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RAL Summer School for High Energy Physics Students
St. Peter’s College, Oxford, 2nd 14th September 2007

Preface

The number of students attending the HEP Summer School has been slowly increasing over the last
few years and in 2007 the expected numbers were such that the seminar room at The Cosener’s
House, which has been the venue for the School for many years, would have been full to bursting
point. It was therefore decided that the School would have to be held at a location with a little more
space. To ensure that the customary high level of support from RAL staff could be maintained,
alternative venues close to the Laboratory were sought and, after investigating various possibilities,
St Peter’s College in Oxford was chosen as the location for the 2007 School. This had some obvious
benefits beyond the increased amount of space available. For example, direct rail access to Oxford
made the provision of transport at the start and end of the School unnecessary.

The lectures were held in the chapel at the college, as is illustrated in the photo’ below, which was
taken during one of Thomas Teubner’s Quantum Electrodynamics lectures. There were some
teething problems associated with using this venue. For example, as there were no blinds or
curtains on the chapel’s windows, a particularly powerful projector was ne~-- -

The accommodation at St Peters was of a good standard. All students, lecturers and tutors had a
single en-suite room within about a 5 minute walk of the College buildings. Breakfast, lunch and
dinner were all served in the College refectory. The catering was of a reasonable standard, but
perhaps didn’t quite match the excellent quality to which we had become accustomed at Cosener’s
House.






The School was attended by 64 students, who were joined by 4 lecturers, 7 tutors and the director.
Margaret Evans ran the show with her usual efficiency and enthusiasm. The lecturers at the school,
and the courses they gave, were:

Mrinal Dasgupta (Manchester), “Quantum Field Theory”.
David Miller (Glasgow), “Quantum Electrodynamics”.
Tilman Plehn (Edinburgh), “Phenomenology”.

Thomas Teubner (Liverpool), “Standard Model”.

As is evident from the notes reproduced here, the lectures were all well prepared and delivered.
Mrinal, Tilman and Thomas all gave their courses for the first time, while 2007 was David’s last year
at the School and a new lecturer will be sought to take his place in 2008.

In addition to the lectures, there were two interesting guest seminars: Ray Mathias (STFC) described
the efforts being made to explain the significance of the LHC to the general public and Steve Watts
(Manchester) gave a lecture on data mining and visualisation techniques. Both were well received,
the former leading to a small group starting work on a proposal for an STFC “Small Award” and the
latter to heated discussions about the relative merits of neural nets and decision trees.

The seven tutors at the School were: Dave Bailey (Manchester), Andy Buckley (Durham), Joel
Goldstein (Bristol), Chris Lester (Cambridge), Steve Maxfield (Liverpool), Bill Scott (RAL) and
Alessandro Tricoli (RAL). Joel was replaced by Tim Adye (RAL) for one day. Bill and Steve, were at the
School for the first time. The tutors all worked hard and the tutorials were appreciated by the
students.

The students were asked to bring a poster explaining their research work to the School and poster
sessions were timetabled on four evenings. It was possible for all the posters to be displayed in one
room, the JCR at St Peter’s, and posters could be left up from one poster session to the next,
ensuring that there was plenty of time for the students and staff to discuss them.

The School dinner was held in the refectory at St Peters. The food was good, while not quite
matching the heights achieved by the Cosener’s kitchen, and the evening, capped by an entertaining
after-dinner speech given by Norman McCubbin, was enjoyed by all. Students who had distinguished
themselves during the School, academically or otherwise, received small prizes and the lecturers and
tutors who had completed their stints at the School were also given mementos of their time with us.

| would like to thank the lecturers and tutors, the staff at St Peter’s, the staff at RAL and, last but not
least, the students, who all contributed strongly to the success of the School. | wish the next director
all the best for his time in charge!

Tim Greenshaw
Liverpool University
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When 1 became a student of Pomeranchuk
win 1950 I heard from him a kind of joke
that the Book of Physics had two volumes:
vol.1 1s “Pumps and Manometers”, vol.2
15 “Quantum Field Theory”

Lev Okun

0 Prologue

The development of Quantum Field Theory is surely one of the most important achieve-
ments in modern physics. Presently, all observational evidence points to the fact that
Quantum Field Theory (QFT) provides a good description of all known elementary parti-
cles, as well as for particle physics beyond the Standard Model for energies ranging up to
the Planck scale ~ 10'° GeV, where quantum gravity is expected to set in and presumably
requires a new and different description. Historically, Quantum Electrodynamics (QED)
emerged as the prototype of modern QFT’s. It was developed in the late 1940s and early
1950s chiefly by Feynman, Schwinger and Tomonaga, and is perhaps the most successful
theory in physics: the anomalous magnetic dipole moment of the electron predicted by
QED agrees with experiment with a stunning accuracy of one part in 100!

The scope of these lectures is to provide an introduction to the formalism of Quantum
Field Theory, and as such is somewhat complementary to the other lectures of this school.
It is natural to wonder why QFT is necessary, compelling us to go through a number
of formal rather than physical considerations, accompanied by the inevitable algebra.
However, thinking for a moment about the high precision experiments, with which we
hope to detect physics beyond the Standard Model, it is clear that comparison between
theory and experiment is only conclusive if the numbers produced by either side are
“water-tight”. On the theory side this requires a formalism for calculations, in which
every step is justified and reproducible, irrespective of subjective intuition about the
physics involved. In other words, QFT aims to provide the bridge from the building
blocks of a theory to the evaluation of its predictions for experiments.

This program is best explained by restricting the discussion to the quantum theory
of scalar fields. Furthermore, I shall use the Lagrangian formalism and canonical quan-
tisation, thus leaving aside the quantisation approach via path integrals. Since the main
motivation for these lectures is the discussion of the underlying formalism leading to the
derivation of Feynman rules, the canonical approach is totally adequate. The physically
relevant theories of QED, QCD and the electroweak model are covered in the lectures by
Nick Evans, Sacha Davidson and Stefano Moretti.

