

Concept Model + Use Cases

+ Crypto Lib

Operations
+Contracts

The ProSecCo approach - Security Protocols

Activity Charts

Add Security
Annotations

actions

add

[GoCard04−06]
ASM:Security Protocol

[Haneberg06]

prove: Correctness
prove: Security

Java Code

Design Model + Comm. Diagrams

Analysis Model + Sequence Charts

Concept Model + Use Cases

+ Crypto Lib

Operations
+Contracts

The ProSecCo approach - Refine to Java

refinement [Grandy 06]

security rel. Java Code
+ Spec of Crypto Lib

Java calculus [Stenzel04]
extract verification
kernel [Grandy05]

Activity Charts

Add Security
Annotations

actions

add

[GoCard04−06]
ASM:Security Protocol

[Haneberg06]

prove: Correctness
prove: Security

Java Code

Design Model + Comm. Diagrams

Analysis Model + Sequence Charts

Concept Model + Use Cases

+ Crypto Lib

Operations
+Contracts

The ProSecCo approach - Abstraction

ASM: transactions

ASM refinement

implies

prove:Correctness

ASM for Comm. Protocol

goals, intentions?

ASM refinement

(adds sec. + attacker)

refinement [Grandy 06]

security rel. Java Code
+ Spec of Crypto Lib

Java calculus [Stenzel04]
extract verification
kernel [Grandy05]

Activity Charts

Add Security
Annotations

actions

add

[GoCard04−06]
ASM:Security Protocol

[Haneberg06]

prove: Correctness
prove: Security

Java Code

Design Model + Comm. Diagrams

Analysis Model + Sequence Charts

Concept Model + Use Cases

+ Crypto Lib

Operations
+Contracts

The ProSecCo approach - Mondex

Mondex (Z instead of ASM)

ASM: transactions

ASM refinement

implies

prove:Correctness

ASM for Comm. Protocol

goals, intentions?

ASM refinement

(adds sec. + attacker)

refinement [Grandy 06]

security rel. Java Code
+ Spec of Crypto Lib

Java calculus [Stenzel04]
extract verification
kernel [Grandy05]

Activity Charts

Add Security
Annotations

actions

add

[GoCard04−06]
ASM:Security Protocol

[Haneberg06]

prove: Correctness
prove: Security

Java Code

Design Model + Comm. Diagrams

Analysis Model + Sequence Charts

Concept Model + Use Cases

+ Crypto Lib

Operations
+Contracts

Mondex Purses

� Smartcards (www.mondex.com) that implement an electronic wallet

� Money transfer with (all of ? all with the specified protocol?)

�

smart card reader with two slots

�

over telephone

�

with two smart card readers over internet

� how is transfer authenticated ?:

�

just inserting card

�

giving a PIN

� famous for being the first product that got an ITSEC security level E6

� E6 is the highest level, requires formal methods

Mondex Purses: The Original Work

� 2 specifications in Z:

�

abstract level: transactions for money transfer

�

concrete level: communication protocol

� verification of correctness on abstract level:
no money lost/generated

� development of a data refinement theory suitable for the case study
[Cooper,Stepney,Woodcock02]

� correspondence proof between abstract and concrete level using two
data refinements [Stepney,Cooper,Woodcock00]

� very detailed proofs on paper

� Formal Verification was recently proposed as “Grand Challenge 6”

Solving the Challenge: My Work

� Formal specification of the data refinement theory in KIV
Improvement: use invariants together with backward simulation

� Mechanized exactly the backward simulation proofs of Mondex in KIV
(improvement: use one instead of two data refinements)

Claims:

�

Doing proofs of this size by hand is never 100% correct

�

Machine proofs can be done in reasonable time

� Definition of an alternative formalisations using ASMs

Claims:

�

ASMs are simple and easy to understand
(esp. for people not familiar with formal methods)

�

ASMs are easier to verify (mostly future work)

KIV - History

� Project started in 1985 (Reif, Heisel, Stephan) in Karlsruhe as a
theorem prover construction project

� KIV = Karlsruhe Interactive Verifier

� Design Decisions:

�

Built-in data structure of Proof Trees for sequent calculus

�

Use Harel’s Dynamic Logic (DL)

� Express total correctness, program inclusion (refinement)

�

Use a Graphical Interface to communicate with the user
(now in Java, then programmed in motif . . .)

