
Best Practices in Web Service Style, Data Binding and
Validation for use in Data-Centric Scientific Applications

Asif Akram, David Meredith and Rob Allan

e-Science Centre, CCLRC Daresbury Laboratory, UK
a.akram@dl.ac.uk, d.j.meredith@dl.ac.uk, r.j.allan@dl.ac.uk

Abstract

We provide a critical evaluation of the different Web Service styles and approaches to data-binding
and validation for use in ‘data-centric’ scientific applications citing examples and recommendations
based on our experiences. The current SOAP API’s for Java are examined, including the Java API
for XML-based remote procedure calls (JAX-RPC) and Document style messaging. We assess the
advantages and disadvantages of 'loose' verses 'tight' data binding and outline some best practices
for WSDL development. For the most part, we recommend the use of the document/ wrapped style
with a 100% XML schema compliant data-model that can be separated from the WSDL definitions.
We found that this encouraged collaboration between the different partners involved in the data
model design process and assured interoperability. This also leverages the advanced capabilities of
XML schema for precisely constraining complex scientific data when compared to RPC and SOAP
encoding styles. We further recommend the use of external data binding and validation frameworks
which provide greater functionality when compared to those in-built within a SOAP engine. By
adhering to these best practices, we identified important variations in client and experimental data
requirements across different institutions involved with a typical e-Science project.

1. Introduction
A Service Oriented Architecture is an
architectural style whose goal is to achieve
loose coupling among interacting software
agents (services and clients). A SOA achieves
loose coupling by employing two architectural
constraints: 1) a small set of well-defined
interfaces to all participating software agents
and, 2) ensuring the interfaces are universally
available to all providers and consumers. In
simple terms, a service is a function that is self-
contained and immune to the context or state of
other services. These services can communicate
with each other, either through explicit
messages, or by a number of ‘master’ services
that coordinate or aggregate activities together,
typically in a workflow. In recent years, Web
services have been established as a popular
technology for implementing a SOA. The well-
defined interface required for services is
described in a WSDL (Web Service Description
Language) file. Services exposed as Web
services can be integrated into complex
workflows which may, in a typical e-Science
project, span multiple domains and
organizations.

2. Binding/ Encoding Styles
The following section examines the different
styles of WSDL file, and the resulting format of

each SOAP message. It is important to
understand that the WSDL binding style dictates
the style of SOAP encoding (formatting) of the
SOAP message that is transmitted 'over the
wire.' This has serious implications upon Web
Service interoperability. Collectively, the
process of generating SOAP messages
according to different styles of WSDL file is
referred to as 'SOAP encoding' or 'WSDL
binding,' and can either be Remote Procedure
Call (RPC), or Document style. These two Web
Service styles represent the RPC-centric and
Message-centric view points. Most of the
documentation however, focuses on the simpler
RPC-centric viewpoint and often gives the
misleading impression that SOAP and Web
services are just another way of doing RPC.
Table 1 provides a comparison of the different
WSDL binding styles and resulting styles of
SOAP encoding. The schema examples are
referred to in the text in the following section.
Table 2 provides a summary of the main
advantages and disadvantages of each approach.

2.1 RPC Encoding/ Binding Style

The following summary examines the key
features of the RPC WSDL binding style and
the format of a resulting SOAP message. Table
1 illustrates these key points (schema examples
are numbered and referred to in the text).

2.1.1 RPC (applies to encoded and literal)

• An RPC style WSDL file contains multiple

<part> tags per <message> for each
request/ response parameter (10b, 11b).

• Each message <part> tag defines type
attributes, not element attributes (message
parts are not wrapped by elements as in
Document style WSDL files) (10b, 11b).

• The type attribute in each <part> tag can
either; a) reference a complex or simple
type defined in the <wsdl:types> section,
e.g. <part name=”x” type=”tns:myType”>,
or b) define a simple type directly, e.g.
<part name=”x” type=”xsd:int”> (10b, 11b
respectively).

• An RPC SOAP request wraps the message
parameters in an element named after the
invoked operation (2a, 12a). This
'operational wrapper element' is defined in
the WSDL target namespace. An RPC
SOAP response wraps the message
parameters in an element named after the
invoked operation with 'Response'
appended to the element name.

