
Technical Report

RAL-TR-2006-013

Council for the Central Laboratory of the Research Councils

October 2006, revised March 2007 and November 2007

J. K. Reid and J. A. Scott

An out-of-core sparse Cholesky solver

c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should be addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory

Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the use of

information contained in any of their reports or in any communication about their tests or investigations.

An out-of-core sparse Cholesky solver 1,2

by

J. K. Reid and J. A. Scott

Abstract

Direct methods for solving large sparse linear systems of equations are popular because of their generality

and robustness. Their main weakness is that the memory they require usually increases rapidly with

problem size. We discuss the design and development of the first release of a new symmetric direct

solver that aims to circumvent this limitation by allowing the system matrix, intermediate data, and

the matrix factors to be stored externally. The code, which is written in Fortran and called HSL MA77,

implements a multifrontal algorithm. The first release is for positive-definite systems and performs a

Cholesky factorization. Special attention is paid to the use of efficient dense linear algebra kernel codes

that handle the full-matrix operations on the frontal matrix and to the input/output operations. The

input/output operations are performed using a separate package that provides a virtual-memory system

and allows the data to be spread over many files; for very large problems these may be held on more than

one device.

Numerical results are presented for a collection of 30 large real-world problems, all of which were solved

successfully.

Keywords: Cholesky, sparse symmetric linear systems, out-of-core solver, multifrontal.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 The work of the second author was supported by the EPSRC grant GR/S42170.

Computational Science and Engineering Department,

Atlas Centre, Rutherford Appleton Laboratory,

Oxon OX11 0QX, England.

December 11, 2007.

Contents

1 Introduction 1

2 Overview of the multifrontal method 2

2.1 The multifrontal method for element problems . 2

2.2 The multifrontal method for non-element problems . 3

2.3 Partial factorization at a node . 4

2.4 The pivot order . 4

2.5 Multifrontal data structures . 4

3 Structure of the new solver 5

3.1 Overview of the structure of HSL MA77 . 5

3.2 Language . 6

3.3 The files used by HSL MA77 . 6

3.4 The user interface . 7

4 Virtual memory management 8

4.1 The virtual memory package HSL OF01 . 8

4.2 Option for in-core working within HSL MA77 . 9

5 Kernel code for handling full-matrix operations 9

6 Data input and the analysis phase 10

6.1 Supervariables . 10

6.2 Constructing the tree . 11

6.3 Node amalgamation . 12

6.4 The assembly order of child nodes . 12

7 The factorization phase 14

8 The solve phase 14

9 Numerical experiments 17

9.1 Choice of block size and HSL MA54 versus LAPACK . 18

9.2 The effects of node amalgamation . 19

9.3 Assessing the impact of the Guermouche-L’Excellent algorithm in our context 19

9.4 Times for each phase . 20

9.5 Comparisons with in-core working and with MA57 . 22

10 Future developments and concluding remarks 24

11 Acknowledgements 25

i

1 Introduction

Direct methods for solving large sparse linear systems of equations are widely used because of their

generality and robustness. Indeed, as the recent study of state-of-the-art direct symmetric solvers by

Gould, Hu and Scott (2005) has demonstrated, the main reason for failure is a lack of memory. As the

requirements of computational scientists for more accurate models increases, so inevitably do the sizes of

the systems that must be solved and thus the memory needed by direct solvers.

The amount of main memory available on computers has increased enormously in recent years and this

has allowed direct solvers to be used to solve many more problems than was previously possible using only

main memory. However, the memory required by direct solvers generally increases much more rapidly

than the problem size so that they can quickly run out of memory, particularly when the linear systems

arise from discretizations of three-dimensional problems. One solution has been to use parallel computing,

for example, by using the package MUMPS (2007). For many users, the option of using such a computer

is either not available or is too expensive. An obvious alternative is to use an iterative method in place

of a direct one. A carefully chosen and tuned preconditioned iterative method will often run significantly

faster than a direct solver and will require far less memory. However, for many of the “tough” systems that

arise from practical applications, the difficulties involved in finding and computing a good preconditioner

can make iterative methods infeasible. An alternative is to use a direct solver that is able to hold its data

structures on disk, that is, an out-of-core solver.

The idea of out-of-core linear solvers is not new. Indeed, the first-named author wrote an out-of-

core multifrontal solver for finite-element systems more than twenty years ago (Reid, 1984) and the

mathematical software library HSL (2007) has included out-of-core frontal solvers since about that time.

The HSL package MA42 of Duff and Scott (1996) is particularly widely used, both by academics and as

the linear solver within a number of commercial packages. The Boeing library BCSLIB-EXT (2003) also

includes multifrontal solvers with out-of-core facilities. More recently, a number of researchers, including

Dobrian and Pothen (2003), Rothberg and Schreiber (1999), and Rotkin and Toledo (2004) have proposed

out-of-core sparse symmetric solvers.

In this article, we discuss the design and development of the first release of a new HSL sparse symmetric

out-of-core solver. The system matrix A, intermediate data, and the factors may be stored externally.

The code, which is written in Fortran and called HSL MA77, implements a multifrontal algorithm. The first

release is for positive-definite systems and performs a Cholesky factorization. The second release will have

an option that incorporates numerical pivoting using 1×1 and 2×2 pivots, which will extend the package

to indefinite problems.

An alternative to the multifrontal algorithm is a left-looking strategy, where the column updates are

delayed until the column is about to be eliminated. During the factorization, less data needs to be stored,

but it has to be read many times. Our decision to use the multifrontal algorithm is based on our having

extensive experience with this method and on not having seen evidence for its being consistently inferior.

This paper describes the design of HSL MA77, explaining many of the design decisions and highlighting

key features of the package. Section 2 provides a brief overview of the multifrontal method. In Section 3, we

describe the structure of the new solver and, in particular, we explain the user interface. To minimise the

storage needed for the system matrix A, a reverse communication interface is used. We note that designing

a user-friendly interface while still offering a range options has been an important part of the development

of HSL MA77. A notable feature of our package is that all input and output to disk is performed through

a set of Fortran subroutines that manage a virtual memory system so that actual input/output occurs

only when really necessary. This system is described elsewhere (Reid and Scott, 2006), but we include

a brief overview in Section 4. Another key feature of HSL MA77 is its use of efficient dense linear algebra

kernels, which is discussed in Section 5. In Sections 6-8 we describe the different phases of the solver and,

in particular, we look at the computation of supervariables and the construction of the assembly tree,

node amalgamation and the assembly order of the child nodes. Numerical experiments are reported on

in Section 9. These justify our choices of default settings for our control parameters and illustrate the

1

performance of HSL MA77; we also compare its performance with the well-known HSL solver MA57 (Duff,

2004) on problems arising from a range of application areas. Finally, we look at future developments and

make some concluding remarks.

We note that the name HSL MA77 follows the HSL naming convention that routines written in Fortran

95 have the prefix HSL (which distinguishes them from the Fortran 77 codes).

2 Overview of the multifrontal method

HSL MA77 implements an out-of-core multifrontal algorithm. The multifrontal method, which was first

implemented by Duff and Reid (1982, 1983), is a variant of sparse Gaussian elimination. When A is

positive definite, it involves a factorization

A = (PL)(PL)T , (2.1)

where P is a permutation matrix and the factor L is a lower triangular matrix with positive diagonal

entries. Solving the linear system

AX = B

is completed by performing forward substitution

PLY = B, (2.2)

followed by back substitution

(PL)T X = Y. (2.3)

If the right-hand side B is available when the factorization (2.1) is calculated, the forward substitution

(2.2) may be performed at the same time, saving input/output operations when the factor is held out of

core.

2.1 The multifrontal method for element problems

The multifrontal method is a generalisation of the frontal method of Irons (1970). The frontal method

was originally designed for finite-element problems. Here, A = {aij} is the sum of element matrices

A =

m
∑

k=1

A(k), (2.4)

where each element matrix A(k) has nonzeros in a small number of rows and columns and corresponds to

the matrix from element k. The key idea behind frontal methods is to interleave assembly and elimination

operations. As soon as pivot column p is fully summed, that is, involved in no more sums of the form

aij ← aij + a
(k)
ij , (2.5)

the corresponding column of the Cholesky factor may be calculated:

lpp ← √app, lip ← aip/lpp, i > p,

and the basic Gaussian elimination operation

aij ← aij − lipljp (2.6)

may be performed despite not all assembly operations (2.5) being complete for these entries. It is therefore

possible to intermix the assembly and elimination operations.

2

Clearly, the rows and columns of any variables that are involved in only one element are fully summed

before the element is assembled. These variables are called fully summed, too, and can be eliminated

before the element is assembled, that is, the operations (2.6) can be applied to the entries of the element

itself:

a
(k)
ij ← a

(k)
ij − lipljp.

This is called static condensation. The concept of static condensation can be extended to a submatrix

that is the sum of a number of element matrices and this is the basis of the multifrontal method.

