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Abort logs the pd in fromLogs if the purse is in state epa or in toLogs if it is in state epv

lost = toLogs inter (fromLogs union fromInEpa)

inTransit = (fromLogs union fromInEpa) inter toInEpv

sending val reduces the from purse’s balance; sending ack increases the to purse’s balance
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The Problem

1. Specify the protocol in detail

2. Prove that each operation satisfies two conditions on the before
(1) and after (2) states:

(a) NoValueCreation:
inPurses2 + inTransit2 ≤ inPurses1 + inTransit1

(b) AllValueAccounted :
inPurses2 + inTransit2 + lost2 = inPurses1 + inTransit1 + lost1

We will call such an operation correct.
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The RAISE Approach

3 levels of specification:

1. Abstract: a problem in accounting. No purses; no messages; just
three “bottom line” values and some abstract correct operations
that transfer money between them.

2. Middle: abstract purses and concrete operations. No details of
the mechanisms that preserve the (asserted) invariant. Prove
that each operation is correct.

3. Concrete: full details of the protocol. Prove that each operation
implements its middle version.
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Abstract Specification

4 abstract operations

TransferLeft

inPurses2 = inPurses1 − valu(m) ∧
(lost2 = lost1 ∧ inTransit2 = inTransit1 + valu(m) ∨
lost2 = lost1 + valu(m) ∧ inTransit2 = inTransit1)

TransferRight

inPurses2 = inPurses1 + valu(m) ∧
lost2 = lost1 ∧
inTransit2 = inTransit1 − valu(m)
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Abort

∃ v : Nat •

inPurses2 = inPurses1 ∧
lost2 = lost1 + v ∧
inTransit2 = inTransit1 − v

No op

inPurses2 = inPurses1 ∧
lost2 = lost1 ∧
inTransit2 = inTransit1

No op is really a special case of Abort.

It is easy to prove these 4 operations are correct.
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Correct combinations 1

compose : (Pre × Op) × (Pre × Op) → Pre × Op
compose((p1, op1), (p2, op2)) ≡

(p1,
λ (n, m, w) : T.Name × T.Message × World •

let w1 = op1(n, m, w) in
if ∃ n1 : T.Name, m1 : T.Message • p2(n1, m1, w1)
then

let (n1, m1) : T.Name × T.Message • p2(n1, m1, w1)
in op2(n1, m1, w1) end

elsew1 end
end

)
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Correct combinations 2

sequence : (Pre × Op) × (Pre × Op) → Pre × Op
sequence((p1, op1), (p2, op2)) ≡

(λ (n, m, w) : T.Name × T.Message × World •

p1(n, m, w) ∧ p2(n, m, op1(n, m, w)),
λ (n, m, w) : T.Name × T.Message × World •

op2(n, m, op1(n, m, w)))

Easy to prove compose and sequence preserve correctness.

sequence useful as some operations defined for convenience as
sequence(Abort, Op) or sequence(Op, Abort).
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Middle Specification: Purses: types and observers

type
PurseBase,
Purse = {| p : PurseBase • isPurse(p) |}

value
balance : PurseBase → Nat,
pdAuth : PurseBase → T.PayDetails,
status : PurseBase → T.Status,
name : PurseBase → T.Name
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Middle Specification: Purses: axioms for Req

[ balance req ]
∀ m : T.Message, p : Purse •

canReq(m, p) ⇒
balance(req(m, p)) = balance(p) − T.valu(pdAuth(p)),

[ pdAuth req ]
∀ m : T.Message, p : Purse •

canReq(m, p) ⇒ pdAuth(req(m, p)) = pdAuth(p),
[ status req ]
∀ m : T.Message, p : Purse •

canReq(m, p) ⇒ status(req(m, p)) = T.epa,
[ name req ]
∀ m : T.Message, p : Purse •

canReq(m, p) ⇒ name(req(m, p)) = name(p),
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Middle Specification: World: observers

value
purses : World → PursesMap,
toLogs : World → T.PayDetails-set,
fromLogs : World → T.PayDetails-set,
ether : World → T.Message-set,
visible : World → T.Message-set
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Middle Specification: World: invariant

axiom
[ isWorldAxiom ]
∀ w : World, p : P.Purse •

p ∈ rng purses(w) ⇒
(P.status(p) = T.epr ⇒

P.pdAuth(p) 6∈ fromInEpa(w) ∧
P.pdAuth(p) 6∈ fromLogs(w) ∧
(T.req(P.pdAuth(p)) ∈ ether(w) ⇒

P.pdAuth(p) ∈ toInEpv(w) ∧ P.pdAuth(p) 6∈ toLogs(w) ∨
P.pdAuth(p) ∈ toLogs(w) ∧ P.pdAuth(p) 6∈ toInEpv(w))) ∧

