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Abstract

State-to-state differential cross sections have been calculated for the hydrogen exchange reaction,

H + H2 → H2 + H, using five different high quality potential energy surfaces with the objective

of examining the sensitivity of these detailed cross sections to the underlying potential energy

surfaces. The calculations were performed using a new parallel computer code, DiffRealWave. The

code is based on the real wavepacket approach of Gray and Balint-Kurti. The calculations are

parallelised over the helicity quantum number, Ω′, (i.e. the quantum number for the body-fixed

z component of the total angular momentum) and wavepackets for each J,Ω′ set are assigned

to different processors, similar in spirit to the Coriolis-coupled processors approach of Goldfield

and Gray. Calculations for J = 0 − 24 have been performed to obtain converged state-to-state

differential cross sections in the energy range from 0.4 eV to 1.2 eV. The calculations employ

five different potential energy surfaces, the BKMP2 surface and a hierarchical family of four new

ab initio surfaces (S. L. Mielke, B. C. Garrett, and K. A. Peterson, J. Chem. Phys. 116, 4142

(2002)). This family of four surfaces has been calculated using 3 different hierarchical sets of basis

functions and also an extrapolation to the complete basis set limit, the so called CCI surface. The

CCI surface is the most accurate surface for the H3 system reported to date. Our calculations of

differential cross sections are the first to be reported for the A2, A3, A4 and CCI surfaces. They

show that there are some small differences in the cross sections obtained from the five different

surfaces, particularly at higher energies. The calculations also show that the BKMP2 performs well

and gives cross sections in very good agreement with the results from the CCI surface, displaying

only small divergences at higher energies.
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I. INTRODUCTION

The H + H2 exchange reaction and its isotopomers has been the focus of numer-

ous experimental1–13 and theoretical14–25 studies. It is also the benchmark reaction for

the development of new theoretical methods. Aoiz and co-workers recently reviewed the

progress in the study of the dynamics of this reaction.26 With advances in experimental27,28

and theoretical29 methods very good agreement between theory and experiment has been

achieved and only a few issues remain unresolved.26

Several global analytic potential energy surfaces (PES) are available, the LSTH

surface,30,31 the DMBE surface32 and the BKMP33 and BKMP234 surfaces. While these

four surfaces are all based on the same initial ab initio data different sets of additional data

have been used for each surface. Wu et al.35 introduced a new surface based on spline fits

of exact quantum Monte Carlo (EQMC) calculations. The five surfaces have been used in

numerous theoretical studies of the H3 system. Accurate quantum calculations employing

the BKMP2 surface produced results in very good agreement with experiment.26

Four years ago Mielke and co-workers36 calculated a set of three potential energy surfaces

for the H + H2 exchange reaction using a hierarchical family of basis sets. These were then

used to estimate the complete basis set limit of the calculations, thus generating a fourth

surface, labelled the CCI surface. These ab initio calculations are of nearly full configuration

interaction quality and were performed at a set of 4067 nuclear configurations using the aug-

cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ basis sets. The fitted surfaces are called A2, A3

and A4 respectively. The surfaces were all fitted very accurately to an analytic form. To the

best of our knowledge no exact quantum calculations of cross sections have been reported

to date employing these four surfaces.

Several theoretical methods for computing state-to-state differential reactive cross sec-

tions have been described and applied in the literature. These include the ABC code of

Manolopoulos et al.37, the code of Launay et al.38 and the wavepacket codes of Althorpe et

al.39 and of Dong Hui Zhang et al..40 In this paper we report the first calculations of state-

to-state differential reactive cross sections based on the real wavepacket approach of Gray

and Balint-Kurti.41 The distinguishing aspects of the theory needed for these calculations

are described in the following section (section II). The computer code, DiffRealWave, is

currently available under license upon application to the authors.42
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Section III is divided into two subsections. The first compares calculations performed

with the DiffRealWave with calculations using the ABC37 code to establish the reliability

of the new code, while the second subsection reports a comparison of the differential and

total cross sections computed using the five different potential energy surfaces investigated

in this work. The final section (section IV) presents the conclusions of the paper.

II. THEORY

The real wavepacket method and the theory underlying it has been fully described in a

previous publication.41 There have been many applications of the methodology both by the

present authors43–48 and by others.49–51 All these calculations have either been performed

only for total angular momentum J = 0 or have been simplified through the use of the

helicity decoupling approximation when J > 0. For the calculation of state-to-state reactive

differential cross sections it is essential to include the full Coriolis coupling terms in the

Hamiltonian operator and to treat them accurately.

The real part of the wavepacket is expanded in the form:

ΦJM(~R,~r, t) =
∑

Ω′

qJΩ′

(R, r, γ, t)
1

Rr
DJ

Ω′,M(ω) (1)

where

J = total angular momentum quantum number

M = space-fixed z component of ~J

Ω′ = body-fixed z component of ~J

DJ
Ω′,M(ω) = Wigner D Matrix52,53

ω = Euler angles relating the space-fixed and

body-fixed coordinate systems52,53

~R = (Rx, Ry, Rz)

~r = (rx, ry, rz) with components measured

relative to the space-fixed axes

qJΩ′

(R, r, γ, t) is the component of the body-fixed wavepacket corresponding to J and Ω′.