The outline of these lecture notes is as follows: to put things into perspective, we shall
review the Lagrangian formalism in classical mechanic\s, followed-by a brief reminder of
the basic principles of quantum mechanics in Section 1. Section 2 discusses the step from
classical mechanics of non-relativistic point particle to a classical, relativistic theory for
non-interacting scalar fields. There we will also derive the wave equation for free scalar
fields, i.e. the Klein-Gordon equation. The quantisation of this field theory is done is
Section 3, where also the relation of particles to the quantised fields will be elucidated.
The more interesting case of interacting scalar fields is presented in Section 4: we shall



introduce the S-matrix and examine its relation with the Green’s functions of the theory.
Finally, in Section 5 the general method of perturbation theory is presented, which serves
to compute the Green functions in terms of a power series in the coupling constant. Here,
Wick’s Theorem is of central importance in order to understand the derivation of Feynman
rules.

1 Introduction

Let us begin this little review by considering the simplest possible system in classical
mechanics, a single point particle of mass m in one dimension, whose coordinate and
velocity are functions of time, x(¢) and £(t) = dz(t)/dt, respectively. Let the particle be
exposed to a time-independent potential V(z). It’s motion is then governed by Newton’s
law

m%z—g—Z:F(x), (1.1)
where F'(z) is the force exerted on the particle. Solving this equation of motion involves
two integrations, and hence two arbitrary integration constants to be fixed by initial
conditions. Specifying, e.g., the position z(ty) and velocity %(¢) of the particle at some
initial time ¢, completely determines its motion: knowing the initial conditions and the
equations of motion, we also know the evolution of the particle at all times (provided we

can solve the equations of motion).

1.1 Lagrangian formalism in classical mechanics

The equation of motion in the form of Newton’s law was originally formulated as an
equality of two forces, based on the physical principle actio = reactio, i.e. the external
force is balanced by the particle’s inertia. The Lagrangian formalism allows to derive the
same physics through a formal algorithm. It is formal, rather than physical, but as will
become apparent throughout the lectures, it is an immensely useful tool allowing to treat
all kinds of physical systems by the same methods.

To this end, we introduce the Lagrange function

B, Bl - = %ma’:Z _V(z), (1.2)

which is a function of coordinates and velocities, and given by the difference between the
kinetic and potential energies of the particle. Next, the action functional is defined as

1
S':/ dt L(z, &). (1.3)
to
From these expressions the equations of motion can be derived by the Principle of least
Action: consider small variations of the particle’s trajectory, cf. Fig. 1,
2'(t) = z(t) + 0z(t), dr/x < 1, (1.4)
with its initial and end points fixed,

z'(t) = x(t)
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Figure 1: Variation of particle trajectory with identified initial and end points.

The true trajectory the particle will take is the one for which
0S8 =0, (1.6)

i.e. the action along z(t) is stationary. In most systems of interest to us the stationary
point is a minimum, hence the name of the principle, but there are exceptions as well
(e.g. a pencil balanced on its tip). We can now work out the variation of the action by
doing a Taylor expansion to leading order in the variation dz,

32
S+4S = f L(z + dz,& + %) dt, (5x':%6:1:
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where we performed an integration by parts on the last term in the second line. The
second and third term in the last line are the variation of the action, 6.5, under variations
of the trajectory, dz. The second term vanishes because of the boundary conditions for
the variation, and we are left with the third. Now the Principal of least Action demands
05 = 0. For the remaining integral to vanish for arbitrary dz is only possible if the
integrand vanishes, leaving us with the Euler-Lagrange equation:

= e = (), (1.8)

If we insert the Lagrangian of our point particle, Eq. (1.2), into the Euler-Lagrange
equation we obtain

oL oV (x)
—— = =F
Ox o0z
dor _d oo
dtor  od
) ov
= mi=F= S (Newton’s law). (1.9)



Hence, we have derived the equation of motion by the Principal of least Action and
found it to be equivalent to the Euler-Lagrange equation. The benefit is that the latter
can be easily generalised to other systems in any number of dimensions, multi-particle
systems, or systems with an infinite number of degrees of freedom, such as needed for
field theory. For example, if we now consider our particle in the full three-dimensional
Euclidean space, the Lagrangian depends on all coordinate components, L(x,x), and all
of them get varied independently in implementing Hamilton’s principle. As a result one
obtains Euler-Lagrange equations for the components,

0L ddL _
8$i dt 8.’131 -

(1.10)

In particular, the Lagrangian formalism makes symmetries and their physical conse-
quences explicit and thus is a convenient tool when constructing different kinds of theories
based on symmetries observed (or speculated to exist) in nature.

For later purposes in field theory we need yet another, equivalent, formal treatment,
the Hamiltonian formalism. In our 1-d system, we define the 'conjugate momentum’ p by

P = —— = mi, (1.11)
and the Hamiltonian H via

= mi® — Ima® + V(z)

= Imi®+V(@z)=T+V. (1.12)

The Hamiltonian H(x,p) corresponds to the total energy of the system; it is a function
of the position variable z and the conjugate momentum! p. It is now easy to derive
Hamilton’s equations 5

%—ZI = —p, —5}; =Z. (1.13)
These are two equations of first order, while the FEuler-Lagrange equation was a single
equation of second order. Taking another derivative in Hamilton’s equations and substi-
tuting one into the other, it is easy to convince oneself that the Fuler-Lagrange equations
and Hamilton’s equations provide an entirely equivalent description of the system. Again,
this generalises obviously to three-dimensional space yielding equations for the compo-
nents,

o _ o

1.2 Quantum mechanics

Having set up some basic formalism for classical mechanics, let us now move on to quantum
mechanics. In doing so we shall use 'canonical quantisation’, which is historically what
was used first and what we shall later use to quantise fields as well. We remark, however,
that one can also quantise a theory using path integrals.

Tt should be noted that the conjugate momentum is in general not equal to ma.



