
Council for the Central Laboratory of the Research Councils

CAE and Computational Chemistry
Application Performance I: Benchmark Studies
Using Object-Based, InfiniBand-Connected Storage

Miles Deegan, Mark Kelly, Michael Lough, Sharon Shaw and R. Kent Koeninger.

October 2006

DL-TR-2006-008

© 2006 Council for the Central Laboratory of the Research Councils

Enquiries about copyright, reproduction and requests for additional copies of this
report should be addressed to:

Library and Information Services
CCLRC Daresbury Laboratory
Daresbury Warrington
Cheshire WA4 4AD
UK
Tel: +44 (0)1925 603397
Fax: +44 (0)1925 603779
Email: library@dl.ac.uk

ISSN 1362-0207

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

 1

CAE and Computational Chemistry

Application Performance I:

Benchmark Studies Using Object-Based, InfiniBand-

Connected Storage

Miles Deegan1, Mark Kelly2, Michael Lough2, Sharon Shaw2 and R. Kent Koeninger2.

Abstract

The I/O performance of internal disks in thin servers used in typical HPC Linux clusters can

be inadequate for scratch I/O intensive applications in fields such as Computer Aided

Engineering (CAE) and Computational Chemistry (CC). Examples of such codes are:
MSC.Nastran and ABAQUS (CAE); NWChem (CC). A common approach to providing I/O

facilities for applications such as these has been to add direct-attached external disk arrays on

distributed servers to meet their requirements. Distributed direct-attached storage increases

complexity, adds cost, reduces reliability, and creates specialized node types that are more

difficult to schedule.

New object-based storage techniques using high-speed cluster interconnects may be efficient

for both permanent-shared and temporary-scratch storage requirements, thus improving the

cost and ease of use of the compute clusters.

This initial study – a collaboration between CCLRC Daresbury Laboratory and HP’s HPC

Division - will measure the performance and throughput of object-based storage with an

InfiniBand fabric to ascertain whether such an architecture is a viable alternative to

distributed-internal or external-direct-attached storage in thin-client Linux clusters.

1
 Distributed Computing Group, CCLRC Daresbury Laboratory, Warrington, UK.
2
 High Performance Computing Division, Hewlett-Packard Corp.

 2

1. Introduction

Previous I/O benchmark studies have tended to measure the maximum bandwidth one can

demonstrate with synthetic I/O benchmarks such as IOzone
3
 . This study will revisit IOzone

performance and in addition use a mixture of commercial ISV and academic/government-
developed applications for which users tend to purchase thin-client Linux clusters. We

present data which will demonstrate how various I/O architectures affect the run time and

throughput of these applications, and whether or not Object-based Storage Device (OSD)

solutions (such as Lustre™) can improve the throughput and ease of use of Linux clusters and

reduce the total cost of ownership (TCO).

The CAE and CC applications we have benchmarked are: MSC.Nastran
4
 and ABAQUS

5

(CAE), plus NWChem6 (CC).

To date many HPC sites have deployed DAS-JBOD (direct attached storage to just a bunch of

disks) on each server to meet scratch I/O performance requirements. They may augment this

DAS-JBOD approach with centralized RAID-protected NFS or object storage for shared and

permanent data. We investigate the replacement of such DAS-JBOD and NFS services with

InfiniBand-connected object storage while maintaining equivalent performance for a widely

used set of applications.

The Infiniband-connected object storage used in this study is HP SFS. HP SFS is largely

based on Lustre™, an open source standard protocol and reference code initially written by

Cluster File Systems, Inc. (CFS)
7
. HP SFS represents a transformation of the open source

Linux distribution into an appliance that is easy to install, manage and use. The major
components of SFS are data servers (each server is an Object Storage Server, or OSS), a

metadata server (MDS), an LDAP (Light-weight Directory Access Protocol) server, and one

or more network fabrics. The network fabric integrates the other hardware components and

any clients (cluster compute nodes) that will use SFS. LDAP is an open and commonly used

3 IOzone is a popular filesystem benchmark that generates and measures a variety of file operations.

For more information see http://www.iozone.org.