The wavepacket is expressed using body-fixed Jacobi coordinates (R, r, γ).54 The action of

the Hamiltonian operator on the wavepacket is given by55

ĤqJΩ′

(R, r, γ, t) =
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{

− 1

2µR

∂2

∂R2
− 1

2µr

∂2

∂r2

}

qJΩ′

(R, r, γ, t)

−
(

1

2µRR2
+

1

2µrr2

){

1

sin γ

∂

∂γ
sin γ

∂

∂γ
− Ω′ 2

sin2 γ

}

qJΩ′

(R, r, γ, t)

+ V (R, r, γ)qJΩ′

(R, r, γ, t) +

(

1

2µRR2

)

(

J(J + 1) − 2Ω′ 2
)

qJΩ′

(R, r, γ, t)

− C+
JΩ′

2µRR2

{

∂

∂γ
− Ω′ cot γ

}

qJ,Ω′+1(R, r, γ, t)

− C−
JΩ′

2µRR2

{

− ∂

∂γ
− Ω′ cot γ

}

qJ,Ω′−1(R, r, γ, t) (2)

where

C±
JΩ′ = [J(J + 1) − Ω′(Ω′ ± 1)]1/2. (3)

J is a good quantum number and calculations can be carried out separately for each value

of J . Ω′ is the quantum number for the projection of the total angular momentum onto the

body-fixed z-axis. This is not a good quantum number in the sense that the Hamiltonian

operator contains centrifugal coupling terms, the last two terms in Eq. (2), which lead to

the mixing of wavepackets, qJ,Ω′

(R, r, γ, t), with different Ω′ quantum numbers. In order to

compute observables such as reactive cross sections the dynamics have to be solved for many

J values. For each J , and for a given parity, either J + 1 or J (depending on the parity)

coupled wavepackets have to be propagated.56–60

Time-dependent methods such as the real wavepacket approach employed here are easily

parallelised over Ω′ which makes calculations for higher values of J feasible. The coupling

matrix is tridiagonal and the wavepacket for Ω′ is only coupled to the wavepackets with

Ω′ + 1 and Ω′ − 1. In the parallel version of our wavepacket code each Ω′ is assigned to a

different processor, similar in spirit to the Coriolis-coupled processors approach of Goldfield

and Gray.61 Each calculation for a set of (J, Ω′) can therefore be carried out on a different

processor and only neighbouring processors need to communicate with each other.

The wavepacket is now expanded in a basis set of associated Legendre polynomials,

Pj′Ω′(cos γ), with Ω′ ≤ min{j ′, J},

qJΩ′

(R, r, γ, t) =
∑

j′

φJj′Ω′

(R, r, t) Pj′Ω′(cos γ). (4)

Using this basis set the second term and the last two terms of the Hamiltonian have the

form
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2nd term :
∑

j′

(

1

2µRR2
+

1

2µrr2

)

(j ′(j ′ + 1))φJj′Ω′

(R, r, t) Pj′Ω′(cos γ)

5th term : −
∑

j′

C+
JΩ′C

+
jΩ′

2µRR2
φJj′,Ω′+1(R, r, t) Pj′Ω′+1(cos γ)

6th term : −
∑

j′

C−
JΩ′C

−
jΩ′

2µRR2
φJj′,Ω′−1(R, r, t) Pj′Ω′−1(cos γ) (5)

Leforestier62 and Corey and Lemoine63 have developed methods, derived from the gener-

alised DVR method of Light et al.,64 that use the same γ grid for the different Ω′ components

of the wavepacket. The grid points are taken to be the associated Gauss-Legendre quadra-

ture points for the case Ω′ = 0. For each Ω′ value there is a different transformation matrix

to transform the wavepacket from the grid representation to the basis set representation and

back (see Ref. 55 and references therein for more details).

This becomes important when the action of the last two terms of the Hamiltonian operator

has to be evaluated. For the evaluation of these two terms the wavepacket for Ω′ − 1

and the wavepacket for Ω′ + 1 have to be known. These have to be passed from the two

processors on which the calculations for the (J, Ω′ − 1) and (J, Ω′ + 1) combination are

done to the processor that carries out the calculation for (J, Ω′). To evaluate the action of

the Hamiltonian operator on the wavepacket these two wavepackets (i.e. for J, Ω′ − 1 and

J, Ω′+1) have to be transformed from the grid representation to the basis set representation.

Both transformation matrices, for Ω′−1 and Ω′+1, are different to the transformation matrix

used on the processor for Ω′. Therefore these two transformation matrices also have to be

calculated on each processor.

