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Gigabit Ethernet – an HPC interconnect? 

 I: Findings from synthetic benchmark studies 
 

Richard Wain
*
, Miles Deegan*, Gabriel Sallah**§, Martyn Guest*, Christine Kitchen*, Igor 

Kozin* 
 

Abstract 

 

The Message Passing Interface standard (MPI) is currently the most common programming 

model deployed by the HPC community to parallelise a wide range of applications in 

computational science and engineering for distributed memory architectures.  

 

For mid-range/capacity HPC, clusters of servers based on commodity technologies (x86 

typically) and commodity interconnects such as Gigabit Ethernet are widely deployed. Whilst 
higher performance (and higher price) interconnects such as Myrinet have been shown to be 

essential for some classes of HPC applications, it is thought that Gigabit Ethernet is an 

adequate, cost-effective approach for a wide range of codes. 
 

Our investigations show that the performance of MPI applications on typical Gigabit 

Ethernet clusters can vary dramatically depending on a number of factors concerned with 
choice of hardware and software, and that in some cases performance can be so poor and 

unpredictable, at even modest process counts, that a more sensible and cost-effective strategy 

may be to invest either in proprietary MPI libraries, very specific Ethernet switch 

architectures, or higher performance interconnects instead. 
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1. Introduction 

 

The introduction of ‘Beowulf clusters’ – clusters of commodity servers or PCs first with Fast 

Ethernet and then Gigabit Ethernet (GbE) interconnects – has led to a marked increase in 

access to affordable parallel computing facilities for researchers over the last decade. Prior to 
this, scientists with HPC needs were reliant on limited access to expensive, often remote, 

centralised resources based on proprietary RISC or vector technologies.  

 
During this period the HPC community – users and vendors – came together to define and 

implement, and then refine and expand on, a standard for the message passing model for 

distributed memory parallel computers, namely MPI-1
1
 followed by MPI-2

2
. Coupled with 

these developments, the advent of free, or relatively cheap, open source operating systems 

(Linux in particular) and associated compilers, libraries, middleware etc. has led to HPC sites 

procuring systems with increasingly lower up-front capital costs for a given level of peak 

performance. (Whether or not such facilities improve scientific productivity and total cost of 

ownership (TCO)/return on investment (ROI) is dependent on a range of other factors and 

requires detailed further analysis.) 

 
These trends are reflected in the statistics for entries in the ‘top 500’ list3. The earliest entry 

on the list for a GbE system was November 2001 with 1 machine (0.2% of the list).  The 

latest list (June 2006) has 256 GbE entries (51.2%). During this period we have seen market 

share gains followed by losses for both Myricom and Quadrics. Near-future lists are likely to 

feature a few systems at the top end with proprietary interconnects (e.g. Cray’s XT3 and 

follow-on, IBM’s Blue Gene etc.), and the vast majority of systems deploying GbE (and 

increasingly10 GbE) or InfiniBand, with Quadrics and Myricom perhaps set to lose further 

market share (although the 10 GbE interoperability their recent products offer may help stave 

off decline).  
 

Similarly the adoption of Linux has been rapid and has gone from 7.8% of systems in 

November 2001 to 73.4% of systems in June 2006.  Statistics for day-to-day usage of these 
systems are not as informative, due to a lot of sites not wishing to disclose this information for 

a variety of reasons – commercial and classified – with 63.2% of systems deployed for 

unknown applications. Therefore it is hard to draw conclusions as to how the GbE clusters 
featured on the list are used in production mode, and whether or not the production 

applications run on them are effectively a stress test for the GbE interconnect. 