4
 MSC.Nastran is a powerful general purpose finite element analysis solution. For more information

see http://www.mscsoftware.com.

5
 ABAQUS, Inc. is one of the world's leading providers of software for advanced finite element

analysis. For more information see http://www.ABAQUS.com.

6
 NWChem 4.7 Production version: Aprà, E.; Windus, T.L.; Straatsma, T.P.; Bylaska, E.J.; de Jong,
W.; Hirata, S.; Valiev, M.; Hackler, M.; Pollack, L.; Kowalski, K.; Harrison, R.; Dupuis, M.; Smith,

D.M.A; Nieplocha, J.; Tipparaju V.; Krishnan, M.; Auer, A.A.; Brown, E.; Cisneros, G.; Fann, G.;

Fruchtl, H.; Garza, J.; Hirao, K.; Kendall, R.; Nichols, J.; Tsemekhman, K.; Wolinski, K.; Anchell, J.;

Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood, D.;

Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh, R.; Lin,

Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.; Rosing, M.; Sandrone, G.; Stave, M.;

Taylor, H.; Thomas, G.; van Lenthe, J.; Wong, A.; Zhang, Z.; "NWChem, A Computational Chemistry

Package for Parallel Computers, Version 4.7" (2005), Pacific Northwest National Laboratory,

Richland, Washington 99352-0999, USA.

"High Performance Computational Chemistry: An Overview of NWChem a Distributed Parallel

Application," Kendall, R.A.; Apra, E.; Bernholdt, D.E.; Bylaska, E.J.; Dupuis, M.; Fann, G.I.; Harrison,

R.J.; Ju, J.; Nichols, J.A.; Nieplocha, J.; Straatsma, T.P.; Windus, T.L.; Wong, A.T.; Computer Phys.

Comm. 2000, 128, 260-283.

7
 For more information see http://www.clusterfs.com.

 3

standard for managing configuration and security information. The SFS MDS and OSS

components store the separated file metadata and data, respectively. Disk arrays comprise the

underlying storage medium for both OSS and MDS nodes. With the OSS nodes, there is a

further level of abstraction with disk arrays being arranged into groups called Object Storage

Targets (OSTs) – actual file data will be stored on one or more OSTs. On SFS, from a user’s
perspective, file data is striped across a number of OSTs using a fixed stripe size and by using

a round-robin algorithm for picking the first OST to use (the default number of stripes and

stripe size are configured during SFS installation). User-level tools are provided for

modifying the striping configuration on file or sub-directory levels.

This investigation compares run times using internal disks, an external striped (RAID 0)

storage array (DAS-JBOD), and HP SFS storage connected over InfiniBand (IB). We will

determine which of these I/O-intensive applications run with similar run times using HP SFS

in place of the DAS-JBOD and local scratch disks, and test throughput limits with multiple

instances of the same applications running in parallel on a shared HP SFS storage appliance.

2. Systems’ Details: Configurations, data and storage layout, and software stacks

Benchmarks were conducted on two AMD Opteron-based Linux clusters located within HP

facilities in the United States. The thin client nodes (128 of them) were HP ProLiant DL145

G2 servers – 4 core SMPs (two dual-core 2.2 GHz Opteron sockets), 8 GB of RAM. Local

storage on the servers comprised either two internal, two-way striped, 10K RPM 146 GB

SCSI disks (2 jobs per host MSC.Nastran and 4-way parallel ABAQUS), or one internal 7.2

K RPM 80 GB SATA disks (NWChem).

The DAS-JBOD storage used consisted of the same ProLiant servers with a StorageWorks

MSA30 array, with I/O striped across ten 15K RPM 72 GB SCSI JBOD disks (RAID 0)

attached with dual StorageWorks Smart Array SA6402 SCSI controllers.

(Note: the benchmarks for the internal-disk and DAS-JBOD test were timed on individual

servers. The results are assumed to scale linearly across multiple servers, given no shared

components to limit the scalability.)

Details of the HP SFS connected storage configuration are as follows. The InfiniBand

network was provided by a single core switch (Voltaire SDR) with 288 ports. The HP SFS

server consisted of eight object-storage servers (OSSes) and one active metadata server

(MDS). Each OSS was a single ProLiant DL380 with 4 StorageWorks SFS20 disk arrays.