• The difference between RPC encoded and
RPC literal styles relates to how the data in
the SOAP message is serialised/ formatted
when sent 'over the wire'. The abstract parts
of the WSDL files are similar (i.e. the
<wsdl:types>, <wsdl:message> and
<wsdl:portType> elements – refer to
Section 6.0). The only significant
difference relates to the definition of the
<wsdl:binding> element. The binding
element dictates how the SOAP message is
formatted and how complex data types are
represented in the SOAP message.

2.1.2 RPC/ encoded

• An RPC/ encoded WSDL file specifies an

encodingStyle attribute nested within the
<wsdl:binding>. Although different
encoding styles are legal, the most common
is SOAP encoding. This encoding style is
used to serialise data and complex types in
the SOAP message.
(http://schemas.xmlsoap.org/soap/encoding).

• The use attribute, which is nested within
the <wsdl:binding> has the value
“encoded”.

• An RPC/ encoded SOAP message has type
encoding information for each parameter
element. This is overhead and degrades
throughput performance (4a, 7a, 8a).

• Complex types are SOAP encoded and are
referenced by “href” references using an
identifier (3a). The href’s refer to
“multiref” elements positioned outside the
operation wrapping element as direct
children of the <soap:Body> (6a). This
complicates the message as the
<soap:Body> may contain multiple
“multiref” elements.

• RPC/ encoded is not WS-I compliant [1]
which recommends that the <soap:Body>
should only contain a single nested sub
element.

2.1.3 RPC/ literal

• RPC/ literal style improves upon the RPC/

encoded style.
• An RPC/ literal WSDL does not specify an

encodingStyle attribute.
• The use attribute, which is nested within

the <wsdl:binding>, has the value “literal”.
• An RPC/literal encoded SOAP message has

only one nested child element in the
<soap:Body> (12a). This is because all
parameter elements become wrapped within
the operation element that is defined in the
WSDL namespace.

• The type encoding information for each
nested parameter element is removed (14a,
15a).

• RPC/ literal is WS-I compliant [1].

The main weakness with the RPC encoding
style is its lack of support for the constraint of
complex data, and lack of support for data
validation. The RPC/ encoded style usually
adopts the SOAP encoding specification to
serialize complex objects which is far less
comprehensive and functional when compared
to standard XML Schema. Validation is also
problematic in the RPC/ literal style; when an
RPC/ literal style SOAP message is constructed,
only the operational wrapper element remains
fully qualified with the target namespace of the
WSDL file, and all other type encoding
information is removed from nested sub-
elements (this is shown in Table 1). This means
all parts/ elements in the SOAP message share
the WSDL file namespace and lose their
original Schema namespace definitions.
Consequently, validation is only possible for
limited scenarios, where original schema
elements have the same namespace as the
WSDL file. For the most part however,
validation becomes difficult (if not impossible)
since qualification of the operation name comes

from the WSDL definitions, not from the
individual schema elements defined in the
<wsdl:types> section.

2.2 Document Encoding/ Binding Style

In contrast to RPC, Document style encoding
provides greater functionality for the validation
of data by using standard XML schema as the
encoding format for complex objects and data.
The schema defined in the <wsdl:types> section
can be embedded or imported (refer to Section
6.1). The following summary examines the key
features of the Document WSDL binding style
and the format of a resulting SOAP message.
Table 1 illustrates these key points (schema
examples are numbered and referred to in the
text).

2.2.1 Document (applies to literal and wrapped)

• Document style Web services use standard

XML schema for the serialisation of XML
instance documents and complex data.

• Document style messages do not have type
encoding information for any element (23a,
24a), and each element in the soap message
is fully qualified by a Schema namespace
by direct declaration (22a), or by
inheritance from an outer element (30a).

• Document style services leverage the full
capability of XML Schema for data
validation.

2.2.2 Document/ literal

• Document/ literal messages send request

and response parameters to and from
operations as direct children of the
<soap:Body> (22a, 26a).

• The <soap:Body> can therefore contain
many immediate children sub elements
(22a, 26a).

• A Document/literal style WSDL file may
therefore contain multiple <part> tags per
<message> (19b, 20b).