Assume that a pivot order (that is, an order in which the eliminations are to be performed) has been

chosen. For each pivot in turn, the multifrontal method first assembles all the elements that contain the

pivot. This involves merging the index lists for these elements (that is, the lists of rows and columns

involved) into a new list, setting up a full matrix (called the frontal matrix) of order the size of the new

list, and then adding the elements into this frontal matrix. Static condensation is performed on the frontal

matrix (that is, the pivot and any other fully-summed variables are eliminated). The computed columns

of the matrix factor L are stored and the reduced matrix is treated as a new element, called a generated

element (the term contribution block is also used in the literature). The generated element is added to

the set of unassembled elements and the next uneliminated pivot then considered. The basic algorithm is

summarized in Figure 2.1.

Basic Multifrontal Factorization

do for each pivot in the given pivot sequence

if the pivot has not yet been eliminated

assemble all unassembled elements and generated elements that contain

the pivot into a frontal matrix;

perform static condensation;

add the generated element to the set of elements

end if

end do

Figure 2.1: Basic multifrontal factorization

The assemblies can be recorded as a tree, called an assembly tree. Each leaf node represents an original

element and each non-leaf node represents a set of eliminations and the corresponding generated element.

The children of a non-leaf node represent the elements and generated elements that contain the pivot. If

A is irreducible there will be a single root node, that is, a node with no parent. Otherwise, there will be

one root for each independent subtree.

The partial factorization of the frontal matrix at a node v in the tree can be performed once the partial

factorizations at all the nodes belonging to the subtree rooted at v are complete. If the nodes of the tree

are ordered using a depth-first search, the generated elements required at each stage are the most recently

generated ones of those so far unused. This makes it convenient to use a stack for temporary storage

during the factorization. This, of course, alters the pivot sequence, but the arithmetic is identical apart

from the round-off effects of reordering the assemblies and the knock-on effects of this.

2.2 The multifrontal method for non-element problems

Duff (1984) extended the multifrontal method to non-element problems (and assembled element problems).

In this case, we can regard row i of A as a packed representation of a 1× 1 element (the diagonal aii) and

a set of 2× 2 elements of the form

A(ij) =

(

0 aij

aij 0

)

,

where aij is nonzero.

3

When i is chosen as pivot, the 1 × 1 element plus the subset of 2 × 2 elements A(ij) for which j has

not yet been selected as a pivot must be assembled. Since they are all needed at the same time, a single

leaf node can be used to represent them. To allow freedom to alter the pivot sequence, we hold the whole

row. The non-leaf nodes represent generated elements, as before.

2.3 Partial factorization at a node

We now briefly consider the work associated with the static condensation that is performed at an individual

node of the assembly tree. Static condensation performs a partial factorization of the frontal matrix. The

frontal matrix is a dense matrix that may be expressed in the form

(

F11 F T
21

F21 F22

)

,

where the fully-summed variables correspond to the rows and columns of F11. The operations can be

blocked as the Cholesky factorization

F11 = L11L
T
11,

the update operation

L21 = F21L
−T
11 ,

and the calculation of the generated element

S22 = F22 − L21L
T
21.

2.4 The pivot order

The performance of the multifrontal method is highly dependent upon the pivot sequence. During the past

20 years or so, considerable research has gone into the development of algorithms that generate good pivot

sequences. The original HSL multifrontal code MA27 of Duff and Reid (1983) used the minimum degree

ordering of Tinney and Walker (1967). Minimum degree and variants including approximate minimum

degree (Amestoy, Davis and Duff, 1996, 2004) and multiple minimum degree (Liu, 1985), have been found

to perform well on many small and medium-sized problems (typically, those of order less than 50,000).

However, nested dissection has been found to work better for very large problems, including those from

3D discretizations (see, for example, the results presented by Gould and Scott, 2004). Many direct solvers

now offer users a choice of orderings including either their own implementation of nested dissection or,

more commonly, an explicit interface to the generalized multilevel nested-dissection routine METIS NodeND

from the METIS graph partitioning package of Karypis and Kumar, (1998, 1999).

2.5 Multifrontal data structures

The multifrontal method needs data structures for the original matrix A, the frontal matrix, the stack

of generated elements, and the matrix factor. An out-of-core method writes the columns of the factor to

disk as they are computed. If the stack and frontal matrix are held in main memory and only the factors

written to disk, the method performs the minimum possible input/output for an out-of-core method: it

writes the factor data to disk once and reads it once during back substitution or twice when solving for

further right-hand sides (once for the forward substitution and once for the back substitution). However,

for very large problems, it may be necessary to hold further data on disk. We hold the stack and the

original matrix data on disk, but have a system for virtual memory management (see Section 4) that

avoids much of the actual input/output.

4

3 Structure of the new solver

Having outlined the multifrontal method, in this section we discuss the overall structure of our multifrontal

solver HSL MA77.

3.1 Overview of the structure of HSL MA77

HSL MA77 is designed to solve one or more sets of sparse symmetric equations AX = B. A may be input

in either of the following ways:

(i) by square symmetric elements, such as in a finite-element calculation, or

(ii) by rows.

In each case, the coefficient matrix is of the form (2.4). In (i), the summation is over elements and A(k)

is nonzero only in those rows and columns that correspond to variables in the kth element. In (ii), the

summation is over rows and A(k) is nonzero only in row k. An important initial design decision was that

the HSL MA77 user interface should be through reverse communication, with control being returned to the

calling program for each element or row. This is explained further in Section 3.4. Reverse communication

keeps the memory requirements for the initial matrix to a minimum and gives the user maximum freedom

as to how the original matrix data is held; if convenient, the user may choose to generate the elements or

rows without ever holding the whole matrix. There is no required input ordering for the elements or rows.

In the future, a simple interface that avoids reverse communication will be offered.

We have chosen to require the right-hand sides B to be supplied in full format, that is, B must be

held in an n × nrhs array, where nrhs is the number of right-hand sides. The solution X is returned in

the same array, again in full format. This is convenient for the user with a non-element (or an assembled

element) problem and the user who needs to perform some calculation on the solution and call the code

again, such as for iterative refinement or an eigenvalue problem. During forward and back substitution, it

is clearly advantageous to hold the right-hand sides in memory.

Another key design decision was that the package would not include options for choosing the pivot

order. Instead, a pivot order must be supplied by the user. This is because research in this area is still

active and no single algorithm produces the best pivot sequence for all problems. By not incorporating

ordering into the package, the user can use whatever approach works well for his or her problem. A number

of stand-alone packages already exist that can be used. For example, the code METIS NodeND can be used

to compute a nested dissection ordering while the HSL package HSL MC68 offers efficient implementations of

the minimum degree algorithm (Tinney and Walker 1967) and the approximate minimum degree algorithm

(Amestoy et al. 1996), (Amestoy et al. 2004). As far as we are aware, no satisfactory ordering code that

holds the matrix pattern out of core is currently available; instead, the pattern plus some additional integer

arrays of size related to the order and density of A must be held in main memory.

Given the pivot sequence, the multifrontal method can be split into these phases:

• An analyse phase that uses the the pivot sequence and the index lists for the elements or rows to

construct the assembly tree. It also calculates the work and storage required for the subsequent

numerical factorization.

• A factorize phase that uses the assembly tree to factorize the matrix and (optionally) solve systems

of equations.

• A solve phase that performs forward substitution followed by back substitution using the stored

matrix factors.

The HSL MA77 package has separate routines for each of these phases; this is discussed further in Section 3.4.

5

3.2 Language

HSL MA77 is written in Fortran 95. We have adhered to the Fortran 95 standard except that we use

allocatable structure components and dummy arguments. These are part of the official extension that

is defined by Technical Report TR 15581(E) ISO/IEC (2001) and is included in Fortran 2003. It allows

arrays to be of dynamic size without the computing overheads and memory-leakage dangers of pointers.

Addressing is less efficient in code that implements pointer arrays since it has to allow for the possibility

that the array is associated with a array section, such as a(i,:), that is not a contiguous part of its

parent. Furthermore, optimization of a loop that involves a pointer may be inhibited by the possibility

that its target is also accessed in another way in the loop.

To allow the package to solve very large problems, we selectively make use of long (64-bit) integers,

declared in Fortran 95 with the syntax selected int kind(18) and supported by all the Fortran 95

compilers to which we have access. These long integers are used for addresses within files and for operation

counts. We assume that the order of A is less than 231, so that long integers are not needed for its row

and column indices.

We make extensive use of recursion, which was not available in Fortran 77. In a serial implementation

of a multifrontal algorithm, recursion is a convenient and efficient way to visit the nodes of the assembly

tree. When called for a node of the tree, the factorize subroutine calls itself for each of the node’s children,

assembles their elements (original or generated), and performs the partial factorization of the resulting

frontal matrix. A direct call for the root node performs a complete factorization. This is illustrated in

Section 7.

3.3 The files used by HSL MA77

HSL MA77 allows the matrix factor and the multifrontal stack, as well as the original matrix data, to be

held out-of-core, in direct-access files. In this section, we discuss the files that are used by HSL MA77. It

accesses these through the package HSL OF01 (Reid and Scott, 2006), which is briefly described in Section

4 and includes the facility of grouping a set of files into a superfile that is treated as an entity.

We use three superfiles: one holds integer information, one holds real information, and one provides

real workspace. We refer to these as the main integer, main real, and main work superfiles, respectively.