 

A considerable amount of benchmarking data has been produced for GbE clusters previously, 

and attempts have been made to understand factors that influence performance and to tune the 

appropriate system components. For the sake of brevity, we will not review all of this work 

here, but remark that these studies have tended to have a different or more narrow scope than 

the present effort. For example, that of Celebioglu et al.4 concentrates on comparing 

performance of three GbE adaptor device drivers but with only one flavour of MPI library 
(MPICH-1.2.5), a single GbE switch and kernel version. Other studies such as that of Vinter5 

concentrate on comparing three implementations of MPI: LAM, MPICH and MESH-MPI6, 

but without exploring different kernel versions, compiler types etc. Vinter’s paper does 
attempt some TCO/ROI analysis and provides estimates of the intrinsic value a good quality 

MPI implementation can bring per server.  

                                                
1
 http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html 
2 http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html 
3
 http:/www.top500.org 
4
 http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/PDF04/23-Celebioglu_O.pdf 
5
 http://wotug.org/paperdb/send_file.php?num=113 
6 http://www.meshtechnologies.com/text/PDF/MESH-MPI_White_Paper.pdf 



 3 

Some previous efforts carried out in this area have ignored collective operations and 

concentrated on maximizing performance of the marketing numbers (PingPong latency and 

asymptotic bandwidth), and/or not included high enough process counts (it is difficult to draw 

useful conclusions from benchmarks carried out on just a handful of nodes). 

 
Of those studies which have looked at the performance of collective operations for more than 

a handful of nodes, the conclusions have tended to suggest that closely-coupled 

(communication intensive) applications will not scale on Gigabit Ethernet connected clusters 
much beyond 32 and certainly 64 processes, and users with such needs should invest in 

alternatives such as Myrinet, Quadrics, or in more recent times, InfiniBand. One aim of the 

present study is to recheck these assertions. 

 

Moreover, there is a need to regularly revisit these types of studies due to changes in 

hardware, e.g. new servers, GbE switches not previously available, and previously untested 

combinations of software - new MPI libraries and compilers, new Linux kernels with altered 

TCP stacks. 

 

This study will not include an assessment of recent GbE technologies which promise lower 
latencies (which implies improved performance for the MPI functions we are testing). 

Examples of such technologies include the Level5 Networks/Solar Communications’ 

EtherFabric PCI-X/PCIe NIC (which will of course incur increased capital outlay). We may 

go on to look at such adaptors in a future study, but it is far from certain whether such 

approaches will be accepted by the market. Already we have seen the demise of Ammasso 

Inc., a company with offered an offload technology to provide Ethernet with a RMDA 

capability.  

 

We intend to monitor further developments in the area of RDMA for Ethernet, the most 
promising probably being the iWARP approach7, now part of the Open Fabrics Alliance 

effort8 which aims to drive the adoption of common software stacks in the Ethernet and 

InfiniBand arenas. Right now however, the technology is probably a little immature for 
benchmark assessment purposes. 

 

In terms of MPI libraries we have examined widely used open source implementations – 
MPICH9 and LAM10 – along with a commercial, proprietary alternative – Scali MPI11. These 

are of course not the only options available to us, but time and resource constraints dictate 

that for now our efforts be directed towards assessing these libraries. Future efforts will 

rectify this and look the likes of Open MPI12 in particular as it is built from elements of LA-

MPI, LAM-MPI, FT-MPI and PACX-MPI and will eventually supersede these. Additionally 

we acknowledge the potential performance gains due to lower latencies offered by the likes of 

the SCore MPI libraries13 and OS-bypass approaches such as GAMMA (The Genoa Active 

Message MAchine)/MPI14. We will rectify this in a future study, and examine SCore MPI in 

particular. 
 

We will in future also provide data for benchmarks carried out on more up to date hardware 

including clusters based on Intel platforms, especially as Intel produces its own GbE adaptors 
and associated drivers – factors that are sure to affect performance. However, as the HPC 

                                                
7
 http://www.iol.unh.edu/services/testing/iwarp/ 
8
 http://www.openfabrics.org/ 
9
 http://www-unix.mcs.anl.gov/mpi/mpich1/ 
10 http://www.lam-mpi.org/ 
11
 http://www.scali.com/ 

12
 http://www.open-mpi.org/ 

13
 http://www.pccluster.org/ 

14 http://www.disi.unige.it/project/gamma/ 
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market’s adoption of Opteron-based servers with Broadcom GbE adaptors over the last 2-3 

years has been rapid, we feel the present choice of server platform for benchmarking analysis 

is an appropriate one. 

