

Alloy / Mondex Case Study :
Refinement Checks
with Model Finding

Tahina Ramananandro
École Normale Supérieure
Paris, France

Daniel Jackson
MIT CSAIL Software Design
Cambridge MA, USA

VSR-NET Workshop - May 25th-26th, 2006
RAL Cosener’s House
Abingdon, UK

Status Summary

Progress :
– Z spec converted into Alloy modules
– All refinement theorems checked

Deadlines :
– End on August 24th
– presentation at École Normale

Supérieure (Paris, France) on September
20th

Principle

Abstract

Between
(constrained)

Concrete

From
balance
lost

To
balance
lostatomic transfer

World
messages (“ether” = comm channel)
public archive of lost transactions

From
balance
private archive

To
balance
private archive

3.req

1.startFrom 2.startTo

5.ack

4.val

Total balances not increasing
Total balances and lost constant

Outline

Alloy Principles
Mondex in Alloy : General Method
Technical issues
Conclusions

Alloy Spec Language & Logic
 Typed and modular specification language
 Sets and relations

– Signatures define particular (“basic”) sets and relations

• Can be abstract, extended (“inheritance” as in Java)
– Typing, overloading, modularity
– quite like Z schema extensions

– Specification can be constrained

 First order logic + relational calculus

– Relational operators : union, inter, diff, join

 Everything is finite abstract sig Person {}
sig Man extends Person {wife:set Woman}
sig Woman extends Person {husband:set Man}

fact Constraint {
all m:Man |
some m.wife implies m.wife.husband = m
all w:Woman |
some w.husband implies w.husband.wife = w

}

Man Woman

(Person)

wife

husband

Alloy relations vs. Z sets

Sets

Relations

Functions

Sequences

Tuples

Scalars
Z Alloy

Relations

Sets

Functions

Sequences

Tuples
Scalars

– sets are unary relations

– scalars are singletons

Joining relations (.)
 Let  and  be two relations

– sig A {alpha : set X}

– sig X {beta : set B}

– sig B

b3x3a4

b2x2a3

b1x1a2

a1

 

Joining relations (.)
 Let  and  be two relations

 so we define  the joined relation

– Cf. database 

 We may write a2.(alpha.beta)=b1+b3 , it is the same join
operator because :

– sets are unary relations

– scalars are singletons

b3x3a4

b2x2a3

b1x1a2

a1

 



Alloy Analyzer, a Model Finder
 Specification Analysis by Model Finding

– “Run” predicate: find example
– Check assertion: find counterexample
– Alloy internally converts modules to SAT formula

 “Scope” required : bounded finite models
– Number of objects for each signature
– Can show theorems hold in specified scope



pred Married (p:Person) {some p.(wife+husband)}

pred Example () {some p:Person|Married(p)}
run Example for 18 Man, 1 Woman

assert Theorem {
all p:Person|lone p.(wife+husband)
all p,q:Person|p.husband=q iff q.wife=p }

check Theorem for 7

Outline

Alloy Principles
Mondex in Alloy : General Method
Technical Issues
Conclusions

Bugs found in Z Specification

Missing constraints
– 2 ConPurse constraints
– Avoid ConPurse holding “foreign” pdAuth when

in epv/epa
• Constraint analogous to existing one for epr

Wrong proof step
– Proof splitting for A/B Abort
– Wrong assumption made by informal comment

Spec modules outline

depends on
(dependences deducible from
transitivity are not shown)

a.als (189 lines)
Basic signatures
Abstract World

c.als (274 lines)
Concrete purse operations

Concrete world

b.als (177 lines)
Between world constraints

op.als (258 lines)
Between world operations

cop.als (209 lines)
Concrete world operations

rab.als (221 lines)
Abstract/Between refinement

rbc.als (180 lines)
Between/Concrete refinement

rab_abort.als (34 lines)
Abstract/Between
Abort refinement

rab_alpha.als (178 lines)
Abstract/Between :

operations that first abort

util/ordering.als
Total order

Almost everything represented
 Alloy modules very close to Z specification

– Representation size is comparable
– Alloy Proof size is negligible

• Actually no proof details in Alloy modules

– Quite quick to write (< 1 month)
 Only changes :

– Integer representation
– Unable to express infiniteness in Alloy

• finiteness properties ignored

– CLEAR code
• quantify over CLEAR codes instead of their

corresponding sets of PayDetails

 Enforces 1st order quantifications

Safety Check : Initial states
 Only case where “run” a predicate

– ask Alloy to build one model with initial state

– You may demand further constraints to see what happens
(e.g. some purses)

– No big scope required

• if example at scope 5, a fortiori at bigger scope

pred AbInitState (a:AbWorld) { ... }
pred A821 () {some a:AbWorld | AbInitState(a)}

pred A821bis() {
some a:AbWorld {

AbInitState (a)
some a.abAuthPurse

}}

run A821 for 5
run A821bis for 5

Model consistency : Totality
 Abstract and concrete : check them directly

• < 1 hour with Berkmin (Abstract) or Mchaff (Concrete)