• Each <part> tag in a message can specify
either a type or an element attribute,
however, for WS-I compliance, it is
recommended that only element attributes
be defined in <part> tags for Document
style WSDL (19b, 20b).

• This means that every simple or complex
type parameter should be wrapped as an
element and be defined in the <wsdl:types>
section (15b, 16b).

• The main disadvantages of the Document/
literal Web Service style include: a) the

operation name is removed from the
<soap:Body> request which can cause
interoperability problems (21a), and b) the
<soap:Body> will contain multiple children
(22a, 26a) if more than one message part is
defined in a request/ response message
(19b, 20b).

• Document/ literal is not fully WS-I
compliant [1], which recommends that the
<soap:Body> should only contain a single
nested sub element.

2.2.3 Document/ wrapped

• An improvement on the Document/ literal

style is the Document/ wrapped style.
• When writing this style of WSDL, the

request and response parameters of a Web
Service operation (simple types, complex
types and elements) should be 'wrapped'
within single all-encompassing request and
response elements defined in the
<wsdl:types> section (24b - akin to the
RPC/ literal style).

• These 'wrapping' elements need to be added
to the <wsdl:types> section of the WSDL
file (24b).

• The request wrapper element (24b) must
have the same name as the Web Service
operation to be invoked (this ensures the
operation name is always specified in the
<soap:Body> request as the first nested
element).

• By specifying single elements to wrap all of
the request and response parameters, there
is only ever a single <part> tag per
<message> tag (32b).

• A Document/ literal style WSDL file is
fully WS-I compliant [1] because there is
only a single nested element in the
<soap:Body> (29a).

• Document/ wrapped style messages are
therefore very similar to RPC/ literal style
messages since both styles produce a single
nested element within a <soap:Body>. The
only difference is that for Document/
wrapped style, each element is fully
qualified with a Schema namespace.

The main advantage of the Document style

over the RPC style is the abstraction/ separation
of the type system into a 100% XML Schema
compliant data model. In doing this, several
important advantages related to data binding
and validation are further realised which are
discussed in the next section.

Table 1 - A Comparison of the Different WSDL Binding Styles and SOAP Encoding

Style SOAP Request WSDL

RPC
Encoded

 1a <soapenv:Body>
 2a <getIndex xmlns:="urn:ehtpx-process">
 3a <admin href="#id0"/>
 4a <URL xsi:type="xsd:string"> </URL>
 5a </getIndex>
 6a <multiRef id="id0" ……>
 7a <email xsi:type=”xsd:string”> </email>
 8a <PN xsi:type=”xsd:string”> </PN>
 9a </multiRef>
10a </soapenv:Body>

RPC
Literal

11a <soapenv:Body>
12a <getIndex xmlns="urn:ehtpx-process">
13a <admin xmlns="">
14a <email> </email>
15a <PN> </PN>
16a </admin>
17a <URL xmlns=""> </URL>
18a </getIndex>
19a <soapenv:Body>

1b <types>
2b <complexType name="AdminT">
3b <sequence>
4b <element name="email" type="enc:string"/>
5b <element name="PN" type="enc:string"/>
6b </sequence>
7b </complexType>
8b </types>

9b <wsdl:message name="getIndexRequest">
10b <wsdl:part name="admin" type="tns:AdminT"/>
11b <wsdl:part name="URL" type="enc:string"/>
12b </wsdl:message>

Doc
Literal

20a <soapenv:Body>
21a
22a <admin xmlns="urn:ehtpx-process">
23a <email xmlns=""> </email>
24a <PN xmlns=""> </PN>
25a </admin>
26a <URL xmlns=""> </URL>
27a </soapenv:Body>

13b <types>
14b <complexType name="AdminT">… </complexType>
15b <element name=”admin” type=”tns:AdminT”>
16b <element name=”URL” type=” enc:string”>
17b </types>
18b <wsdl:message name="getIndexRequest">
19b <wsdl:part name="in0" element="tns:admin"/>
20b <wsdl:part name="URL" element="enc:string"/>
21b </wsdl:message>