The main real superfile holds the reals of the original rows or elements of A followed by the columns

of the factor L, which are in the order that they were calculated. The main integer superfile is used to

hold corresponding integer information. If input is by rows, for each row we store the list of indices of the

variables that correspond to the nonzero entries. If input is by elements, for each element we store the list

of indices of its variables.

Duplicated and/or out-of-range entries are allowed in a row or element index list. We flag this case

and store the list of indices left after the duplicates and/or out-of-range entries have been squeezed out,

the number of entries in the original user-supplied index list, and a mapping from the original list into the

compressed list.

During the analyse phase, for each non-leaf node of the tree we store the list of original indices of the

variables in the front. At the end of the analyse phase, these lists are rewritten in the elimination order

that this phase has chosen. This facilitates the merging of generated elements during factorization (see

Section 7). Note that the variables at the start of the list are those that are eliminated at the node. If

input is by elements, we also rewrite the lists for the elements in the new order, but add the mapping

from the user’s order. This allows the user to provide the reals for each element without performing a

reordering; instead HSL MA77 reorders the element so that when it is later merged with other elements and

with generated elements it does not have to be treated specially.

The principal role of the main workspace superfile is to hold the stack of intermediate results that

are generated during the depth-first search. As the computation proceeds, the space required to hold the

factors always grows but the space required to hold the stack varies.

6

3.4 The user interface

The following procedures are available to the user:

• MA77 open must be called once for a problem to initialize the data structures and open the superfiles.

• MA77 input vars must be called once for each element or row to specify the variables associated

with it. The index lists are written to the main integer superfile.

• MA77 analyse must be called after all calls to MA77 input vars are complete. A pivot order must

be supplied by the user. MA77 analyse constructs the assembly tree. The index lists for each node

of the tree are written to the main integer superfile.

• MA77 input reals must be called for each element or row to specify the entries. The index list must

have already been specified by a call of MA77 input vars. For element entry, the lower triangular

part of the element matrix must be input by columns in packed form. For row entry, the user must

input all the nonzeros in the row (upper and lower triangular entries). For large problems, the data

may be provided in more than one adjacent call. The data is written to the main real superfile. If

data is entered for an element or row that has already been entered, the original data is overwritten.

• MA77 factor: may be called after all the calls to MA77 input reals are complete and after the call

to MA77 analyse. The matrix A is factorized using the assembly tree constructed by MA77 analyse

and the factor entries are written to the main real superfile as they are generated. It may be called

afresh after one or more calls of MA77 input reals have specified changed real values.

• MA77 factor solve: may be called in place of MA77 factor if the user wishes to solve the system

AX = B at the same time as the matrix A is factorized.

• MA77 solve uses the computed factors generated by MA77 factor for solving the system AX = B.

Options exist to perform only forward substitution or only back substitution.

• MA77 resid computes the residual R = B −AX .

• MA77 finalise should be called after all other calls are complete for a problem. It deallocates the

components of the derived data types and closes the superfiles associated with the problem. It has

an option for storing all the in-core data for the problem to allow the calculation to be restarted

later.

• MA77 restart restarts the calculation. Its main use is to solve further systems using a calculated

factorization, but it also allows the reuse of analysis data for factorizing a matrix of the same structure

but different real values.

• MA77 enquire posdef may be called after a successful factorization to obtain the pivots used.

Derived types are used to pass data between the different routines within the package. In particular,

MA77 control has components that control the action within the package and MA77 info has components

that return information from subroutine calls. The control components are given default values when a

variable of type MA77 control is declared and may be altered thereafter for detailed control over printing,

virtual memory management (Section 4), node amalgamation (Section 6.3), and the block size for full-

matrix operations on the frontal matrix (Section 5). The information available to the user includes a

flag to indicate error conditions, the determinant (its sign and the logarithm of its absolute value), the

maximum front size, the number of entries in the factor L, and the number of floating-point operations.

Full details of the user interface and the derived types are provided in the user documentation.

7

4 Virtual memory management

A key part of the design of HSL MA77 is that all input and output to disk is performed through a set of

Fortran subroutines that manage a virtual memory system so that actual input/output occurs only when

really necessary. This set of subroutines is available within HSL as the Fortran 95 package HSL OF01 (Reid

and Scott, 2006). Handling input/output through a separate package was actually part of the original

out-of-core solver of Reid (1984) and our approach is a refinement of that used by the earlier code.

Fortran 95 offers two forms of file access: sequential and direct. We have chosen not to use sequential

access because the data of the original matrix needs to be accessed non-sequentially and other data has

to be accessed backwards as well as forwards and our experience has been that backwards access is slow.

We use direct access, but it has the disadvantage that each file has fixed-length records. We need to be

able to read and write different amounts of data at each stage of the computation and thus, to enable the

use of direct-access files, we need to buffer the data. This is done for us by HSL OF01. Fortran 2003 offers

a third form of file access: stream. At the time of writing, no compilers fully support Fortran 2003, but

the Nag compiler supports stream access, so we have tried this but found that the factorization time is

always increased and, in one example, we observed an increase of 55%. As a result, we do not currently

plan to use stream access. More details and numerical results are given in Reid and Scott, 2006.

4.1 The virtual memory package HSL OF01

HSL OF01 provides facilities for reading from and writing to direct-access files. There is a version for

reading and writing real data and a separate version for integer data. Each version has its own buffer

which is used to avoid actual input/output operations whenever possible. One buffer may be associated

with more than one direct-access file. We take advantage of this within HSL MA77 to enable the available

memory to be dynamically shared between the main real and main work superfiles according to their needs

at each stage of the computation. It would be desirable to have a single buffer (and a single version of the

package) for both the real and the integer data, but this is not possible in standard Fortran 95 without

some copying overheads.

Each HSL OF01 buffer is divided into pages that are all of the same size, which is also the size of each file

record. All actual input/output is performed by transfers of whole pages between the buffer and records of

the file. The size and number of pages are parameters that may be set by the user. Numerical experiments

that we report in Reid and Scott (2006) were used to choose default settings for HSL MA77.

The data in a file are addressed as a virtual array of rank one. Because it may be very large, long

integers (64 bits) are used to address it. Any contiguous section of the virtual array may be read or written

without regard to page boundaries. HSL OF01 does this by first looking for parts of the section that are

in the buffer and performing a direct transfer for these. For any remaining parts, there may have to be

actual input and/or output of pages of the buffer. If room for a new page is needed in the buffer, by

default the page that was least recently accessed is written to its file (if necessary) and is overwritten by

the new page.

A file is often limited in size to less that 232 bytes, so the virtual array may be too large to be

accommodated on a single file. In this case, secondary files are used; a primary file and its secondaries are

referred to as a superfile. The files of a superfile may reside of different devices.

HSL OF01 has an option for ‘inactive’ access, which has the effect that the relevant pages do not stay long

in the buffer unless they contain other data that makes them do so. We use this during the factorization

phase of HSL MA77 when reading the data at the leaf nodes (the original matrix data) because, once read,

it will not be required again during the factorization. It is also used when writing the columns of the

factors since it is known that most of them will not be needed for some time and it is more efficient to use

the buffer for the stack. There is also an option to specify that data read need not be retained thereafter.

If no part of a page in the buffer is required to be retained, the page may be overwritten without writing

its data to an actual file. This is used when reading data from the multifrontal stack since it is known

that it will not be needed again. Further details of these options are included in Reid and Scott (2006).

8

HSL OF01 also offers an option to add a section of the virtual array into an array under the control of

a map. If the optional array argument map is present and the section starts at position loc in the virtual

array, OF01 read behaves as if the virtual array were the array virtual array and the statement

read_array(map(1:k)) = read_array(map(1:k)) + virtual_array(loc:loc+k-1)

were executed. Without this, a temporary array would be needed and the call would behave as if the

statements

temp_array(1:k) = virtual_array(loc:loc+k-1)

read_array(map(1:k)) = read_array(map(1:k)) + temp_array(1:k)

were executed. We use this option in HSL MA77 for the efficient assembly of elements into the frontal

matrix.

4.2 Option for in-core working within HSL MA77

If its buffer is big enough, HSL OF01 will avoid any actual input/output, but there remain the overheads

associated with copying data to and from the buffer. For HSL MA77, this is particularly serious during the

solve phase for a single right-hand side since each datum read during the forward substitution or back

substitution is used only once. We have therefore included within HSL MA77 an option that allows the

superfiles to be replaced by arrays. The user can specify the initial sizes of these arrays and an overall

limit on their total size. If an array is found to be too small, the code attempts to reallocate it with

a larger size. If this breaches the overall limit or if the allocation fails because of insufficient available

memory on the computer being used, the code automatically switches to out-of-core working by writing

the contents of the array to a superfile and then freeing the memory that had been used by the array.

This may result in a combination of superfiles and arrays being used. Note that, because it is desirable

to keep the multifrontal stack in memory, HSL MA77 first switches the main integer data to a file, then the

main real data, and only finally switches the stack to a file if there is still insufficient memory. To ensure

the automatic switch can be made, we always require path and superfile names to be provided on the

call of MA77 open. If a user specifies the total size of the arrays without specifying the initial sizes of the

individual arrays, the code automatically choose suitable sizes.