The details of using the inversion symmetry or the parity quantum number, are not dis-

cussed here. The use of parity involves taking plus and minus combinations of the wavepacket

components for positive and negative values of the helicity quantum number Ω. The reader

is referred to past papers for a detailed discussion of the use of parity.55,56,65 In the present

work the initial rotational state of the diatomic is taken to be j = 0. The initial parity is

therefore always equal to (−1)J and for every J value there is only one parity. In general

(for j 6= 0) both parities will contribute to the cross sections.
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A. Limiting the Coriolis coupling potential in the presence of a deep well

The real wavepacket approach41,66 has been used in the present work. This approach

requires that the spectrum of the Hamiltonian operator (i.e. the range of energies encom-

passed by the grid or basis functions) is scaled and shifted, such that it lies between −1

and 1. To ensure the efficiency of the calculations it is important that the spectrum of Ĥ

should be limited to the smallest possible range commensurate with an accurate computa-

tion of the dynamics. In order to achieve this a cut-off or maximum value, Vmax, is imposed

on the potential. The various terms in the Hamiltonian arising from the angular part of

the kinetic energy operator contain factors of 1/R2 and 1/r2 (see Eqs. (2) and (5)). The

energy associated with these terms must be limited in the same way as that arising from

the potential. The centrifugal coupling terms, Eq. (5), pose a particular problem as at

small values of R and r, where they become unphysically large, the off-diagonal Coriolis

terms (the last two terms in the Hamiltonian operator) would cause the spectrum of Ĥ to

diverge. Serious problems arise if we simply impose a cut-off on these non-diagonal terms.

We therefore use an effective potential, the potential and these terms, to limit the spectrum

of the Hamiltonian operator.

The minimum value of the effective potential for a given value of J , j ′ and Ω′, and for a

fixed value of R, is given by:

V Jj′Ω′

eff,min(R) = Vmin(R) + V Jj′Ω′

diag (R) (6)

where

V Jj′Ω′

diag (R) =

(

1

2µRR2

)

(

J(J + 1) + j ′(j ′ + 1) − 2(Ω′)2
)

(7)

and Vmin(R) is the lowest value of the potential for a fixed value of R. If V Jj′Ω′

eff,min(R) is greater

than Vmax then V Jj′Ω′

diag (R) is set equal to (Vmax − Vmin(R)). This ensures that the potential

plus the diagonal centrifugal term is only cut off when their sum is greater than Vmax. This

procedure is important if the potential features a minimum or a deep well. If the diagonal

term is cut-off for a pair (j ′, Ω′) then the two off-diagonal terms C+
JΩ′ C

+
j′Ω′/(2µRR2) and

C−
JΩ′ C

−
j′Ω′/(2µRR2) are set to zero for this pair of rotational and helicity quantum number.

For the term V Jj′

diag(r) = j ′(j ′ +1)/2µrr
2 we also first calculate the minimum of the potential

for fixed r and then proceed in an analogous manner as for the effective potential in the R
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coordinate. Care is also taken to keep track of the actual maximum value of the effective

potentials used so as to use the correct spectral range of the Hamiltonian in calculating the

required energy scaling.

B. The initial wavepacket

For a reaction A+BC → AB+C the initial wavepacket is set up on a grid in reactant

Jacobi coordinates where Ra represents the scattering coordinate (distance from the atom A

to the molecule BC), ra, the internal coordinate and γa the Jacobi angle. The correspond-

ing product Jacobi coordinates are denoted as (Rc, rc, γc). The wavepacket propagation is

started in the asymptotic region of the reactant channel at a scattering distance Ra = R0

and the initial wavepacket is centred around R0. The wavepacket also needs to be given

a momentum in the direction of the interaction region. The time-dependent wavepacket

propagation is an initial value problem, starting from one initial vibrational rotational state

of the reactant molecule ϕBC
v,j (ra, γa) = φv,j(r

a)Pj(cos γa), where φv,j(r
a) represents the vi-

brational wave function, calculated using a Fourier grid Hamiltonian method, and Pj(cos γa)

are Legendre polynomials. The initial wavepacket used in all calculations presented in this

work is of the form

q(Ra, ra, γa; t = 0) = w(Ra − R0) e−ik0(Ra−R0) ϕBC
v,j (ra, γa). (8)

where w(Ra−R0) is a sinc function sinc(αRa) = sin(αRa)/αRa, whose use in quantum reac-

tive wavepacket calculations has been discussed elsewhere by some of the present authors.67

The analysis of the results of a quantum reactive wavepacket calculation requires the

knowledge of the momentum distribution of the initial wavepacket in the asymptotic reactant

region. For the exact calculation of total and differential cross sections, where dynamical

calculations are needed for all total angular momenta, J , contributing to the cross section,

the scattering coordinate of the centre of the initial wavepacket, R0, will inevitably be in

a region where the centrifugal potential is still significantly different from zero for some

values of J . We therefore use the “trick analysis” procedure45,56,68 in which we propagate

the initial wavepacket backwards in the reactant scattering coordinate so as to ascertain

the momentum distribution, ḡ(−kv,j), of the initial wavepacket in the asymptotic reactant

region.
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C. Transformation to product Jacobi coordinates

For the analysis of the product quantum states the wavepacket must be expressed in

terms of product Jacobi coordinates. In the present work, as in our past calculations,43,44

this was accomplished by defining the initial wavepacket in reactant Jacobi coordinates, as

described above, and immediately transforming it into product Jacobi coordinates. The

(J, Ω′) component of the wavepacket in product Jacobi coordinates is given in terms of the

initial wavepacket, which is assumed to correspond to a well defined projection of the total

angular momentum on the reactant body-fixed z axis, Ω, by the expression:

qJΩ′

(Rc, rc, γc) = qJΩ(Ra, ra, γa)
Rc rc

Rara
dJ

ΩΩ′(β). (9)

where dJ
ΩΩ′(β) = DJ

ΩΩ′(0 β 0) is a reduced Wigner rotation matrix52,53 and β is the angle

between the vectors ~Ra and ~Rc.