KIV - Higher-Order Dynamic Logic (DL)

� sorts S, types T � S �

T

� �

T

� Operations OP, variables X (for any type T)

� sorts bool, nat and their operations are predefined

� expressions E � OP

�

X

�

E

�

E

� � � �

X

�� E

� �
X

�� Ebool

� 	

X

�� Ebool

�

� �

Ebool

� � �

Ebool

� � � � �

Ebool

� In wp-calculus:

� �� � wlp(� ,�),

 � � � �� � wp(� ,�)

�

 � �� � �
� � ��

“there is a terminating run of � such that� holds at the end”

� Hoare-Calculus is a sublogic: {� } � {

�
} �� �
� � �

� program inclusion with x = vars(�):

 � �

x = x � � � � x = x �

KIV - Abstract Programs

� abstract sequential programs � with

�

parallel assignment x := t

� � � �

, if , while , let

�

choose x with � in �

� � or

�

(Dijkstra’s choice)

�

Pascal-like procedures (globally defined)

� Semantics of programs (as in [deBakker80]):
strict relations over states (= valuations) +

�

for nontermination

Extensions of the logic (not used in the Mondex case study):

� Java programs instead of abstract programs [Stenzel04]

� Temporal logic over statecharts/interleaved programs [Balser05]

Structured Specifications in KIV

� basic specifications = higher-order DL theories
(signature + axioms + procedure declarations)

� loose semantics (same as in Z)

� free data types to abbreviate standard axioms

� structured algebraic specifications (similar to CASL) with
union, enrichment, renaming, parameters, actualization and
instantiation

� instantiation (similar to theory interpretation [Farmer94]): allows

�

to map sorts to tuples (e.g. abstract state � balance, lost)

�

to generate proof obligations (e.g. those of data refinement)

�

Restrict-Identify possible (refinement of algebraic data types)

Specification structure displayed as a development graph

Theorem Proving in KIV

� Based on sequent calculus

� Using proof trees to keep track of proof structure

� (very efficiently implemented) simplification with rewrite rules
(Mondex: 1200 rules, most of them from standard data types from
library)

� configurable heuristics for automation

� Symbolic Execution of programs:
(iteratively compute the strongest postcondition
for the first statement of a program)

� Patterns define situations, where to apply certain proof rules

Mondex in KIV - Overview

� Formalize the Data Refinement Theory of Mondex as in
[Cooper,Stepney,Woodcock02]:

�

Step 1: Definition of Refinement [Hoare,He86]

�

Step 2: Forward and Backward Simulation [Hoare,He86]

�

Step 3: Contract Approach [Woodcock,Davies96]

�

Step 4: Mondex refinement theory:
backward simulation with elementwise related input/output lists

�

Step 5: Mondex refinements

Each step is formalized as a specification that instantiates the previous step.
Steps 1-3 already done for [Schellhorn05]. Steps 3 and 4 were done with
additional invariants.

Improving Data Refinement Theory (1)

Mondex consists of 2 refinements:

� First Refinement: Backward simulation assuming
concrete state restricted by an invariant (“between level”)

� Second Refinement: Forward Simulation to prove the invariant
with the same operations, except losing messages from ether

Question: Can this be solved with one refinement?

If yes, only one set of proof obligations has to be proved

Improving Data Refinement Theory (2)

� Losing messages already on “between” level is easy:
modify invariant to hold for a “full ether”, which has not lost messages,
current ether is a subset

� Using an invariant when operations are total as in Mondex is ok:
restrict the concrete state space to be only the states where the
invariant holds

� The answer is trivially yes for forward simulations (and the contract
approach)

� Difficult question: Is an invariant always admissible for backward
simulation and the contract approach?

� Relevant in general for iterated refinements

Improving Data Refinement Theory (3)

Theorem (Backward Refinement, Contract Approach with Invar iants) Backward
Simulation is compatible with using invariants AINV and CINV for both the
abstract and concrete level. (formal definitions are in the technical report).

Proof (in KIV) As in the proof that reduces the backward simulation conditions
of the contract approach to those of Hoare, by using a state space
augmented with

�

. The backward simulation T must be augmented to

�

T � �

T

�

AINV

� � � �

CS �
�

CINV

� �

AS �
�

instead of

�

T � T � � � � � �

AS �
�

.