 

We focus on assessing typical configurations of GbE compute clusters based on 1U ‘pizza 
box’ x86/x86-64 servers with on-board generic GbE adaptors, common GbE switches and 

widely used combinations of MPI libraries and compilers, for a range of MPI collective 

functions used in a wide variety of applications, and at modest process counts: 16 and 32 (a 
regime in which GbE performance might be expected to be adequate); and the more taxing – 

64 processes. 

 

For now, we have made no attempt to optimize the various system components above. Instead 

we have built libraries with recommended compiler switch settings where available; we have 

taken Ethernet switches straight out of the box with firmware etc. as supplied to us. Our focus 

has been on how we believe such clusters are typically setup and deployed at HPC sites (in 

the UK at least) by Tier 1 vendors and/or their Integrator/OEM partners, or end-users ‘rolling 

their own’. In fact, we will report in a follow-on paper that such optimization efforts are not 

necessarily straightforward and may be time consuming – work that may ultimately have to 
be done on a per application basis. 

 

In addition we will in the follow-on paper on how ‘real-world’ applications’ performance 

correlates with the findings in this present study. Moreover, in a further paper we will report 

our findings from an in-depth study of the statistical properties of MPI network traffic at the 

packet level and its implications for performance. 

 

In the present study we aim to highlight what we believe are reasonable performance 

expectations for typical GbE cluster configurations, how this information can then be used as 
input into a TCO analysis, and how this in turn affects the choice as to whether or not to 

purchase proprietary MPI libraries, and/or a higher performance interconnect such as 

InfiniBand instead. 
 

2. System Details: Hardware and Software 

 
The cluster deployed in this benchmarking study is comprised of 32 IBM e325 servers 

featuring two sockets each with a single-core Opteron CPU clocked at 2.0 GHz. An additional 

e325 server is used as a head node for management, compilation, job submission etc. We have 

produced data for two versions of the SuSe OS – 8 and 9 – which are based on the Linux 2.4 

and 2.6 kernels respectively. The upgrade was carried out in order to not only keep the system 

current, patched etc., but to compare how the TCP implementations within the two versions of 

the Linux kernel affect performance. Due to space constraints we will present a summary of 

just the 2.6 kernel data, but mention comparisons with 2.4 performance of interest to the 

results’ discussion. All data for both kernels can be viewed in graphical form at 
http://www.cse.clrc.ac.uk/disco/gbe_perf.shtml. The 2.4 kernel data is not as complete as that 

for the 2.6 kernel due to some switches only being available to us for short periods of time. In 

addition we will provide a database of all results (2.4 and 2.6) for this study and others carried 
out by our group15 . 

 

The cluster has three interconnects for message passing: InfiniBand 4x/SDR (Mellanox HCAs 

and switches), SCI from Dolphinics, and GbE. The nodes have dual Broadcom Ethernet 

adaptors – one used for the message passing network, the other for management, NFS traffic 

etc. - and two PCI-X slots (100 MHz not 133 MHz).  

 

                                                
15
 (see http://www.cse.clrc.ac.uk/disco/dbd)  
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For this study a range of typical 1U 48 port GbE switches from the following manufacturers 

were assessed: Cisco Systems (Catalyst 4948), Extreme (Summit48si), Force10 Networks 

(S50), HP (Procurve 2848), Netgear (GS 748T), and Nortel Networks (5510 48T). We are in 

the process of compiling additional data for switches from these and other manufacturers, and 

will report on this in due course. (We may in future extend our studies to larger clusters 
requiring more than 1 x 48 port switches, and investigate the performance impact of using 

core/edge switch topologies and the impact on performance of oversubscription.) 