Canonical quantisation consists of two steps. Firstly, the dynamical variables of a
system are replaced by operators, which we denote by a hat. For example, in our simplest
one particle system,

position: x; — I;

. L0
momentum: p; — pP; = —ih
(9mi
N f)2 h2V2
Hamiltonian: H — H = oy + V() =- 9 + V(x). (1.15)

Secondly, one imposes commutation relations on these operators,
[a“:,—,ﬁj] - zh&] (116)
2,25} = [, B5] = 0. (1.17)
The physical state of a quantum mechanical system is encoded in state vectors |1}, which
are elements of a Hilbert space 7. The hermitian conjugate state is (1| = (%)), and the

modulus squared of the scalar product between two states gives the probability for the
system to go from state 1 to state 2,

[(11 |1p2)[* = probability for |,) — [abs). (1.18)

On the other hand physical observables O, i.e. measurable quantities, are given by the
expectation values of hermitian operators, O = Of,

O = ($|O[W), Oz = (12| Olth1). (1.19)

Hermiticity ensures that expectation values are real, as required for measurable quantities.
Due to the probabilistic nature of quantum mechanics, expectation values correspond to
statistical averages, or mean values, with a variance

(AO)? = ($|(O — O)2|) = (Y|O?|) — (p|Of)2. (1.20)

An important concept in quantum mechanis is that of eigenstates of an operator, defined
by

Olp) = Oly). (1.21)
Evidently, between eigenstates we have AO = 0. Examples are coordinate eigenstates,
X|x) = x|x), and momentum eigenstates, p|p) = p|p), describing a particle at position
x or with momentum p, respectively. However, a state vector cannot be simultaneous
eigenstate of non-commuting operators. This leads to the Heisenberg uncertainty relation
for any two non-commuting operators /i, 3,

NAAB > L |(l1A, Bl (1.22)

Finally, sets of eigenstates can be orthonormalized and we assume completeness, i.e. they
span the entire Hilbert space,

(P'lp) =d(p—p’), 1= [d3p Ip)(p|- (1.23)



As a consequence, an arbitrary state vector can always be expanded in terms of a set
of eigenstates. In particular, the Schrodinger wave function of a particle in coordinate
representation is given by ¥(x) = (x|).

Having quantised our system, we now want to describe its time evolution. This can
be done in different quantum pictures.

1.3 The Schrodinger picture

In this approach state vectors are functions of time, |¢(t)), while operators are time

independent, 3,0 = 0. The time evolution of a system is described by the Schrédinger
equation,

0 -
ihéw(x, t) = Hip(x,t). (1.24)
If at some initial time %, our system is in the state W(x, ¢;), then the time dependent state

vector )
W(x,t) = e #HEtY (x 1) (1.25)

solves the Schrodinger equation for all later times ¢.
The expectation value of some hermitian operator O at a given time ¢ is then defined
as

(0), = /d3x U*(x,1)00(x, 1), (1.26)
and the normalisation of the wavefunction is given by
/d% T (x, )T (x, £) = (1) (1.27)

Since W*V is positive, it is natural to interpret it as the probability density for finding
a particle at position x. Furthermore one can derive a conserved current j, as well as a
continuity equation by considering

U* x (Schr.Eq.) — ¥ x (Schr.Eq.)". (1.28)
The continuity equation reads
% =-V-j (1.29)
where the density p and the current j are given by
p=vy (positive), (1.30)
j= % (U*VT — (VI*)T) (real)l. (1.31)

Now that we have derived the continuity equation let us discuss the probability interpre-
tation of Quantum Mechanics in more detail. Consider a finite volume V' with boundary °
S. The integrated continuity equation is

@d% = —/v-jd%
14

v ot
_ _/j.dg (1.32)
S



where in the last line we have used Gauss’s theorem. Using Eq. (1.27) the lhs. can be
rewritten and we obtain

%<1>t:-/sj.ﬁ:0. (1.33)

In other words, provided that j = 0 everywhere at the boundary S, we find that the time
derivative of (1); vanishes. Since (1), represents the total probability for finding the par-
ticle anywhere inside the volume V, we conclude that this probability must be conserved:
particles cannot be created or destroyed in our theory. Non-relativistic Quantum Me-
chanics thus provides a consistent formalism to describe a single particle. The quantity
U(x,t) is interpreted as a one-particle wave function.

1.4 The Heisenberg picture

Here the situation is the opposite to that in the Schrodinger picture, with the state vectors
regarded as constant, 3;|Wg) = 0, and operators which carry the time dependence, OH(t).
This is the concept which later generalises most readily to field theory. We make use of
the solution Eq. (1.25) to the Schrodinger equation in order to define a Heisenberg state
vector through ‘ )

W(x,t) = e #HEOG (g, 1) = e #HE I (1), (1.34)

iLe. Wy(x) = ¥(x,%). In other words, the Schrodinger vector at some time £, is defined
to be equivalent to the Heisenberg vector, and the solution to the Schrodinger equation
provides the transformation law between the two for all times. This transformation of
course leaves the physics, i.e. expectation values, invariant,

(U()|OT (1)) = (U(te)[er Tt O kHE Y (t5)) = (V1| Op (1)), (1.35)

with ) )
Oy (t) = exflt=t0) Ge—nHlt-to), (1.36)

From this last equation it is now easy to derive the equivalent of the Schrodinger equation
for the Heisenberg picture, the Heisenberg equation of motion for operators:

L dOg() A - .
iR CZ =[Oy, H]. (1.37)

Note that all commutation relations, like Eq. (1.16), with time dependent operators are
now intended to be valid for all times. Substituting Z, p for O into the Heisenberg equation
readily leads to

di;  0H
dt — 0p;’
dp; 0H
= - 1.
dt 0%’ (1.38)

the quantum mechanical equivalent to the Hamilton equations of classical mechanics.
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1.5 The quantum mechanical harmonic oscillator

Because of similar structures later in quantum field theory, it is instructive to also briefly
recall the harmonic oscillator in one dimension. Its Hamiltonian is given by

gin oo _ L (P 242
H(a:,p)zi E#—mwaz : (1.39)

Employing the canonical formalism we have just set up, we easily identify the momentum
operator to be p(t) = moi(t), and from the Hamilton equations we find the equation of
motion to be 8}% = —w?E, which has the well known plane wave solution & ~ exp iwt.

An alternative path useful for later field theory applications is to introduce new
operators, expressed by the old ones,

a:%(@ﬁﬂ\/%ﬁ), &T:%(@i—i\/%ﬁ). (1.40)

Using the commutation relation for Z, p, one readily derives
[a,a"] =1, [H,a] = —hwa, [H,al) = hwa. (1.41)

With the help of these the Hamiltonian can be rewritten in terms of the new operators,
7 = Lhw (616 + 6t ate 4+
Hzihw(aa—kaa): aa—|—§ hw. (1.42)

With this form of the Hamiltonian it is easy to construct a complete basis of energy
eigenstates |n),
H|n) = E,|n). (1.43)

Using the above commutation relations, one finds
alH|n) = (Ha' — hwa|n) = E,af|n), (1.44)

and from the last equation
Halln) = (B, + hw)al|n). (1.45)

Thus, the state af|n) has energy E, + Aw, and therefore a may be regarded as a “creation
operator” for a quantum with energy fiw. Along the same lines one finds that a|n) has
energy F, — hw, and é is an “annihilation operator”.