Doc

Wrapped

28a <soapenv:Body>
29a <getIndex xmlns=" urn:ehtpx-process">
30a <admin>
31a <email xmlns=""> </email>
32a <PN xmlns=""> </PN>
33a </admin>
34a <URL xmlns=""> </URL>
35a </getIndex>
36a </soapenv:Body>

22b <types>
23b <complexType name="AdminT"> ...</complexType>
24b <element name ="getIndex">
25b <complexType> <sequence>
26b <element name ="admin" type =" tns:AdminT“/>
27b <element name =" URL " type =" xsd:string" />
28b </sequence> </complexType >
29b </element>
30b </types>
31b <wsdl:message name="getIndexRequest">
32b <wsdl:part name="in0" element="tns:getIndex"/>
33b </wsdl:message>

Table 2 - Advantages and Disadvantages of Each WSDL Binding Style and SOAP Encoding

Style Advantages Disadvantages

RPC
Encoded

• Simple WSDL
• Operation name wraps parameters

• Complex types are sent as multipart references meaning <soap:Body>
can have multiple children

• Not WS-I compliant
• Not interoperable
• Type encoding information generated in soap message
• Messages can’t be validated
• Child elements are not fully qualified

RPC
Literal

• Simple WSDL
• Operation name wraps parameters
• <soap:Body> has only one element
• No type encoding information
• WS-I compliant

• Difficult to validate message
• Sub elements of complex types are not fully qualified.

Doc
Literal

• No type encoding information
• Messages can be validated
• WS-I compliant but with restrictions
• Data can be modelled in separate schema

• WSDL file is more complicated
• Operation name is missing in soap request which can create

interoperability problems
• <soap:Body> can have multiple children
• WS-I recommends only one child in <soap:Body>

Doc
Wrapped

• No type encoding information
• Messages can be validated
• <soap:Body> has only one element
• Operation name wraps parameters
• WS-I compliant

• WSDL file is complicated – request and response wrapper elements
may have to be added to the <wsdl:types> if original schema element
name is not suitable for Web Service operation name.

3. Data Abstraction, Data Binding
and Validation
Abstraction of the Web Service type system into
a 100% XML Schema compliant data model
produces several important advantages;

• Separation of Roles

The type system can be fully abstracted and
developed in isolation from the network
protocol and communication specific
details of the WSDL file. In doing this, the
focus becomes centred upon the business/
scientific requirements of the data model.
In our experience, this greatly encourages
collaboration between the scientists who
are involved with the description of
scientific data and data model design.

• Data Model Re-usability
Existing XML Schema can be re-used
rather than re-designing a new type system
for each new Web Service. This helps
reduce development efforts, cost and time.

• Isolation of Changing Components
In our experience, the data model is the
component that is most subject to change,
often in response to changing scientific
requirements. Its isolation therefore limits
the impact on other Web Service
components such as the concrete WSDL
file implementation (see Section 6.0).

• Avoid Dependency on SOAP Namespaces
and Encoding Styles
Manual modeling of XML Schema may
constitute extra effort but this gives the
developer the most control and avoids
using SOAP framework dependent
namespaces and encoding styles. Most of
the SOAP frameworks are traditionally
RPC-centric and create WSDL based on the
RPC/ encoding style which is not WS-I
compliant. This also applies to languages
other than Java.

• Full XML Schema Functionality
The XML Schema type system leverages
the more powerful features of the XML
Schema language for description, constraint
and validation of complex data (e.g. XSD
patterns/ regular expressions, optional
elements, enumerations, type restrictions
etc). In our experience, this has proven
invaluable for the description and constraint
of complex scientific data.

• Pluggable' Binding and Validation
Frameworks

In most JAX-RPC implementations, XML
serialization of a message’s encoded
parameters is hidden from the developer,
who works with objects created
automatically from XML data using semi-
standardized mapping schemes for the
generation of client and server stub/
skeleton classes. Consequently, the
developer is both hidden from, and
dependent upon the data binding/ validation
framework of the SOAP engine. In our
experience, SOAP engine data binding
frameworks are usually not 100% Schema
complaint, and often do not support the
more advanced features of XML Schema
(e.g. xsd:patterns). We believe that this is a
major source of ambiguity and in our
experience, this has often been a source of
error that is beyond immediate control of
the developer. An alternative approach is to
use a dedicated, 100% Schema compliant
data binding/ validation framework that is
independent of the SOAP engine for the
construction and validation of Web Service
messages and instance documents (e.g.
JAXB [2], XMLBeans [3]). Developers still
manipulate XML in the familiar format of
objects (courtesy of the binding
framework), but there is no dependency
upon the SOAP engine. In doing this, the
more powerful/ functional features of an
external binding framework can be levered,
and the roles of the SOAP engine and data
binding/validation framework become
clearly separated into 'data-specific' and
'communication-specific' roles.