 
A mixture of free and commercial MPI libraries were used in this study: MPICH 1.2.7, LAM-

MPI 7.1 and Scali MPI version 3. Likewise, compilers used were free (GCC 3.3) and 

commercial (PGI 6.0 and PathScale 2.0). Thus we have benchmarked 7 combinations of MPI 

library and compiler, namely: MPICH with PGI, PathScale and GCC; LAM-MPI with PGI, 

PathScale and GCC and Scali MPI. MPICH and LAM-MPI were configured to use shared 

memory within a node and built with recommended compiler options where available.  

 

A number of tests were carried out in order to ascertain whether or not the cluster was in 

principle ‘fit for purpose’. It was established that BIOS settings, memory types, configuration 

and performance (through use of the STREAM benchmark), and the performance of Linpack 
and NASTRAN kernels was consistent across the system and in line with expectations for the 

e325 server. We made use of the STAB suite from IBM’s Egan Ford
16
. 

 

3. Benchmarking Methodology 

 

Previous studies in this area, e.g. that of Chen and Latouche
17
 on very similar e325 Opteron-

based clusters, have tended to concentrate on establishing the difference in raw network 

performance for GbE (using TCP) through use of the Netpipe suite
18
, and the performance 

observed when running MPI over GbE. Netpipe’s functionality (for now at least) only allows 
users to probe the performance of point-to-point type communication. For example the 

difference between raw TCP PingPong bandwidth and latency cf. MPI over TCP bandwidth 

and latency can be ascertained thus giving an indication of the efficiency of the MPI 
implementation. 

 

Whilst studies such as these are very useful, we feel that further work is required to 
complement such efforts, in particular in the area of assessing the performance of more 

communication intensive collective operations used in a wide variety of HPC applications. 

GbE offerings must be able to perform adequately, i.e. not show a dramatic increase in time to 

solution cf. proprietary or more expensive interconnects, for these types of communication 

requirements if they are to be considered for general purpose production use in HPC 

environments. Users must feel assured that they are not sacrificing more performance than is 

reasonable going on the difference in price between Ethernet and other options. One aim of 

this study is to ascertain crossover points (i.e. number of processes) between acceptable and 

unacceptable system performance for typical GbE cluster deployments. In addition, we would 
argue that even if a cluster is procured for an initial set of applications which are not that 

communications intensive, this picture may change as new users make use of a facility or 

existing users develop codes further, and therefore procurement teams should be mindful of 
the potential pitfalls when using GbE. 

 

Using the above combinations of compilers, GbE switches and MPI libraries, we have 

benchmarked the widely used IMB (formerly PMB) suite from Intel19. This benchmark is 

easy to build and run and has become the de facto standard for testing the quality of MPI 

                                                
16
 http://xcat.org/doc/ 

17
 http://www.redbooks.ibm.com/abstracts/redp3866.html 

18
 http://www.scl.ameslab.gov/netpipe/ 

19 http://www.intel.com/cd/software/products/asmo-na/eng/cluster/clustertoolkit/219848.htm  
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libraries and system interconnects. The data presented in this paper for MPI functions such as 

MPI_Allgather, MPI_Allreduce, MPI_Alltoall, MPI_Reduce_scatter and 

MPI_Sendrecv at 16, 32 and 64 processes will be shown to clearly differentiate the 

performance of the various setups under test, and give an indication of the factors that users of 

MPI applications on GbE clusters need to take into account. Data for all the MPI-1 functions 

included in the IMB suite will be available within the group’s DBD database (see above). 

 

4. Analysis of Results: Methodology 

 

It is clear that 7 flavours of MPI library/compiler combination, 5 MPI functions, 3 different 

process counts, 6 Ethernet switches and either 22 or 24 different data points for each class of 

test (depending on MPI function) will result in far too much data for the reader to easily 
analyse in graphical form. Nevertheless, for the interested reader we have produced log-log 

plots of average time per MPI function call vs. message size for the above set of tests, for both 

2.4 and 2.6 kernels, and once more these graphs can be found at 

http://www.cse.clrc.ac.uk/disco/gbe_perf.shtml . 