Improving Data Refinement Theory (4)

Theorem (Mondex Refinement) Invariants can be added to the conditions of
Mondex (backward simulation) refinement. An additional proof obligation is
needed: Totality of the refinement relation that maps concrete to abstract
inputs is required.

Proof (in KIV) Very similar to [Cooper,Stepney,Woodcock02], except the
relation empty[A,B]

�

seq[A] � seq[B] must be defined as

empty[A,B] := seq[A] � {[]}
instead of

empty[A,B] := {[]} � {[]}

The Mondex Case Study: From Z to KIV (1)

� Z has built-in set theory: Use isomororphism between sets
and their characteristic function (e.g. sets of messages)

� Predefined Finiteness in Z:

�

x � IN � p

�

x

� � � IFIN:
Use data type finset of finite sets from library:	

sn � finset� �

x� x

�

sn

�

p

�

x

�

� Z has partial functions (represented as sets of pairs):

�

use total function + domain predicate (authentic)

�

alternatives: use

�

-element in range, use representation

� Z has a promotion: Use abbreviations, Parameters for procedures, or
expand (operations in Mondex)

Translating Z schemas

Z schemas are used for various purposes:

� to define tuples and other basic types:
use algebraic types (e.g. PayDetails).

� to define (new) functions and predicates:
use specifications and enrichment (e.g. loggedFrom)

� to define invariants: must be extracted to a global invariant

� main use: to define operations with pre- and postcondition

Operations Schemas in Z vs. Programs in KIV

� Operations in KIV:

�

option: purely algrebraic definition of OP � state

�

state
�

bool

�

more natural and efficient: use programs + axiom:
OP

�

s � s

� � �

OP

� �

s

� �

s � s �

� choose can encode pre-postcondition specification:
if pre

�

x

�

then choose x

�

with post

�

x � x

� �

in x � � x �

else chaos

� programs are more expressive (no need for embedding with

�

):
contract approach = chaos , behavioral approach = abort

� Schema composition becomes program structure:�

ABORT o
9 STARTFROM

�

IGNORE

� �
s � s
� �

�

ABORT

� � STARTFROM

�

or IGNORE

� �

s � s �

� Programs have explicit (and more) structure

� better automation with symbolic execution

Mondex in KIV: Summary

� Specify the relevant part of the built-in set theory of Z

� Expand promotion

� Use programs instead of schema composition

� Simplify a few technical details:
(e.g. states eaFrom and eaTo can be merged to idle)

� Apart from technical differences, the formalisation of Mondex is
exactly as in [Stepney,Cooper,Woodcock00]

� Verification problem is exactly the same

Understanding the Verification Problem

� Understand how the main protocol works

� Write an Abstract State Machine (ASM)

� Understand the core problem: Atomic transactions are split into
small protocol steps which may be interleaved

� Extract the invariant (careful: distributed in 3 places)

� Type in the simulation relation (just copy)

� Understand the role of sets maybelost, chosenlost, definitelylost
and how they change

� Write down how they change in the protocol steps

� Prove invariance and simulation for the ASMs

� I didn’t work through the proofs and lemmas in detail

The Mondex Case Study: Results of Verification

� Two big proofs for invariance and simulation for the ASM (no archiving,
elementary steps) 1839 proof steps / 372 interactions

� Data Refinement Proofs: 3108 proof steps / 623 interactions

� 30% due to adding archiving, 20 % other proof obl.
50 % due to nonelem. steps, data refinement

� 2 small corrections for the invariant were necessary for the main
protocol

�

P-3 and P-4 must get the same constraints as P-2

�

authentic

�

pdAuth

�

receiver

� � to �

from
�

is needed in P-3/P-4

� 2 small corrections for archiving:

�

empty sets of PayDetails must be avoided in exLogResult and
exLogClr messages, since hash is injective on nonempty sets only

�

In exLogResult messages, the purse names must be authentic
(not carefully checked)

The Mondex Case Study: Summary of Effort

� 1 week to get familiar with the case study and to set up the ASMs

� 1 week to do the 2 main proofs for the ASMs

� 1 week to specify, verify and generalize Mondex refinement theory

� 1 week to prove the Mondex case study the theories
Result: nearly identical ASM refinement proofs

� ASM spec looses nothing essential compared to Z

� 3 days to verify the protocol for archiving
(1 small additional problem in the invariant)

Alltogether: 1 person month to verify the full Mondex protocol

Jim Woodcock: 1.5 pages of spec/proof per day, ca. 10-11 PM.

