VSR-NET Workshop - May 25th-26th, 2006
RAL Cosener’s House
Abingdon, UK

4. Alloy /Mondex Case Study :
v W”W Refinement Checks
spt. with Model Finding

Tahina Ramananandro
Ecole Normale Supérieure
Paris, France

Daniel Jackson
MIT CSAIL Software Design
Cambridge MA, USA

Status Summary

® Progress
— Z spec converted into Alloy modules
— All refinement theorems checked

®Deadlines :
— End on August 24th

— presentation at Ecole Normale
Superieure (Paris, France) on September
20th

P ‘ . 1 Total balances not increasing
rmec 1P € Total balances and lost constant

From To
\bstract balance > balance
A lost atomic transfer lost
World

messages (“ether” = comm channel)
public archive of lost transactions

Between

H . 1.startFro .startTo
onstrained)
N

3.
From = To

balance 4 ~vat > balance
private archive < private archive

oncrete 5 ack

Outline

® Alloy Principles

® Mondex in Alloy : General Method
® Technical issues

® Conclusions

Alloy Spec Language & Logic
® Typed and modular specification language
® Sets and relations
— Signatures define particular (“basic”) sets and relations
* Can be abstract, extended (“inheritance” as in Java)
— Typing, overloading, modularity
— quite like Z schema extensions
— Specification can be constrained
® First order logic + relational calculus
— Relational operators : union, inter, diff, join
® FEverything is finite

abstract sig Person {}
sig Man extends Person {wife:set Woman}

usban sig Woman extends Person {husband:set Man}
//Jﬂﬁ%‘“\\\‘ fact Constraint {

all m:Man |
Man Woman some m.wife implies m.wife.husband = m

all w:Woman |
OPeFSon) some w.husband implies w.husband.wife = w

}

Alloy relations vs. Z sets

\
1\
Sets Functions | Relations
Relations L Sequencesl
4) - . N)
Functions Tuples
[Sequences Scalars Sets
N Y N _ by Y
ZE N —/
[Tuples] — sets are unary relations
— scalars are singletons
[Scalars]
Z.| Alloy

Joining relations ()

® Let o and 3 be two relations
— s1g A {alpha : set X}
— s1g X {beta : set B}
— si1g B

al

a2 X1 b1

a3 X2 ig b2

a4 X3 b3
a p

Joining relations ()

® Let o and 3 be two relations
® so we define a.3 the joined relation
— Cf. database ><]

® We may write a2. (alpha.beta)=bl+b3, it IS the same join
operator because :

— Sets are unary relations
— Scalars are singletons

lloy Analyzer, a Model Finder

Specification Analysis by Model Finding

— “Run” predicate: find example

— Check assertion: find counterexample

— Alloy internally converts modules to SAT formula
“Scope” required : bounded finite models

— Number of objects for each signature

— Can show theorems hold in specified scope

pred Married (p:Person) {some p.(wifethusband) }

pred Example () {some p:Person|Married(p)}
run Example for 18 Man, 1 Woman

assert Theorem {
all p:Person|lone p. (wifet+thusband)
all p,qg:Person|p.husband=q iff g.wife=p }

check Theorem for 7

Outline

® Alloy Principles

® Mondex in Alloy : General Method
® Technical Issues

® Conclusions

Bugs found 1n Z Specification

® Missing constraints
— 2 ConPurse constraints

— Avoid ConPurse holding “foreign” pdAuth when
In epv/epa
* Constraint analogous to existing one for epr
® Wrong proof step
— Proof splitting for A/B Abort

— Wrong assumption made by informal comment

Spec modules outline

cop.als (209 lines) rbc.als (180 lines)
oncrete world operations” Between/Concrete refinement

op.als (258 lines). rab.als (221 lines)
Between, world operations Abstract/Between refinement

b.als (177 lines) / \

Between world constraints || fab_alpha.als (178 lines) | rab abort.als (34 lines)
Abstract/Between : Abstract/Between

operations that first abort Abort refinement

c.al§ (274 lines)
oncrete purse operations
Concrete world

ut11/ ordering.alsé
’ Total order

a.als (189 lines) depends on
Basic signatures -
Abstract World (dependences deducible from

transitivity are not shown)

Imost everything represented
Alloy modules very close to Z specification
— Representation size is comparable

— Alloy Proof size is negligible
* Actually no proof details in Alloy modules

— Quite quick to write (< 1 month)
Only changes :
— Integer representation

— Unable to express infiniteness in Alloy
* finiteness properties ignored

— CLEAR code

- quantify over CLEAR codes instead of their
corresponding sets of PayDetails

Enforces 1%t order quantifications

Safety Check : Initial states

® Only case where “run” a predicate
— ask Alloy to build one model with initial state

— You may demand further constraints to see what happens
(e.g. some purses)

— No big scope required
* if example at scope 5, a fortiori at bigger scope

pred AbInitState (a:AbWorld) { ... }
pred A821 () {some a:AbWorld | AbInitState(a)}

pred A821bis () {

some a:AbWorld {
AbInitState (a)
some a.abAuthPurse

b}

run A821 for 5
run A821lbis for b5

odel consistency : Totality

Abstract and concrete : check them directly
* < 1 hour with Berkmin (Abstract) or Mchaff (Concrete)