 

For the purposes of this paper, we have devised a scheme which attempts to carry out a 

balanced and fair averaging of performance for each MPI function tested cf. a baseline metric, 

thus condensing the data into a more digestible form which allows us to draw conclusions 

more readily. The scheme we have devised is as follows: 
 

• For each test (MPI function) we assign an equal weighting to all messages tested, i.e. 
no one message size is deemed more important than the others. In a multi-user 

environment with a variety of applications, and various data sets run over time 

(resulting in a range of message sizes) this would seem to be a reasonable approach. It 

is unlikely that a cluster would be bought for exclusive use by one user/application 

running very similar datasets (a very narrow range of message sizes) over the lifetime 

of its service. 

 

• Pick a baseline configuration with which to normalize the data. We have chosen the 
Extreme Summit48si (a fairly typical switch), LAM-MPI (widely used as it has a 

reputation of being the best performing free implementation), and the PGI compiler 

(popular with users of Opteron-based platforms).  
 

• For each system setup and each message size, compute a ratio of "baseline 
result"/"setup result".  Average performance by taking the geometric mean (the nth 

root of the product of n values) of these ratios for the range of message sizes tested. 

(We have limited the range of message sizes to 4 bytes upward due to very small or 
exactly zero timings being returned by IMB in some cases.) 

 

• However, this approach as it is could in principle award a biased higher scoring to a 
configuration which exhibits evidence of potentially severe performance problems 

(due to for example TCP congestion collapse) at certain message sizes. The 

symptoms are rapidly varying, spiky log-log plots of average time vs. message-size. 

More reasonable behaviour and performance over the test range should result in 

smooth slowly varying plots rising gradually with increased message size.  

 

We feel this is an issue because we have carried out a number of experiments at and 

around data points that exhibit particularly sharp peaks and troughs on the log-log 
plots. Using command line options, it is possible to make IMB run a set of user 

defined message sizes instead of the default set of powers of 2 increases. We have 

observed, for some switch/library/compiler combinations, extremely rapid and erratic 
changes in timings, at and immediately either side of, certain message sizes. We feel 
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that configurations that exhibit this behaviour should be penalised, as it is possible 

that a user will experience severe performance degradation if they stray outside of 

certain message size ranges through running a slightly different data set, sometimes 

by as much as several orders of magnitude! 

 

• Therefore we have imposed a further criterion. Firstly for each message size we 
determine the minimum result (across all configurations tested). Runs for the standard 
IMB power of 2 progression in message size, which contain results that exceed this 

minimum by more than an order of magnitude, are then highlighted in a red/orange 

colour as a health warning in the graphs presented at the end of this paper. (This is of 

course an arbitrary metric, and further experience may result in a more lax or 

stringent cut-off approach.) 

 

5. Analysis of Results: discussion 

 

MPI performance for 16 processes/8 nodes with a GbE interconnect is expected to be at least 
adequate, and the performance summarised in Figures 1-5 in general supports this assumption 

– but with some notable exceptions. MPI_Alltoall (Figure 1) in particular is known to be 

an exacting test of interconnects. The function takes a buffer from every participating process 

and scatters it to all other processes. If an interconnect performs well on this task, it is 

probably fair to expect good performance for other IMB tests and ‘real-world’ applications as 

well.  

 

Inspection of Figure 1 shows that very few of the configurations tested make the grade. Of 
particular surprise is the very poor showing of the Force10 S50 switch – no combination of 

MPI and compiler provides acceptable performance even at 16 processes, and this trend 

becomes even worse as we go to 32 and then 64 processes. We should mention that better 
performance for the S50 was observed when running these tests with the 2.4 Linux kernel. 

However, we suspect that there are other issues that need to be addressed, and that perhaps a 

firmware upgrade may improve performance when running under 2.6. We will hopefully be 

able to provide an update on this in future papers.  