D. Analysis of wavepacket and calculation of differential cross sections

The analysis of the wavepacket arising from a real wavepacket calculation and the extrac-

tion of body-fixed S matrices and reaction probabilities has been described previously.41,56,69

As discussed by Althorpe39 it is important for the calculation of differential cross sections to

evaluate the S matrix initially in a space-fixed reference frame. The reason for this is that

the Coriolis coupling terms, which occur in the body-fixed coordinate system, (see Eq. (5))

are very long ranged and prevent the correct evaluation of the S matrix elements for J > 0.

In the space-fixed coordinate system this coupling is absent and the (`, j) channels are not

subject to any long-range coupling. The first step in the analysis is identical to that used

in previous work. The propagation of the wavepacket is achieved by a Chebyshev iteration

and at each time step (or iteration step41) a cut is taken through the wavepacket along an

analysis line, R = R∞, corresponding to a value of the product scattering coordinate in the

asymptotic region of the potential. This yields the quantity qJΩ′

(R = R∞, r, γ, t), which

is then expanded in terms of product vibrational-rotational eigenfunctions, ϕv′,j′(r, γ), to

yield:

qJΩ′

(R = R∞, r, γ, t) =
∑

v′,j′

CJ
v,j,Ω→v′,j′,Ω′(t) ϕv′,j′(r, γ). (10)
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The time-dependent expansion coefficients may be written as

CJ
v,j,Ω→v′,j′,Ω′(t) =

∫

ϕ∗
v′,j′(r, γ) qJΩ′

(R = R∞, r, γ, t) dr dγ. (11)

In the present case as the initial diatomic is in its j = 0 state, the initial Ω = 0. The

coefficients in Eq. (11) are then half Fourier transformed to give a set of energy-dependent

coefficients AJ
v,j,Ω→v′,j′,Ω′(E)

AJ
v,j,Ω→v′,j′,Ω′(E) =

1

2π

∞
∫

0

eiEt/~ CJ
v,j,Ω→v′,j′,Ω′(t) dt. (12)

These energy-dependent coefficients are proportional to the body-fixed scattering S matrix

elements.41,56,69

In order to allow for the effect of the long range Coriolis coupling in the body-fixed

coordinate system we now transform to the space-fixed basis. The transformation from

body-fixed to space-fixed basis functions takes the form of a unitary transformation:

AJ
v,j,`→v′,j′,`′(E) =

min(j′,J)
∑

Ω′ Ω

T J
` ΩAJ

v,j,Ω→v′,j′,Ω′(E) T J
`′Ω′ (13)

where T J
`′Ω′ are the elements of the transformation matrix, Tc, and T J

` Ω are the elements

of the transformation matrix, Ta, for the products and reactants respectively. In our case

` = J as a consequence of the initial condition j = 0. Because of this also Ω = 0 and the

second transformation matrix, Ta, with elements T J
` Ω for transforming the reactant basis set

could be omitted in this case.

The transformation matrix with elements T J
`′Ω′ , is the matrix which diagonalises the Cori-

olis coupling matrix (i.e. whose columns are the eigenvector of this matrix). The diagonal

elements of the Coriolis coupling matrix are given by Eq. (7) and the off diagonal terms by

−(C+
JΩ′C

+
jΩ′)/(2µRR2). The eigenvalues of the matrix are of the form (`′(`′ + 1))/(2µRR2),

and we use these known eigenvalues to check for the correctness of the computation of this

transformation matrix. The elements of Ta are calculated in the same way as for the product

basis.

The S matrix elements in the space-fixed coordinate system are then given by:41

SJ
v,j,`→v′,j′,`′(E) = − ~

2as

(1 − E2
s )

1/2

(

kv′j′kvj

µrµp

)1/2

e−ikv′j′R∞

2AJ
v,j,`→v′,j′,`′(E)

ḡ(−kvj)
(14)
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where as is the energy scaling factor, Es is the scaled and shifted energy corresponding to

the energy E, µr and µp are the reduced masses for the scattering coordinates in the reactant

and product Jacobi coordinates respectively. kv′j′ is the wavevector component associated

with the product channel and is calculated as

kv′j′ =

√

2 µp

(

E −
(

εv′j′ +
`′(`′ + 1)

2 µpR2
∞

))

. (15)

The factor of (`′(`′ + 1))/(2 µpR
2
∞) takes account of the fact that the centrifugal potential

differs from zero at the analysis line.

As the centrifugal potential is not zero at the analysis line, the phase of the S matrix must

be adjusted to take proper account of this and of the fact that the analysis is performed at

the analysis line which is assumed to be in the asymptotic region of the potential (including

the centrifugal potential). These phase adjustments can only be performed in the space-fixed

basis set where there are no residual Coriolis coupling terms.

The correction to the phase in the exit channel is:

δηv′j′`′ =

∫ ∞

R∞

dR

{
√

2 µp

(

E − εv′j′ −
`′(`′ + 1)

2 µpR2

)

−
√

2 µp (E − εv′j′)

}

(16)

while in the entrance channel the equivalent correction is:

δηvj` =

∫ ∞

R0

dR

{

√

2 µr

(

E − εvj −
`(` + 1)

2 µrR2

)

−
√

2 µr (E − εvj)

}

(17)

where in the present case v = 0, j = 0 and ` = J .