(referee of FM 06: 500 person days over 18 months?)

Verification Effort: Be careful!

Beware: Setting up the original specification and getting
invariants/simulations right is surely much more effort!

Beware: Effort depends much on expertise on theorem proving in general
and in KIV in particular

Nevertheless: Formal verification of this case study can be done with KIV
(and I think with other provers too) in reasonable time

Estimation: For a student who attended our courses in predicate logic and in
theorem proving with KIV the verification of this case study should be a nice
master (or diploma) thesis.

Mondex Proofs: Can they be automated?

Proof with data refinement:

� Half of the KIV interactions could be eliminated defining additional
simplifier rules

� A significant rest of the interactions is creative
(e.g. how do the relevant sets maybelost, chosenlost, definitelylost
change in protocol steps) cannot be automated by any tool

� Also: Adding automation is only helpful if one already knows invariant
and simulation

� A much more significant improvement would be to generate (even
parts) of the correct invariant and simulation

� Personal opinion: Current techniques are far from generating such
complex, irregular invariants automatically

Mondex Refinement:
Can it be proved automatically? (1)

� Current proof uses data refinement and backward simulation

� needs complex (irregular) invariant

� Mondex is an instance of nonatomic refinement:
1 transaction refined by n protocol steps

� Use a more “intelligent” refinement notion

� General m:n diagrams � ASM refinement

� Situation is complicated by interleaving diagrams

� Specialize ASM refinement so that it can deal with it:

�

Coupled Refinement [Derrick,Wehrheim03]:
Proved to be a specialisation of ASM refinement [Schellhorn05]

�

DLX Case Study [Börger, Mazzanti 98]:
Pipelining is similar to interleaving

�

Use program invariants to avoid talking about intermediate states:
some promising experience in a similar case study on copy cards
([Haneberg06])

Mondex Refinement:
Can it be proved automatically? (2)

Future work and claim: Proving the refinement to be a specific kind of ASM
refinement should be much easier and require a much simpler
(systematically defined) invariant than proving data refinement.

In KIV: Proofs and definition of invariants/simulations will not be fully
automatic.

Open question: maybe with specialized tools/techniques the
“semi-finiteness” of the protocol can be exploited to get fully automatic
proofs for the resulting proof obligations.

Mondex Purses: Other Future Work

� Mondex case study assumes Security rather than proving it

� Additional problem: Java Code uses data structures (byte arrays) with
limited size (current master thesis)

Mondex (coupled refinement)

ASM: transactions

ASM refinement

implies

prove:Correctness

ASM for Comm. Protocol

goals, intentions?

ASM refinement

(adds sec. + attacker)

refinement [Grandy 06]

security rel. Java Code
+ Spec of Crypto Lib

Java calculus [Stenzel04]
extract verification
kernel [Grandy05]

Activity Charts

Add Security
Annotations

actions

add

[GoCard04−06]
ASM:Security Protocol

[Haneberg06]

prove: Correctness
prove: Security

Java Code

Design Model + Comm. Diagrams

Analysis Model + Sequence Charts

Concept Model + Use Cases

+ Crypto Lib

Operations
+Contracts

Mondex Purses: Summary

� Intuitive Formalisation as an ASM

� The additional effort needed for machine-checked proofs is not that high

� There is still room for improvement

� Mondex is a very good challenge.

�

It can be used to compare specification styles

�

Benchmark for interactive theorem provers
(how does it scale up for non-toy examples?)

�

to evaluate/improve definitions of refinement

�

to evaluate proof techniques and automation

�

many additional unsolved problems:

� adding new purses on the fly

� security using cryptography

� infinite vs. finite data types

� no dynamic objects on Javacards

� Full details (techn. report + all specs + all proofs) on
http://www.informatik.uni-augsburg.de/swt/projects/mondex.html

Overview

� Part 1: The full Mondex case study in KIV

�

Context of Work: Go! Card project

�

The interactive theorem prover KIV

�

Translating Z specifications to algebraic specifications

�

Formal verification of the Mondex refinement in KIV

�

Discussion of results and future work

� Part 2 : ASMs for Mondex

�

Abstract State Machines and ASM refinement

�

A specification of Mondex using ASMs

Abstract State Machines (ASMs)

Informally: Abstract State Machines are Automata with a rule to modify
some abstract state (formal definitions in [Börger03]).