Let us introduce a vacuum state |0) with no quanta excited, for which a|n) = 0,
because there cannot be any negative energy states. Acting with the Hamiltonian on that
state we find

H|0) = hw /2, (1.46)

L.e. the quantum mechanical vacuum has a non-zero energy, known as vacuum oscillation
or zero point energy. Acting with a creation operator onto the vacuum state one easily
finds the state with one quantum excited, and this can be repeated n times to get
" 1
1) =aflo) , Ey=(1+ 5)77@,

MOy, B = (nt L), (1.47)

af 1 .
In) = Jln = 1) = —=(a) 5
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The root of the factorial is there to normalise all eigenstates to one. Finally, the ”number
operator” N = ald returns the number of quanta in a given energy eigenstate,

N|n) = n|n). (1.48)

Problems

1.1

1.2

1.3

1.4

1.5

Starting from the definition of the Hamiltonian,

derive Hamilton’s equations

OH .,  OH _
oz D op

[Hint: the key is to keep track of what are the independent variables]

z.

Using the Schrodinger equation for the wavefunction ¥(x, ),

{_hQZ +V(X)}q,(x,t):m%xp(x,t),

show that the probability density p = U*W satisfies the continuity equation

0 .
ap—kV-J—O,

where "
j = — {U'VV - (VI ¥},
J= g (WY — (V) 0
[Hint: Consider U*x (Schr.Eq.) — ¥x (Schr.Eq.)*]

Let 1) be a simultaneous eigenstate of two operators A, B. Prove that this impliéé
a vanishing commutator [A, B].

Let O be an operator in the Schrodinger picture. Starting from the definition of a
Heisenberg operator,

OH(t) _ e%ﬁ(t—to)oe—%ﬁ(t—to),
derive the Heisenberg equation of motion
dO
ih—2
dt

=[O, H).

Consider the Heisenberg equation of motion for the momentum operator p of the
harmonic oscillator with Hamiltonian

R 1 /92
H=— (p_ +mw2§32) )
2 \m

and show that it is equivalent to Newton’s law for the position operator Z.
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2 Classical Field Theory

2.1 From N-point mechanics to field theory

In the previous sections we have reviewed the Lagrangian formalism for a single point
particle in classical mechanics. A benefit of that formalism is that it easily generalises to
any number of particles or dimensions. Let us return to one dimension for the moment but
consider an N-particle system, i.e. we have N coordinates and N momenta, z;(t), p;(¢),7 =
1,...N. For such a system we get 2N Heisenberg equations,

OH dp; OH _ d;
Oox; dt' Op; dt

(2.1)

To make things more specific, consider a piece of a guitar string, approximated by N
coupled oscillators, as in Fig. 2. Each point mass of the string can only move in the

;(t) W;Z’MWW

N — o0

¢(-73at) — h\\\ e
"\“_\_\_\_ ___'-//

Figure 2: From N coupled point masses to a continuous string, i.e. infinitely many degrees
of freedom.

direction perpendicular to the string, i.e. is a particle moving in one dimension. This
approximation of a string gets better and better the more points we fill in between the
springs, and a continuous string obtains in the limit N — oo. The displacement of the
string at some particular point z along its length is now given by a field coordinate ¢(z, ).
Going back to the N-point system and comparing what measures the location of a point
and its displacement, we find the following “dictionary” between point mechanics and
field theory:

Classical Mechanics: Classical Field Theory:
z(t) — é(z,1)
B(t) — d(z,1)
T —
Lz, %) — L[g, 9] (2.2)

In the last line we have introduced a new notation: the square brackets indicate that
Llg, ¢] depends on the functions ¢(z, t), é(z, t) at every space-time point, but not on the
coordinates directly. Such an object is called a “functional”, as opposed to a function
which depends on the coordinate variables only.
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Formally the above limit of infinite degrees of freedom can also be taken if we are
dealing with particles in a three-dimensional Euclidean space, for which there are N three-
vectors x; specifying the positions. We then obtain a field ¢(x, ), defined at every point
in space and time.

2.2 Relativistic field theory

Before continuing to set up the formalism of field theory, we want to make it relativistic
as well. Coordinates are combined into four-vectors, z* = (t,z;) or x = (¢,x), whose
length z? = ¢? — x? is invariant under Lorentz transformations

o = Ay, (2.3)

A general function transforms as f(z) — f'(z'), i.e. both the function and its argument
transform. A Lorentz scalar is a function which is the same in all inertial frames,

¢'(z") = ¢(z) for all A. (2.4)
On the other hand a vector function transforms as
VE(z') = APV (1), o (2.)

An example is the covariant derivative of a scalar field,

0 0
0o(a) = 5, 00(0) = S, (26)
whose square evaluates to
(0"¢)(0u0) = (8°¢)* — (V)™ (2.7)

2.3 Action for a scalar field

We are now ready to write down the action for a relativistic scalar field. According to
our dictionary, the action from point mechanics, Eq. (1.3), should go into

S = /dt L[, 4. (2.8)

However, for a relativistic theory we require Lorentz invariance of the action, and this
is not obvious in the current form. The integration is over time only, rather than over
the Lorentz-invariant four-volume element d*z = dt d®z, and so the non-invariance of the
integration measure has to cancel against that of the Lagrange function in order to have
an invariant action. Similar reasoning applies to the arguments of the Lagrangian. In
order to have the symmetries manifest, we instead rewrite

5= / d's L0, Lo d) = [ o L1, 0%) (2.9)

Now everything is expressed in covariant quantities, and the action is Lorentz-invariant
as soon as the newly defined Lagrangian density L is.
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We now follow the same procedure as in point mechanics and apply the Hamiltonian
principle by demanding §S = 0. For the variation of the field and its derivative we have

d— d+0¢, Oup— 0+ 060,90, 00,4 = 0,09. (2.10)

Using the rule for functional differentiation, d¢(x)/d¢(y) = 6*(z —y), the variation of the
action then is (to first order in a Taylor expansion)

oL oL
0SS = /d4x{%5¢+5(8—m(5(3u¢)}
oL

oL oL
- B, 1,108 9 0% Usg .
50, */ “{Mb a“é(c%qﬁ)} “ (211)

