

Space weather issues for defence and security

Mike Hapgood and Ruth Bamford

Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK (M.Hapgood@rl.ac.uk)

WHAT IS SPACE WEATHER?

- Changes in space that affect human beings and/ or technological systems
- Major impact on **environments** used by defence and security systems
- **Design, operation & regulation** of such systems must be space-weather aware
- Knowledge transfer to industry & policy-makers
- SpW effects are **diverse** show a few cases here

CASE 1 - HF (3-30 MHz) COMMS

- Highly portable, frequency hopping for security
- Cost effective ionosphere is free
- Any individual channel vulnerable to SpW
- Multiple channels reduce vulnerability [1]
- Situational awareness improves channel selection [1]
- Especially during major SpW events see below:

CASE 2 – SATCOM

- Ionospheric scintillation degrades signals up to at least S-band
- Can lose phase lock (also GPS) Noo
- Important at low and high latitudes see right

Rising flux during anomaly

202 keV electrons / GEO

Time from anomaly (Mrs)

> 500 anomaly cases

Data: MSSL

- Discharges cause anomalies (see right) and damage
- Also subject to radiation effects
 - Single event upsets and worse
 - Degradation of electronic circuits

WHAT CAN WE DO ABOUT IT?

- Ideal is to mitigate space weather problems by engineering design
- requires **specification** of relevant SpW environment and **modelling** of its interaction with system at risk
- But full mitigation is rarely feasible
 - mix engineering & situational awareness to handle problems
 - requires **nowcasting/forecasting** of SpW
- We also need **post-event analysis** of SpW problems
- to learn from problems improve operational procedures
- to assess performance against formal requirements

- All approaches involve modelling of space weather environments as shown above
- Physics-based modelling preferred (enables better understanding of engineering margins) otherwise must use conservative statistical models (large margins)
- Focus for knowledge transfer is **adaptation of models** from science to engineering use
- Key opportunity for PPARC community improve physics understanding behind SpW and feed this into better models
- Vital to raise industry & policy-maker awareness of capabilities within the community

CASE 3 – IONOSPHERIC RADIO RAY TRACING

- Ray tracing central to many applications:
- HF, satcom and GPS (as cases 1 & 2)
- Advanced applications (right)
- Accuracy depends on ionospheric models
- Good SpW modelling essential, especially during major SpW events
- Piot of Raypoth output

 5 150

 5 150

 6 200

 400 range / km 800 800 1000

Advanced applications:

- over-the horizon radar
- single-station location direction finding
- jamming and interception vulnerability estimation,
- tracking of satellites/orbiting debris/ballistic projectiles
- satellite geolocation of VHF transmitters,

EUROPEAN PERSPECTIVE

- COST actions for scientific research
- 296 ionosphere & radio
- 724 space weather prediction
- Space Weather Working Team for applications
- **DIAS network** for ionospheric monitoring
- ESA encouraging technical networks where it has remit
- Pilot SpW applications via **SWENET**

REFERENCES

1.Goodman, J.M. et al, 2006, Practical measures for combating communication system impairments caused by large magnetic storms, Radio Science 41, doi:10.1029/2005RS003404.