In some applications, a user may need to factorize a series of matrices of the same size and the same

(or similar) sparsity pattern. We envisage that the user may choose to run the first problem using the

out-of-core facilities and may then want to use the output from that problem to determine whether it

would be possible to solve the remaining problems in-core (that is, using arrays in place of superfiles). On

successful completion of the factorization, HSL MA77 returns the number of integers and reals stored for the

matrix and its factor, and the maximum size of the multifrontal stack. This information can be used to

set the array sizes for subsequent runs. Note, however, that additional in-core memory is required during

the computation for the frontal matrix and other local arrays. If the allocation of the frontal matrix fails

at the start of the factorization phase, the arrays being used in place of superfiles are discarded one-by-one

and a switch to superfiles is made in the hope of achieving a successful allocation.

5 Kernel code for handling full-matrix operations

For the real operations within the frontal matrix and the corresponding forward and back substitution

operations, we rely on a modification of the work of Andersen, Gunnels, Gustavson, Reid and Wasniewski

(2005) for Cholesky factorization of a positive-definite full symmetric matrix. They pack the upper or

lower triangular part of the matrix into a ‘block hybrid’ format that is as economical of storage as packing

by columns but is able to take advantage of Level-3 BLAS (Dongarra, Du Croz, Duff and Hammarling,

1990). It divides the matrix into blocks, all of which are square and of the same size nb (except for the

9

blocks at the bottom which may have fewer rows). Each block is ordered by rows and the blocks are

ordered by block columns.

The factorization is programmed as a sequence of block steps, each of which involves the factorization

of a block on the diagonal, the solution of a triangular set of equations with a block as its right-hand

side, or the multiplication of two blocks. Andersen et al. (2005) have written a special kernel for the

factorization of a block on the diagonal that uses blocks of size 2 to reduce traffic to the registers. The

Level-3 BLAS DTRSM and DGEMM are available for the other two steps. If the memory needed for a block

is comparable with the size of the cache, execution of each of these tasks should be fast. Andersen et al.

(2005) report good speeds on a variety of processors.

We have chosen to work with the lower triangular part of the matrix because this makes it is easy to

separate the pivoted columns that hold part of the factor from the other columns that hold the generated

element. The modification we need for the multifrontal method involves limiting the eliminations to the

fully-summed columns, the first p, say. The partial factorization (see Section 2.3) takes the form

F =

(

F11 F T
21

F21 F22

)

=

(

L11

L21 I

)(

I

S22

)(

LT
11 LT

21

I

)

(5.7)

where L11 is lower triangular and both F11 and L11 have order p. We use the lower blocked hybrid format

for the lower triangular part of both F11 and F22. The rectangular matrix F21 is held as a block matrix

with matching block sizes. During factorization, these matrices are overwritten by the lower triangular

parts of L11 and S22 and by L21. The modified code is collected into the module HSL MA54.

HSL MA77 retains the matrix

(

L11

L21 I

)

in block hybrid format for forward and back substitution

since this is efficient, but it reorders the matrix S22 back to lower packed format for the assembly operations

at the parent node since the block structure at the parent is very unlikely to be the same.

If p is small, there is insufficient gain from the use of Level-3 BLAS to compensate for rearranging

F22 to block hybrid form and S22 back to lower packed format. We have found it better in this case to

rearrange only F11 and F21 and rely on Level-2 BLAS for updating the columns of F22 one by one. On

our test platform, this was better for p less than about 30.

An alternative would be to apply BLAS and LAPACK subroutines directly to the blocks of factorization

(5.7). For efficiency, it would be necessary to hold both F11 and F22 in full (unpacked) storage, so much

more memory would be needed. We simulated the effect of this by running HSL MA77 with nb equal to

size largest front size and with the call of its kernel subroutine for Cholesky factorization of F11 replaced

by calls of the LAPACK subroutine DPOTRF. Some times are given in Table 9.2 (see Section 9.1), which

show that on our platform HSL MA54 offers a modest speed advantage in addition to the substantial storage

advantage.

As already observed, for solving systems once the matrix has been factorized, there is an advantage

in keeping the computed factor in block hybrid form. For a single right-hand side, HSL MA54 makes a

sequence of calls of the Level-2 BLAS DTPSV and DGEMV each with matrices that are matched to the cache.

For many right-hand sides, HSL MA54 makes a sequence of calls of the Level-3 BLAS DTRSM and DGEMM.

6 Data input and the analysis phase

6.1 Supervariables

It is well known that working with supervariables (groups of variables that belong to the same set of

elements in the element-entry case or are involved in the same set of rows in the row-entry case) leads

to significantly faster execution of the analyse phase. As was explained in Section 2.5 of Duff and Reid

(1996), they can be identified with an amount of work that is proportional to the total length of all the

lists. This is done by first putting all the variables into a single supervariable. This is split into two

supervariables by moving those variables that are in the first list into a new supervariable. Continuing, we

10

split into two each of the supervariables containing a variable of the i-th list by moving the variables of

the list that are in the supervariable into a new supervariable. The whole algorithm is illustrated Figure

6.2. We have implemented this with four arrays of length n. For efficiency, this work is performed during

the calls of MA77 input vars.

Put all the variables in one supervariable

do for each list

do for each variable v in the list

sv = the supervariable to which v belongs

if this is the first occurrence in the list of sv then

establish a new supervariable nsv

record that nsv is associated with sv

else

nsv = the new supervariable associated with sv

end if

move v to nsv

end do

end do

Figure 6.2: Identifying supervariables

In an early version of the code, we merged supervariables that became identical following eliminations,

but found that the overheads involved were much greater than the savings made.

We need to interpret the pivot sequence that the user provides to MA77 analyse as a supervariable

ordering. We expect all the variables of a supervariable to be adjacent, but in case they are not, we treat

the supervariables as being ordered according to their first variables in the pivot sequence. This is justified

by the fact that after pivoting on one variable of a supervariable, no further fill is caused by pivoting on

the others.

We note that because the supervariables are found during calls to MA77 input vars, we do not allow

the user to change any of the index lists without first calling MA77 finalise to terminate the computation

and then restarting by calling MA77 open.

6.2 Constructing the tree

A key strategy for the speed of MA77 analyse is that we label each element and generated element according

to which of its supervariables occurs earliest in the pivot sequence. Linking the elements and generated

elements with the same label allows us to identify at each pivotal step exactly which elements are involved

without a search. In the element-entry case, the first action is to read all the index lists and establish this

linked list. We use an integer array of size the number of supervariables for the leading entries and an

integer array of size the largest possible number of elements and generated elements for the links.

The tree is stored by holding, for each non-leaf node, a structure that contains an integer allocatable

array for the indices of the children. It is convenient also to hold here the number of eliminations performed

at the node. We use the derived type MA77 node for this purpose and allocate at the start of MA77 analyse

an array of this type. The number of non-leaf nodes is bounded by the number of supervariables since at

least one supervariable is eliminated at each node. In the element-entry case, it is also bounded by twice

the number of elements since each original element could be an only child if static condensation occurs

there and thereafter every node has at least two children. In this case, we use the lesser bound for the size

for the array.

In the row-entry case, the leaf nodes represent elements of order 1 or 2 (see Section 2.2). Assembly of

an element of order 1 can be delayed until its variable is eliminated and assembly of an element of order 2

11

can be delayed until one of its variables is eliminated. Therefore, the list of variables eliminated at a node

can be used to indicate which leaf nodes are needed and there is no need to include them explicitly in the

list of children.

For each variable in the given pivot sequence, we first check if its supervariable has already been

eliminated. If it has, no action is needed. Otherwise, we add a new node to the tree and construct its

array of child indices from the linked list of the elements and generated elements for the supervariable.

Next, we construct the index list for the new node by merging the index lists of the children. In the

row-entry case, we also read the index list for the variable from the main integer superfile and merge it in,

excluding any variables that have already been eliminated.

In the element-entry case, we identify other variables that can be eliminated at this time by keeping

track of the number of elements and generated elements that each variable touches. Any variable that is

involved in no elements may be eliminated. Unfortunately, this cannot be applied in the row-entry case

without reading the row list from the main integer superfile and checking that all its variables are already

in the list. Instead, we rely on the new node being amalgamated with its parent (see next subsection)

when it is later considered as a child. We tried relying on this in the element-entry case but found that

the analyse speed was increased by a factor of about three and the quality of the factorization was slightly

reduced.

6.3 Node amalgamation

Next, we check each of the child nodes to see if it can be amalgamated with the new parent. We do this if

the list of uneliminated variables at the child is the same as the list of variables at the parent, since in that

case the amalgamation involves no additional operations. We also do it if both involve less than a given

number of eliminations, which the user may specify. By default, the number is 8 (see our experimental

results in Tables 9.3 and 9.4). The rationale for this amalgamation is that it is uneconomic to handle

small nodes. Note that these tests do not need to be applied recursively since if a child fails the test for

amalgamation with its parent, it will also fail if it is retested after a sibling has been amalgamated with

its parent or its parent has been amalgamated with its grandparent.