The integrals in Eqs. (16) and (17) can be performed analytically to yield (see Ref. 70

integrals number 2.265 and 2.266):

δη =

∫ ∞

R∗

dR

{

√

a − b

R2
−

√
a

}

= −
√

a(R∗)2 − b +
√

b arcsin

(

−
√

b

a(R∗)2

)

+
√

aR∗ (18)

where R∗ = R∞ or R∗ = R0, a = 2µp(E − εv′j′) or a = 2µr(E − εvj) and b = `′(`′ + 1)

or b = `(` + 1) for Eqs. (16) and (17) respectively. The final expression for the S matrix

elements, together with the phase corrections (Eqs. (16) and (17)) is therefore:

SJ
v,j,`→v′,j′,`′(E) = − ~

2as

(1 − E2
s )

1/2

(

kv′j′kvj

µrµp

)1/2 2AJ
v,j,`→v′,j′,`′(E)

ḡ(−kvj)
e−i(kv′j′R∞+δηv′j′`′+δηvj`)

(19)
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Having calculated the S matrix in the space-fixed basis we now transform back to the

body-fixed basis using the same transformation matrices, Tc and Ta, as before (see Eq. (13)

and the comments below it).

SJ
v,j,Ω→v′,j′,Ω′(E) =

∑

`′ `

T J
Ω ` SJ

v,j,`→v′,j′,`′(E) T J
Ω′`′ (20)

Note that T J
Ω′`′ and T J

Ω ` are the elements of (Tc)T and (Ta)T . The differential cross section

is then given by:56,65

σ(E, θ, v, j → v′, j ′) =
1

2j + 1

∑

Ω′ Ω

1

4 k2
vj

∣

∣

∣

∣

∣

∑

J

(2J + 1) SJ
v,j,Ω→v′,j′,Ω′(E) dJ

ΩΩ′(θ)

∣

∣

∣

∣

∣

2

. (21)

Note, in the present case the initial Ω is fixed to Ω = 0 as part of the initial conditions and

therefore the summation over Ω could be omitted.

The integral cross section is obtained from the differential cross section by integration

over all angles

σ(E, v, j → v′, j ′) =

2π
∫

0

dφ

π
∫

0

sin θ σ(E, θ, v, j → v′, j ′) dθ. (22)

The differential cross section does not depend on the angle φ and therefore this yields

σ(E, v, j → v′, j ′) = 2 π

π
∫

0

sin θ σ(E, θ, v, j → v′, j ′) dθ

=
π

k2
vj

1

2j + 1

∑

Ω′ Ω

∑

J

(2J + 1)
∣

∣SJ
v,j,Ω→v′,j′,Ω′(E)

∣

∣

2
(23)

as the state-to-state integral cross section.

III. RESULTS

A. Calculation details

The calculations have been performed employing the BKMP234 surface and the 4 hier-

archical surfaces, A2, A3, A4, CCI, of Mielke, Garrett and Peterson.36 The barrier heights

on these surfaces are 0.417 eV (BKMP2), 0.403 eV (A2), 0.421 eV (A3), 0.419 eV (A4) and

0.417 eV (CCI). The zero point energies of the reactants are 0.2702 eV (BKMP2), 0.2666 eV
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(A2), 0.2699 eV (A3), 0.2700 eV (A4) and 0.2703 eV (CCI). Results have been obtained for

a range of total energies from 0.4 eV to 1.2 eV. A double exponential damping operator41

has been used. The form of the damping operator was taken to be Â = AR(R)Ar(r) with

Ax(x) = exp[−cabs exp(−2(xmax − xabs)/(x− xabs)] for x > xabs and Â = 1 otherwise, where

x = R or r. The parameter cabs controls the strength of the absorption and (xmax − xabs)

is the length of the absorption region. In the calculations 50 angular DVR grid points were

used. However, the final wavepacket was analysed to extract the S matrix elements for the

lowest 3 vibrational states and the lowest 30 rotational states. The initial conditions used for

all the calculations set the initial state of the reactants to (v,j,Ω)=(0,0,0). All parameters

used in the calculations are listed in Table I. Most of the calculations required 2500 iteration

steps to converge the results which corresponds to about 50 minutes computational time on

a SunFire V60x dual Xeon sever cluster using one processor per (J, Ω′) set.

In the calculations presented in this work S matrix elements for J=0-24 have been ob-

tained. The calculations were performed in several batches, including several values of J in

one calculation. The separate calculations have been analysed separately to obtain the S

matrix elements for each value of J . The S matrix elements are then written into one big

data file which is read by two programs that calculate the state-to-state integral cross sec-

tions and the state-to-state differential cross sections using the above formulae. In this way

total integral and differential cross sections have been obtained and state-to-state integral

and differential cross sections for v′ = 0, 1 and j ′ = 0, 2, 4, 6.

Calculations were also performed employing the ABC code37 for the BKMP2 surface only

to verify our DiffRealWave results. The parameters used in the ABC calculations are listed

in Table II. We also performed calculations with jmax=20 and kmax=10 but did not see

any significant changes in the results for the energy range considered in this paper.