Each SFS20 included two 320 MB SCSI cables (one active, one passive), twelve 250 GB,

7200 RPM SATA drives and one StorageWorks (RAID 5) controller – nine data disks, one

parity disk and two spares. The SFS20 arrays were striped using Lustre™ OSTs. The MDS

was a single ProLiant DL380 server with two StorageWorks SFS20 disk arrays, and each

SFS20 array included two 320 MB SCSI cables (one active, one passive), twelve 250 GB,

7200 RPM SATA drives and one StorageWorks controller. On the MDS, the SFS20 arrays

were mirrored (RAID 1) for maximum resilience.

The cluster software was HP XC system software version 3.0 (RC3 20051218), which is

binary compatible with Red Hat Enterprise Linux 4 (RH EL4). The InfiniBand firmware and

driver were from Voltaire release v3.4.5_24. EXT2 and EXT3 filesystems were tested on the

internal and DAS-JBOD disks. The HP SFS software was version 2.1, based on Lustre™

version 1.4.2 from Cluster File Systems Inc., with selected modules from releases 1.4.3, 1.4.5,

and 1.4.6.

In terms of applications, we used version 2005r2 of MSC. Nastran, ABAQUS 6.5-5, and

NWChem version 4.7.

 4

3. Benchmarks

i. Introduction

For background information on the storage hardware performance we used the IOzone
synthetic benchmarks to measure well-behaved, large-block I/O bandwidth on the three

architectures in question: internal disks, DAS-JBOD, and HP SFS. We measured the HP SFS

bandwidth with parallel I/O from one to thirty-two servers with one instance of IOzone

running on each server.

A starting point for each application’s performance was established with up to two-way

striped internal SCSI disks on an individual ProLiant server (with the exception of NWChem

– see below). We compared these timings to run times using DAS-JBOD on a similar server

and selected applications where the run times improved significantly.

We then compared these timings to run-times using HP SFS storage. We increased the

number of parallel applications running until we saturated the given HP SFS storage

performance capacity.

For MSC.Nastran, we report runs with two serial (non-parallel) instances per compute server

(per SMP). We saw similar run times with one and two instances per server. Running four

instances delivered slower run times, regardless of the storage configuration, potentially

masking the storage-performance differences. We assume interactions in the SMP other than

storage speed contributed to this non-linear scalability for four-instances per SMP. To avoid

the effects of this extraneous variable we only reported runs with two instances per SMP.

For ABAQUS we used one instance running 4-way parallel per server across multiple servers

simultaneously.

NWChem is parallelized with the Global Arrays toolkit
8
 which gives a portable and efficient

“shared memory” interface for distributed memory parallel computers. The underlying

communications are carried out using HP-MPI, but I/O is not done via MPI-IO, but rather
PNNL’s EAF libraries9. We benchmarked the code’s semi-direct (i.e. out of core) MP2

gradient module and produced benchmark data for 2 and 4 processes per 4-core server.

ii. Synthetic Benchmark I/O Bandwidth

The goal of this study is to measure how different I/O hardware effects real application

performance. As an initial step it is useful to establish the theoretical performance of the I/O

hardware for well-behaved I/O. These are high-watermark benchmarks that are not

necessarily achievable by CAE and CC applications.

We used the IOzone benchmark to measure high water marks for bandwidth for well-behaved

I/O patterns. For the two-way striped internal SCSI disk configuration, the disks could be

read at 91 megabytes-per-second (MB/s) and written at 84 MB/s, per server. For the single

internal SATA disk configuration, the disk could be read at 48 MB/s and written at 23 MB/s,

per server. The DAS-JBOD disks could be read at 323 MB/s and written at 240 MB/s, per

server.

The I/O rates on this distributed hardware are assumed to scale linearly with the number of

servers given no shared components among the servers. This would be an aggregate of

roughly 2.8 GB/s writing to the two-way striped internal disks in 32 servers and roughly 7.5

8 http://www.emsl.pnl.gov/docs/global/ga.html
9
 http://www.emsl.pnl.gov/docs/parsoft/chemio/EAFapi.html

 5

GB/s aggregate bandwidth writing to DAS-JBOD external disks on 32 servers with one disk

array per server (32 disk arrays total). A comparable HP SFS server with 32 disk arrays (8

OSSes with four SFS20 arrays per OSS) sustained roughly half the DAS-JBOD rate: 3.2 GB/s

aggregate write performance.