The strategy used by the HSL code MA57 (Duff, 2004), which is essentially the same as that used by

the earlier HSL code MA27 (Duff and Reid, 1983), causes less node amalgamations since it applies the first

test (no additional operations) only if there is just one child and applies the second test only with the

child that is visited last in the depth-first search. The difference in the number of nodes in the tree is

illustrated in Table 9.3.

Suppose node i has a child ci with k children. If ci is amalgamated with its parent, the children of

ci become children of node i. Thus if k > 1, the number of children of node i increases. For this reason,

we use a temporary array to hold the children and delay allocation of the actual list until after all the

children have been tested and the length is known.

Amalgamating ci with i means that ci is no longer needed. We therefore deallocate the array for its

children and make the node available for re-use. We keep a linked list of all such available nodes and

always look there first when creating a new node.

We now choose the assembly order for each set of children (see next subsection) and finally perform a

depth-first search to determine the new pivot order. We record this and use it to sort all the index lists of

the generated elements, to ease element merging in MA77 factor.

6.4 The assembly order of child nodes

At each node of the assembly tree, all the children must be processed and their generated elements

computed before the frontal matrix at the parent can be factorized. However, the children can be processed

in any order and this can significantly affect the maximum size of the stack, which in turn is likely to

affect the amount of input/output.

12

The simplest strategy (which is sometimes referred to as the classical multifrontal approach) is to wait

until all the children of a node have been processed and then allocate the frontal matrix and assemble

all the generated elements from its children into it. Assume node i has a front of size fi and children cj ,

j = 1, 2, ..., ni. Then if the size of the generated element at node k is gk and the stack storage required to

generate it is sk, the stack storage si needed to generate the element at node i is

max

(

max
j=1,ni

(

j−1
∑

k=1

gck
+ scj

)

, fi +

ni
∑

k=1

gck

)

= max

(

max
j=1,ni

(

j
∑

k=1

gck
+ scj

− gcj

)

, fi +

ni
∑

k=1

gck

)

.

Liu (1986) observed that this is minimized if the children are ordered so that sj−gj decreases monotonically.

The main disadvantage of the classical approach is that it requires the generated element from each

child to be stacked. For very wide trees, a node may have many children so that
∑ni

k=1 gck
is large. The

classical approach is also poor if the index lists have significant overlaps. Thus Liu (1986) also considered

allocating the frontal matrix at the parent before any of its children have been processed. The generated

element from each child can then be assembled directly into the frontal matrix for the parent, which avoids

the potentially large number of stacked generated elements. Guermouche and L’Excellent (2006) note that

this approach can be slightly improved by allocating the frontal matrix for the parent immediately after

the first child has been processed (and the first child should be the one that requires the most memory).

However, numerical experiments have shown that allocating the frontal matrix either before or after the

first child can also perform poorly because a chain of frontal matrices (at each level of the tree) must be

stored. This led Guermouche and L’Excellent (2006) to propose computing, for each node, the optimal

point at which to allocate the frontal matrix and start the assembly.

If the frontal matrix for node i is allocated and the assembly started after pi children have been

processed, Guermouche and L’Excellent show that the storage needed to process i is

si = max

(

max
j=1,pi

(

j−1
∑

k=1

gck
+ scj

)

, fi +

pi
∑

k=1

gck
, fi + max

j>pi

scj

)

. (6.1)

Their algorithm for finding the split point, that is, the pi that gives the smallest si, then proceeds as

follows: for each pi (1 ≤ pi ≤ ni), order the children in decreasing order of scj
, then reorder the first pi

children in decreasing order of scj
− gcj

. Finally, compute the resulting si and take the split point to be

the pi that gives the smallest si. Guermouche and L’Excellent (2006) prove they obtain the optimal si.

In our code, we use the same array to hold the front at each node of the tree. We use the array only for

the front that is being assembled or factorized. The other fronts are stored temporarily on the stack. This

avoids memory being required for more than one front at the same time. At the split point, we expand

the generated element that has been left in the frontal matrix in place to the pattern of the parent frontal

matrix, as suggested by Duff and Reid (1983). This means that the stack size needed at this point is
∑pi−1

k=1 gck
. This expression replaces the middle term of equation (6.1), which makes it less than the first

term so that it can be discarded to give the equation

si = max

(

max
j=1,pi

(

j−1
∑

k=1

gck
+ scj

)

, fi + max
j>pi

scj

)

. (6.2)

and we use this to find the split point; the change does not invalidate the algorithm of Guermouche and

L’Excellent (2006).

The code to order the children and find the split point uses recursion and is outlined in Figure 6.1.

This algorithm is implemented within MA77 analyse. When computing a split point, we ignore any

children that are leaf nodes; any such children are ordered after the non-leaf children. This choice was

made since the leaf nodes can be assembled directly into the front without going into the stack. The

sorting is performed using the HSL heap-sort package HSL KB22.

13

forall (i in the set of root nodes)

call order child(i, si, pi)

end forall

recursive subroutine order child(i, si, pi)

integer, intent(in) :: i

integer, intent(out) :: si, pi

do for each child cj of i that is a non-leaf node

call order child(cj , scj
, pcj

)

end do

using the values of scj
for the children, compute si and pi

end subroutine order child

Figure 6.1: Recursive formulation of the algorithm to order the children

7 The factorization phase

In Figure 7.1 we outline how the factorization phase of HSL MA77 proceeds, using the assembly tree and the

ordering of the children that is determined during the analyse phase. Starting at a root node, a subroutine

that recursively factorizes the children of the root and their descendants is called. The assembly steps are

performed column by column to avoid the need to hold two frontal matrices in memory at the same time.

8 The solve phase

An outline of the solve phase of HSL MA77 is given in Figure 8.1. HSL MA77 requires the right-hand side

B to be held in full format. The simplifies the coding of the operations involving the right-hand side and

avoids any actual input/output for it. To save memory, the user must supply B in an array X which is

overwritten by the solution X .

MA77 solve performs forward substitution followed by back substitution unless only one of these is

requested. The matrix factor must be accessed once for the forward substitution and once for the back

substitution. If MA77 solve is called several times with the same factorization but different right-hand

sides, HSL OF01 will avoid actual input/output at the start of the forward substitution since the most

recently data will still be in the buffer following the previous back substitution. In all cases, the amount

of actual input/output is independent of the number of right-hand sides and so it is more efficient to solve

for several right-hand sides at once rather than making repeated calls (see Table 9.6).

If the user calls MA77 factor solve, the forward substitutions operations are performed as the factor

entries are generated. Once the factorization is complete, the back substitutions are performed. This

involves reading the factors only once from disk and so is faster than making separate calls to MA77 factor

and MA77 solve (see Table 9.6).

MA77 solve includes options for performing partial solutions. The computed Cholesky factorization

(2.1) may be expressed in the form

A = (PLPT)(PLT P T). (8.1)

MA77 solve may be used to solve one or more of the following systems:

AX = B, (PLPT)X = B, (PLT P T)X = B. (8.2)

Partial solutions are needed, for example, in optimization calculations, see Algorithm 7.3.1 of Conn, Gould

and Toint (2000).

A separate routine MA77 resid is available for computing the residuals R = B − AX . If out-of-core

storage has been used, computing the residuals involves reading the matrix data from disk and so involves

14

subroutine factor(tree)

allocate the array F big enough for the largest front

do for each root node i

call factorize(i)

end do

contains

recursive subroutine factorize(i)

do for each non-leaf child j of i in the order determined by the analyse phase

call factorize(j)

if (j is ahead of the split point for node i) then

put the generated element in F onto the top of the stack

else if (j is the split point for node i) then

expand the generated element in F to the front for node i

assemble the generated elements for children j − 1 to 1 from the top of

the stack into F, popping the stack

if (j is not the final non-leaf child) then

put the frontal matrix in F onto the top of the stack

end if

else

if (j is not the final non-leaf child) then

assemble the generated element in F into the stacked frontal matrix

else

expand the generated element in F to the front for node i

add the stacked frontal matrix into F

pop the stack

end if

end if

end do

if (solving an element problem) then

assemble the original elements for all the leaf children into F

else

assemble into F the original entries in the columns to be eliminated

end if

perform partial factorization of F using HSL MA54

store the computed columns of L, leaving the generated element in F

end subroutine factorize

end subroutine factor

Figure 7.1: Recursive formulation of the factorization phase of the multifrontal algorithm implemented

within MA77 factor.

15

subroutine solve(tree, X)

do for each root node i

call forward(i)

call back(i)

end do

contains

recursive subroutine forward(i)

do for each non-leaf child j of i in the order determined by the analyse phase

call forward(j)

end do

read columns of L stored at node i

copy components of X that are involved into a temporary full array

perform partial forward substitution using HSL MA54

copy temporary full array back into appropriate components of X

end subroutine forward

recursive subroutine back(i)

read columns of L stored at node i

copy components of X that are involved into a temporary full array

perform partial back substitution using HSL MA54

copy temporary full array back into appropriate components of X

do for each non-leaf child j of i in the reverse order of that determined by the analyse phase

call back(j)

end do

end subroutine back

end subroutine solve

Figure 8.1: Recursive formulation of the solve phase of the multifrontal algorithm implemented within

MA77 solve.