• On-Demand Document Construction and
Validation
This clear separation of roles means that
XML messages/ documents can be
constructed and validated at times when the
SOAP engine is not required, for example,
when constructing messages over an
extended period of time (e.g. graphically
through a GUI) and especially for the
purposes of persistence (e.g. saving
validated XML to a database). The
separation of the data binding from the
SOAP engine is gaining popularity in the
next generation of SOAP engines that are
now beginning to implement 'pluggable'
data bindings (e.g. Axis2 [4] and Xfire [5]).

4. Loose Versus Strong Data Typing
A 'loosely typed' Web Service means the

WSDL file does not contain an XML schema in

the type system to define the format of the
messages, instead it uses generic data types to
express communication messages. Loosely
typed services are flexible, allowing Web
Service components to be replaced in a 'plug-
and-play' fashion. Conversely, a 'strongly typed'
Web Service means the WSDL type system
strictly dictates the format of the message data.
Strongly typed Web services are less flexible,
but more robust. Each style influences the
chosen approach to data binding and each has
its own advantages and disadvantages which are
summarized in Table 3.

4.1 Loosely Typed Web services

A loosely typed WSDL interface specifies
generic data types for an operation's input and
output messages (either “String”, “Base64-
Encoded”, “xsd:any”, “xsd:anyType” or
“Attachment” types). This approach requires
extra negotiation between providers and
consumers in order to agree on the format of the
data that is expressed by the generic type.
Consequently, an understanding of the WSDL
alone is usually not sufficient to invoke the
service.
• “String” loose Data Type

A String variable can be used to encode the
actual content of a messages complex data.
Consequently, the WSDL file may define
simple String input/ output parameters for
operations. The String input could be an XML
fragment or multiple name value pairs (similar
to Query string). In doing this, the
implementation has to parse and extract the data
from the String before processing. An XML
document formatted as a String requires extra
coding and decoding to escape XML special
characters in the SOAP message which can
drastically increase the message size.
• “any”/ “ anyType” loose Data Type

The WSDL types section may define
<xsd:any> or <xsd:anyType> elements.
Consequently, any arbitrary XML can be
embedded directly into the message which maps
to a standard “javax.xml.soap.SOAPElement”.
Partners receive the actual XML but no contract
is specified regarding what the XML data
describes. Extraction of information requires an
understanding of raw XML manipulation, for
example, using the Java SAAJ API. Limited
support for “any”/ “anyType” data type from
various SOAP Frameworks may result in
portability and interoperability issues.

• “Base64 encoding” loose Data Type
An XML document can be transmitted as a

Base64 encoded string or as raw bytes in the
body of a SOAP message. These are standard
data types and thus every SOAP engine handles
this data in compatible fashion. Indeed,
embedding Base64 encoded data and raw bytes
in the SOAP body is WS-I compliant.
• “SOAP Attachment” loose Data Type

SOAP attachments can be used to send data
of any format that cannot be embedded within
the SOAP body, such as raw binary files.
Sending data in an attachment is efficient
because the size of the SOAP body is
minimized which enables faster processing (the
SOAP message contains only a reference to the
data and not the data itself). Additional
advantages over other techniques include the
ability to handle large documents, multiple
attachments can be sent in a single Web Service
invocation, and attachments can be compressed-
decompressed for efficient network transport.

4.2 Strongly typed Web services

A purely strongly typed WSDL interface
defines a complete definition of an operation's
input and output messages with XML Schema,
with additional constraints on the actual
permitted values (i.e. Document style with value
constraints). It is important to understand
however, that Document style services do not
have to be solely strongly typed, as they may
combine both strongly typed fields with loose/
generic types where necessary. Strong typing is
especially relevant for scientific applications
which often require a tight control on message
values, such as length of string values, range of
numerical values, permitted sequences of values
(e.g. organic compounds must have Carbon and
Hydrogen in the chemical formula and rotation
angle should be between 0 – 360 degrees).

