
Specification and Proof of the Mondex Electronic
Purse

Chris George and Anne Haxthausen

United Nations University

International Institute for Software Technology

Macao SAR, China

and

Informatics and Mathematical Modelling

Technical University of Denmark

Lyngby, Denmark

Chris George and Anne Haxthausen 1

eaFrom

epv(pd)

epa(pd)

eaFrom

epr(pd)

eaTo

startTo

req(pd) val(pd)
ack(pd)

startFrom

Abort

from purse

to purse

Abort logs the pd in fromLogs if the purse is in state epa or in toLogs if it is in state epv

lost = toLogs inter (fromLogs union fromInEpa)

inTransit = (fromLogs union fromInEpa) inter toInEpv

sending val reduces the from purse’s balance; sending ack increases the to purse’s balance

Chris George and Anne Haxthausen 2

The Problem

1. Specify the protocol in detail

2. Prove that each operation satisfies two conditions on the before
(1) and after (2) states:

(a) NoValueCreation:
inPurses2 + inTransit2 ≤ inPurses1 + inTransit1

(b) AllValueAccounted :
inPurses2 + inTransit2 + lost2 = inPurses1 + inTransit1 + lost1

We will call such an operation correct.

Chris George and Anne Haxthausen 3

The RAISE Approach

3 levels of specification:

1. Abstract: a problem in accounting. No purses; no messages; just
three “bottom line” values and some abstract correct operations
that transfer money between them.

2. Middle: abstract purses and concrete operations. No details of
the mechanisms that preserve the (asserted) invariant. Prove
that each operation is correct.

3. Concrete: full details of the protocol. Prove that each operation
implements its middle version.

Chris George and Anne Haxthausen 4

Abstract Specification

4 abstract operations

TransferLeft

inPurses2 = inPurses1 − valu(m) ∧
(lost2 = lost1 ∧ inTransit2 = inTransit1 + valu(m) ∨
lost2 = lost1 + valu(m) ∧ inTransit2 = inTransit1)

TransferRight

inPurses2 = inPurses1 + valu(m) ∧
lost2 = lost1 ∧
inTransit2 = inTransit1 − valu(m)

Chris George and Anne Haxthausen 5

Abort

∃ v : Nat •

inPurses2 = inPurses1 ∧
lost2 = lost1 + v ∧
inTransit2 = inTransit1 − v

No op

inPurses2 = inPurses1 ∧
lost2 = lost1 ∧
inTransit2 = inTransit1

No op is really a special case of Abort.

It is easy to prove these 4 operations are correct.

Chris George and Anne Haxthausen 6

Correct combinations 1

compose : (Pre × Op) × (Pre × Op) → Pre × Op
compose((p1, op1), (p2, op2)) ≡

(p1,
λ (n, m, w) : T.Name × T.Message × World •

let w1 = op1(n, m, w) in
if ∃ n1 : T.Name, m1 : T.Message • p2(n1, m1, w1)
then

let (n1, m1) : T.Name × T.Message • p2(n1, m1, w1)
in op2(n1, m1, w1) end

elsew1 end
end

)

Chris George and Anne Haxthausen 7

Correct combinations 2

sequence : (Pre × Op) × (Pre × Op) → Pre × Op
sequence((p1, op1), (p2, op2)) ≡

(λ (n, m, w) : T.Name × T.Message × World •

p1(n, m, w) ∧ p2(n, m, op1(n, m, w)),
λ (n, m, w) : T.Name × T.Message × World •

op2(n, m, op1(n, m, w)))

Easy to prove compose and sequence preserve correctness.

sequence useful as some operations defined for convenience as
sequence(Abort, Op) or sequence(Op, Abort).

