
Modeling and Verifying
Mondex in PD

Progress and Pitfalls



26/05/2006 Modeling and Verifying Mondex in PD

What I said last time…



26/05/2006 Modeling and Verifying Mondex in PD

Our goals in this project

� Learn more about how to best represent system-level
specifications in PD

� Understand the limitations of the PD prover in this
context, and overcome them

� Achieve a fully automatic proof of the Mondex case study

� Use what we have learned to make PD more usable for
system-level verification



26/05/2006 Modeling and Verifying Mondex in PD

The top-level plan

� Translate the concrete model from Z to PD

� Adapt the refinement steps as needed
� Make them more suitable for PD

� Work on the unproven verification conditions
� Where necessary, improve the prover and/or provide hints

� Generate code for the purse and other components
� If time, write a simple Java framework in which to exercise them



26/05/2006 Modeling and Verifying Mondex in PD

What I learned at the last meeting…

� The Z refinement proof is structured the way it is in
order to handle concurrency
� The refinement relation maps the entire abstract transaction to

the first step of the concrete protocol, which can only be done
with a non-deterministic refinement relation

� …so this can’t be mapped directly to PD, which requires a
deterministic retrieve function

� The original Z project was to model and verify an existing
concrete implementation
� So there is no good reason for us not to use a different approach

that is more natural for PD



26/05/2006 Modeling and Verifying Mondex in PD

A more natural approach for PD

� In a concurrent system, don’t try to refine an atomic
abstract operation to a sequence of concrete operations

� Recognise that transactions are non-atomic and re-
formulate the security properties accordingly

� In particular, we need to account for value that has been
debited from a sending purse but not been credited to
the intended recipient
� If the recipient is still expecting it, it is ‘in transit’

� If the recipient has recorded the transaction in its exception log,
it is ‘lost’



26/05/2006 Modeling and Verifying Mondex in PD

Restating the security properties

� For any atomic operation:
� totalBalance’ + totalInTransit’ ≤ totalBalance + totalInTransit

� totalBalance’ + totalInTransit’ + totalLost’
= totalBalance + totalInTransit + totalLost

� Always:
� totalInTransit ≥ 0

� At initialisation and after finalisation:
� totalInTransit = 0

� …the properties reduce to the ones in the Z abstract specification

� [do we really need finalisation with this approach?]



26/05/2006 Modeling and Verifying Mondex in PD

Modeling the concrete purse

� We have modelled the concrete purse in PD apart from
clearing the exception logs
� They stay on the purse for now

� We initially followed the Z model except as follows:
� Removed state eaTo (it doesn’t appear to serve any useful

purpose – left over from the original full model?)

� Removed non-determinacy when increasing sequence numbers
(lets us generate code and may slightly simplify the proofs)

� Split the exception log into separate ‘from’ and ‘to’ logs

� Expanded some schemas, e.g. AckPurseOK



26/05/2006 Modeling and Verifying Mondex in PD

Modeling the World

� We have modelled the concrete world, except for the
global exception logs
� The authorised purses are a map of (Name -> Purse)

� Messages are represented by a type hierarchy

� Ether constraints were translated from the Z
� We split some of them into several simpler constraints

� B13 not needed as all collections in PD are finite

� B16 not needed as subsumed by B10c and B12b

� 19 class invariants in all



26/05/2006 Modeling and Verifying Mondex in PD

Ether invariants B3 and B4
� We had to add additional invariants to ensure the main

invariants were well-formed, e.g. for B3:
// Additional invariants to satisfy the preconditions of B3a and B3b

forall m::ether.valMessages
:- m.pd.toIdent in authPurse,

forall m::ether.valMessages
:- m.pd.fromIdent in authPurse,

// Invariants B3a, B3b: there are no future val messages

forall m::ether.valMessages
:- m.pd.toSeq < authPurse[m.pd.toIdent].nextSeq,

forall m::ether.valMessages
:- m.pd.fromSeq < authPurse[m.pd.fromIdent].fromSeq;



26/05/2006 Modeling and Verifying Mondex in PD

Current state of proof
� 213 verification conditions are generated

� 106 in class World, 106 in class Purse, 1 in class Message

� 191 are automatically proved (~90%)

� 22 are not proved (~10%)
� All are in class World

� Most are VCs that an ether constraint is preserved

� Some prover limitations were exposed
� Failures to use applicable proof rules due to over-aggressive

optimisation (now fixed)

� Failure to find a unification that depends on an equality



26/05/2006 Modeling and Verifying Mondex in PD

What does this tell us?