From our experiences related to e-HTPX [6],
the best approach involved mixing of the
different styles where necessary. For mature
Web services, where the required data is
established and stable, the use of strong data
typing was preferable. For immature Web
services where the required data is subject to
negotiation/ revision, loose typing was
preferable. We often used the loose typing
approach during initial developments and
prototyping.

Table 3 – Advantages and Disadvantages of Loose versus Strong Data Typing in Web services

Modeling
Approach Advantages Disadvantages

Loose
Type

• Easy to develop
• Easy to implement
• Minimum changes in WSDL interface
• Stable WSDL interface
• Flexibility in implementation
• Single Web Service implementation may handle multiple

types of message
• Can be used as Gateway Service routing to actual services

based on contents of message

• Requires additional/ manual negotiation between client and
service provider to establish the format of data wrapped or
expressed in a generic type

• This may cause problems regarding maintaining consistent
implementations and for client/ service relations

• No control on the messages
• Prone to message related exceptions due to inconsistencies

between the format of sent data, and accepted data format
(requires Web Service code to be liberal in what it accepts –
this adds extra coding complexity).

• Encoding of XML as a string increases the message size due
to escaped characters

Strong Type

• Properly defined interfaces
• Tight control on the data with value constraints
• Message validation
• Different possibilities for data validation (pluggable data

binding/validation)
• Robust (only highly constrained data enters Web Service)
• Minimized network overhead
• Benefits from richness of XML

• Difficult to develop (requires a working knowledge of XML
and WSDL)

• Resistive to change in data model

5. Code First or WSDL First
For platform independence and Web Service

interoperability, the WSDL interface should not
reference or have dependencies upon any
technical API other than XML Schema.
However, the complexity of XML schema and
over-verbosity of WSDL is a major concern in
practical development of Web services. As a
result, two divergent practices for developing
Web services and WSDL have emerged, the
‘code first’ approach (also known as ‘bottom
up’) and 'WSDL first' approach (also know as
‘top down’ or ‘contract driven’). The code first
approach, which is often implemented in JAX-
RPC environments, involves auto-generation of
the WSDL file from service implementation
classes using tools that leverage reflection and
introspection. Alternatively, the WSDL first
approach involves writing the original WSDL
and XML Schema, and generating service
implementation classes from the WSDL file.

5.1 Code First

Advantages
The 'code first' approach is often appealing

because of its simplicity. Developers are hidden
from the technical details of writing XML and
WSDL.
Disadvantages

Generating WSDL files from source code
often introduces dependencies upon the
implementation language. This is especially
apparent when relying upon the SOAP engine to

serialize objects into XML, which can lead to
interoperability issues across different platforms
(e.g. differences in how Java and .NET serialize
types that may be value types in one language
but are reference objects in the other). WSDL
created from source code is less strongly typed
than WSDL that is created from the original
XML Schema. Indeed, the more powerful
features of XML Schema are often not
supported by automatic WSDL generators.

5.2 WSDL First

Advantages
Platform and language interoperability

issues are prevented, because both the client and
server are working from a common set of
interoperable XML Schema types. Defining a
common platform-independent type system also
facilitates separation of roles, whereby client
side developers can work in isolation from
server side developers. In our experience, this
greatly increases productivity and simplifies
development, especially for large distributed
applications where developers may be
geographically separated.

Disadvantages

The developer requires at least a reasonable
knowledge of XML Schema and of WSDL.

In our experience, the WSDL first approach is
the most suitable for developing robust,
interoperable services. However, we also found
the code first approach convenient for rapid

prototyping, especially when using loose data
typing.

6. WSDL Modularisation
The WSDL specification and the WS-I basic

profile recommend the separation of WSDL
files into distinct modular components in order
to improve re-usability and manageability.
These modular components include;
1. XML Schema files.
2. An Abstract WSDL file.
3. A Concrete WSDL file.