� Algorithms are transition systems with

�

a set of states S

�

initial states I

�

a transition relation � �

S � S

� No state can be more general than an algebra

�

(over some first-order signature

�

)

� Therefore: Describe states by a signature, initial states any way you like
(KIV: by an algebraic specifications)

� Theoretical result (ASM thesis): Under simple assumptions
(invariance under isomorphism, bounded exploration etc.)
any transition relation can be expressed as an ASM rule

� any algorithm can be easily expressed as an ASM

ASM Rules - Syntax

� function update: f

�

t

� � � t �

�

dynamic functions get updated

�

“dynamic constants” are program variables.

�

static functions model operations on data types (+,*,length)

� parallel execution: R1

R2

� sequential execution: R1 seq R2

� conditional: if � then R1 else R2

� indeterministic choice: choose x with � �
x

�
in R

�

x

�

� parallel execution: forall x with � �
x
�
do R

�

x

�

� local variables let x � t in R
�

x
�

� extensions: macros, recursive definitions + calls etc.

ASM Rules - Semantics

Semantics: Compute a (finite or infinite) set of updates

�

f � a

� �
b:

[[f

�

t

� � � t �]] � � �

f � t �
� �

t

�
�

�

[[RS]] � [[R]]

�

[[S]]

[[forall x with � �

x

�

do R

�

x

�

]] � �

a � �
�

a

� [[R

�

a

�

]]
[[choose x with � �

x

�

do R

�

x

�

]] � [[R

�

a

�

]] for any a with� �

a

�

If the set of updates is consistent (no two updates for the same f(a))
then apply it to

�

, to get a successor state.

Runs (also called “computations”): Finite or infinite sequences of algebras.

ASM Rules - Termination

A run ends (termination) either when the set of updates becomes empty in
the last state (stuttering at the end) or when an explicitly given predicate
becomes true (in KIV). A run may also end in a state where the set of
updates cannot be computed or is inconsistent (interpreted as blocking,
divergence).

Usually either

� Rule has the form if� then R, and �� indicates final states

� A set of rules of the form if� i then Ri is given,
one is chosen indeterministically each time, so in final states all� i are
false

ASM Refinement

CSM refines ASM via IR, OR and IO iff

For finite runs:
//____ //____ //____ //____ //____ //____ //___

OR

>
>

>
>

>

//

IR

�

�

�

�
// // // //

�

// // //

For infinite runs:

//___ //____

IO B
B

B
B

B
B //____ //__ //____

IO B
B

B
B

B
B //____ //____ � � �

IO

x
x

x
x

x
x

//

IR

// // //

�

// // // � � �

Generalized Forward Simulation

Find INV, such that
// //

INV
BB

BB
BB

BB
BB

B

BB
BB

BB
BB

BB
B // //

||
||

||
||

||
|

INV
||

||
||

||
||

|
//

BB
BB

BB
BB

BB
B

INV

BB
BB

BB
BB

BB
B // // � � �

INV

xxx
xxxxxxxx

x

xxxx
xxxxxxxx

//

IR

// // // // // // � � �

Proof obligations:

� When states are not final, a commuting m:n diagram can be added

� IR � INV

� INV � IO

� INV

�

final � OR

ASM Rules in KIV

� Idea: Map dynamic functions of a first-order signature to function
variables

� f

�

t

� � � t � abbreviates f � � �

x� if x � t then t

�

else f

�

x

�

� Can capture all of ASMs except: Parallel execution with
forall x with � do R

�

x

�

� Z supports set theory encoding functions as sets of tuples

� essentially the same expressive power as dynamic functions

Abstract Specification of Transactions

ABTRANSFER

�

choose from � to � value � fail

�

with authentic

�

from

� �

authentic

�

to

� �

from

�� to

�

value

�

balance

�

from

�

in if 	 fail

�

then balance

�

from

�
 � balance

�

from

�

� value

balance

�

to

�
 � balance

�

to

� �

value

else balance

�

from

�
 � balance

�

from

�

� value

lost

�

from

�
 � lost

�

from

� �

value

� fail? decides whether transfer worked
(card may be pulled out of reader, insufficient memory, etc.)