=0 at boundaries

Again the integrand itself must vanish if §S = 0 for arbitrary variations of the field, d¢.
This yields the Euler-Lagrange equations for a classical field theory:

oL oL
= Oy
0 0(0uo)
where in the second term a summation over the Lorentz index 4 is implied.
Let us now consider the specific Lagrangian

L =10"¢0,¢ — tm?¢*. (2.13)

=0, (2.12)

The functional derivatives yield
oL

5= —m?¢, 50.0) o, (2.14)
so that
8u57£ = 0,0"¢p = Uo. (2.15)
6(0,9) “
The Euler-Lagrange equation then implies
(O + m?)é(x) = 0. (2.16)

This is the Klein-Gordon equation for a scalar field. It is the simplest relativistic wave
equation and can be deduced from relativistic energy considerations. Here we have derived
it from the Lagrange density following our canonical formalism, in complete analogy to
point mechanics. Relativistic invariance of the equations of motion is ensured because we
started from an invariant Lagrange density. This is the power of the formalism.

In keeping the analogy with point mechanics, we can define a conjugate momentum
7 through
vy = LB 0 _ L(H0,0)

d¢(z) 0(0op(x))

Note that the momentum variables p,, and the conjugate momentum 7 are not the same.
The word “momentum” is used only as a semantic analogy to classical mechanics. Further,
we define the Hamilton function and a corresponding Hamilton density,

— hd(). (2.17)

H(t) = /d% H[p, 7], H[p, 7] =7nd— L. (2.18)
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For the Lagrangian density we considered, this gives
1
H =3 [7*(2) + (Vo(@)* +m*¢(z)] (2.19)

2.4 Plane wave solution to the Klein-Gordon equation

Let us consider real solutions to Eq. (2.16), characterised by ¢*(z) = ¢(z). To find them
we try an ansatz of plane waves

d(z) oc e ktkx), (2.20)
The Klein-Gordon equation is satisfied if (k%)% — k? = m? so that
k' = £Vk? + m2. (2.21)
If we choose the positive branch of the square root then we can define the energy as
E(k) = VK2 + m? > 0, (2.22)
and obtain two types of solutions which read
b1 (x) o BN g (4 o milBU—kex) (2.23)

The general solution is a superposition of ¢, and ¢_. Using

Ek)t—k-x= Etk, =k.,k" =k - x (2.24)
this solution reads
b(z) = / Tk (g (1) + o)) (2.25)
(2m)3 2E(k) ! ’

where a(k) is an arbitrary complex coefficient. From the general solution one easily reads
off that ¢ is real, i.e. ¢ = ¢*.

2.5 Symmetries and conservation laws

Symmetries play such a fundamental role in physics because they are related to conser-
vation laws. This is stated in Noether’s theorem. In a nutshell, Noether’s theorem says
that invariance of the action under a symmetry transformation implies the existence of a
conserved quantity. For instance, the conservation of 3-momentum p is associated with
translational invariance of the Lagrangian, i.e. the transformation

x —+x+a, a: constant 3-vector, (2.26)
while the conservation of energy comes from the invariance under time translations

t—t+7, 7: constant time interval. (2.27)
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Let us apply this to our relativistic field theory and consider four-translations, z# —
x#* 4 €*. The variation of the Lagrangian is

_6LOY, L 09,

L = =5sarC T 5ong) 0w
A [ 6L 9g,
= o, Pt (228)

where we have made use of the Euler-Lagrange Eqgs. (2.12), to get to the last expression.
If the action is to be invariant under such translations, its variation has to vanish for
arbitrary €”, which leads to

0 oL
— | =—=—=0.¢ — 9. L| =0. 2.29
o [ty ~ ] 229

The quantity in square brackets is called the energy-momentum tensor ©,,, and thus we
have

00, = 8°0y, — 80, =0, (2.30)
i.e. four conservation laws (one for every value of v). Let us look in more detail at the
components of the energy-momentum tensor,

oL
OG0y = 5000 ) Go¢ — goo L= m(z)(0od(z)) — L,
oL
Oy = 5(9%4) 056 — go; £ = m(z)0;¢. (2.31)

The first line is nothing but the Hamiltonian density, and integrating it over space will
thus be the Hamiltonian, or the energy. Its conservation can then be shown by considering

P .
-B—t /V d3il’,' 900 ‘/V dS.'E 80600

/ d3$ 8j@j0 e / dSJ - @0] — 0, (232)
JV S

where we have used Eq. (2.30) in the second line. The Hamiltonian density is a conserved
quantity, provided that there is no energy flow through the surface S which encloses the
volume V. In a similar manner one can show that the 3-momentum p;, which is related
to ©g;, is conserved as well. It is then useful to define a conserved energy-momentum
four-vector

Il

P, = / d*z Oy, (2.33)

In analogy to point mechanics, we thus see that invariances of the Lagrangian density
correspond to conservation laws. An entirely analogous procedure leads to conserved
quantities like anguluar mometum and spin. Furthermore one can study so-called inter-
nal symmetries, i.e. ones which are not related to coordinate but other transformations.
Examples are conservation of all kinds of charges, isospin, etc.

We have thus established the Lagrange-Hamilton formalism for classical field theory:
we derived the equation of motion (Fuler-Lagrange equation) from the Lagrangian and
introduced the conjugate momentum. We then defined the Hamiltonian (density) and
considered conservation laws by studying the energy-momentum tensor ©,,,.
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Problems

2.1 Given the relativistic invariance of the measure d*k, show that the integration mea-
sure
d3k
(27)32E (k)
is Lorentz-invariant, provided that F (k) = vk? + m2.

[Hint: Start from the Lorentz-invariant expression

d*k 22
s O = %) 0k
and use 1
§(z? — x3) = m(é(x — o) + 0(x + xp)).

What is the significance of the § and # functions above? If you're really keen, you
may prove the relation for §(z* — z2).)

2.2 Verify that \
#(z) = / m {*7a(k) + e *7b(k)}

is a solution of the Klein-Gordon equation. Show that a real scalar field ¢*(z) = ¢(z)
requires the condition b(k) = a*(k).

2.3 Show that the Hamiltonian density H for a free scalar field is given by
1
=5 {(Go0)" + (Vo) + m?¢}

Derive the components ]30, P of the energy-momentum four-vector P* in terms of
the field operators ¢, 7.