Chris George and Anne Haxthausen 8

Middle Specification: Purses: types and observers

type
PurseBase,
Purse = {| p : PurseBase • isPurse(p) |}

value
balance : PurseBase → Nat,
pdAuth : PurseBase → T.PayDetails,
status : PurseBase → T.Status,
name : PurseBase → T.Name

Chris George and Anne Haxthausen 9

Middle Specification: Purses: axioms for Req

[balance req]
∀ m : T.Message, p : Purse •

canReq(m, p) ⇒
balance(req(m, p)) = balance(p) − T.valu(pdAuth(p)),

[pdAuth req]
∀ m : T.Message, p : Purse •

canReq(m, p) ⇒ pdAuth(req(m, p)) = pdAuth(p),
[status req]
∀ m : T.Message, p : Purse •

canReq(m, p) ⇒ status(req(m, p)) = T.epa,
[name req]
∀ m : T.Message, p : Purse •

canReq(m, p) ⇒ name(req(m, p)) = name(p),

Chris George and Anne Haxthausen 10

Middle Specification: World: observers

value
purses : World → PursesMap,
toLogs : World → T.PayDetails-set,
fromLogs : World → T.PayDetails-set,
ether : World → T.Message-set,
visible : World → T.Message-set

Chris George and Anne Haxthausen 11

Middle Specification: World: invariant

axiom
[isWorldAxiom]
∀ w : World, p : P.Purse •

p ∈ rng purses(w) ⇒
(P.status(p) = T.epr ⇒

P.pdAuth(p) 6∈ fromInEpa(w) ∧
P.pdAuth(p) 6∈ fromLogs(w) ∧
(T.req(P.pdAuth(p)) ∈ ether(w) ⇒

P.pdAuth(p) ∈ toInEpv(w) ∧ P.pdAuth(p) 6∈ toLogs(w) ∨
P.pdAuth(p) ∈ toLogs(w) ∧ P.pdAuth(p) 6∈ toInEpv(w))) ∧

... ∧
visible(w) ⊆ ether(w)

Chris George and Anne Haxthausen 12

Middle Specification: World: axioms

[purses req]
∀ n : T.Name, m : T.Message, w : World •

canReq(n, m, w) ⇒
purses(req(n, m, w)) =

let (p1, m1) = P.req(m, purses(w)(n)) in purses(w) † [n 7→ p1] end,
[toLogs req]
∀ n : T.Name, m : T.Message, w : World •

canReq(n, m, w) ⇒
toLogs(req(n, m, w)) = toLogs(w),

[fromLogs req]
∀ n : T.Name, m : T.Message, w : World •

canReq(n, m, w) ⇒
fromLogs(req(n, m, w)) = fromLogs(w),

Chris George and Anne Haxthausen 13

Concrete Specification: Purse: types

type
PurseBase ::

balance : Nat
exLog : PayDetails-set↔ change log
name : Name
nextSeqNo : Nat
pdAuth : PayDetails
status : Status,

Purse = {| p : PurseBase • isPurse(p) |}

Chris George and Anne Haxthausen 14

Concrete Specification: Purse: operation

value
req : Message × Purse ∼→ Purse × T.Message
req(m, p) ≡

let pd = pdAuth(p), bal = balance(p) − valu(pd) in
(mk PurseBase(

bal, exLog(p), name(p), nextSeqNo(p), pd, epa),
T.val(pd))

end
pre canReq(m, p),

Chris George and Anne Haxthausen 15

Concrete Specification: World: types

type
World = {| w : WorldBase • isWorld(w) |},
WorldBase ::

purses : PursesMap
ether : Message-set
visible : Message-set
archive : LogBook,

Chris George and Anne Haxthausen 16

Concrete Specification: World: invariant 1

isWorld : WorldBase → Bool
isWorld(w) ≡

(∀ n : Name •

n ∈ dom archive(w) ⇒ n ∈ dom purses(w)) ∧
(∀ pd : PayDetails •

to(pd) ∈ purses(w) ∧
pdAuth(purses(w)(to(pd))) = pd ⇒

status(purses(w)(to(pd))) 6∈ {epr, epa}) ∧
(∀ pd : PayDetails •

ffrom(pd) ∈ purses(w) ∧
pdAuth(purses(w)(ffrom(pd))) = pd ⇒

status(purses(w)(ffrom(pd))) 6= epv) ∧

Chris George and Anne Haxthausen 17

Concrete Specification: World: invariant 2

(∀ pd : PayDetails •

req(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧
toSeqNo(pd) < nextSeqNo(purses(w)(to(pd)))) ∧

(∀ pd : PayDetails •

val(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧ ffrom(pd) ∈ purses(w) ∧
toSeqNo(pd) < nextSeqNo(purses(w)(to(pd))) ∧
fromSeqNo(pd) < nextSeqNo(purses(w)(ffrom(pd)))) ∧

(∀ pd : PayDetails •

ack(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧ ffrom(pd) ∈ purses(w) ∧
...