Note the DAS-JBOD array use simple striping without RAID-parity protection which tends to

deliver substantially higher bandwidth than a similar set of RAID 5 protected disks. This is

true when comparing these DAS-JBOD arrays (323 MB/s for read and 240 MB/s for writes)

with the RAID 5 SFS20 arrays rated at 190 MB/s for reads and 130 MB/s for writes.

As expected, the aggregate performance and performance per server of the shared HP SFS

storage varied with the number of servers simultaneously accessing the shared storage. The

following table shows the aggregate bandwidths in MB/s for the HP SFS storage appliance

(“agg” column). The per-host bandwidths, also in MB/s, are also shown in the table (“avg”

column). As expected the aggregate bandwidth increased as more servers accessed the storage

appliance simultaneously. The theoretical hardware write bandwidth limit was near 3.2 GB/s

and using IOzone we were able to meet this limit with 32 hosts, each simultaneously running

one instance of IOzone. We also note that with up to 8 simultaneous hosts, the per-host HP

SFS write bandwidth was faster than the 240 MB/s measured for the DAS-JBOD write

bandwidth.

hosts

agg avg agg avg agg avg agg avg agg avg agg avg

read 225 225 456 228 896 224 1770 221 3610 226 4580 143

write 295 295 600 300 1120 280 2092 261 2402 150 3284 103

16 321 2 4 8

iii. MSC.Nastran

The MSC.Nastran standard benchmark XXCMD is a eigenvalue solution of the natural

frequencies of an automotive body up to 200 Hz. It uses less than 1 GB of memory but reads

and writes over 2.4 TB of I/O in a 43 GB file footprint. The Lanczos method used a block

size of 7 and calculated 1073 roots in 384 solves of 10 decompositions (shifts).

The performance ratios quoted in the following paragraphs are for comparisons to timings

using internal disks. All timings are graphed in the following figure:

 6

MSC.Nastran benchmark XXCMD
2 jobs per host

0

5000

10000

15000

20000

25000

30000

1 (2) 2 (4) 4 (8) 8 (16) 16 (32) 32 (64)

hosts (# jobs)

ti
m
e
 (
s
e
c
)

(s
m
a
ll
e
r
is
 b
e
tt
e
r)

HP-SFS

MSA30 (10
external striped
SCSI disks)

2 internal striped
SCSI disks

With two jobs running on a single-server, both external DAS-JBOD and HP SFS

demonstrated performance improvements over running with two-way striped internal disks:

1.56 and 1.44 times faster, respectively. The HP SFS performance ratios remained fairly

constant up to 8 hosts running 16 jobs concurrently: 1.37 times faster than using two internal

disks. With 16 and 32 hosts the run times began to slow down but continued to deliver

improvements over using two internal disks: 1.31 and 1.17 times faster, respectively.

(The ratio using DAS-JBOD was assumed to be constant at 1.56 times faster given its shared-

nothing storage hardware and filesystems.) In the shared nothing tests no additional time was

considered for transferring any input data from separate permanent storage to node-local
storage or transferring any output results data from node-local storage to separate permanent

storage. In some cases this data and transfer time could be significant and could affect the

shared nothing solution times negatively.

Additional tests were conducted on the same system using a four-way internal SCSI stripe

with 8 GB of memory and also with only 4 GB of memory installed. Performance differences

(with 8 GB of memory) to the two-way internal disk configuration were noticeable
(approximately 1.12 times faster) but since four drives can not fit into a thin client system this

configuration was not given as much consideration. It is interesting to note that repeating the

two jobs per host with four internal SCSI disks test on a system with only 4 GB of memory

shows a dramatic slowdown in runtime to over 120,000 seconds, which is 4.8 times slower

than the same test with 8 GB of memory. Two jobs, each with a memory footprint of

approximately 1 GB, will not cause paging on a 4 GB system. Consequently, this observed

slowdown illustrates how effective additional memory can be when used as a file cache by the
operating system.