3 Quantum Field Theory

After many preparations, we have finally arrived at the proper subject of the lecture. In
this section we shall apply the canonical quantisation formalism to field theory.

3.1 Canonical field quantisation

To lighten notation, let us follow common practice in quantum field theory and set A =
¢ = 1. Our starting point is the Lagrangian density for the free scalar field,

L = 10440, — im?, (3.1)

which led to the Klein-Gordon equation in the previous section. We have seen that in field
theory the field ¢(z) plays the role of the coordinates in ordinary point mechanics, and
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we defined a canonically conjugate momentum, n(z) = 6L/ 6 = ¢(x) We then continue
the analogy to point mechanics through the quantisation procedure, i.e. we now take our
canonical variables to be operators,

¢(z) = d(z), w(x) > (). (3.2)

Next we impose equal-time commutation relations on them,

Bt 7y,0] = i x-y),
|40, 0,6(5,8)] =[x, ), 7(y, )] = 0. (3.3)

As in the case of quantum mechanis, the canonical variables commute among themselves,
but not the canonical coordinate and momentum with each other. Note that the commu-
tation relation is entirely analogous to the quantum mechanical case. There would be an
h, if it hadn’t been set to one earlier, and the delta-function accounts for the fact that we
are dealing with fields. It is one if the fields are evaluated at the same space-time point,
and zero otherwise.

After quantisation, our fields have turned into field operators. Note that within the
relativistic formulation they depend on time, and hence they are Heisenberg operators.

3.2 Causality and commutation relations

In the previous paragraph we have formulated commutation relations for fields evaluated
at equal time, which is clearly a special case when considering fields at general z,y. The
reason has to do with maintaining causality in a relativistic theory. Let us recall the
light cone about an event at y, as in Fig. 3. One important postulate of special relativity
states that no signal and no interaction can travel faster than the speed of light. This has
important consequences about the way in which different events can affect each other.
For instance, two events which are characterised by space-time points z# and y* are said
to be causal if the distance (z — y)? is time-like, i.e. (x —y)? > 0. By contrast, two events
characterised by a space-like separation, i.e. (z —y)? < 0, cannot affect each other, since
the point z is not contained inside the light cone about 1.

In non-relativistic Quantum Mechanics the commutation relations among operators
indicate whether precise and independent measurements of the corresponding observables
can be made. If the commutator does not vanish, then a measurement of one observable
affects that of the other. From the above it is then clear that the issue of causality must
be incorporated into the commutation relations of the relativistic version of our quantum
theory: whether or not independent and precise measurements of two observables can be
made depends also on the separation of the 4-vectors characterising the points at which
these measurements occur. Clearly, events with space-like separations cannot affect each
other, and hence all fields must commute,

[$(@),60)] = (), 74)] = [$(=), 7()] =0 for (@-p?<0.  (34)

This condition is sometimes called micro-causality. Writing out the four-components of
the time interval, we see that as long as |t' —¢| < |x — y|, the commutator vanishes in
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(z —y)? > 0, time-like
time

«~— (z —y)? =0, light-like

(z —y)* < 0, space-like

-

space

Figure 3: The light cone about y. Events occurring at points 2 and y are said to be
time-like (space-like) if z is inside (outside) the light cone about y.

a finite interval |¢t' — ¢|. It also vanishes for ¢’ = ¢, as long as x # y. Only if the fields
are evaluated at an equal space-time point can they affect each other, which leads to
the equal-time commutation relations above. They can also affect each other everywhere
within the light cone, i.e. for time-like intervals. It is not hard to show that in this case

(6(2),0)] = F(@),7@)] = 0, for (z-y)°>0

[&(x),fr(y)] = % / —(%(eip'“—ywe—ip'(x‘y)y (3.5)

3.3 Creation and annihilation operators

After quantisation, the Klein-Gordon equation we derived earlier turns into an equation for
operators. For its solution we simply promote the classical plane wave solution, Eq. (2.25),
to operator status,

d(z) = / —(zw)(jzij D (e**a' (k) + e *7a(k)). (3.6)

Note that the complex conjugation of the Fourier coefficient turned into hermitian con-
jugation for an operator.

Let us now solve for the operator coefficients of the positive and negative energy
solutions. In order to do so, we invert the Fourier integrals for the field and its time
derivative,

[a(k) + &' (k)e* o], (3.7)

o
|

/d?’x qAﬁ(x, t)e*e =
/d3a: (;S(x,t)e““ = —

and then build the linear combination i£/(k)(

[a(k) — al(k)e**o™] | (3.8)

oo N | ==,

7)—(3.8) to find

/ & [iE(k)q“s(x, 1) — d(x, t)] ¢k — ja(k), (3.9)



Following a similar procedure for a'(k), and using #(z) = dg(x) we find

a(k) = / x| B(k)B(x,1) + 17 (x, 1) €,
k) = / i | Bk, 1) — i, )] (3.10)

Note that, as Fourier coeflicients, these operators do not depend on time, even though
the right hand side does contain time variables. Having expressions in terms of the
canonical field variables ¢(z), 7 (x), we can now evaluate the commutators for the Fourier

coefficients. Expanding everything out and using the commutation relations Eq. (3.3), we
find

lal(k;),a' (k)] = 0 (3.11)
[a(k1), a(ks)] = 0 (3.12)
la(ky),al (k)] = (27m)°2E(k1)6% (ki — ko) (3.13)

We easily recognise these for every k to correspond to the commutation relations for the
harmonic oscillator, Eq. (1.41). This motivates us to also express the Hamiltonian and

the energy momentum four-vector of our quantum field theory in terms of these operators.
This yields

oo % / m B(k) (6! (K)a(k) + a(k)al (k) ,

P — %/% k (& (K)a(k) + a(k)al (k) . (3.14)

We thus find that the Hamiltonian and the momentum operator are nothing but a contin-
uous sum of excitation energies/momenta of one-dimensional harmonic oscillators! After
a minute of thought this is not so surprising. We expanded the solution of the Klein-
Gordon equation into a superposition of plane waves with momenta k. But of course a
plane wave solution with energy (k) is also the solution to a one-dimensional harmonic
oscillator with the same energy. Hence, our free scalar field is simply a collection of in-
finitely many harmonic oscillators distributed over the whole energy/momentum range.
These energies sum up to that of the entire system. We have thus reduced the problem of
handling our field theory to oscillator algebra. From the harmonic oscillator we know al-
ready how to construct a complete basis of energy eigenstates, and thanks to the analogy
of the previous section we can take this over to our quantum field theory.