� lost(from) stores money if transfer didn’t work

� Functional Correctness:

�

purse balance

�

purse

�

lost
�

purse

�

invariant � no money generated/lost

The Concrete Protocol as an Activity Chart

from purse

to purse

REQ# epa idle

idle

req valCard Reader
startTo

startFrom

ack

VAL#idle

idle

epvSTARTTO#

STARTFROM# epr ACK#

� Activity chart for the protocol (drawn horizontally)

� content of actions abstracted to names of ASM rules (with #)

� states (upated in actions) added for clarity

� Not modelled: Before start, card Reader collects relevant data
about both the to and from purse

Messages and Security

message = startFrom | startTo | req | val | ack |
�

Idea: (implicit) attacker may at any time

� read old messages, modify the next message to a purse

� generate (publically available) startFrom, startTo messages

� send illegal messages

�

(also used for “empty message”)

Security Assumption :

The attacker cannot forge req, val, ack messages by use of suitable
cryptography

Representation of Security Assumption

� global variable ether : set(message) stores all previously sent
messages and all publically available ones

� purse receiver receives some message msg from ether,
produce output message outmsg

� ether may loose messages randomly

� to avoid replay attacks, each purse increments
variable nextSeqNo in every transaction

� Both from and to purse store detailled information (PayDetails)
pdAuth(purse) = (from, from SeqNo, to, to SeqNo, value)
about the currently ongoing transaction

The Mondex Case Study: startFrom

� receiver = from purse gets
msg = startFrom(to name, value, to SeqNo)

STARTFROM

�

let to name � msg� name � value � msg� value �

to SeqNo � msg� nextSeqNo
in if authentic

�

to name

� �

receiver

� � to name

�

value

�

balance

�

receiver

� � � fail

�

then pdAuth

�

receiver

� � � mkpd

�

receiver � nextSeqNo

�

receiver

�
�

to name � to SeqNo � value

�

state

�

receiver

� � � epr

INCREMENT

� �

nextSeqNo
�

receiver

� �

outmsg � � �

else outmsg � � �

The Mondex Case Study: startTo

� receiver = to purse receives
msg = startTo(from name, value, from SeqNo)

� dual to STARTFROM#, except for sending outmsg

STARTTO

�

let from name � msg� name � value � msg� value �

from SeqNo � msg� nextSeqNo
in if authentic

�

from name

� �

receiver

� � from name

� � fail

�

then pdAuth

�

receiver

� � � mkpd

�

from name � from SeqNo � receiver �

nextSeqNo

�

receiver

�
� value

�

state

�

receiver

� � � epv

INCREMENT

� �

nextSeqNo
�

receiver

� �

seq outmsg � � req
�

pdAuth

�

receiver

� �

else outmsg � � �

The Mondex Case Study: req

� receiver = from purse receives msg = req(PayDetails)

REQ

�

if msg � req

�

pdAuth

�

receiver

� � � � fail

�

then balance

�

receiver

� � � balance

�

receiver

�
� pdAuth

�
receiver

� � value

state

�

receiver

� � � epa

outmsg � � val

�

pdAuth

�

receiver

� �

else outmsg � � �

The Mondex Case Study: val and ack

� receiver = to purse receives msg = val(PayDetails)

� receiver = from purse receives msg = ack(PayDetails)

VAL

�

if msg � val

�

pdAuth

�

receiver

� � � � fail

�

then balance

�

receiver

� � � balance

�

receiver

�

pdAuth
�

receiver

� � value

state

�

receiver

� � � idle

outmsg � � ack

�

pdAuth

�

receiver

� �

else outmsg � � �

ACK

�

if msg � ack

�

pdAuth

�

receiver
� � � � fail

�

then state

�

receiver

� � � idle
outmsg � � �

else outmsg � � �

The Mondex Case Study: Full ASM Rule

PROTOCOLSTEP

�

choose msg � receiver � fail

�

with msg

�

ether

�

authentic

�

receiver
�

in
if isStartTo

�

msg

� �

state

�

receiver

� � idle then STARTTO
�

else if isStartFrom

�

msg

� �

state

�

receiver

� � idle then STARTFROM

�

else if isreq

�

msg

� �

state

�

receiver

� � epr then REQ
�

else if isval

�

msg

� �

state

�

receiver

� � epv then VAL

�

else if isack

�

msg

� �

state

�

receiver

� � epa then ACK

�

else ABORT

�

/* add outmsg to ether and */
/* nondeterministically loose some messages from ether */
choose ether