16

an input/output overhead. MA77 resid offers an option that, in the row-entry case, computes the infinity

norm of A. In the element case, an upper bound on the infinity norm is computed (it is an upper bound

because no account is taken of overlaps between elements).

9 Numerical experiments

In this section, we illustrate the performance of HSL MA77 on large positive-definite problems. Comparisons

are made with the HSL sparse direct solver MA57. The numerical results were obtained using double

precision (64-bit) reals on a 3.6 GHz Intel Xeon dual processor Dell Precision 670 with 4 Gbytes of

RAM. The Nag f95 compiler with the -O3 option was used and we used ATLAS BLAS and LAPACK

(math-atlas.sourceforge.net).

The test problems used in our experiments are listed in Table 9.1. Here nz(A) denotes the millions of

entries in the lower triangular part of the matrix (including the diagonal). An asterisk denotes that only

the sparsity pattern is available. Most of the problems (including those from finite-element applications)

are stored in assembled form; those held in element form are marked with a dagger and for these problems

Table 9.1: Positive definite test matrices and their characteristics. nz(A) and nz(L) denote the number

of entries in A and L, respectively, in millions. front denotes the maximum order of frontal matrix. ∗

indicates pattern only. † indicates stored in element form.

Identifier n nz(A) nz(L) front Application/description

1. thread 29,736 2.250 23.731 2994 Threaded connector/contact problem

2. pkustk11∗ 87,804 2.653 28.517 2064 Civil engineering. Cofferdam (full size)

3. pkustk13∗ 94,893 3.356 30.573 2145 Machine element, 21 nodes solid

4. crankseg 1 52,804 5.334 33.714 2124 Linear static analysis—crankshaft detail

5. m t1 97,578 4.926 34.613 1926 Tubular joint

6. shipsec8 114,919 3.384 37.224 2670 Ship section

7. gearbox∗ 153,746 4.617 39.253 2215 Aircraft flap actuator

8. shipsec1 140,874 3.977 40.353 2532 Ship section

9. nd6k 18,000 6.897 40.737 4430 3D mesh problem

10. cfd2 123,440 1.606 40.863 2522 CFD pressure matrix

11. crankseg 2 63,838 7.106 43.195 2205 Linear static analysis—crankshaft detail

12. pwtk 217,918 5.926 50.449 1128 Stiffness matrix—pressurised wind tunnel

13. shipsec5 179,860 5.146 55.001 3231 Ship section

14. fcondp2∗† 201,822 5.748 55.167 3288 Oil production platform

15. ship 003 121,728 4.104 62.228 3336 Ship structure—production

16. thermal2 1,228,045 4.904 63.036 1413 Unstructured FEM, thermal problem

17. troll∗† 213,453 6.099 63.678 2643 Structural analysis

18. halfb∗† 224,617 6.306 66.207 3261 Half-breadth barge

19. bmwcra 1 148,770 5.396 71.230 2238 Automotive crankshaft model

20. fullb∗† 199,187 5.954 75.023 3486 Full-breadth barge

21. af shell3 504,855 17.562 97.715 2205 Sheet metal forming matrix

22. pkustk14∗ 151,926 7.494 108.931 3066 Civil engineering. Tall building

23. g3 circuit 1,585,478 4.623 118.476 2890 Circuit simulation

24. nd12k 36,000 14.221 118.492 7685 3D mesh problem

25. ldoor 952,203 23.737 154.742 2436 Large door

26. inline 1 503,712 18.660 179.269 3261 Inline skater

27. bones10 914,898 28.192 287.557 4695 Bone Micro-Finite Element Model

28. nd24k 72,000 28.716 321.334 11363 3D mesh problem

29. bone010 986,703 36.326 1089.104 10722 Bone Micro-Finite Element Model

30. audikw 1 943,695 39.298 1264.854 11223 Automotive crankshaft model

17

we use the element entry to HSL MA77.

Each test example arises from a practical application and are all available from the University of Florida

Sparse Matrix Collection (Davis, 2007). We note that our test set comprises a subset of those used in the

study of sparse direct solvers by Gould et al. (2005) together with a number of recent additions to the

University of Florida Collection. As HSL MA77 is specifically designed for solving large-scale problems, the

subset was chosen by selecting only those problems that MA57 either failed to solve because of insufficient

memory or took more than 20 seconds of CPU time to analyse, factorize and solve on our Dell computer.

For those matrices that are only available as a sparsity pattern, reproducible pseudo-random off-

diagonal entries in the range (0, 1) were generated using the HSL package FA14, while the i-th diagonal

entry, 1 ≤ i ≤ n, is set to max(100, 10ρi), where ρi is the number of off-diagonal entries in row i of the

matrix, thus ensuring that the generated matrix is positive definite. The right-hand side for each problem

is generated so that the required solution is the vector of ones.

Unless stated otherwise, all control parameters are used with their default settings in our experiments.

In particular, the size of each page (and file record) is 4096 scalars (reals in the real buffer or integers in

the integer buffer) and the number of pages in the in-core buffers is 1600; the file size is 221 scalars.

The analyse phase of the MA57 package is used to compute the pivot sequences for HSL MA77. MA57

automatically chooses between an approximate minimum degree and a nested dissection ordering; in fact,

for all our test problems, it selects a nested dissection ordering that is computed using METIS NodeND. In

Table 9.1, we include the number of millions of entries in the matrix factor (denoted by nz(L)) and the

maximum order of a frontal matrix (denoted by front) when this pivot order is used by HSL MA77.

Throughout this section, the complete solution time for HSL MA77 refers to the total time for inputting

the matrix data, computing the pivot sequence, and calling the analyse, factorize and solve phases. The

complete solution time for MA57 is the total time for calling the analyse, factorize and solve phases of MA57.

Where appropriate, timings for HSL MA77 include all input/output costs involved in holding the data in

superfiles. All reported times are wall clock times in seconds.

9.1 Choice of block size and HSL MA54 versus LAPACK

Factorization timings for a subset of our test problems using a range of block sizes in the kernel code

HSL MA54 are presented in Table 9.2. The results show that, on our test computer, nb =150 is a good

choice; this is the default block size used within HSL MA77. As noted in Section 5, we can simulate the

effect of using LAPACK instead of HSL MA54 by running HSL MA77 with the block size for the blocked hybrid

form set to the largest front size and using the LAPACK subroutine DPOTRF for the Cholesky factorization

of the blocks on the diagonal. The main advantage of using HSL MA54 in place of DPOTRF is the substantial

storage savings; the results in Table 9.2 illustrate that, in our test environment, the speed improvements

are modest.

Table 9.2: Comparison of the in-core factorization phase times using HSL MA54 with different blocksizes

(nb) and DPOTRF.

HSL MA54 DPOTRF

nb =50 100 150 200

1. thread 20.6 15.5 13.6 15.5 14.4

4. crankseg 1 22.0 17.2 16.1 17.7 17.2

12. pwtk 18.0 15.5 15.0 15.9 15.7

19. bmwcra 1 41.5 33.1 30.9 33.8 33.2

21. af shell3 39.1 33.1 30.9 33.8 32.7

18

9.2 The effects of node amalgamation

Our strategy of amalgamating nodes of the tree was explained in Section 6.3. We amalgamate a child with

its parent if both involve less than a given number, nemin, of eliminations. We show in Tables 9.3 and

9.4, a few of our results on the effect of varying nemin. We also show in Table 9.3 the number of nodes

with eliminations that MA57 finds from the same pivot sequence with its default nemin value of 16. We

note that it does far less amalgamations because of its restricted choice.

We have found that, provided nemin > 1, the performance of our test problems is usually not very

sensitive to exact choice of nemin, probably because most of the work is performed in large frontal matrices.

We have chosen 8 as the default value for nemin, which makes the number of nodes in the tree comparable

with that of MA57. We considered 16, but this increases the storage (number of entries in L) and often

increases the factorization time.

Table 9.3: Comparison of the number of non-leaf nodes and in-core factorization phase times for different

values of the node amalgamation parameter nemin.

Number of nodes Factorize times

MA57

nemin 16 1 4 8 16 32 1 4 8 16 32

12. pwtk 10983 20591 19512 11515 8505 4208 15.3 14.9 14.8 15.4 18.2

15. ship 003 6208 11844 11844 6825 4832 2510 39.0 38.6 38.3 39.8 40.5

19. bmwcra 1 6408 16682 10023 6744 3738 2359 33.2 30.9 31.1 35.2 33.4

24. nd12k 829 4133 1702 1115 736 462 280 267 275 266 263

Table 9.4: Comparison of the number of entries in L (in millions) and in-core solve phase times (single

right-hand side) for different values of the node amalgamation parameter nemin.