... ∧
visible(w) ⊆ ether(w)
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Middle Specification: World: axioms

[ purses req ]
∀ n : T.Name, m : T.Message, w : World •

canReq(n, m, w) ⇒
purses(req(n, m, w)) =

let (p1, m1) = P.req(m, purses(w)(n)) in purses(w) † [ n 7→ p1 ] end,
[ toLogs req ]
∀ n : T.Name, m : T.Message, w : World •

canReq(n, m, w) ⇒
toLogs(req(n, m, w)) = toLogs(w),

[ fromLogs req ]
∀ n : T.Name, m : T.Message, w : World •

canReq(n, m, w) ⇒
fromLogs(req(n, m, w)) = fromLogs(w),
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Concrete Specification: Purse: types

type
PurseBase ::

balance : Nat
exLog : PayDetails-set↔ change log
name : Name
nextSeqNo : Nat
pdAuth : PayDetails
status : Status,

Purse = {| p : PurseBase • isPurse(p) |}
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Concrete Specification: Purse: operation

value
req : Message × Purse ∼→ Purse × T.Message
req(m, p) ≡

let pd = pdAuth(p), bal = balance(p) − valu(pd) in
(mk PurseBase(

bal, exLog(p), name(p), nextSeqNo(p), pd, epa),
T.val(pd))

end
pre canReq(m, p),
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Concrete Specification: World: types

type
World = {| w : WorldBase • isWorld(w) |},
WorldBase ::

purses : PursesMap
ether : Message-set
visible : Message-set
archive : LogBook,
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Concrete Specification: World: invariant 1

isWorld : WorldBase → Bool
isWorld(w) ≡

(∀ n : Name •

n ∈ dom archive(w) ⇒ n ∈ dom purses(w)) ∧
(∀ pd : PayDetails •

to(pd) ∈ purses(w) ∧
pdAuth(purses(w)(to(pd))) = pd ⇒

status(purses(w)(to(pd))) 6∈ {epr, epa}) ∧
(∀ pd : PayDetails •

ffrom(pd) ∈ purses(w) ∧
pdAuth(purses(w)(ffrom(pd))) = pd ⇒

status(purses(w)(ffrom(pd))) 6= epv) ∧
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Concrete Specification: World: invariant 2

(∀ pd : PayDetails •

req(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧
toSeqNo(pd) < nextSeqNo(purses(w)(to(pd)))) ∧

(∀ pd : PayDetails •

val(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧ ffrom(pd) ∈ purses(w) ∧
toSeqNo(pd) < nextSeqNo(purses(w)(to(pd))) ∧
fromSeqNo(pd) < nextSeqNo(purses(w)(ffrom(pd)))) ∧

(∀ pd : PayDetails •

ack(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧ ffrom(pd) ∈ purses(w) ∧
...
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Concrete Specification: World: invariant 3

(∀ pd : PayDetails •

pd ∈ fromLogs(w) ⇒
req(pd) ∈ ether(w) ∧
fromSeqNo(pd) < nextSeqNo(purses(w)(ffrom(pd))) ∧
(status(purses(w)(ffrom(pd))) ∈ {epr, epa} ⇒

fromSeqNo(pd) < fromSeqNo(pdAuth(purses(w)(ffrom(pd)))))) ∧
(∀ pd : PayDetails •

pd ∈ toLogs(w) ⇒
req(pd) ∈ ether(w) ∧
ack(pd) 6∈ ether(w) ∧
(status(purses(w)(to(pd))) ∈ {epv, eaTo} ⇒

toSeqNo(pd) < toSeqNo(pdAuth(purses(w)(to(pd)))))) ∧
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Concrete Specification: World: invariant 4

(∀ pd : PayDetails •

ffrom(pd) ∈ purses(w) ∧
status(purses(w)(ffrom(pd))) = epa ⇒

req(pdAuth(purses(w)(ffrom(pd)))) ∈ ether(w)) ∧
(∀ pd : PayDetails •

ffrom(pd) ∈ purses(w) ∧
status(purses(w)(ffrom(pd))) = epr ⇒

val(pdAuth(purses(w)(ffrom(pd)))) 6∈
ether(w) ∧

ack(pdAuth(purses(w)(ffrom(pd)))) 6∈
ether(w)) ∧
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Concrete Specification: World: invariant 5

(∀ pd : PayDetails •

to(pd) ∈ purses(w) ∧
status(purses(w)(to(pd))) = epv ⇒

req(pdAuth(purses(w)(to(pd)))) ∈ ether(w) ∧
ack(pdAuth(purses(w)(to(pd)))) 6∈ ether(w)) ∧