 Between :
• Direct checking needs to check the 15 constraints
• But any operation may do nothing
• So, check that Op(x, x) holds

– Explicitly provide witness for x’, Op(x, x’)
– Checks faster : <1 hour each with Berkmin

assert C832_val
{all c:ConWorld, m_in:MESSAGE, name_in:NAME |
some c':ConWorld, m_out:MESSAGE| Cval(c,c',name_in,m_in,m_out)}
check C832_val for 10

assert B832_val
{all b,m_in,name_in:NAME|
some m_out:MESSAGE| Val(b,b,name_in,m_in,m_out)}
check B832_val for 10

Refinements : checking method
 Follow Z spec strategy (A/B backwards, B/C forwards)

– But separate existence and refinement

b

a

RabCl

 Rbc_constr : equality predicates (explicit “construction”)
– Not necessary for RabCl (already in this form)

b b’

a’a
AbOp

RabCl RabCl

c c’

b’b
BOp

Rbc Rbc_constr

c c’

b’b

Rbc Rbc_constr Rbc

COpCOp

BOp

Abstract

Concrete
Between

cl’clcl

Abstract/Between : RabCl
 Abstraction relation RabCl already gives a construction

(written as equalities) depending on ChosenLost (prophecy
variable)

 Quite long to check (scope of 8 takes >26000s with Berkmin)

sig ChosenLost {pd: PayDetails}
fun RabBalance (b:ConWorld, cl:set PayDetails, n:NAME) : set Coin {…}
fun RabLost (b:ConWorld, cl:set PayDetails, n:NAME) : set Coin {…}

pred Rab (a:AbWorld0, b:ConWorld, cl:set PayDetails){
all n:NAME {

lone n.(a.abAuthPurse)
n in NAME.(b.conAuthPurse) implies {

some n.(a.abAuthPurse)
n.(a.abAuthPurse).balance = RabBalance(b,cl,n)
n.(a.abAuthPurse).lost = RabLost(b,cl,n)

}}}

assert rab_ex {
all b:ConWorld, cl:ChosenLost, a:AbWorld0 |
RabCl (a, b, cl.pd)
implies Abstract (a.abAuthPurse)

}

check rab_ex for 8

Abort
 Most difficult theorem

– Direct attempt does not terminate after 4 days with Siege_v4
– So, requires one step towards proof details

– Z spec suggests D : splitting proof whether pdAuth
in maybeLost

– This splitting is wrong !
• found counterexample where aborting purse is not the to

purse expecting val (was actually the from purse)
– Right splitting condition is D : aborting purse in epv

• Works well and terminates in <30000s

Abort (b, b')

AbIgnore (a1, a'), a1 with
chosenLost = chosenLost' + pdAuth

AbIgnore (a, a'), a with
chosenLost = chosenLost'or

D ~D
find D
(case analysis)

Operations that first abort

b b’

b1
p’p1

a’a1a

Abort

Existentially quantify over
purse rather than world

Op

Op Purse
Eafrom OK

AbIgnore AbIgnore

Abort theorem

Rab Rab Rab

AbIgnore Transitivity

– StartFrom, StartTo and exception logging
• conjunct with ~Abort
• scope of 8 takes <24000s with Siege_v4

ConPurse missing constraints

2 constraints missing in Z spec
– found while checking Between/Concrete

existence
•status = epv  pdAuth.to = name
status = epa  pdAuth.from = name

– Found counterexample for which purse
holds “foreign” pdAuth

– Even though never happens in full
sequence

Alloy’s Approach Summary
Refinement checks with model finding

– Try to find c, c’, a, a’ such that Rac(a, c) &
Rac(a’, c’) & COp(c, c’) hold but not AOp(a, a’)

Original approach
– Quite high confidence level
– Not as high as theorem proving
– but much cheaper !

Alloy
Analyzer

Theorem
prover

No
counterexamples

Effort

Confidence

1 - 
1

Fix spec

Counterexample

months years

Outline

Alloy Principles
Mondex in Alloy : General Method
Technical Issues
Conclusions

Integers in Alloy

Integers in Alloy are heavy
– Builds boolean circuits for +, <
– Expensive operations

So, avoid them
– Not all properties of N used
– Determine which
– Pick most lightweight repr that works

Representing SEQNO

Avoid integers in Alloy
SEQNO just requires total order

– No operations
– Even no successor

Simply use Alloy’s ordering module
– Exploit built-in symmetry breaking too

Representing amounts
 Avoid integers in Alloy

– Distributed sum available, but too expensive

 Solution : sets of coins
– Due to Emina Torlak & Derek Rayside

 OK, because no comparison between purses
– Globally : coins between whole worlds
– Locally : between a purse balance & a payment

 Add constraints to avoid coin sharing

Alloy

Sets of coins

Set equality

Set inclusion

Set union

Set difference

Z

Integers

Equality

Ordering

Sum

Difference

Concrete purse : Z and Alloy
[NAME]