B. Comparison of DiffRealWave and ABC results

Figure 1 shows the state-to-state differential cross sections calculated on the BKMP2

surface for two angles, 0o and 90o, for v′ = 0, 1 and j ′ = 0, 2, 4, 6 versus total energy in

eV. The solid and broken lines are the results from our DiffRealWave code and the symbols

represent the results from the ABC code. The agreement is very good over the energy range

shown.
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Figure 2 shows the state-to-state differential cross sections calculated employing the

BKMP2 surface for two energies, 0.796 eV and 1.016 eV for v ′ = 0 and 1.016 eV and

1.2 eV for v′ = 1, versus scattering angle θ. As in Figure 1 results for j ′ = 0, 2, 4, 6 are

shown and the lines correspond to the DiffRealWave results while the symbols correspond

to the ABC ones. Here also the agreement is very good.

We chose energies similar to those used by Althorpe39 at which to present the results so

as to be able to compare with his results. The results in Figure 1 should be compared to the

corresponding results in Figures 7 and 8 and the results in Figure 2 to those in Figure 9 in

Ref. 39. The excellent agreement of our results with the ones from the ABC code and the

ones in Ref. 39, all employing the BKMP2 surface, verify the accuracy of the DiffRealWave

code.

The above results are for the BKMP2 surface only. The next two sections present our

new results obtained with the new DiffRealWave code employing the A2, A3, A4 and CCI

surfaces.

C. Integral cross sections

In this section we present integral cross sections for the five different potential energy

surfaces employed in this study. Figure 3 shows the integral cross sections summed up over

all product states (v′ = 0− 3 and j ′ = 0− 29) for all five PES. One can clearly see that the

results from the A3, A4, CCI and the BKMP2 surface are nearly the same, especially for

energies above ≈ 0.9 eV. The inset shows a close up of the low energy region of the plot.

Here one can distinguish the different curves. The A3 curve is the lowest, then the A4, then

the CCI, BKMP2 and the highest curve is from the A2 PES. The total integral cross section

obtained using the A2 PES is the largest for the whole energy range considered here.

We now look at the state-to-state integral cross sections. Figure 4 shows the integral

cross sections for different product quantum states for the different surfaces. Figure 4(a)

shows the integral cross sections for v′ = 0 and j ′ = 0, 2, 4, 6 obtained from the A3, A4

and the CCI surfaces. These results confirm the findings from Figure 3 that calculations

employing the A3, A4 and the CCI surfaces produce very similar results. The findings for

v′ = 1 are the same and we do not show them here.

Figure 4(b) shows the integral cross sections for v ′ = 0 and j ′ = 0, 2, 4, 6 that were
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obtained using the BKMP2, A2 and CCI surfaces. As seen in Figure 3 the results from the

A2 surface are largest for the energy range shown. Only for energies close to the high end

of the range, i.e. 1.2 eV, does the difference get smaller. Between 1.1 eV and 1.2 eV the

results from all three surfaces agree well in the case of v ′ = j ′ = 0 and v′ = 0, j ′ = 2. It

also seems that the features like dips and peaks are shifted to lower energies in the results

from the A2 surface when compared to the ones from the other two surfaces. Figure 4(c)

shows the integral cross sections obtained on the BKMP2, A2 and CCI surface for v ′ = 1

and j ′ = 0, 2, 4, 6. Also in this figure the results from the A2 surfaces are the largest in

magnitude. And again the shift of some of the features to lower energies is visible in this

figure.

The findings for the results from the CCI surface compared to those from the BKMP2

surface are not so clear. For (v′, j ′) = (0, 0), (0, 2), (1, 0) the results from the CCI surface

are smaller than the results from the BKMP2 surface. But for the other states shown the

results are larger.

The results obtained for the A2 surface can be explained by the difference in barrier

height, which is the lowest for all five surfaces considered in this work. Also the thresholds

for the population of the different vibrational rotational states are shifted to lower energies.

The difference in the results from CCI and the BKMP2 surface cannot be explained so

easily. The barrier height for the BKMP2 and the CCI surface is virtually the same and also

the H-H distance is very similar.36 One marked difference, apart from possible very subtle

differences, is the van der Waals well. Again the H-H distance on the BKMP2 and the CCI

surface are very similar but the well on the BKMP2 surface is deeper by about 14µEh than

the well on the CCI surface.36 But the results from the CCI and the BKMP2 surface for

the integral cross sections are in quite good agreement so that the small differences are not

likely to give preference to one surface or the other.

D. State-to-state differential cross sections

We will now look at the more detailed state-to-state differential cross sections from the

different surfaces to see if the differences can be seen at this level of detail.

Figure 5 shows the differential cross sections for different product states with v ′ = 0 for

selected angles and energies. Figure 5(a) shows the differential cross sections for j ′ = 0, 2, 4, 6
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and θ = 0o, 90o, 180o versus total energy. We only show the results for the BKMP2, A2 and

CCI surface. The results from the A3 and the A4 surface are nearly the same as the ones

from the CCI surface and therefore have been omitted here. Also at this level of detail

the differential cross sections obtained from the A2 surface are larger over the energy range

considered here than the results from the other two surfaces. In fact the results from the

BKMP2 and the CCI surface are very similar. Only for v ′ = 0, j ′ = 0, 2, 4, θ = 0o and

v′ = 0, j ′ = 0, 6, θ = 180o one can see some differences between the results from BKMP2

and the CCI surfaces.