We conclude that HP SFS central storage was able to sustain reasonable throughput for a

reasonable number of simultaneous I/O intensive MSC.Nastran runs with run times close to

those of the external DAS-JBOD disks.

 7

iv. ABAQUS

The ABAQUS standard benchmark, ABAQUS/Standard S2, is an eigenvalue analysis of a

stiffened plate that is solved using the Lanczos eigensolver. This problem is dominated by
I/O, since each Lanczos iteration requires backward passes, which are I/O bound, on the

decomposed and shifted stiffness matrix. All timings discussed for S2 are graphed in the

figure below.

The 4-way SMP-parallel ABAQUS benchmark was I/O intensive and, when compared to

running on a single internal SATA disk, it ran 1.8 times faster on the 2-way striped internal

SCSI disks and 2.2 times faster on the 10-way striped MSA30. In each of these scenarios,

both the permanent job and scratch I/O data resides on the node-local file system. It should be

noted that the permanent job data for a single instance of this ABAQUS benchmark amounts

to over 3.5 GB. In the figure below, we assume these single server results scale linearly across

multiple servers. This may be an optimistic assumption for this ABAQUS benchmark since

all permanent job data remains on node-local storage and some of that may need to be copied

off onto some shared file system for subsequent processing.

With both the permanent job and scratch I/O on HP SFS, the runs were between 2.1 and 1.8

times faster than the run on a single internal SATA disk, for between 1 and 16 simultaneous

jobs, respectively. HP SFS runs were faster, or equally as fast, as the 2-way striped internal

SCSI disks for up to 16 simultaneous jobs. Thus an eight-OSS HP SFS delivered good I/O

performance for all ABAQUS I/O for ABAQUS running up to 64 cores (four per SMP). In

contrast to the jobs run with node-local storage, after these SFS jobs complete, all permanent
job data is already on a shared file system (HP SFS).

ABAQUS Standard 6.5 Benchmark S2 4-way

Parallel (setstripe=16)

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

1:55:12

2:09:36

2:24:00

1 2 4 8 16 32

of hosts

H
r:
M
in
:S
e
c HP SFS

1 internal SATA disk (EXT2)

MSA30 (10 external striped

SCSI disks)

2 internal striped SCSI disks

During installation, the default settings for SFS are to configure it with stripe width of 1, i.e.,

without further user interaction any file created will reside completely on a single OST. This

configuration setting is optimal for a cluster, as it maximizes aggregate bandwidth for the file

system. On the other hand, an application that reads or writes data in a single stream may

 8

benefit from striping its files across a number of OSTs. For the ABAQUS S2 benchmark it

was found that striping the output files (both permanent job and scratch data files) across 16

OSTs was optimal. This setting was used for all the ABAQUS throughput runs on SFS. We

now believe that using this setting may have contributed to the relatively poor scaling

performance for 32 hosts. When running in throughput mode, with this setting, there will be
high contention for resources at the OST level – a single OST may have to service an I/O

request from every host. I/O requests that are small and/or random will make matters worse.

To investigate this a bit further, we reran a single instance of the ABAQUS job under the

Linux “strace” tool to monitor all system calls during a normal run (including all I/O requests).

We found that one of the permanent job files, the so-called “.odb” file, had the creation

features that suffer significantly from contention issues, as we shall illustrate now. In the

following figure we illustrate the volume of data that is written to and read from the “.odb”

file during a run.

0

32B

1KB

32KB

1MB

32MB

1GB

32GB

0 500 1000 1500 2000 2500 3000 3500 4000

da ta w ritten (cumula tive)

Time (seconds)

da ta read (cumula tive)

As can be seen, this file exists for the duration of the run, but it is in the final stages of the run

that most of the data (over 1 GB) is written to the file. In our next figure we plot a histogram,

showing the frequency of read and write requests versus request size, for the same “odb” file:

 9

1x10 0

1x10 1

1x10 2

1x10
3

1x10 4

1x10
5

1x10 6

1x10
7

1x10 8

1B 4B 16B 64B 256B 1KB 4KB 16KB

read/ w rite request size (bytes)

w rite

read

N
u
m
b
e
r
o
f
re
a
d
/
w
ri
te
 r
e
q
u
e
s
ts

w rite tota l = 1713075

read tota l = 6308

This shows that there are about a million write requests of size 8 bytes, a further half a million

write requests of size 2 KB, and all requests are small in size (none that exceed 16 KB in size).