 

Examination of Figures 1-5 provides a number of further initial conclusions: 

 

• Most of the other configurations in Figure 1 are shown to be inadequate. LAM-MPI 
performance is acceptable up to 32 processes (in terms of passing the ‘smoothness’ 

test if not always in absolute performance terms) for the Netgear and Cisco switches. 

Clearly the best configuration is Scali MPI on the Cisco switch, with the Nortel and 
Extreme switches offering similar performance. LAM-MPI with all three compilers 

does rather well on the Cisco switch only. In general though, we can conclude that 

MPI_Alltoall is one test that does ‘sort the men from the boys’. The Extreme and 

Nortel switches show clear differentiation between the commercial (Scali) and free 

(MPICH and LAM) MPIs. 
 

• Another trend of note across all five sets of graphs is the virtually overlapping 
performance of the Nortel 5510 and Extreme Summit48si. Casual inspection suggests 

the numbers are identical – they aren’t – and we are confident that our analysis has 

been carried out without error. This strongly suggests common components produced 

by third party manufacturers within these switches, and this apparently is the case 

having consulted with the vendors in question.  

 

• Details of the architectures of the switches under test and how these features affect 
performance will be examined in detail in a future paper, along with the affect of 
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adjustments one can make to managed switches cf. the performance of unmanaged 

switches. But architectural factors to consider would appear to include: 

 

o The capabilities of the internal switching ASICs and the numbers of ports that 
each ASIC supports; 

o the latency added going from ASIC to ASIC20; 
o the forwarding supported in hardware and which layers of the OSI model are 
supported at this level; 

o how the architecture impacts on IP multicast and broadcast performance (if 
the MPI library implementation attempts to make use of such features); 

o the size of receive and transmit buffers, the number and type of receive and 
transmit queues and the thresholds for dropping packets; 

o Etc. 
 

• To reiterate, the Force10 S50 is consistently the poorest performing switch. This is 
due to its particularly egregious showing for large messages for all tests which cancel 
out reasonable performance for small messages. We expect there are ways to improve 

performance (perhaps a firmware upgrade) and will report on this in the future. 

 

• The HP Procurve whilst a better performer in terms of its normalized geometric mean 
score consistently shows erratic, spiked log-log plots and therefore seems to be a very 

poor choice for MPI applications. As with the Force10 switch, it may be that there are 

ways of improving this situation dramatically, but when used as supplied, it seems 

only right to highlight the severe problems one faces. 
 

• Scali MPI is consistently the best performing library over the series of tests and for 
the various process counts, both in terms of performance and smoothness of log-log 

plots leading to some degree of confidence in its capabilities for HPC application 

workloads. Of course there is a cost associated with this choice and potential 

purchasers are advised to carry out further benchmarks with ‘real-word’ applications 

to try and ascertain likely increases in productivity in a production environment 

before taking the decision to choose this option. 

 

• Users of free open source MPI libraries – LAM, MPICH etc – should be aware of the 
role the compiler may play in determining performance. We have built these libraries 

with recommended compiler switches where available, but our data, summarised in 

Figures 1-5 and available on the group’s web site in the more common format of log-
log plot of average time vs. message size, clearly illustrates the possibility of different 

compilers giving vastly different performance over a wide range of message sizes for 

the MPI functions we have investigated. One example of this is LAM-MPI with the 

PathScale compiler for MPI_Sendrecv. 

 

• LAM-MPI tends to outperform MPICH for a lot of the tests, however there are 

notable exceptions where MPICH comes out on top – MPI_Allreduce and 

MPI_Reduce_scatter for Extreme, Netgear, Cisco and Nortel switches.  