Chris George and Anne Haxthausen 18

Concrete Specification: World: invariant 3

(∀ pd : PayDetails •

pd ∈ fromLogs(w) ⇒
req(pd) ∈ ether(w) ∧
fromSeqNo(pd) < nextSeqNo(purses(w)(ffrom(pd))) ∧
(status(purses(w)(ffrom(pd))) ∈ {epr, epa} ⇒

fromSeqNo(pd) < fromSeqNo(pdAuth(purses(w)(ffrom(pd)))))) ∧
(∀ pd : PayDetails •

pd ∈ toLogs(w) ⇒
req(pd) ∈ ether(w) ∧
ack(pd) 6∈ ether(w) ∧
(status(purses(w)(to(pd))) ∈ {epv, eaTo} ⇒

toSeqNo(pd) < toSeqNo(pdAuth(purses(w)(to(pd)))))) ∧

Chris George and Anne Haxthausen 19

Concrete Specification: World: invariant 4

(∀ pd : PayDetails •

ffrom(pd) ∈ purses(w) ∧
status(purses(w)(ffrom(pd))) = epa ⇒

req(pdAuth(purses(w)(ffrom(pd)))) ∈ ether(w)) ∧
(∀ pd : PayDetails •

ffrom(pd) ∈ purses(w) ∧
status(purses(w)(ffrom(pd))) = epr ⇒

val(pdAuth(purses(w)(ffrom(pd)))) 6∈
ether(w) ∧

ack(pdAuth(purses(w)(ffrom(pd)))) 6∈
ether(w)) ∧

Chris George and Anne Haxthausen 20

Concrete Specification: World: invariant 5

(∀ pd : PayDetails •

to(pd) ∈ purses(w) ∧
status(purses(w)(to(pd))) = epv ⇒

req(pdAuth(purses(w)(to(pd)))) ∈ ether(w) ∧
ack(pdAuth(purses(w)(to(pd)))) 6∈ ether(w)) ∧

(∀ pd : PayDetails •

req(pd) ∈ ether(w) ∧ ack(pd) 6∈ ether(w) ⇒
(pd ∈ toInEpv(w) ∨ pd ∈ toLogs(w))) ∧

(∀ pd : PayDetails •

val(pd) ∈ ether(w) ∧ pd ∈ toInEpv(w) ⇒
pd ∈ fromInEpa(w) ∨ pd ∈ fromLogs(w)) ∧

Chris George and Anne Haxthausen 21

Concrete Specification: World: invariant 6

(∀ pd : PayDetails, n : Name •

exceptionLogResult(n, pd) ∈ ether(w) ⇒
n ∈ dom allLogs(w) ∧ pd ∈ allLogs(w)(n)) ∧

(∀ pds : PayDetailsSet1, n : Name •

exceptionLogClear(n, image(pds)) ∈ ether(w) ⇒
n ∈ dom archive(w) ∧ pds ⊆ archive(w)(n)) ∧

(∀ m : Message •

m ∈ visible(w) ⇒ m ∈ ether(w))

16 conjuncts which must be proved as invariant for 11 operations!!

Chris George and Anne Haxthausen 22

The Argument for Correctness

1. LeftTransfer, RightTransfer, Abort and No op are correct ;
Composition and sequence preserve correctness.

2. Each abstract operation is a LeftTransfer, RightTransfer, Abort or
No op.

3. Each abstract operation is refined by its concrete operation.

Chris George and Anne Haxthausen 23

Easy!

Perhaps ...

• This is the 10th version of the specification, which is 2200 lines
of RSL in 13 files.

• There are 366 proofs, perhaps half proved automatically.