Finally, it is worth pointing out that most read and write requests appear after an lseek

command and illustrates that, for this “.odb” file, access is quite random (i.e., not in large

sequential blocks). In the final figure of this section we plot a histogram of frequency of

lseek requests versus request size:

lseek
tota l = 1150129

1x 10 0

1x 10 1

1x 10 2

1x 10
3

1x 10
4

1x 10 5

1x 10 6

1x 10 7

-1TB -1GB -1MB -1KB 0B 1KB 1MB 1GB 1TB

N
u
m
b
e
r
o
f
ls
e
e
k
 r
e
q
u
e
s
ts

rela tive change (in bytes) in file pointer a fter lseek
There are a substantial number of requests to lseek forward and backward by more than 1

GB. However, most of the requests (~1 million) are to lseek forward by more than 1 MB.

The SFS is configured with a stripe size of 1 MB, so it should be clear that most of the

lseek requests will force the file pointer to switch continuously between different file

system stripes (OSTs).

 10

v. NWChem

We chose the code’s semi-direct MP2 gradient module to benchmark since calculations on

even modest sized molecular systems will result in considerable I/O requirements due to the
inherent scaling properties of the algorithm.

We have adapted PNNL’s benchmark for a cluster of 7 water molecules10 by increasing the

size of the basis set cf. the original in order to ensure more exacting tests of the I/O options

available to us. The original basis (Dunning’s aug-cc-pvdz) results in a total of 287 basis

functions; our choice (Dunning’s cc-vqz) results in 805 basis functions. The amount of

scratch data generated scales roughly as the fourth power of the number of basis functions

(and compute requirements scale as the fifth power).

The MP2 gradient code was originally designed with distributed memory MPPs (with local

scratch disks available to each compute node) in particular in mind, e.g. early IBM SP

systems. Each process reads/writes its own exclusive access scratch files. These exclusive

access files are essentially the same size across the cluster due to the dynamic load balancing

within the algorithm.

These design considerations, coupled with the size of our adapted benchmark resulting in the

inability to either fit the run into a small number of nodes and/or complete the job within a

reasonable length of time (note the scaling properties of the algorithm above), meant we have

not so far carried out measurement of performance on a single server with two-way parallel

internal disks or an MSA30 DAS-JBOD array.

Performance figures from our initial investigations are encouraging. The table below

summarizes the CPU time, and wall times for both local scratch and HP SFS for runs using

between 16 and 128 processes. In addition we are able to compare the effect of running the

code with two and four processes per DL145 G2 server. Little difference in the CPU times for

n processes with 2 and 4 processes per server suggests memory bandwidth contention is not

an issue. Contention for disk resources is a different matter. We observe the superior overall
scaling of HP SFS with a considerable difference for lower process counts and for fully

populated runs (all cores on a server in use).

10
 http://www.emsl.pnl.gov/docs/nwchem/benchmarks/index.html

 11

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

time

16 & 4 16 & 8 32 & 8 32 &

16

64 &

16

64 &

32

128 &

32

128 &

64

number of processes/servers

NWChem MP2 Gradient (H20)7 cc-vqz basis

CPU time local scratch wall time SFS wall time

Resrouce constraints have resulted in CCLRC/HP being unable to provide data for larger test

cases at this time. In follow-on papers we intend to rectify this and extend the current study to

include data for the (H2O)7 benchmark with larger basis sets, and for other molecular systems,

for the following reasons:

• As the amount of scratch data increases, and therefore the size of each process’s

scratch files increases, it is likely that the poor scaling of the local scratch approach cf.