3.4 Energy of the vacuum state and renormalisation

In complete analogy we begin again with the postulate of a vacuum state |0) with norm
one, which is annihilated by the action of the operator a,

010y =1, a(k)|0) =0 forall k. (3.15)
Let us next evaluate the energy of this vacuum state, by taking the expectation value of
the Hamiltonian,
d*k
(2m)% 2FE (k)

By = {0l£110) = 5 [ B {(0/a! (k)a()[0) + 0la(lda’ ()10)} . (3.16)
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The first term in curly brackets vanishes, since a annihilates the vacuum. The second can
be rewritten as

a(k)a'(k)|0) = {[a(k),a (k)] + af(k)a(k)} |0). (3.17)
It is now the second term which vanishes, whereas the first can be replaced by the value
of the commutator. Thus we obtain
Eo = (0 FI]0) = 53(0)%/(1% E(k) = 53(0)%/#1@ 12 £ m? = oo, (3.18)
which means that the energy of the ground state is infinite! This result seems rather
paradoxical, but it can be understood again in terms of the harmonic oscillator. Recall
that the simple quantum mechanical oscillator has a finite zero-point energy. As we have
seen above, our field theory corresponds to an infinite collection of harmonic oscillators,
i.e. the vacuum receives an infinite number of zero point contributions, and its energy
thus diverges.

This is the first of frequent occurrences of infinities in quantum field theory. Fortu-
nately, it is not too hard to work around this particular one. Firstly, we note that nowhere
in nature can we observe absolute values of energy, all we can measure are energy differ-
ences relative to some reference scale, at best the one of the vacuum state, |0). In this
case it does not really matter what the energy of the vacuum is. This then allows us to
redefine the energy scale, by always subtracting the (infinite) vacuum energy from any
energy we compute. This process is called “renormalisation”.

We then define the renormalised vacuum energy to be zero, and take it to be the
expectation value of a renormalised Hamiltonian,

E& = (0|A%|0) = 0. ' -~ (3.19)

According to this recipe, the renormalised Hamiltonian is our original one, minus the
(unrenormalised) vacuum energy,

];[R e f[—Eo

= é/ mﬁ%@mk) al (k)a(k) + a(k)al (k) — (0la’ (K)a(k) + a(k)a! (k)|0) }

- %/___(27r)§i2k];57(k) E(k) {Q&T(k)&(k) + [&(k),gﬂ(k)] —{0] [&(k),&*(k)] lO)}(B.ZO)

Here the subtraction of the vacuum energy is shown explicitly, and we can rewrite is as
N d3p
HR e = = E S A
| G Pl @)
05 [ s B0 {[a0), ()] — 01 [ap), 3 (0)] 1)}
2/ (27)°2E(p) ’ ’

d3p R
= ——— _FE(p)a'(p)a Jyvac 3.21
| o E®)a'@lo) + (3.21)
The operator /7Y ensures that the vacuum energy is properly subtracted: if |v) and |4")
denote arbitrary N-particle states, then one can convince oneself that (i'|H"¢|y) = 0.
In particular we now find that

(0|[H®|0) =0, (3.22)

= D=



as we wanted. A simple way to automatise the removal of the vacuum contribution is to
introduce normal ordering. Normal ordering means that all annihilation operators appear
to the right of any creation operator. The notation is

aal s = ala, (3.23)
i.e. the normal-ordered operators are enclosed within colons. For instance
;5 @' ()a(p) +a(p)al(p)) : = a'(p)a(p). (3.24)

It is important to keep in mind that @ and a' always commute inside : - - - :. This is true
for an arbitrary string of @ and af. With this definition we can write the normal-ordered
Hamiltonian as

= [ e B (@ @)ae) + i)' () :
/(QW)?BA;E@E@) a'(p)a(p), (3.25)
and thus have the relation
HE = H : +H". (3.26)
Hence, we find that
(W' H o) = @' |HE), (3.27)

~

and, in particular, (0| : H : |0) = 0. The normal ordered Hamiltonian thus produces a
renormalised, sensible result for the vacuum energy.
3.5 Fock space and particle number representation

After this lengthy grappling with the vacuum state, we can continue to construct our basis
of states in analogy to the harmonic oscillator, making use of the commutation relations
for the operators a,a!. In particular, we define the state |k) to be the one obtained by
acting with the operator a'(k) on the vacuum,

k) = al(k)|0). (3.28)
Using the commutator, its norm is found to be

(k[K') = (0la(k)a’(k")|0) = (0lfa(k), a’(k")])|0) + (0]a (k')a(k)|0)
= (2m)2B(k)5 (k — k), (3.29)

since the last term in the first line vanishes (a(k) acting on the vacuum). Next we compute
the energy of this state, making use of the normal ordered Hamiltonian,

cH: k) = / (ZW—ﬁQ%mE(k’)af(k')a(k')af(k)|0>

B / @%@E(k%%)g’w(k)é(k—k’)a* (k)0)

= E(k)a'(k)|0)y = B(k)[k), (3.30)
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and similarly one finds
: P k) = k|k). (3.31)

Observing that the normal ordering did its job and we obtain renormalised, finite results,
we may now interpret the state |k). It is a one-particle state for a relativistic particle of
mass m and momentum k, since acting on it with the energy-momentum operator returns
the relativistic one particle energy-mometum dispersion relation, F(k) = v/k2? + m?. The
a'(k),a(k) are creation and annihilation operators for particles of momentum k.

In analogy to the harmonic oscillator, the procedure can be continued to higher states.
One easily checks that

PPl (l)al (k) |0) = (K% + k5)at (ky)af (ky)(0), (3.32)

and so the state .
ko, k) = ﬁaf(m)a*(kl)m) (3.33)

is a two-particle state (the factorial is there to have it normalised in the same way as the
one-particle state), and so on for higher Fock states.

At the long last we can now see how the field in our free quantum field theory is
related to particles. A particle of momentum k corresponds to an excited Fourier mode of
a field. Since the field is a superpositon of all possible Fourier modes, one field is enough
to describe all possible configurations representing one or many particles of the same kind
in any desired momentum state.