�

with ether

� �

ether
� �

outmsg

�

in ether � � ether

�

The Mondex Case Study: Aborting and Logging

� All purses have exception logs exLog(purse) for failed transactions

ABORT

�

INCREMENT

� �

nextSeqNo

�

receiver

� �

LOGIFNEEDED

�

state

�

receiver

� � � idle
outmsg � � �

LOGIFNEEDED

�

if state

�

receiver

� � epa

�

state

�

receiver
� � epv

then exLog

�

receiver

� � � exLog

�

receiver
� � �

pdAuth

�

receiver

� �

� Core property that holds at the end of a protocol run:
money in abstract lost � money in both exLog(from) and exLog(to)

The Mondex Case Study: ASM vs. Z Specifica-
tion

� Additional independent protocol for moving exception logs to a global
archive of the bank (simple)

� Z Specification has additional complexity due to

�

the wish to model the implementation of
protocol steps on purses (APDU’s) faithfully
(e.g. prefixing STARTFROM/TO# with ABORT# etc.)

�

the use of pre-postcondition style (Z)
(e.g. lots of

�

schemes to cope with frame problem)

�

the use of data refinement
(e.g. disjuncting all operations with skip)

The Mondex Case Study: ASM vs. Z Specifica-
tion: More differences

� Two idle states (one is unnecessary)

� Operations defined for a fixed purse, then lifted (promoted) to a set

� From and to purse are not chosen randomly, but from an input stream

� Frame problem: Each Z scheme must explicitly define the variables it
does not modify (

�

schemes)

� Each operations must be able to ignore input messages

� Not one ASM rule, but many operations

� Operations must be total (disjunction with skip)

� One protocol step must refine the transaction, all others skip

	mbox {phantom {$mid $}}
	Overview
	Context of Work
	SW Engineering using UML (e.g. [Larman])
	edtext {The ProSecCo approach - Security Protocols}
	edtext {The ProSecCo approach} - greentext {Refine to Java}
	edtext {The ProSecCo approach} - �luetext {Abstraction}
	edtext {The ProSecCo approach} - magentatext {Mondex}
	Mondex Purses
	Mondex Purses: The Original Work
	Solving the Challenge: My Work
	KIV - History
	KIV - Higher-Order Dynamic Logic (DL)
	KIV - Abstract Programs
	Structured Specifications in KIV
	Theorem Proving in KIV
	Mondex in KIV - Overview
	Improving Data Refinement Theory (1)
	Improving Data Refinement Theory (2)
	Improving Data Refinement Theory (3)
	Improving Data Refinement Theory (4)
	The Mondex Case Study: From Z to KIV (1)
	Translating Z schemas
	Operations Schemas in Z vs. Programs in KIV
	Mondex in KIV: Summary
	Understanding the Verification Problem
	The Mondex Case Study: Results of Verification
	The Mondex Case Study: Summary of Effort
	Verification Effort: Be careful!
	Mondex Proofs: Can they be automated?
	Mondex Refinement:\ Can it be proved automatically? (1)
	Mondex Refinement:\ Can it be proved automatically? (2)
	Mondex Purses: Other Future Work
	Mondex Purses: Summary
	Overview
	Abstract State Machines (ASMs)
	ASM Rules - Syntax
	ASM Rules - Semantics
	ASM Rules - Termination
	ASM Refinement
	Generalized Forward Simulation
	ASM Rules in KIV
	Abstract Specification of Transactions
	The Concrete Protocol as an Activity Chart
	Messages and Security
	Representation of Security Assumption
	The Mondex Case Study: startFrom
	The Mondex Case Study: startTo
	The Mondex Case Study: req
	The Mondex Case Study: val and ack
	The Mondex Case Study: Full ASM Rule
	The Mondex Case Study: Aborting and Logging
	The Mondex Case Study: ASM vs. Z Specification
	The Mondex Case Study: ASM vs. Z Specification: More differences