Number of entries in L Solve times

nemin 1 4 8 16 32 1 4 8 16 32

12. pktk 49 49 50 52 57 0.44 0.41 0.38 0.37 0.37

15. ship 003 61 61 62 64 70 0.44 0.44 0.41 0.41 0.41

19. bmwcra 1 69 70 71 74 77 0.80 0.56 0.48 0.48 0.47

24. nd12k 118 118 118 119 120 1.43 0.94 0.87 0.79 0.81

9.3 Assessing the impact of the Guermouche-L’Excellent algorithm in our

context

To assess the effectiveness of the algorithm of Guermouche and L’Excellent (2006) for ordering the

processing of the children of a node and choosing the point at which assembly is commenced, we tried the

following:

1. Except for placing the child with the largest gcj
last, not ordering the children and assembling them

only once they have all been calculated. Essentially, this is the classical approach.

2. Setting the split point to 2, so that all the generated elements of the children are assembled directly

into the parent. This is the Guermouche and L’Excellent modification of the algorithm of Liu (1986),

see Section 6.4.

3. As 1, but order the children by decreasing scj
− gcj

, as proposed by Liu (1986).

19

4. The algorithm of Guermouche and L’Excellent (2006), adapted to our storage, see Section 6.4.

We show in Table 9.5 how these four strategies perform for some of our problems. We show the

maximum stack size and the number of Fortran input/output operations performed, without taking into

account whether the system buffers the operation. The results confirm that strategy 4 gives the smallest

maximum stack size, although the reduction over the strategy 3 stack size is generally modest. Comparing

the number of input/output operations, there is little to choose between strategies 3 and 4. Strategy 4 is

implemented within HSL MA77.

Table 9.5: The maximum stack size and number of file records read and written for different child ordering

strategies.

Problem Strategy Maximum Thousands of records

stack size read written total

3. pkustk13 1 4114 2.623 12.644 15.267

2 4114 3.288 12.951 16.239

3 3147 2.061 11.555 13.616

4 2784 1.921 12.162 14.083

9. nd6k 1 1408 8.601 20.070 28.671

2 1408 8.601 20.070 28.671

3 1357 6.707 18.079 24.786

4 1326 6.624 18.046 24.670

11. crankseg 2 1 5599 6.974 17.248 24.222

2 5599 8.661 18.394 27.055

3 2721 6.164 16.627 22.791

4 2663 6.185 16.585 22.770

18. halfb 1 1177 11.271 27.835 39.106

2 1177 11.271 27.835 39.106

3 1177 11.271 27.835 39.106

4 1177 11.271 27.835 39.106

9.4 Times for each phase

In Section 3.4, we discussed the different phases of the HSL MA77 package. In Table 9.6, we report the times

for each phase for our eight largest test problems (note that the largest six problems cannot be solved in

core and so we only report times for running out of core). The input time is the time taken by the calls

to MA77 input vars and MA77 input reals, and the ordering time is the time for MA57AD to compute the

pivot sequence. MA77 factor(0) and MA77 factor(1) are the times for MA77 factor when called with no

right-hand sides and with a single right-hand side, respectively. Similarly, MA77 solve(k) is the time for

MA77 solve when called with k right-hand sides.

As expected, because of the better use of high-level BLAS and because the amount of data to be

read from disk is independent of the number of right-hand sides, solving for multiple right-hand sides is

significantly more efficient than solving repeatedly for a single right-hand side.

Unfortunately, we found that the elapsed times can be very dependent on the other activity on our

machine, as may be seen by the MA77 factor(0) being greater than the MA77 factor(1) time for problem

23. Another way to judge the performance is to look at the number of records actually read from or

written to files using HSL OF01, see Table 9.7. By comparing the sum of the number of records read and

written for MA77 factor(0) and MA77 solve(1) with the number read and written for MA77 factor(1),

we see that there significant i/o savings if the solve is performed at the same time as the factorization.

We can also assess the overall performance using megaflop rates. In Table 9.8 the megaflop rates

corresponding to the results in Table 9.6 are presented (note that these are computed using the wall clock

20

Table 9.6: Times for the different phases of HSL MA77.

Problem 23 24 25 26 27 28 29 30

Phase

Input 2.28 1.19 5.42 3.96 6.23 2.69 7.89 8.91

Ordering 26.8 7.45 8.70 14.4 23.5 17.1 37.2 43.7

MA77 analyse 12.3 9.44 9.23 4.06 11.7 24.9 27.5 25.0

MA77 factor(0) 52.6 263 62.9 84.2 155 1008 1440 2228

MA77 factor(1) 50.3 264 63.8 89.4 178 1064 1615 2390

MA77 solve(1) 6.02 3.55 7.57 5.70 31.9 10.4 313 369

MA77 solve(8) 14.8 6.41 12.4 11.2 43.6 25.3 321 371

MA77 solve(64) 98.8 32.9 70.1 62.5 152 92.2 510 643

Table 9.7: Records read from and written to files (in thousands) for the factorization and solve phases of

HSL MA77.

— Problem 23 24 25 26 27 28 29 30

Phase

MA77 factor(0) read 3.60 33.69 29.41 15.94 51.99 100.6 221.0 296.7

write 34.95 54.60 45.18 51.19 85.32 142.6 367.8 455.6

both 38.55 88.29 74.59 66.13 137.3 243.2 588.8 752.3

MA77 factor(1) read 32.53 62.63 67.19 59.71 122.2 179.1 486.2 605.6

write 35.31 54.61 45.36 51.21 85.32 142.6 367.8 455.6

both 67.84 117.2 112.5 110.9 207.5 321.7 854.0 1061

MA77 solve(1) read 56.25 57.86 73.96 85.94 140.4 156.9 531.8 617.7

Table 9.8: Mflop rates for the different phases of HSL MA77.

Problem 23 24 25 26 27 28 29 30

Phase

MA77 factor(0) 1123 1992 1270 1769 1825 2048 2691 2635

MA77 factor(1) 1172 1984 1252 1666 1594 1941 2400 2458

MA77 solve(1) 99 166 102 157 45 47 17 17

MA77 solve(8) 319 736 500 639 263 507 136 136

MA77 solve(64) 382 1148 707 916 604 1114 683 629

21

times and so are affected by the level of activity on the machine). The low rates for the solve phase

indicates that, for a small number of right-hand sides, the cost of reading in the factor data dominates the

total cost and this is particularly true for the largest problems because they perform the most input/output

(see Table 9.7).

9.5 Comparisons with in-core working and with MA57

Finally, we compare the performance of HSL MA77 out of core with its performance in core and with the

well-known HSL package MA57. This is also a multifrontal code. Although primarily designed for indefinite

problems, it can be used to solve either positive-definite or indefinite problems in assembled form. It does

not offer out-of-core options. We have run Version 3.1.0 of MA57 on our test set. With the exception of the

parameter that controls pivoting, the default settings were used for all control parameters. The pivoting

control was set so that pivoting was switched off. For the test problems that are supplied in element form,

we had to assemble the problem prior to running MA57; we have not included the time to do this within

our reported timings.

In Figures 9.1 to 9.3, for those of our problems that MA57 can solve on our test computer (problems 1

to 24), we compare the factorize, solve and total solution times for MA57 and for HSL MA77 in-core (using

arrays in place of files) with those for HSL MA77 out-of-core (using default settings). The figures show the

ratios of the MA57 and HSL MA77 in-core times to the HSL MA77 out-of-core times.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.25

0.5

1

2

Problem Index

Ti
m

e
/ (

M
A7

7
ou

t−
of

−c
or

e
tim

e)

MA57
MA77 in−core

Figure 9.1: The ratios of the MA57 and HSL MA77 in-core factorize times to the HSL MA77 out-of-core

factorize times.

From Figure 9.1, we see that for the HSL MA77 factorization times, in-core working on our test machine

usually increases the speed by 10 to 25%. For most of our test problems, MA57 factorization is slower

than HSL MA77 out-of-core factorization. If we compare MA57 with HSL MA77 in-core, we see that the latter

is almost always significantly faster. MA57 uses the same code for factorizing the frontal matrix in the

positive-definite and indefinite cases, which means that before a column can be used as pivotal, it must

be updated for the operations associated with the previous pivots of its block. We believe that this and

its fewer node amalgamations are mainly responsible for the slower speed.

For the solution phase with a single right-hand side, the penalty for working out-of-core is much

greater because the ratio of data movement to arithmetic operations is significantly higher than for the

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.05

0.1

0.2

0.3

0.4

0.5

Problem Index

Ti
m

e
/ (

M
A7

7
ou

t−
of

−c
or

e
tim

e)

MA57
MA77 in−core

Figure 9.2: The ratios of the MA57 and HSL MA77 in-core solve times to the HSL MA77 out-of-core solve

times (single right-hand side).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.25

0.5

1

2

Problem Index

Ti
m

e
/ (

M
A7

7
ou

t−
of

−c
or

e
tim

e)

MA57
MA77 in−core

Figure 9.3: The ratios of the MA57 and HSL MA77 in-core complete solution times to the HSL MA77 out-of-

core complete solution times (single right-hand side).

23

factorization. This is evident in Figure 9.2. We see that the HSL MA77 in-core solve is usually faster than

MA57 but for a small number of problems (notably problems 16 and 23), �MA57 is the fastest.