� System-level VCs are not like component-level VCs
� Different in character

� Harder to prove?

� The PD prover needs more work to handle them well
� Mondex has exposed some sources of prover incompleteness that

we haven’t seen in software verification problems

� Fully-automated provers may be less likely to succeed in this area

� - but we haven’t given up yet!



26/05/2006 Modeling and Verifying Mondex in PD

Where next?

� Refactor the problem to help the prover and pinpoint the
problems
� Replace the 2 public methods receiveStartMessage and

receiveTransferMessage of class Purse by 5 new methods, one
for each message type

� Improve the prover unification-with-equality algorithm
� We believe this contributes to 1/3 to 1/2 of the proof failures

� Add extra assertions to help the prover with the security
properties
� State what happens to each of totalBalance, totalLost and

totalInTransit when a purse processes a given message type



26/05/2006 Modeling and Verifying Mondex in PD

Statistics

� Total size of specification: ~ 550 lines
� Including comments and layout

� Time per proof run: ~ 6 hours
� Timeout was set to 16 minutes per VC…

� …but longest time taken for a successful proof was 5½ minutes

� Total time I spent on this project: ~ 60 hours


	Modeling and Verifying�Mondex in...
	What I said last time…
	Our goals in this project
	Learn more about how to best rep...
	Understand the limitations of th...
	Achieve a fully automatic proof ...
	Use what we have learned to make...

	The top-level plan
	Translate the concrete model fro...
	Adapt the refinement steps as ne...
	Make them more suitable for PD
	Work on the unproven verificatio...
	Where necessary, improve the pro...
	Generate code for the purse and ...
	If time, write a simple Java fra...

	What I learned at the last meeti...
	The Z refinement proof is struct...
	The refinement relation maps the...
	…so this can’t be mapped directl...
	The original Z project was to mo...
	So there is no good reason for u...

	A more natural approach for PD
	In a concurrent system, don’t tr...
	Recognise that transactions are ...
	In particular, we need to accoun...
	If the recipient is still expect...
	If the recipient has recorded th...

	Restating the security propertie...
	For any atomic operation:
	totalBalance’ + totalInTransit’ ...
	totalBalance’ + totalInTransit’ ...
	Always:
	totalInTransit ≥ 0
	At initialisation and after fina...
	totalInTransit = 0
	…the properties reduce to the on...
	[do we really need finalisation ...

	Modeling the concrete purse
	We have modelled the concrete pu...
	They stay on the purse for now
	We initially followed the Z mode...
	Removed state eaTo (it doesn’t a...
	Removed non-determinacy when inc...
	Split the exception log into sep...
	Expanded some schemas, e.g. AckP...

	Modeling the World
	We have modelled the concrete wo...
	The authorised purses are a map ...
	Messages are represented by a ty...
	Ether constraints were translate...
	We split some of them into sever...
	B13 not needed as all collection...
	B16 not needed as subsumed by B1...
	19 class invariants in all

	Ether invariants B3 and B4
	We had to add additional invaria...
	// Additional invariants to sati...
	forall m::ether.valMessages
	forall m::ether.valMessages
	// Invariants B3a, B3b: there ar...
	forall m::ether.valMessages
	forall m::ether.valMessages

	Current state of proof
	213 verification conditions are ...
	106 in class World, 106 in class...
	191 are automatically proved (~9...
	22 are not proved (~10%)
	All are in class World
	Most are VCs that an ether const...
	Some prover limitations were exp...
	Failures to use applicable proof...
	Failure to find a unification th...

	What does this tell us?
	System-level VCs are not like co...
	Different in character
	Harder to prove?
	The PD prover needs more work to...
	Mondex has exposed some sources ...
	Fully-automated provers may be l...
	- but we haven’t given up yet!

	Where next?
	Refactor the problem to help the...
	Replace the 2 public methods rec...
	Improve the prover unification-w...
	We believe this contributes to 1...
	Add extra assertions to help the...
	State what happens to each of to...

	Statistics
	Total size of specification: ~ 5...
	Including comments and layout
	Time per proof run: ~ 6 hours
	Timeout was set to 16 minutes pe...
	…but longest time taken for a su...
	Total time I spent on this proje...