ConPurse

balance : N

exLog : P PayDetails

name : NAME

nextSeqNo : N

pdAuth : PayDetails

status : STATUS

 pd : exLog  name  {pd.from, pd.to}

status = epr 
name = pdAuth.from

 pdAuth.value  balance

 pdAuth.fromSeqNo < nextSeqNo

status = epv 
pdAuth.toSeqNo < nextSeqNo

status = epa 
pdAuth.fromSeqNo < nextSeqNo

sig NAME {}
sig Coin, SEQNO {}
open util/ordering[SEQNO] as seqord

sig ConPurse {
balance : set Coin, exLog : set PayDetails,
name : NAME, nextSeqNo : SEQNO,
pdAuth : set PayDetails, status : STATUS

}

fact {all c:ConPurse {

all p:PayDetails|p in c.exLog implies name in p.from+p.to

c.status = epr implies {
name=c.pdAuth.from
c.pdAuth.value in c.balance
seqord/lt (c.pdAuth.fromSeqNo, c.nextSeqNo)

}

c.status = epv implies {
name=c.pdAuth.to
seqord/lt (c.pdAuth.toSeqNo, c.nextSeqNo)

}

c.status = epa implies {
name=c.pdAuth.from
seqord/lt (c.pdAuth.fromSeqNo, c.nextSeqNo)

}

no c.balance & c.exLog.value

}}

Signatures are not records
Z : schemas are records
Alloy : signatures define atomic objects

– Objects have an identity
• Notion does not exist in Z

– Suitable for names, coins

Two objects with same field values may be
distinct
– Solution : impose equality constraint

fact {
no disj c1,c2:ConPurse {

c1.balance=c2.balance and c1.exLog=c2.exLog
c1.name=c2.name and c1.nextSeqNo=c2.nextSeqNo
c1.pdAuth=c2.pdAuth and c1.status=c2.status

}
}

Existential issue

Can’t guarantee object exists for every
combination of field values
– Could axiomatize with constraints
– But would dramatically increase scope

Solution : (cf. RabCl)
– Instead of E, construct explicit witness
– all c, c’, a | some a’ | P (c, c’, a, a’)
– all c, c’, a | let a’ = F(c, c’, a) | P(c, c’, a, a’)

Choosing scopes
 Must be enough for quantifications

 Started with 10
– worked fine with Abstract theorems
– too long for more complex theorems

• SAT solver crashed for refinement checks

– so grow scope incrementally

 Achieved scope of 8 for most theorems eventually
– but smaller scope is complete for Worlds

Scope 4 5 6 7 8 9 10

Between Ignore sanity check 135 715 2714 6286 15383
explicit post-state 31 54

Abstract/Between existence 52 458 2606 11498 26690
Between/Concrete existence 3537 22059

Siege_v4, restricted World scopes 55042
Between/Concrete StartFrom 18 105 308 848 2526 6309 13951

First attempt to check theorems. At that stage they had been checked with Berkmin and without any
optimization. Italics indicate timing after optimizations.
Time in seconds in function of scope.

Outline

Alloy Principles
Mondex in Alloy : General Method
Technical issues
Conclusions

General observations
Modeling

– Transcribed Z to Alloy very directly
– May be better to try Alloy idiom?

High level checking
– Proof structure not needed: automated
– Exception: abort splitting
– Need to provide explicit witness for 

SAT-Solving duration varies
– From seconds to hours (even days!)
– Time correlated with theorem importance?

Alloy Limitations

Alloy is finite
– Can express unbounded but not infinite models
– But in practice, world of purses finite

Alloy Analyzer’s analysis is bounded
– Results valid only on given scope
– Is scope of 8 enough?

Reasonable tradeoff for industry?
– Much less effort than theorem proving

Personal Experience
 Learn Z and Alloy from scratch
Nice :

– Language easy to understand
• no //graphical issues

– Though quite close to Z
– Expressive & smooth relation logic

Nasty :
– Signatures are not records

• Equality & Existential theorems

– Resource- and time-consuming SAT-Solving
• Very long time for obvious-looking theorems (easily

provable by hand, e.g. Ignore refinements)
• Perhaps syntactic pre-analysis would help?

Lessons and future work

 Lessons
– Learn another verification approach

• Automation does not exclude proof formalism

– Even though not theorem proving
• But allows also checking informal comments

– Discover problems more quickly
Future work

– Improve formal model
• More uniform treatment of existential theorems
• Experiment with more Alloy-like idiom (eg, objects)

– Prove or argue small model theorem?
– Interface Alloy method with others

• Depends on workshop outcome

Any questions ?

E-mail addresses
– ramanana@mit.edu Tahina Ramananandro
– dnj@mit.edu Daniel Jackson

Alloy modules available at :
– http://www.eleves.ens.fr/~ramanana/work/mondex

Alloy Website :
– http://alloy.mit.edu

mailto:ramanana@mit.edu
mailto:ramanana@mit.edu
mailto:ramanana@mit.edu
mailto:dnj@mit.edu
mailto:dnj@mit.edu
mailto:dnj@mit.edu
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://alloy.mit.edu
http://alloy.mit.edu
http://alloy.mit.edu
http://alloy.mit.edu