• A typical invariant proof for the concrete specification is about
300 prover commands (recall there are 11 of these proofs).

• Other unpleasant proofs were that the concrete invariant implied
the abstract one (150 prover commands), and that some sets
defined by comprehension are finite.

Chris George and Anne Haxthausen 24

Proof of Invariant for Req
(skosimp*)

(typepred "w!1")

(expand "isWorld" −)

(flatten)

(label "arch" −1)

(label "tonotepra" −2)

(label "fromnotepv" −3)

(label "reqether" −4)

(label "valether" −5)

(label "ackether" −6)

(label "fromlogs" −7)

(label "tologs" −8)

(label "fromepa" −9)

(label "fromepr" −10)

(label "toepv" −11)

(label "reqack" −12)

(label "valepv" −13)

(label "logres" −14)

(label "logclear" −15)

(label "isWorld" 1)

(label "visible" −16)

(inst−cp "visible" "m!1")

(assert −18)

(flatten)

(typepred ...)

(expand "isPurse")

(typepred "purses(w!1)")

(hide −1)

(expand "isPursesMap")

(label "names" −1)

(inst−cp "names" "n!1")

(flatten)

(label "exlog" −3)

(expand "isWorld")

(split "isWorld")

(skosimp*)

(inst "arch" "n!2")

(case−replace "n!2=n!1")

(assert) (assert)

(flatten)

(assert)

(skosimp*)

(inst "tonotepra" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(inst "fromnotepv" "pd!1")

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(inst "reqether" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(skosimp*)

(inst "valether" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert)

(flatten)

(assert)

(split −2)

(assert)

(flatten)

(assert)

(decompose−equality −1)

(replace −1 * lr)

(assert)

(assert)

(flatten)

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert)

(split −2)

(assert)

(flatten)

(assert)

(decompose−equality −1)

(replace −1 * lr)

(assert)

(inst −12 "pd!1")

(assert)

(flatten)

(assert)

(assert)

(split −1)

(assert)

(flatten)

(assert)

(decompose−equality −1)

(replace −1 * lr)

(inst "reqether" "pd!1")

(assert)

(skosimp*)

(inst "ackether" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(skosimp*)

(inst "fromlogs" "pd!1")

(case−replace "T.ffrom(pd!1)=n!1")

(assert)

(flatten)

(assert)

(replace −1 * lr)

(name−replace ...)

(assert)

(assert)

(flatten)

(assert)

(case−replace ...)

(assert)

(name−replace ...)

(assert)

(assert)

(iw−strat8) (skosimp*)

(inst "fromepa" "pd!1")

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(iw−strat10)

(flatten)

(assert)

(decompose−equality −4)

(decompose−equality −1)

(replace −1 −12 lr)

(assert)

(replace −10 * lr)

(assert)

(typepred ...)

(assert)

(flatten)

(assert)

(inst "names" "T.ffrom(pd!1)")

(assert)

(skosimp*)

(inst "toepv" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(inst "reqack" "pd!1")

(assert)

(split "reqack")

(skosimp*)

(inst 2 "pd!2")

(case−replace "T.to(pd!2)=n!1")

(assert) (assert)

(flatten)

(inst 2 "pd!1")

(assert)

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(skosimp*)

(inst "valepv" "pd!1")

(assert)

(skosimp*)

(case−replace "T.to(pd!2)=n!1")

(assert) (assert)

(case−replace ...)

(assert)

(split "valepv")

(skosimp*)

(inst "isWorld" "pd!3")

(case−replace "T.ffrom(pd!3)=n!1")

(assert) (assert)

(assert)

(flatten)

(split −4)

(inst "valether" "pd!1")

(assert)

(flatten)

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(decompose−equality −1)

(replace −1 * lr)

(inst "reqether" "pd!1")

(assert)

(flatten)

(assert)

(inst "isWorld" "pd!2")

(assert)

(case−replace "T.ffrom(pd!2)=n!1")

(assert)

(decompose−equality −3)

(assert)

(assert)

(decompose−equality −2)

(replace −2 * lr)

(replace −1 * lr)

(inst "reqether" "pd!1")

(assert)

(flatten)

(assert)

(typepred ...)

