
Verified Software Grand Challenge 01

Verified Software

Grand Challenge

Jim Woodcock

University of York

April 2006



Verified Software Grand Challenge 02

Introduction

• industrial software usually has extensive documentation

• …but software behaviour is often a complete surprise!

• programing is hard

– reduce a problem to a set of rules that can be blindly

followed by a computer

• components interact and interfere

• undesirable properties emerge

• systems fail to satisfy their users’ needs



Verified Software Grand Challenge 03

Software is inherently hard to develop

• it’s hard to define requirements, to anticipate interactions, to

accommodate new functionality

• documentation involves large amounts of text, pictures, and

diagrams, but these are often imprecise and ambiguous

• important information often hidden by irrelevant detail

• design mistakes are often discovered too late, making them

expensive or even impossible to correct

it’s a tribute to the skill of software engineers that systems

work at all



Verified Software Grand Challenge 04

A modern fairy-tale

• W : your least favourite, but essential, software application

• the good fairy offers you the choice between correcting the

bugs in W or cleaning up its architecture

• clean architecture

– sound mental model makes it easier to use

• architecture is made more evident by components and their

interfaces being clearly documented

• supports maintenance, reuse, and evolution

• it’s not just about correctness

Cliff Jones



Verified Software Grand Challenge 05

Another way?

some practitioners in industry and researchers from

universities believe it’s now practical to use formal

methods to produce software, even non-critical software

• and that this will turn out to be the cheapest way to do it

• given the right computer-based tools, the use of formal

methods could become widespread and transform the

practice of software engineering

• the computer science community recently committed itself to

making this a reality within the next fifteen to twenty years



Verified Software Grand Challenge 06

Vision 15 years out

• software versus industry’s other products

– software generally sold without meaningful warranty

– but the CD has a guarantee!

• implied warranty of fitness for purpose

• could we ever expect software to come with such warranties?

• in our vision of the future, we would expect exactly that



Verified Software Grand Challenge 07

Maturity of theoretical computer science

• 70 years of academic research in software

– fundamental results in theoretical computer science

– exploited in theories of software development

– studied as formal methods of software engineering

• scientific theories explain and predict

– formal methods explain software, both to the user and to

the developer

∗ they produce precise documentation, structured and

presented at an appropriate level of abstraction

– formal methods also predict behaviour of software, by

being amenable to mathematical analysis



Verified Software Grand Challenge 08

Maturity of formal methods

• routinely taught

• google formal methods education

– repositories, virtual library, surveys of hundreds of

different courses with on-line resources

– key texts freely downloadable

• wide range of industrial examples

• used with particular success in safety-critical applications



Verified Software Grand Challenge 09

But why now?

• new wave of research

• using logic behind the scenes in program analysis and model
checking tools

• Microsoft: world’s biggest software developer

– Windows used by most computer users

– infamous for frequent crashes

– caused by faulty device drivers

– static driver verifier checks drivers for conformance

– success comes from very restricted domain

– if a driver fails the SDV test, then it might contain a bug

• nothing so practical as a good theory

• SDV has sophisticated theory, hidden from user



Verified Software Grand Challenge 10

A concerted push

• considerable experience in successful use of formal methods

• new wave of tools shielding users from technical subtlety

• significant advances in proof technology

– SAT solvers and combined decision procedures

• time is right for a concerted push at software verification

• considerable activity is already under way

• but it is not (yet) concerted



Verified Software Grand Challenge 11

Golden Gates?

Things like even software verification, this has been the

Holy Grail of computer science for many decades but now in

some very key areas, for example, driver verification we’re

building tools that can do actual proof about the software

and how it works in order to guarantee the reliability.

Bill Gates

Keynote address

WinHec 2002



Verified Software Grand Challenge 12

Ode to Joy?

I have a few more things I want to do.

I still think the tools we have for building reliable software

are inadequate.

Bill Joy



Verified Software Grand Challenge 13

Showstopper?