Figure 5(b) shows the differential cross sections for j ′ = 0, 2, 4, 6 and E = 0.796 eV,

1.016 eV, 1.2 eV versus scattering angle θ. Also in this figure it is clear that the results

obtained on the A2 surface are larger than the results from the calculations which employed

the BKMP2 and CCI surfaces. Again the results from the BKMP2 and the CCI surface are

nearly identical.

Figure 6 shows the differential cross section for different product states with v ′ = 1 for

selected angles and energies. Figure 6(a) shows the differential cross sections for j ′ = 0, 2, 4

and θ = 0o, 90o, 180o versus total energy. We omit the results for j ′ = 6 because the

magnitude is too small to be shown in the energy range we consider in this work. Figure

6(b) shows the differential cross sections for j ′ = 0, 2, 4 and E = 1.016 eV and 1.2 eV

versus scattering angle θ. Results for E = 0.796 eV are not shown here, as they were in the

corresponding figure for v′ = 0, as the magnitude is too small to be displayed. Again for the

of v′ = 1 case, the results from the A2 surface are largest and the results from the BKMP2

and CCI surface agree quite well, though there seem to be some detectable differences for

(v′ = 1, j ′ = 4) at 1.2 eV.

IV. CONCLUSIONS AND OUTLOOK

This article reports quantum scattering calculations for the H + H2 → H2 + H exchange

reaction on five different potential energy surfaces. The calculations have been performed

using a new parallel code, DiffRealWave, which is based on the real wavepacket approach by

Gray and Balint-Kurti. The calculations have been parallelised over the helicity quantum

number, Ω, so as to perform the calculations for each set J, Ω on a separate processor and

to facilitate the calculations.
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State-to-state integral as well as differential cross sections for v ′ = 0, 1 and j ′ = 0, 2, 4, 6

are presented. Calculations using the DiffRealWave code and the ABC code employing

the BKMP2 surface yielded results which were in excellent agreement with each other,

confirming the accuracy of our new code.

The BKMP2 surface has been used in numerous theoretical studies of the H + H2 reaction

and its isotopic variants and results have been in very good agreement with the experimental

results. It has been regarded as the most accurate surface so far. Four years ago Mielke and

co-workers calculated a hierarchical family of four ab initio potential energy surfaces ranging

in quality from double-zeta to the complete basis set limit (obtained by extrapolation). The

complete basis set surface, CCI surface, should be the most accurate surface to date. We

performed calculations for all five surfaces, BKMP2, A2, A3, A4 and CCI, to investigate

the sensitivity of integral and differential cross sections to subtle differences in the potential

energy surface. Our state-to-state differential cross sections are the first reported employing

the A2, A3, A4 and CCI surfaces for the H3 system.

The differences between the results from the A3, A4 and CCI surfaces are hardly notice-

able. All three surfaces produce results in very close agreement. The cross sections from

the A2 surface are consistently larger than those from the other surfaces over the energy

range examined and differ noticeably from them. Also several features in the integral and

the differential cross sections are shifted to slightly lower energies.

The most surprising conclusion however is that the results from the BKMP2 and the

CCI surface agree extremely well. At the quantum state resolved differential cross sections

level of detail some small differences can be seen but mainly in magnitude only. A shift in

energy of the general features, such as peaks and dips of the cross section, are not observed,

in contrast to the situation for the A2 surface.

We are now in the process of extending our calculations to the isotopic variants of the

hydrogen exchange reaction to be able to compare our findings with results from experiments.

Also calculations to cover energies above 1.2 eV are in preparation.

A manuscript is currently in preparation which will outline more details with regards to

the DiffRealWave code. We will report on the details of the parallelisation and the scaling

with increasing J .

In the development of the DiffRealWave program we have kept in mind its future appli-

cation to more complex reactions which may involve a deep well. Our limiting procedure
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of the Coriolis coupling potential stems from these considerations. Future work will include

the application of the DiffRealWave code to systems such as O(1D)+H2.

Acknowledgments

The calculations reported in this paper have been performed on the CMS computational

facility housed by the CCMS at the University of Queensland. The computational facilities

have been purchased from funds provided by the University of Queensland and the Smart

State Research Facilities Fund. MH would like to thank Professors J.N.L. Connor, E.M.

Goldfield, M. Shapiro and Dr. A.J.H.M. Meijer for helpful discussions. SKG was supported

by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical

Sciences, Geosciences, and Biosciences under DOE contract W-31-109-ENG-38. MH would

like to thank Sun Microsystems for funding.