(assert)

(flatten)

(assert)

(inst "names" "T.to(pd!2)")

(assert)

(replace −8 * lr)

(replace −7 * rl)

(inst "toepv" "pd!2")

(assert)

(assert)

(replace −2 * lr)

(replace −7 * rl)

(assert)

(inst "reqack" "pd!1")

(assert)

(replace −9 * lr)

(reveal 1)

(inst 1 "pd!1")

(assert)

(inst 1 "pd!2")

(assert)

(assert)

(skosimp*)

(inst "logres" "pd!1" "n!2")

(assert)

(expand "allLogs")

(case−replace "n!2=n!1")

(assert) (assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(assert)

(inst "logclear" "pds!1" "n!2")

(assert)

(skosimp*)

(use "hideSome_def")

(expand "subset?")

(inst −1 "m!2")

(inst "visible" "m!2")

(assert)

(lemma "hideSome_def")

(inst ...)

(assert)

(expand "subset?")

(inst −1 "m!2")

(assert)

(split −1)

(assert)

(assert)

(assert)

Chris George and Anne Haxthausen 25

Automation?

• The biggest problem is identifying the invariant.

– Too strong: helps with proofs of refinement but can’t be
proved.

– Too weak: easier to prove but refinement proofs fail.

• This problem has many large proofs with similar structure:
tactics are worth developing.

– The perfect tactic is very hard to write.

– A tactic that does all the setting up of standard hypotheses,
names them, and does the basic case analysis and tries to
discharge the results can be very useful.

• One incautious grind generated (eventually) 1580 subgoals!

Chris George and Anne Haxthausen 26

Did We Capture the Requirements Correctly?

• There may be many subtle points in 2200 lines of RSL!

• In the Z specification, for example, the description of a complete
transfer is only informally stated, but seems to be
unimplementable, because it requires you to know in advance a
property of Abort that is underspecified (and perhaps
nondeterministic): possible increase in nextSeqNo.

• Is there an “axiom false” somewhere?

Chris George and Anne Haxthausen 27

Are our tools correct?

We rely on

• Translator from RSL to PVS

• PVS proof engine

Chris George and Anne Haxthausen 28

Comparison with Z Approach

Z specification has 3 levels:

1. Abstract model A has purse operations AbTransferOK,
AbTransferLost, and AbIgnore. Specification is that these are
correct.

2. Between model B has concrete purses, concrete operations,
concrete world containing collection of purses (with operations
defined by promoting the purse operations), ether of messages,
and archive of logs. Invariant much like our concrete one. Use of
“backward” proof rules to show that sequences of concrete
operations simulate sequences of abstract operations.

3. Concrete model C has similar structure to B but no state
invariant. Loss of messages introduced. Proof that C refines B
done using “forward” proof rules.

Chris George and Anne Haxthausen 29

Remarks on Z Approach

• Refinement is relational.

• A set of operations in B refines a set of operations in A if the
operations (seen as state transformers) in B simulate the
corresponding operations in A.

• Simulation is defined in terms of a retrieve relation between the
A and B states: seen through this retrieve relation the states
reachable in B should be a subset of those reachable in A.

• We get a subset relation because of underspecification (seen as
nondeterminism in Z): if an abstract operation in A can finish in
any of states S1, S2 or S3 and the concrete one can finish in S2,
say, then this is OK.

Chris George and Anne Haxthausen 30

RAISE approach

Refinement in RAISE is different from Z: based on classes; gives
substitutivity.

But in fact very similar. We effectively show

• Req implements TransferLeft

• Val implements TransferRight

• StartFrom, StartTo, Abort, Readlog, ClearLog implement Abort

• Ack, Increase, AuthoriseClear, Archive implement No op

Chris George and Anne Haxthausen 31

Further work

• Drawing general conclusions on modelling and proving such
systems

• Seeing what can be done with model checking

– What are useful abstractions?

– Finding a sequence forming a complete transfer

– Checking candidate invariant clauses for falsity!

• Can we improve the automation?

Chris George and Anne Haxthausen 32