Without major breakthroughs, verification will be a

non-scalable, show-stopping barrier to further progress in

the semiconductor industry.

2005 ITRS Roadmap



Verified Software Grand Challenge 14

A grand challenge

• Tony Hoare

automatically verified software:

a grand scientific challenge for computing

• NSF-funded meetings in the US

• EPSRC-funded meetings in the UK

• Zürich conference vstte.inf.ethz.ch

• FACJ article, 2006

• IEEE Computer article, April 2006

• research roadmap qpq.csl.sri.com



Verified Software Grand Challenge 15

Ancient history (Jones)

• 1947–49

– Goldstine/von Neumann and Turing: Assertional hand
proofs of program correctness

• 1961–63

– McCarthy: A Basis for a Mathematical Theory of
Computation

• 1966/67

– Floyd and Naur: flowcharts + assertions for partial and
total correctness

• 1969

– Hoare: axiomatic basis for computer programming

– King: a program verifier



Verified Software Grand Challenge 16

Modern history

• 1970s

– predicate transformer semantics, LCF/ML, Boyer-Moore
prover, VDM, abstract interpretation, algebraic data
types, temporal logic, combination decision procedures

• 1980s

– model checking, hardware verification, HOL, Nuprl, Coq,
Isabelle, EHDM, UNITY, TLA, I/O automata, Z notation,
OBJ3, KIDS

• 1990s

– symbolic model checking, timed/hybrid model checking,
predicate abstraction, bounded model checking, B Method,
proof carrying code, typed assembly language

– Intel FDIV bug and aborted Ariane-5 launch



Verified Software Grand Challenge 17

Current affairs

• industrial use of hardware verification (AMD, Intel, Synopsys,
Cadence, Mentor Graphics)

• Microsoft: SLAM project for device driver verification (uses
theorem proving, predicate abstraction, and model checking)

• large-scale program analysis: A380, Ariane-5,
Linux/OpenBSD kernel

• experimental tools (SAT/SMT solvers, model checkers,
static/dynamic analyzers, proof checkers) with competitions,
intermediate formats, API standardization

• large-scale verification systems/projects (Spark/ADA,
ESC/Java, Spec#, Verisoft, LOOP, JML, KeY, Krakatoa)

• applications: hardware, security, cryptographic protocols,
communication protocols, AI planning



Verified Software Grand Challenge 18

Hoare’s Verification Grand Challenge

A mature scientific discipline should set its own agenda

and pursue ideals of purity, generality, and accuracy far

beyond current needs

• science explains why things work in full generality by means
of calculation and experiment

• an engineering discipline exploits scientific principles in the
study of the specification, design, construction, and
production of working artifacts, and improvements to both
process and design

• the verification challenge is to achieve a significant body of
verified programs that have precise external specifications,
complete internal specifications, machine-checked proofs of
correctness with respect to a sound theory of programming



Verified Software Grand Challenge 19

Deliverables

1. a comprehensive theory of programming

• covering the features needed to build practical and

reliable programs

2. a coherent toolset

• automating the theory and scaling up to large codes

3. a collection of verified programs

• replacing existing unverified ones

• continuing to evolve as verified code

You can’t say any more it can’t be done!

Here, we’ve done it!



Verified Software Grand Challenge 20

Hoare and Misra’s Timetable

• long-term goal

– ensure science and practice converge

– employ and teach principles of specification, design,
architecture, language, and semantics

• 20 years

– well-developed theory, comprehensive and powerful suite
of tools, compelling body of experimental evidence