6.1 XML Schema Files

Moving the type declarations of a Web
Service into their own documents is
recommended as data can be modeled in
different documents according to namespace
requirements. XML Schema declares two
elements; <xsd:include> and <xsd:import>
which are both valid children of the
<wsdl:types> element (<xsd:include> is used
when two schema files have the same
namespace and <xsd:import> is used to
combine schema files from different
namespaces). In doing this, complex data types
can be created by combining existing
documents.

6.2 Abstract WSDL File

The abstract.wsdl file defines what the Web
Service does by defining the data types and
business operations of the Web Service. The file
imports XML schema(s) as immediate children
of the <wsdl:types> element, and defines
different <wsdl:message> and <wsdl:portType>
elements.

6.3 Concrete WSDL File

The concrete.wsdl file defines how and
where to invoke a service by defining network
protocol and service endpoint location with the
<wsdl:binding> and <wsdl:service> elements.
The concrete.wsdl file incorporates the
abstract.wsdl file using <wsdl:import> or
<wsdl:include>. These elements should be the
first immediate children of the
<wsdl:definitions> element (<wsdl:include> is
used when two wsdl files have the same
namespace and <wsdl:import> is used to
combine wsdl files from different namespaces).
This approach greatly improves component re-
usability as the same abstract.wsdl file can have
multiple service bindings.

7. Conclusions
Developments in the field of Web services

have largely focused on the RPC style rather
than on Document style messaging. This is
apparent in the tools provided by vendors of
JAX-RPC/ SOAP engine implementations. RPC
style services have serious limitations for the
description of data and can lead to
interoperability issues. Real applications also
require complex data modeling and validation
support. For these applications, RPC simple
typing and SOAP encoded complex types are
inadequate. The RPC style can produce
interoperability issues as many automatic
WSDL generation tools introduce technical
dependencies upon implementation languages.
As a result, the RPC style is increasingly being
referred to as ‘CORBA with brackets’ in the
Web Service community. Loosely typed RPC
services provide an alternative approach by
encapsulating data within generic types.
Loosely typed services are easy and convenient
to develop and are suitable in a number of
scenarios. However, loose typing introduces a
different set of limitations, mainly associated
with the additional manual negotiation between
consumer and provider to establish the format
of encapsulated data. In contrast to RPC,
Document style services use 100% standard
XML schema as the type system. This facilitates
complex data modeling, loose and tight data
typing where necessary, and full validation
support. Use of a platform independent type
system also ensures transport agnosticity, where
abstract WSDL definitions can be bound to
different transport protocols defined in concrete
WSDL files. We also recommend the use of
dedicated data binding/ validation frameworks
for the construction of XML documents/
messages rather than relying on the SOAP
engine. In doing this, the more powerful
features of XML Schema can be levered, and
the roles of the SOAP engine and data binding/
validation framework become clearly separated.
The main disadvantage of the Document style is
its increased complexity over RPC; developers
require at least a reasonable understanding of
XML and WSDL and are required to take the
‘WSDL first’ approach to Web Service design.

References / Resources
[1] WSI; http://www.ws-i.org/
[2] JAXB; http://java.sun.com/webservices/jaxb/
[3] XML Beans; http://xmlbeans.apache.org/
[4] Axis; http://ws.apache.org/axis/
[5] XFire; http://xfire.codehaus.org/
[6] The e-HTPX project; http://www.e-htpx.ac.uk

	Abstract
	1. Introduction
	2. Binding/Encoding Styles
	2.1 RPC Encoding/Binding Style
	2.1.1 RPC (applies to encoded and literal)
	2.1.2 RPC/ encoded
	2.1.3 RPC/ literal

	2.2 Document Encoding/ Binding Style
	2.2.1 Document (applies to literal and wrapped)
	2.2.2 Document/ literal
	2.2.3 Document/ wrapped

	3. Data Abstraction, Data Binding and Validation
	4. Loose Versus Strong Data Typing
	4.1 Loosely Typed Web services
	4.2 Strongly typed Web services

	5. Code First or WSDL First
	5.1 Code First
	5.2 WSDL First

	6. WSDL Modularisation
	6.1 XML Schema Files
	6.2 Abstract WSDL File
	6.3 Concrete WSDL File

	7. Conclusions
	References