18



∗ Author to whom correspondence should be addressed. Email. m.hankel@uq.edu.au

† Electronic address: s.smith@uq.edu.au

‡ Electronic address: r.j.allan@daresbury.ac.uk

§ Electronic address: gray@tcg.anl.gov

¶ Electronic address: Gabriel.Balint-Kurti@Bristol.ac.uk

1 J.-C. Nieh and J. Valentini, Phys. Rev. Lett. 60, 519 (1988).

2 D. E. Adelman, N. E. Shafer, D. A. V. Kliner, and R. N. Zare, J. Chem. Phys. 97, 7323 (1992).

3 D. Neuhauser, R. S. Judson, D. J. Kouri, D. E. Adelman, N. E. Shafer, D. A. V. Kliner, and

R. N. Zare, Science 257, 519 (1992).

4 T. N. Kitsopoulos, M. A. Buntine, D. P. Baldwin, R. N. Zare, and D. W. Chandler, Science

260, 1605 (1993).

5 E. Wrede, L. Schnieder, K. H. Welge, F. J. Aoiz, L. Bañares, J. F. Castillio, and B. Mart́ınez-
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49 F. Gögtas, Chem. Phys. Lett. 425, 157 (2006).
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68 I. Miquel, M. González, R. Sayós, G. G. Balint-Kurti, S. K. Gray, and E. M. Goldfield, J. Chem.

Phys. 118, 3111 (2003).

69 G. G. Balint-Kurti, R. N. Dixon, and C. C. Marston, J. Chem. Soc. Faraday Trans. 86, 1741

(1990).

70 I. S. Gradshteyn and I. M. Ryhzik, Table of Integrals, Series and Products, 4th ed. (Academic

Press, New York, 1965).

22



TABLE I: Grid and initial condition details for the DiffRealWave calculations for H+H2 for

non-zero total angular momentum employing the BKMP2, A2, A3, A4 and CCI surfaces.a

scattering coordinate (R) range/a0 0.2-12.5

number of grid points in R 127

internal coordinate (r) range/a0 0.5-11.5

number of grid points in r, 119

number of angular grid points 50

absorption region length in R and r/a0 4 (4)

absorption strength (cabs) 2.0

centre of initial wavepacket (R0)/a0 6

width of the wavepacket, α 8.0

smoothing of the wavepacket, β 0.5

initial translational energy, Etrans/eV 0.7

cut-off energy, Vcut/a0 0.22

Hamiltonian scaling parameter, BKMP2 ab
s 0.874965

Hamiltonian scaling parameter, A2 ab
s 0.874971

Hamiltonian scaling parameter, A3 ab
s 0.874972

Hamiltonian scaling parameter, A4 ab
s 0.874976

Hamiltonian scaling parameter, CCI ab
s 0.874974

Hamiltonian shift parameter, all bb
s -0.991250

a All quantities are given in atomic units.

b These parameters are computed automatically by the computer code. as has the units 1/eV

and bs is dimensionless.
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TABLE II: Grid and initial condition details for the ABC calculations for H+H2 for non-zero

total angular momentum employing the BKMP2 surface.

total angular momentum quantum numbers, J 0 - 24

maximum rotational quantum number of any channel, jmax 16

helicity truncation parameter, kmax 5

maximum hyperradius rmax, 12.0 a0

maximum internal energy in any channel, emax 2.5 eV

initial scattering energy 0.4 eV

scattering energy increment 0.002 eV

total number of scattering energies 551

maximum value of v′ 1

maximum value of j ′ 10
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FIG. 1: Differential cross sections calculated for the BKMP2 PES presented at two fixed scattering

angles, θ = 0◦ and θ = 90◦, versus total energy (eV) for four different product quantum states.

The solid and broken lines are the results from the DiffRealWave code and the symbols represent

results obtained with the ABC code.

FIG. 2: Differential cross sections calculated for the BKMP2 PES versus scattering angle θ for

different product quantum states and energies. The solid and broken lines are the results from the

DiffRealWave code and the symbols represent results obtained with the ABC code.

FIG. 3: Total integral cross sections for the BKMP2, A2, A3, A4 and CCI surface.

FIG. 4: State-to-state integral cross section for the BMKP2, A2, A3, A4 and CCI surface. (a)

Integral cross sections for the A3, A4 and CCI surfaces for v ′ = 0 and j′ = 0, 2, 4, 6. (b) Integral

cross sections for the BMKP2, A2 and CCI surfaces for v ′ = 0 and j′ = 0, 2, 4, 6. (c) Integral cross

sections for the BMKP2, A2 and CCI surfaces for v ′ = 1 and j′ = 0, 2, 4, 6.

FIG. 5: Selected state-to-state differential cross section for the v ′ = 0 product quantum state for

surfaces BMKP2, A2 and CCI. (a) Differential cross sections for (v ′ = 0, j′ = 0, 2, 4, 6) for three

scattering angles, θ = 0◦, 90◦ and 180◦ versus total energy (eV). (b) Differential cross sections for

(v′ = 0, j′ = 0, 2, 4, 6) for three total energies, 0.796 eV, 1.016 eV and 1.2 eV, versus scattering

angle θ.

FIG. 6: Selected state-to-state differential cross section for the v ′ = 1 product quantum state for

surfaces BMKP2, A2 and CCI. (a) Differential cross sections for (v ′ = 1, j′ = 0, 2, 4) for three angles,

θ = 0◦, 90◦ and 180◦ versus total energy (eV). (b) Differential cross sections for (v ′ = 0, j′ = 0, 2, 4)

for two total energies, 1.016 eV and 1.2 eV, versus scattering angle θ.
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