∗ reliable software can be engineered using formal
verification techniques

• 5years

– foundations laid for work ahead through development of
mature tools and standards

verified software ≠ verifying the code



Verified Software Grand Challenge 21

First step: research roadmap

roadmap should set out long-term co-ordinated programme

of incremental research

1. accelerated scaling of the performance, robustness, and

functionality of basic verification technology

2. integration and embedding of this technology in program

development and verification methodologies and

environments, and in teaching

3. pilot projects to evaluate feasibility and guide technology

development

4. large-scale experiments that benchmark the technology



Verified Software Grand Challenge 22

The roadmap isn’t…

• a pipe dream

– roadmap challenges are concrete, realistic, measurable,

verifiable

• a funding proposal

– although there may eventually be funded research

programmes to realise some of the goals

• a needless diversion

– co-ordinate existing research to further roadmap goals

• a jingoistic exercise in chest-beating

– international co-operation needed to draft roadmap

– much more needed to realise goals



Verified Software Grand Challenge 23

Roadmap panels

• chair: Shankar (SRI)

• correct-by-construction: Leavens (Iowa)

• integrated verification environments: Leino (Microsoft)

• theory: Naumann (Stevens)

• system reliability/certification: Rushby (SRI)

• interoperable tools/integrated verification environments:

Shankar/Leino

• verified software repository: Woodcock (York)

• pilot projects: Joshi (JPL)



Verified Software Grand Challenge 24

Goals of the Repository

1. To accelerate the development of verification technology

through the development of better tools, greater

interoperability, and realistic benchmarks.

2. To provide a focus for the verification community to ensure

that the research results are relevant, replicable,

complementary, and cumulative, and promote meaningful

collaboration between complementary techniques.

3. To provide open access to the latest results and educational

material in areas relevant to verification research.

4. To collect a significant body of verified code (specification,

derivation, proofs, implementation) that addresses

challenging applications.



Verified Software Grand Challenge 25

Goals of the Repository

5. Identify key metrics for evaluating the scale, efficiency, depth,

amortization, and reusability of the technology.

6. Enumerate challenge problems and areas for verification,

preferably ones that require multiple techniques.

7. Identifying (and eventually standardising) formats for

representing and exchanging specifications, programs, test

cases, proofs, and benchmarks, to support tool

interoperability and comparison.

8. Defining quality standards for the contents of the repository.



Verified Software Grand Challenge 26

Content

1. tools

• integrated verification environments: Spec#, ESC/Java2.

• language front-ends

• static analyzers

• test case generators

• theorem provers

• model checkers

• graphical user interfaces

• program synthesisers

• integrated builds

2. benchmarks



Verified Software Grand Challenge 27

3. case studies

• Mondex case study

• electronic voting

4. interoperability

• interchange formats, mappings between models, logics, glue

• models: state machines, automata, timed automata, hybrid

automata, abstractions

• language syntax and semantics: logics, specification

languages, programming languages

• representations of proofs, test cases, counterexamples

5. verified libraries: STL, openSSL, core Java, Bouncy Castle,

openPGP, glibc, GMP

6. educational resources tutorials, lecture notes



Verified Software Grand Challenge 28

7. search capabilities: ontologies, keywords

8. challenge problems: file synchronization, file system, web

server, kernel, TCP/IP, SSL, compression, theorem prover

kernel, cache consistency, separation kernel, compilers,

virtual machines, build tools, fault-tolerant architectures,

model reduction for hybrid systems, aspect extraction,

scale/parametricity

9. generic properties: Absence of runtime errors, data

consistency, timing behavior, accuracy, type correctness,

termination, translation validation, serializability, memory

leaks, information hiding, representation independence,

information flow



Verified Software Grand Challenge 29

The Mondex case study

• smart card for electronic financial transactions

• Natwest, Platform7, Logica, Oxford (1996)

• first product certified to ITSEC Level E6

• very large project, small formal methods component

• security policy, specification, refinement, hand-written proofs

• completed within time and budget

• cost effective mechanical proof beyond state of the art

• sanitised documentation publicly available



Verified Software Grand Challenge 30

Current Mondex project

• Alloy (Jackson), B (Butler), OCL (Gogolla), PerfectDeveloper

(Escher), Raise (George/Hasthausen), VDM (Jones), Z (King)

• one-year, no funding

• how far can we automate the proof?