Between :

* Direct checking needs to check the 15 constraints
* But any operation may do nothing
* S0, check that Op(x, x) holds

— Explicitly provide witness for 3x’, Op(x, x’)

— Checks faster : <1 hour each with Berkmin

assert C832 val

{all c:ConWorld, m in:MESSAGE, name in:NAME |

some c':ConWorld, m out:MESSAGE| Cval(c,c',name in,m in,m out)}
check C832 val for 10

assert B832 val

{all b,m in,name in:NAME |

some m out:MESSAGE| Val(b,b,name in,m in,m out)}
check B832 val for 10

Concrete
“_"_“Between

b) P

Rbc Rbc Rbc_constr Rbc Rbc_constr

o COp o’ o COp c’

Rbc_constr : equality predicates (explicit “construction”)
— Not necessary for RabCl (already in this form)

Refinements : checking method
Follow Z spec strategy (A/B backwards, B/C forwards)
- B‘g_gseparate existence and refinement
‘ a | Abstract aébOp} a’
®

Abstract/Between : Rab(Cl

® Abstraction relation RabCl already gives a construction
(written as equalities) depending on ChosenLost (prophecy
variable)

® Quite long to check (scope of 8 takes >26000s with Berkmin)

sig ChosenLost {pd: PayDetails}
fun RabBalance (b:ConWorld, cl:set PayDetails, n:NAME) : set Coin {..}
fun RabLost (b:ConWorld, cl:set PayDetails, n:NAME) : set Coin {..}

pred Rab (a:AbWorld0O, b:ConWorld, cl:set PayDetails) {
all n:NAME ({
lone n. (a.abAuthPurse)
n in NAME. (b.conAuthPurse) implies {
some n. (a.abAuthPurse)
n. (a.abAuthPurse) .balance = RabBalance (b, cl,n)
n. (a.abAuthPurse) .lost = RabLost (b,cl,n)

——

b}

assert rab ex {
all b:ConWorld, cl:ChosenLost, a:AbWorld(O |
RabCl (a, b, cl.pd)
implies Abstract (a.abAuthPurse)

—

check rab ex for 8

Abort

Most difficult theorem
— Direct attempt does not terminate after 4 days with Siege v4
— S0, requires one step towards proof details

Abort (b, b")
find D
(case analysis)
AbIgnore (al, a'), al with v Ablgnore (a, a'), a with
chosenLost = chosenLost' + pdAuth or chosenLost = chosenLost'

— Z spec suggests D : splitting proof whether pdAuth
In maybelost
— This splitting is wrong !

* found counterexample where aborting purse is not the to
purse expecting val (was actually the from purse)

— Right splitting condition is D : aborting purse in epv

* Works well and terminates in <30000s

Operations that first abort

— StartFrom, StartTo and exception logging
* conjunct with ~Abort
* scope of 8 takes <24000s with Siege_v4

_____________________ Ablgnore__ Transitivity. . ,
Ablgnore

QT »al e > a’
| +
Abort theorem
Rab Rab . Rab
 Existentially quantify over
 purse 8{‘)11%1{1 %lggn world
Abort -7 bl Eafrom OK
,,,,,,,,,] pl-——p’
b - b

ConPurse missing constraints

® 2 constraints missing in Z spec
—found while checking Between/Concrete

existence
*status = epv = pdAuth.to = name
status = epa = pdAuth.from = name

— Found counterexample for which purse
holds “foreign” pdAuth

— Even though never happens in full
sequence

Alloy’s Approach Summary

® Refinement checks with model finding
— Try to find c, ¢, a, a’ such that Rac(a, c) &
Rac(a’, ¢’) & COp(c, ¢’) hold but not AOp(a, a’)
® Original approach
— Quite high confidence level
— Not as high as theorem proving
— but much cheaper !

Confidence No

. [Aoy 3
Analyzer

Counterexample

Theorem
prover

Fix spec Effort
months years

Outline

® Alloy Principles

® Mondex in Alloy : General Method
® Technical Issues

® Conclusions

Integers 1n Alloy

® Integers in Alloy are heavy
— Builds boolean circuits for +, <
— Expensive operations

® So, avoid them
— Not all properties of N used

— Determine which
— Pick most lightweight repr that works

Representing SEQNO

® Avoid integers in Alloy

® SEQNQO just requires total order
— No operations
— Even no successor

® Simply use Alloy’s ordering module
— Exploit built-in symmetry breaking too

Representing amounts

® Avoid integers in Alloy
— Distributed sum available, but too expensive

® Solution : sets of coins
— Due to Emina Torlak & Derek Rayside

Z Alloy

Integers Sets of coins
Equality Set equality
Ordering Set inclusion
Sum Set union
Difference Set difference

® OK, because no comparison between purses
— Globally : coins between whole worlds
— Locally : between a purse balance & a payment