SFS for lower process/node counts will extend to higher process/node counts. This is

due to written files becoming too large to be cached, with the result that performance

of subsequent reads is likely to degrade considerably. We expect to observe less

degradation in performance, and therefore less difference between CPU and wall

times, for runs using SFS;

• Cutting-edge problems of real scientific interest are likely to involve larger basis sets

(and/or more atoms) than our test case, and therefore further, larger tests are likely to

be more informative and relevant for the user community.

Discussion and Conclusions

This study demonstrates Lustre™-based storage accessed via a fast InfiniBand fabric is not

only useful for rapid access to permanent and shared files but can also be used by certain I/O

intensive CAE and CC applications for scratch I/O purposes. In these cases the additional

costs incurred when deploying an InfiniBand-based Lustre™ infrastructure are offset by the
avoidance of installing and maintaining additional directly attached disk arrays and/or

additional internal disks for each compute server. (Moreover, an architecture featuring DAS-

JBOD arrays will tend to be underutilized if some of its workload features applications with

 12

no scratch I/O needs, whereas as the HP SFS will see higher utilization as it provides for

permanent, shared storage requirements as well.)

Further benchmarking studies for these and other applications from areas outside of CAE and

CC are required before we are in a position to carry out a thorough, quantitative total cost of
ownership (TCO) analysis, but these initial studies do suggest that an InfiniBand-based

implementation of Lustre™, in this case HP SFS, is capable of providing a high performance,

cost-effective alternative to the storage architectures often deployed at HPC sites today.

Of course the number of simultaneous I/O intensive processes/jobs is limited by the speed of

the centralized storage server with this approach. However, such object-based storage

generally scales well as one increases the number of OSSes; the architecture is expandable

and can be sized to sustain throughput for a larger number of simultaneous CAE and CC runs

– performance can be scaled up to tens of GB/s compared to the moderate eight-OSS HP SFS

server studied in this paper (but additional capital outlay is required obviously). In future

papers we intend to investigate the scalability of runs using smaller and larger HP SFS servers

for these and other applications.

Our initial investigations point to the following conclusions, some of which could be

strengthened with additional data (including investigations of numerous striping strategies),

and analysis (ABAQUS in particular):

• Compared to using internal disks in the servers, HP SFS has the potential to

dramatically increase the throughput of I/O intensive applications, such as

MSC.Nastran, ABAQUS, and NWChem;

• Compared to using external DAS-JBOD arrays, HP SFS can sometimes match the

performance with good throughput for a reasonable number of simultaneous jobs.

Prior to this study, vendors such as HP have typically recommended the OSD approach for

large and fast storage in general but not necessarily as a replacement for local scratch and/or

DAS-JBOD in the context of high-demand scratch I/O production application environments.

For example, to our knowledge PNNL’s HP SFS Lustre™ server is not used for such

purposes and NWChem jobs similar to the ones presented above are only ever run using local

scratch disks. We expect this study will help change perceptions and lead to adoption of the

OSD approach for these purposes by HPC sites which deploy thin-client Linux clusters for

production work in areas such as CAE and CC.

Acknowledgements

We wish to thank MSC Software Corporation for the use of MSC.Nastran software,

ABAQUS, Inc. for the use of their software, and Pacific Northwest National Laboratory

(PNNL) for the use of NWChem.

In addition we thank colleagues at HP – Eamonn O’Toole, Gavin Brebner and Mark Koenig –

for helpful discussions and guidance.

www.cclrc.ac.uk

Council for the Central Laboratory of the Research Councils
Chilton, Didcot, Oxfordshire OX11 0QX, UK

Tel: +44 (0)1235 445000 Fax: +44 (0)1235 445808

CCLRC Rutherford Appleton
Laboratory
Chilton, Didcot,
Oxfordshire OX11 0QX
UK

Tel: +44 (0)1235 445000

Fax: +44 (0)1235 44580

CCLRC Daresbury Laboratory
Keckwick Lane
Daresbury, Warrington
Cheshire WA4 4AD
UK

Tel: +44 (0)1925 603000

Fax: +44 (0)1925 603100

CCLRC Chilbolton Observatory
Drove Road
Chilbolton, Stockbridge
Hampshire SO20 6BJ
UK

Tel: +44 (0)1264 860391

Fax: +44 (0)1264 860142