(∀ pd : PayDetails •

req(pd) ∈ ether(w) ∧ ack(pd) 6∈ ether(w) ⇒
(pd ∈ toInEpv(w) ∨ pd ∈ toLogs(w))) ∧

(∀ pd : PayDetails •

val(pd) ∈ ether(w) ∧ pd ∈ toInEpv(w) ⇒
pd ∈ fromInEpa(w) ∨ pd ∈ fromLogs(w)) ∧
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Concrete Specification: World: invariant 6

(∀ pd : PayDetails, n : Name •

exceptionLogResult(n, pd) ∈ ether(w) ⇒
n ∈ dom allLogs(w) ∧ pd ∈ allLogs(w)(n)) ∧

(∀ pds : PayDetailsSet1, n : Name •

exceptionLogClear(n, image(pds)) ∈ ether(w) ⇒
n ∈ dom archive(w) ∧ pds ⊆ archive(w)(n)) ∧

(∀ m : Message •

m ∈ visible(w) ⇒ m ∈ ether(w))

16 conjuncts which must be proved as invariant for 11 operations!!
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The Argument for Correctness

1. LeftTransfer, RightTransfer, Abort and No op are correct ;
Composition and sequence preserve correctness.

2. Each abstract operation is a LeftTransfer, RightTransfer, Abort or
No op.

3. Each abstract operation is refined by its concrete operation.
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Easy!

Perhaps ...

• This is the 10th version of the specification, which is 2200 lines
of RSL in 13 files.

• There are 366 proofs, perhaps half proved automatically.

• A typical invariant proof for the concrete specification is about
300 prover commands (recall there are 11 of these proofs).

• Other unpleasant proofs were that the concrete invariant implied
the abstract one (150 prover commands), and that some sets
defined by comprehension are finite.
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Proof of Invariant for Req
(skosimp*)

(typepred "w!1")

(expand "isWorld" −)

(flatten)

(label "arch" −1)

(label "tonotepra" −2)

(label "fromnotepv" −3)

(label "reqether" −4)

(label "valether" −5)

(label "ackether" −6)

(label "fromlogs" −7)

(label "tologs" −8)

(label "fromepa" −9)

(label "fromepr" −10)

(label "toepv" −11)

(label "reqack" −12)

(label "valepv" −13)

(label "logres" −14)

(label "logclear" −15)

(label "isWorld" 1)

(label "visible" −16)

(inst−cp "visible" "m!1")

(assert −18)

(flatten)

(typepred ...)

(expand "isPurse")

(typepred "purses(w!1)")

(hide −1)

(expand "isPursesMap")

(label "names" −1)

(inst−cp "names" "n!1")

(flatten)

(label "exlog" −3)

(expand "isWorld")

(split "isWorld")

(skosimp*)

(inst "arch" "n!2")

(case−replace "n!2=n!1")

(assert) (assert)

(flatten)

(assert)

(skosimp*)

(inst "tonotepra" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(inst "fromnotepv" "pd!1")

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(inst "reqether" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(skosimp*)

(inst "valether" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert)

(flatten)

(assert)

(split −2)

(assert)

(flatten)

(assert)

(decompose−equality −1)

(replace −1 * lr)

(assert)

(assert)

(flatten)

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert)

(split −2)

(assert)

(flatten)

(assert)

(decompose−equality −1)

(replace −1 * lr)

(assert)

(inst −12 "pd!1")

(assert)

(flatten)

(assert)

(assert)

(split −1)

(assert)

(flatten)

(assert)

(decompose−equality −1)

(replace −1 * lr)

(inst "reqether" "pd!1")

(assert)

(skosimp*)

(inst "ackether" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(skosimp*)

(inst "fromlogs" "pd!1")

(case−replace "T.ffrom(pd!1)=n!1")

(assert)

(flatten)

(assert)

(replace −1 * lr)

(name−replace ...)

(assert)

(assert)

(flatten)

(assert)

(case−replace ...)

(assert)

(name−replace ...)

(assert)

(assert)

(iw−strat8) (skosimp*)

(inst "fromepa" "pd!1")

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(iw−strat10)

(flatten)

(assert)

(decompose−equality −4)

(decompose−equality −1)

(replace −1 −12 lr)

(assert)

(replace −10 * lr)

(assert)

(typepred ...)

(assert)

(flatten)

(assert)

(inst "names" "T.ffrom(pd!1)")

(assert)

(skosimp*)

(inst "toepv" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(inst "reqack" "pd!1")

(assert)

(split "reqack")

(skosimp*)

(inst 2 "pd!2")

(case−replace "T.to(pd!2)=n!1")

(assert) (assert)

(flatten)

(inst 2 "pd!1")

(assert)

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(skosimp*)

(inst "valepv" "pd!1")

(assert)

(skosimp*)

(case−replace "T.to(pd!2)=n!1")

(assert) (assert)

(case−replace ...)

