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What I said last time…
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Our goals in this project

� Learn more about how to best represent system-level
specifications in PD

� Understand the limitations of the PD prover in this
context, and overcome them

� Achieve a fully automatic proof of the Mondex case study

� Use what we have learned to make PD more usable for
system-level verification
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The top-level plan

� Translate the concrete model from Z to PD

� Adapt the refinement steps as needed
� Make them more suitable for PD

� Work on the unproven verification conditions
� Where necessary, improve the prover and/or provide hints

� Generate code for the purse and other components
� If time, write a simple Java framework in which to exercise them
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What I learned at the last meeting…

� The Z refinement proof is structured the way it is in
order to handle concurrency
� The refinement relation maps the entire abstract transaction to

the first step of the concrete protocol, which can only be done
with a non-deterministic refinement relation

� …so this can’t be mapped directly to PD, which requires a
deterministic retrieve function

� The original Z project was to model and verify an existing
concrete implementation
� So there is no good reason for us not to use a different approach

that is more natural for PD
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A more natural approach for PD

� In a concurrent system, don’t try to refine an atomic
abstract operation to a sequence of concrete operations

� Recognise that transactions are non-atomic and re-
formulate the security properties accordingly

� In particular, we need to account for value that has been
debited from a sending purse but not been credited to
the intended recipient
� If the recipient is still expecting it, it is ‘in transit’

� If the recipient has recorded the transaction in its exception log,
it is ‘lost’
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Restating the security properties

� For any atomic operation:
� totalBalance’ + totalInTransit’ ≤ totalBalance + totalInTransit

� totalBalance’ + totalInTransit’ + totalLost’
= totalBalance + totalInTransit + totalLost

� Always:
� totalInTransit ≥ 0

� At initialisation and after finalisation:
� totalInTransit = 0

� …the properties reduce to the ones in the Z abstract specification

� [do we really need finalisation with this approach?]
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Modeling the concrete purse

� We have modelled the concrete purse in PD apart from
clearing the exception logs
� They stay on the purse for now

� We initially followed the Z model except as follows:
� Removed state eaTo (it doesn’t appear to serve any useful

purpose – left over from the original full model?)

� Removed non-determinacy when increasing sequence numbers
(lets us generate code and may slightly simplify the proofs)

� Split the exception log into separate ‘from’ and ‘to’ logs

� Expanded some schemas, e.g. AckPurseOK
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Modeling the World

� We have modelled the concrete world, except for the
global exception logs
� The authorised purses are a map of (Name -> Purse)

� Messages are represented by a type hierarchy

� Ether constraints were translated from the Z
� We split some of them into several simpler constraints

� B13 not needed as all collections in PD are finite

� B16 not needed as subsumed by B10c and B12b

� 19 class invariants in all



26/05/2006 Modeling and Verifying Mondex in PD

Ether invariants B3 and B4
� We had to add additional invariants to ensure the main

invariants were well-formed, e.g. for B3:
// Additional invariants to satisfy the preconditions of B3a and B3b

forall m::ether.valMessages
:- m.pd.toIdent in authPurse,

forall m::ether.valMessages
:- m.pd.fromIdent in authPurse,

// Invariants B3a, B3b: there are no future val messages

forall m::ether.valMessages
:- m.pd.toSeq < authPurse[m.pd.toIdent].nextSeq,

forall m::ether.valMessages
:- m.pd.fromSeq < authPurse[m.pd.fromIdent].fromSeq;
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Current state of proof
� 213 verification conditions are generated

� 106 in class World, 106 in class Purse, 1 in class Message

� 191 are automatically proved (~90%)

� 22 are not proved (~10%)
� All are in class World

� Most are VCs that an ether constraint is preserved

� Some prover limitations were exposed
� Failures to use applicable proof rules due to over-aggressive

optimisation (now fixed)

� Failure to find a unification that depends on an equality
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What does this tell us?

� System-level VCs are not like component-level VCs
� Different in character

� Harder to prove?

� The PD prover needs more work to handle them well
� Mondex has exposed some sources of prover incompleteness that

we haven’t seen in software verification problems

� Fully-automated provers may be less likely to succeed in this area

� - but we haven’t given up yet!
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Where next?

� Refactor the problem to help the prover and pinpoint the
problems
� Replace the 2 public methods receiveStartMessage and

receiveTransferMessage of class Purse by 5 new methods, one
for each message type

� Improve the prover unification-with-equality algorithm
� We believe this contributes to 1/3 to 1/2 of the proof failures

� Add extra assertions to help the prover with the security
properties
� State what happens to each of totalBalance, totalLost and

totalInTransit when a purse processes a given message type
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Statistics

� Total size of specification: ~ 550 lines
� Including comments and layout

� Time per proof run: ~ 6 hours
� Timeout was set to 16 minutes per VC…

� …but longest time taken for a successful proof was 5½ minutes

� Total time I spent on this project: ~ 60 hours
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