• group building exercise

• friendly competition

• CASL-like ambitions

• warranted verifier

• meanwhile…

– Schellhorn (Augsburg): KIV + ASM



Verified Software Grand Challenge 31

Warranted verifier

• clear and clearly fundamental target

• highest level of ambition

• warranted by its designers to be incapable of letting a class of

errors occur in any system created with the use of the tool

• deliberately ambitious but achievable within 10–15 years

• take our own medicine

• force designers to scale up and have usability as an explicit

design goal



Verified Software Grand Challenge 32

Planning and Road Map

• Years 1 to 5 Benchmarking, static analysis, and

specifications. Individual tool development with opportunistic

integration. Small properties of big systems and big

properties of small system. Logics for heaps, security,

resources, modularity, weak memory models. Multiple code

views. Engagement with early adopters.

– Year 1 One paradigmatic example of code from specs,

assertions from code, assertions from test, verification

condition generation, and theorem proving.

– Initial case studies.

– User community.



Verified Software Grand Challenge 33

Planning and Road Map

• Years 5 to 10 Integrated tool development,

medium-scale/medium-degree verification, loosely coupled to

tightly coupled integration, workflows involving multiple

tools. Engagement with industry.

• Years 10 to 15 Large-scale applications, tool validation,

embedded verification, novel models of programming.

Developing a broad user base.



Verified Software Grand Challenge 34

Pilot projects: key characteristics

1. complex

• should be challenging: concurrent, fault-tolerant, secure

2. simple

• should be completed in less than two years

3. important

• should have an impact beyond the community

4. accessible

• should have freely available code and models

5. interesting

• should be amenable to different approaches



Verified Software Grand Challenge 35

Some possibilities

• high-impact systems

– safety and mission-critical systems

– financial systems

– electronic voting

• complex, simple, important, interesting

• but difficulties with accessibility



Verified Software Grand Challenge 36

Some better possibilities

• verifying compiler

– but what target? what impact?

• small operating system

– real time for embedded devices?

• key operating system component

– filesystem? resource management?



Verified Software Grand Challenge 37

A verifiable filesystem

1. complex

• reliability (concurrent users, power failures)

2. simple

• manageable — less effort than a kernel

3. important

• almost all data managed by filesystems

4. accessible

• clean, well defined interface (POSIX compliant)

• well-understood data structures and algorithms

• open source filesystems

5. interesting

• C×C versus post hoc, multi-faceted



Verified Software Grand Challenge 38

Directions and challenges

• build a verifiable filesystem

• build appropriate models

• check with automated verification tools



Verified Software Grand Challenge 39

Specification

• formal behavioural specification of functionality

• POSIX standard

– informal prose, ambiguous and incomplete

• formalise key parts of POSIX

• useful starting points

– Unix/Z, Synergy/ACL2



Verified Software Grand Challenge 40

Underlying hardware

• filesystem properties include robustness wrt power failure

• formal proof requires assumptions about hardware behaviour

– hard drives, flash memory, …

• must identify and state assumptions

• different hardware, different relaibility guarantees



Verified Software Grand Challenge 41

Data structures and algorithms

• typical filesystem data structures

– hash tables, linked lists, search trees

• identify design properties

– datatype invariants

– locking structures

– pre/postconditions

• libraries of reusable formally documented components



Verified Software Grand Challenge 42

Reliable flash filesystem for flight software

• NASA/JPL Laboratory for Reliable Software

• exploit automated verification tools

• pilot project for future missions

• flash memory: no moving parts, low power, easily available

• filesystem nontrivial

– performance

– concurrency, power failure

– arbitrary flips, bad blocks

– cache and write buffer consistency

– mission requirements



Verified Software Grand Challenge 43

Other pilot projects

• sqlite: open-source database

• Liberouter: open-source router hardware

• open extensible language framework

• MINIX3

• Click router



Verified Software Grand Challenge 44

Finally

come and join us