The ratios of the total solution times are presented in Figure 9.3. Here we see that for most of the

problems that can be solved without the use of any files, HSL MA77 in-core is about 15% faster than

HSL MA77 out-of-core and is almost always faster than MA57. We note that MA57 does not offer the option

of solving at the same time as the factorization. Our reported complete solution times for both packages

are the total time for separate analyse, factorize and solve phases. If we used the option offered by

HSL MA77 for combining the factorize and solve phases, the difference between the out-of-core and in-core

times would be slightly reduced and the improvement over MA57 slightly increased.

10 Future developments and concluding remarks

We have described a new out-of-core multifrontal Fortran code for sparse symmetric positive-definite

systems of equations and demonstrated its performance using problems from actual applications. The

code has a built-in option for in-core working and we have shown that, on our test machine, this usually

performs better than MA57 (Duff, 2004). We have paid close attention to the reliable management of the

input/output and have addressed the problem of having more data than a single file can hold. An attractive

feature of the package is that, if the user requests in-core working but insufficient memory is available, the

code automatically switches to out-of-core working, without the need to restart the computation.

The frontal matrix is held in packed storage and we have proposed a variant of the block hybrid format

of Andersen et al. (2005) for applying floating-point operations. We have shown that this is economical

of storage and efficient in execution.

We have considered the ordering of the children of each node of the assembly tree and the point at

which the frontal matrix for the node is established and have found that the work of Guermouche and

L’Excellent (2006) gives worthwhile gains.

We have described a new way to amalgamate nodes at which few eliminations are involved and shown

that it performs more amalgamations than MA57.

Throughout careful attention has been paid to designing a robust and high-quality software package

that is user friendly. We have employed a reverse communication interface, allowing input by rows or by

elements. The package has a number of control parameters that the user can use to tune performance for

his or her own machine and applications but, to assist less experienced users, default values are supplied

that we have found generally result in good performance. Other important design facilities include routines

to compute the residual, to extract the pivots, and to save the factors for later additional solves. Full

details are given in the user documentation that accompanies the code.

The first release of the new solver HSL MA77 is available now. HSL MA77, together with the subsidiary

packages HSL MA54 and HSL OF01, are included in the 2007 release of HSL. We have also developed a

version for unsymmetric matrices held as a sum of element matrices (Reid and Scott 2007), which is

available in HSL 2007 as HSL MA78. All use of HSL requires a licence; details of how to obtain a licence

and the packages are available at www.cse.clrc.ac.uk/nag/hsl/.

The next stage in this work will be to extend HSL MA77 to the indefinite case. Almost all the code is

written; we are currently finalising the kernel code for handling the full-matrix operations. The need to

handle interchanges makes the kernel significantly more complicated than in the positive-definite case. The

indefinite code and, in particular, the incorporation of 1× 1 and 2× 2 pivots will be described elsewhere.

We also plan to write a version that accepts an assembled matrix as a whole, that is, without reverse

communication. It will offer the option of computing a suitable pivot ordering. We expect to develop a

version for complex arithmetic and possibly one that allows the frontal matrix to be held out of core to

reduce main memory requirements further. We also plan to offer a number of options for inputting the

right-hand sides B, including as a sum of element matrices (which may be a more convenient format for

some finite-element users).

24

11 Acknowledgements

We would like to express our appreciation of the help given by our colleagues Nick Gould and Iain Duff.

Nick has constantly encouraged us and has made many suggestions for improving the functionality of

the package. Iain reminded us about linking the elements and generated elements according to the

supervariable that is earliest in the pivot sequence (see Section 6.2), which is a key strategy for the speed

of MA77 analyse. He also made helpful comments on a draft of this article. We are also grateful to Jean-

Yves L’Excellent of LIP-ENS Lyon and Abdou Guermouche of LaBRI, Bordeaux for helpful discussions

on their work on the efficient implementation of multifrontal algorithms. Finally, we would like to thank

the three anonymous referees, each of whom made insightful and constructive criticisms that have led to

improvements both in our codes and in this paper.

References

P.R. Amestoy, T.A. Davis, and I.S. Duff. An approximate minimum degree ordering algorithm. SIAM J.

Matrix Analysis and Applications, 17, 886–905, 1996.

P.R. Amestoy, T.A. Davis, and I.S. Duff. Algorithm 837: AMD, an approximate minimum degree ordering

algorithm. ACM Trans. Mathematical Software, 30(3), 381–388, 2004.

B.S. Andersen, J.A. Gunnels, F.G. Gustavson, J.K. Reid, and J. Wasniewski. A fully portable high

performance minimal storage hybrid format cholesky algorithm. ACM Trans. Mathematical Software,

31, 201–207, 2005.

BCSLIB-EXT. BCSLIB-EXT – award winning sparse-matrix package, 2003. See

http://www.boeing.com/phantom/bcslib-ext/.

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-region methods. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2000.

Tim Davis. The University of Florida Sparse Matrix Collection. Technical Report, University of Florida,

2007. http://www.cise.ufl.edu/ davis/techreports/matrices.pdf.

F. Dobrian and A. Pothen. A comparison between three external memory algorithms for factorising sparse

matrices. in ‘Proceedings of the SIAM Conference on Applied Linear Algebra’, 2003.

J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic Linear Algebra Subprograms.

ACM Trans. Math. Soft., 16(1), 1–17, March 1990.

I.S. Duff. Design features of a frontal code for solving sparse unsymmetric linear systems out-of-core.

SIAM J. Scientific and Statistical Computing, 5, 270–280, 1984.

I.S. Duff. MA57– a new code for the solution of sparse symmetric definite and indefinite systems. ACM

Transactions on Mathematical Software, 30, 118–144, 2004.

I.S. Duff and J.K. Reid. MA27 – A set of Fortran subroutines for solving sparse symmetric sets of linear

equations. Report AERE R10533, Her Majesty’s Stationery Office, London, 1982.

I.S. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric linear systems. ACM

Transactions on Mathematical Software, 9, 302–325, 1983.

I.S. Duff and J.K. Reid. Exploiting zeros on the diagonal in the direct solution of indefinite sparse

symmetric linear systems. ACM Trans. Mathematical Software, 22(2), 227–257, 1996.

I.S. Duff and J.A. Scott. The design of a new frontal code for solving sparse unsymmetric systems. ACM

Trans. Mathematical Software, 22(1), 30–45, 1996.

25

N.I.M. Gould and J.A. Scott. A numerical evaluation of HSL packages for the direct solution of large

sparse, symmetric linear systems of equations. ACM Trans. Mathematical Software, pp. 300–325,

2004.

N.I.M. Gould, Y. Hu, and J.A. Scott. A numerical evaluation of sparse direct solvers for the solution

of large, sparse, symmetric linear systems of equations. Technical Report 2005-005, RAL, 2005. To

appear in ACM Trans. Mathematical Software.

A. Guermouche and J.-Y. L’Excellent. Constructing memory-minimizing schedules for multifrontal

methods. ACM Trans. Mathematical Software, 32, 17–32, 2006.

HSL. A collection of Fortran codes for large-scale scientific computation, 2007. See

http://www.cse.scitech.ac.uk/nag/hsl/.

B.M. Irons. A frontal solution program for finite-element analysis. Inter. Journal on Numerical Methods

in Engineering, 2, 5–32, 1970.

ISO/IEC. TR 15581(E): Information technology - Programming languages - Fortran - Enhanced data

type facilities (second edition), edited by M. Cohen. Technical Report, ISO/IEC, 2001. ISO, Geneva.

G. Karypis and V. Kumar. METIS - family of multilevel partitioning algorithms, 1998. See

http://glaros.dtc.umn.edu/gkhome/views/metis.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM Journal on Scientific Computing, 20, 359–392, 1999.

J.W.H. Liu. Modification of the Minimum-Degree algorithm by multiple elimination. ACM Transactions

on Mathematical Software, 11(2), 141–153, 1985.

J.W.H. Liu. On the storage requirement in the out-of-core multifrontal method for sparse factorization.

ACM Transactions on Mathematical Software, 12, 249–264, 1986.

MUMPS. MUMPS: a multifrontal massively parallel sparse direct solver, 2007. See

http://mumps.enseeiht.fr/.

J.K. Reid. TREESOLV, a Fortran package for solving large sets of linear finite-element equations. Report

CSS 155, AERE Harwell, 1984.

J.K. Reid and J.A. Scott. HSL OF01, a virtual memory system in Fortran. Technical Report RAL-

TR-2006-026, Rutherford Appleton Laboratory, 2006. Revised Nov. 2007. Submitted to ACM

Transactions on Mathematical Software.

J.K. Reid and J.A. Scott. An efficient out-of-core multifrontal solver for large-scale unsymmetric element

problems. Technical Report RAL-TR-2007-014, Rutherford Appleton Laboratory, 2007.

E. Rothberg and R. Schreiber. Efficient methods for out-of-core sparse Cholesky factorization. SIAM

Journal on Scientific Computing, 21, 129–144, 1999.

V. Rotkin and S. Toledo. The design and implementation of a new out-of-core sparse Cholesky factorization

method. ACM Transactions on Mathematical Software, 30(1), 19–46, 2004.

W.F. Tinney and J.W. Walker. Direct solutions of sparse network equations by optimally ordered triangular

factorization. Proc. IEEE, 55, 1801–1809, 1967.

26