 

• MPI_Sendrecv, a combination, as its name suggests, of a send and recv 

combined into a single call to do send and recv simultaneously thus avoiding 

deadlocks, is still a point-to-point operation as opposed to a collective (but is often 
used in implementing collective operations). The performance data for this test 

                                                
20
 Latency numbers for 64 byte transfers – i.e. the latencies typically quoted in switch manufacturers’ 

literature – are not a reliable indicator of MPI performance. For example, Netgear quote 20 µs, and HP 

quote 6 µs for the switches we have tested. 
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confirms the need to push networks beyond the demands placed on them by point to 

point operations – there is little differentiation between a host of switches and MPI 

implementations, the exceptions being MPICH built with the PathScale compiler 

(atrocious performance) and of course the Force10 S50 data. Even LAM flavours 

with the HP Procurve do quite well on this test. 
 

• Whilst we do not have accurate list prices to hand for the switches under test in this 
study (and list prices are only a rough guide to what customers may end up paying), it 

would appear that there isn’t a particularly strong correlation between price and 

performance. We are certain that the Netgear switch is considerably cheaper than the 

rest (but that its performance is more due to accident than design as Netgear tend to 

concentrate on addressing the needs of the low-end office networking market).  

 

• Right now we are not in a position to make definitive statements when it comes to 
choice of MPI library. Whilst Scali does appear to be the leader certainly in 
performance (and possibly price/performance), we reserve final judgement until 

completion of our attempts to carry out optimized runs for all libraries under test. 

 

• And of course we need to remind ourselves of caveats already mentioned above. We 
have not tested anything like an exhaustive list of possibilities when it comes to 

choice of MPI library or Ethernet switch. But we feel we have accumulated enough 

data across a range of typically deployed options to start to draw meaningful 

conclusions which should stand up to further scrutiny and be reflected in ‘real-world’ 
applications’ performance. 

 

 

 

6. Conclusions 

 

It is clear that there are numerous factors which contribute to the performance of MPI 

functions on GbE interconnects, that these factors interact in complex ways, that performance 

can be very poor even for low process counts, and that the quality of performance for a given 

MPI function can vary wildly as a function of message size. Whilst this study has not 

presented data from attempts to tune performance through, for example, algorithm selection 

as a function of message size, or adjustment of buffer sizes via environment variables, or 

tuning of TCP parameters, we do not expect to report in future that such efforts will cure 
some of the pathological performance problems highlighted in this study. 

 

In considering GbE interconnects for message passing, HPC users would be advised to carry 

out a thorough requirements analysis, ascertaining the communication patterns of their 

applications, and through profiling gain some indication of the message sizes for typical 

workloads if these are known. Thorough benchmarking of these applications in conjunction 

with full runs of synthetic benchmarks such as IMB over a wide range of message sizes ought 

to highlight potential problems where adequate performance crosses over to very poor 

performance and completely congested networks resulting in much increased time to solution 
and lower productivity. Repetition of such exercises should be an integral part of acceptance 

testing.  

 
Procurement decisions for GbE clusters based on benchmark exercises with at most one or 

two applications which involve mostly point-to-point communication, and with one or two 

data sets apiece, are quite unlikely to spot the regimes in which the cluster configuration 

under test runs into severe performance problems either when running different data sets, or 

new more communication-intensive applications altogether.  
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Our study seems to indicate that there is a strong case to be made for some HPC sites to 

reassess their approach to procurement budgeting and not concentrate almost solely on 

maximising their compute server count (i.e. HPL numbers), and instead purchase commercial 

software such as compilers, and in particular commercial optimized MPI libraries, and more 

robust and thoroughly tested interconnects, even if this means making sacrifices when it 
comes to node/core count. 

 

Indeed, it may be that users of MPI codes with reasonably intensive communication may be 
better served by investing in higher performance. We have vacillated somewhat during this 

project between writing off Ethernet as an HPC interconnect and regarding it as a viable 

option (with caveats) depending on the configuration under test at the time. In answering the 

question: ‘Gbit Ethernet – an HPC interconnect?’, we must at this stage say the jury is still 

out. We hope to offer more concrete answers in future papers. 
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