® Add constraints to avoid coin sharing

Concrete purse : Z and Alloy

[NAME] .
sig NAME {}

sig Coin, SEQNO {}
open util/ordering[SEQNO] as seqord
ConPurse

balance : N

sig ConPurse {

) balance : set Coin, exlog : set PayDetails,
exLog : P PayDetails name : NAME, nextSegNo : SEQNO,

name : NAME pdAuth : set PayDetails, status : STATUS

nextSeqNo : N }
pdAuth : PayDetails

status : STATUS fact {all c:ConPurse {

all p:PayDetails|p in c.exlLog implies name in p.from+p.to
V pd : exLog @ name € {pd.from, pd.to}
c.status = epr implies {

name=c .pdAuth.from

c.pdAuth.value in c.balance
name = pdAuth.from seqord/1lt (c.pdAuth.fromSegNo, c.nextSegNo)
A pdAuth.value < balance }

A pdAuth. fromSeqNo < nextSeqNo

status = epr =

c.status = epv implies {
name=c.pdAuth.to
status = epv — seqord/1lt (c.pdAuth.toSeqNo, c.nextSeqNo)

pdAuth.toSeqNo < nextSeqNo }

tat — c.status = epa implies {
status = cpa name=c.pdAuth.from
pdAuth. fromSegNo < nextSeqNo seqord/1lt (c.pdAuth.fromSegNo, c.nextSeqNo)

}

no c.balance & c.exLog.value

b}

Signatures are not records

® / : schemas are records

® Alloy : signatures define atomic objects

— Objects have an identity
* Notion does not exist in Z

— Suitable for names, coins

® Two objects with same field values may be
distinct

— Solution : impose equality constraint

act {
no disj cl,c2:ConPurse {
cl.balance=c2.balance and cl.exLog=c2.exLog
cl.name=c2.name and cl.nextSegNo=cZ.nextSegNo
cl.pdAuth=c2.pdAuth and cl.status=c2.status

}

Existential 1ssue

® Can'’t guarantee object exists for every
combination of field values

— Could axiomatize with constraints
— But would dramatically increase scope

® Solution : (cf. RabCl)

— Instead of E, construct explicit withess
—allc,c,alsomea |P(c,c),a,a)
—allc,c,alleta =F(c,c,a)|P(c, c,a, a)

hoosing scopes

Must be enough for quantifications

Started with 10
— worked fine with Abstract theorems

— too long for more complex theorems
* SAT solver crashed for refinement checks

— SO0 grow scope incrementally

Achieved scope of 8 for most theorems eventually
— but smaller scope is complete for Worlds

Scope 4 5 6 7 8 9 10
een Ignore sanity check 135 715 2714 6286 15383
explicit post-state 31 54
Abstract/Between existence 52 458 2606 11498 26690
Between/Concrete existence 3537 22059
Siege v4, restricted World scopes 55042
een/Concrete StartFrom 18 105 308 848 2526 6309 13951

It attempt to check theorems. At that stage they had been checked with Berkmin and without any
mization. /talics indicate timing after optimizations.
e in seconds in function of scope.

Outline

® Alloy Principles

® Mondex in Alloy : General Method
® [echnical issues

® Conclusions

General observations

® Modeling

— Transcribed Z to Alloy very directly
— May be better to try Alloy idiom?

® High level checking
— Proof structure not needed: automated
— Exception: abort splitting
— Need to provide explicit witnhess for 3
® SAT-Solving duration varies
— From seconds to hours (even days!)
— Time correlated with theorem importance?

Alloy Limitations

® Alloy is finite
— Can express unbounded but not infinite models
— But in practice, world of purses finite

® Alloy Analyzer’s analysis is bounded
— Results valid only on given scope
— |s scope of 8 enough?

® Reasonable tradeoff for industry?
— Much less effort than theorem proving

Personal Experience

® L earn Z and Alloy from scratch
® Nice :
— Language easy to understand
* no A/Z/graphical issues
— Though quite close to Z
— Expressive & smooth relation logic
® Nasty
— Signatures are not records
* Equality & Existential theorems

— Resource- and time-consuming SAT-Solving

* Very long time for obvious-looking theorems (easily
provable by hand, e.g. Ignore refinements)

* Perhaps syntactic pre-analysis would help?

[Lessons and future work

® Lessons

— Learn another verification approach
* Automation does not exclude proof formalism

— Even though not theorem proving
* But allows also checking informal comments

— Discover problems more quickly

® Future work

— Improve formal model
* More uniform treatment of existential theorems
* Experiment with more Alloy-like idiom (eg, objects)

— Prove or argue small model theorem?

— Interface Alloy method with others
* Depends on workshop outcome

Any questions ?

® E-mail addresses

— Tahina Ramananandro
— Daniel Jackson

® Alloy modules available at :

® Alloy Website

mailto:ramanana@mit.edu
mailto:ramanana@mit.edu
mailto:ramanana@mit.edu
mailto:dnj@mit.edu
mailto:dnj@mit.edu
mailto:dnj@mit.edu
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://www.eleves.ens.fr/~ramanana/%0Bwork/mondex
http://alloy.mit.edu
http://alloy.mit.edu
http://alloy.mit.edu
http://alloy.mit.edu