(assert)

(split "valepv")

(skosimp*)

(inst "isWorld" "pd!3")

(case−replace "T.ffrom(pd!3)=n!1")

(assert) (assert)

(assert)

(flatten)

(split −4)

(inst "valether" "pd!1")

(assert)

(flatten)

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(decompose−equality −1)

(replace −1 * lr)

(inst "reqether" "pd!1")

(assert)

(flatten)

(assert)

(inst "isWorld" "pd!2")

(assert)

(case−replace "T.ffrom(pd!2)=n!1")

(assert)

(decompose−equality −3)

(assert)

(assert)

(decompose−equality −2)

(replace −2 * lr)

(replace −1 * lr)

(inst "reqether" "pd!1")

(assert)

(flatten)

(assert)

(typepred ...)

(assert)

(flatten)

(assert)

(inst "names" "T.to(pd!2)")

(assert)

(replace −8 * lr)

(replace −7 * rl)

(inst "toepv" "pd!2")

(assert)

(assert)

(replace −2 * lr)

(replace −7 * rl)

(assert)

(inst "reqack" "pd!1")

(assert)

(replace −9 * lr)

(reveal 1)

(inst 1 "pd!1")

(assert)

(inst 1 "pd!2")

(assert)

(assert)

(skosimp*)

(inst "logres" "pd!1" "n!2")

(assert)

(expand "allLogs")

(case−replace "n!2=n!1")

(assert) (assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(assert)

(inst "logclear" "pds!1" "n!2")

(assert)

(skosimp*)

(use "hideSome_def")

(expand "subset?")

(inst −1 "m!2")

(inst "visible" "m!2")

(assert)

(lemma "hideSome_def")

(inst ...)

(assert)

(expand "subset?")

(inst −1 "m!2")

(assert)

(split −1)

(assert)

(assert)

(assert)
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Automation?

• The biggest problem is identifying the invariant.

– Too strong: helps with proofs of refinement but can’t be
proved.

– Too weak: easier to prove but refinement proofs fail.

• This problem has many large proofs with similar structure:
tactics are worth developing.

– The perfect tactic is very hard to write.

– A tactic that does all the setting up of standard hypotheses,
names them, and does the basic case analysis and tries to
discharge the results can be very useful.

• One incautious grind generated (eventually) 1580 subgoals!
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Did We Capture the Requirements Correctly?

• There may be many subtle points in 2200 lines of RSL!

• In the Z specification, for example, the description of a complete
transfer is only informally stated, but seems to be
unimplementable, because it requires you to know in advance a
property of Abort that is underspecified (and perhaps
nondeterministic): possible increase in nextSeqNo.

• Is there an “axiom false” somewhere?
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Are our tools correct?

We rely on

• Translator from RSL to PVS

• PVS proof engine

Chris George and Anne Haxthausen 28



Comparison with Z Approach

Z specification has 3 levels:

1. Abstract model A has purse operations AbTransferOK,
AbTransferLost, and AbIgnore. Specification is that these are
correct.

2. Between model B has concrete purses, concrete operations,
concrete world containing collection of purses (with operations
defined by promoting the purse operations), ether of messages,
and archive of logs. Invariant much like our concrete one. Use of
“backward” proof rules to show that sequences of concrete
operations simulate sequences of abstract operations.

3. Concrete model C has similar structure to B but no state
invariant. Loss of messages introduced. Proof that C refines B
done using “forward” proof rules.
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Remarks on Z Approach

• Refinement is relational.

• A set of operations in B refines a set of operations in A if the
operations (seen as state transformers) in B simulate the
corresponding operations in A.

• Simulation is defined in terms of a retrieve relation between the
A and B states: seen through this retrieve relation the states
reachable in B should be a subset of those reachable in A.

• We get a subset relation because of underspecification (seen as
nondeterminism in Z): if an abstract operation in A can finish in
any of states S1, S2 or S3 and the concrete one can finish in S2,
say, then this is OK.
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RAISE approach

Refinement in RAISE is different from Z: based on classes; gives
substitutivity.

But in fact very similar. We effectively show

• Req implements TransferLeft

• Val implements TransferRight

• StartFrom, StartTo, Abort, Readlog, ClearLog implement Abort

• Ack, Increase, AuthoriseClear, Archive implement No op
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Further work

• Drawing general conclusions on modelling and proving such
systems

• Seeing what can be done with model checking

– What are useful abstractions?

– Finding a sequence forming a complete transfer

– Checking candidate invariant clauses for falsity!

• Can we improve the automation?
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