Let us investigate what happens under interchange of the two particles. Since
[aT(k1),af(k)] = 0 for all ki, ky, we see that

|k2,k1> — |k1,k2>, (334)

and hence the state is symmetric under interchange of the two particles. Thus, the
particles described by the scalar field are bosons.

Finally we complete the analogy to the harmonic oscillator by introducing a number
operator

N(k) =al(k)ak), N = /d% o' (k)a(k), (3.35)
which gives us the number of bosons described by a particular Fock state,
NIO) =0, Nk)=|k), Nki...k,) =nlk .. k). (3.36)

Of course the normal-ordered Hamiltonian can now simply be given in terms of this
operator,

g / m);ﬂ%E(k)N(k), (3.37)

l.e. when acting on a Fock state it simply sums up the energies of the individual particles
to give
cH: k.. k) = (Eky) +... Eky)) [ky- . ky). (3.38)

This concludes the quantisation of our free scalar field theory. We have followed the
canonical quantisation procedure familiar from quantum mechanics. Due to the infinite
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number of degrees of freedom, we encountered a divergent vacuum energy, which we had
to renormalise. The renormalised Hamiltonian and the Fock states that we constructed
describe free relativistic, uncharged spin zero particles of mass m, such as neutral pions,
for example.

If we want to describe charged pions as well, we need to introduce complex scalar
fields, the real and imaginary parts being necessary to describe opposite charges. For
particles with spin we need still more degrees of freedom and use vector or spinor fields,
which have the appropriate rotation and Lorentz transformation properties. Moreover, for
fermions there is the Pauli principle prohibiting identical particles with the same quantum
numbers to occupy the same state, so the state vectors have to be anti-symmetric under
interchange of two particles. This is achieved by imposing anti-commutation relations,
rather than commutation relations, on the corresponding field operators. Apart from
these complications which account for the nature of the particles, the formalism and
quantisation procedure is the same as for the simpler scalar fields, to which we shall stick
for this reason.

Problems

3.1 Using the expressions for # and # in terms of & and af, show that the unequal time
commutator [qﬁ(a:),'fr(r’)] is given by

o560 = s (e v v,

Show that for ¢ = t' one recovers the equal time commutator
(805, 1), 7(x, 8)] = i6*(x ).

3.2 Being time-dependent Heisenberg operators, the operators O = ¢(x,t), #(x,t) of
scalar field theory obey the Heisenberg equation

9 ..
—0 = H.
zatO [0, H]

In analogy to what you did in problem 1.5, demonstrate the equivalence of this
equation with the Klein-Gordon equation.

3.3 Express the Hamiltonian

H= %/d3$ {30(/;)2 + (V) + ?712@2}

of the quantised free scalar field theory in terms of creation and annihilation oper-
ators and show that it is given by

H= %/ KQ?F)[EZP—E(P) E(p) {m(p)&(p) + ﬁr,(p)(}.‘r(p)} ’
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3.3 Prove the commutator relation
: P Lal ()] = kal (k)
to show that
F Pl (k) (K)[0) = (kY + K3) a1 (Iz)a! (1) [0). (3:39)
Interpret the physics of this result.

3.4 Prove by induction that

—dg;?__&’r a =n
/(%)32E(p) (@) |k,...,k) k,...,k) .

1. momenta 7. momenta

[Hint: induction proceeds in two steps. ¢) show that the statement is true for some
starting value of n; #7) show that if the statement holds for some general n, then it
also holds for n + 1.]

4 Interacting scalar fields

From now on we shall always discuss quantised real scalar fields. It is then convenient to
drop the “hats” on the operators that we have considered up to now. So far we have only
discussed free fields without any interaction between them, which we could solve exactly
in terms of plane waves. As this does not make for a very interesting theory, let us now
add an interaction Lagrangian L. The full Lagrangian £ is given by

E - £0 + Eint (41)

where

Lo= 10,00 - tm24? (4.2)

is the free Lagrangian density discussed before. The Hamiltonian density of the interaction
is related to L;, simply by
Hing = _[:inta (43)

which follows from its definition. We shall leave the details of Li,; unspecified for the
moment. What we will be concerned with mostly are scattering processes, in which two
initial particles with momenta p; and p, scatter, thereby producing a number of particles
in the final state, characterised by momenta k;,...,k,. This is schematically shown in
Fig. 4. Our task is to find a description of such a scattering process in terms of the
underlying quantum field theory.
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Figure 4: Scattering of two initial particles with momenta p; and p, into n particles with
momenta ki, ..., k, in the final state.

4.1 The S-matrix

The timescales over which interactions happen are extremely short. The scattering (in-
teraction) process takes place during a short interval around some particular time ¢ with
—00 € t < 0. Long before ¢, the incoming particles evolve independently and freely.
They are described by a field operator ¢;, defined through
Hm ¢(z) = ¢in(x), (4.4)
t——00
which acts on a corresponding basis of |in) states. Long after the collision the particles
in the final state evolve again like in the free theory, and the corresponding operator is
Jim9(z) = dou (), (4.5)

acting on states |out). The fields ¢y, ¢dou; are the asymptotic limits of the Heisenberg
operator ¢. They both satisfy the free Klein-Gordon equation, i.e.

(O 4+ mH)pin(z) = 0, (00 + m?) gpou () = 0. (4.6)

Operators describing free fields can be expressed as a superposition of plane waves (see
Eq. (3.6)). Thus, for ¢y, we have

onie) = [ G (7000 +e 70 (1) (4.7

with an entirely analogous expression for ¢q,(z). Note that the operators al and @ also

carry subscripts “in” and “out”.
f

We can now use the creation operators a;, and al ., to build up Fock states from the

vacuum. For instance

al (1) al (p2)|0) = |p1,po;in), (4.8)
alut(kl) o 'azut(kn”o) - |k17 Sy kn; OUt>'

We must now distinguish between Fock states generated by aiTn and alut, and therefore we
have labelled the Fock states accordingly. In eqs. (4.8) and (4.9) we have assumed that
there is a stable and unique vacuum state:

|0) = |0;in) = |0; out). (4.10)
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Mathematically speaking, the a;'n’s and a! ’s generate two different bases of the Fock

space. Since the physics that we want to describe must be independent of the choice of
basis, expectation values expressed in terms of “in” and “out” operators and states must
satisfy

(in] ¢ (2) [in) = (out| dous (z) Jout) . (4.11)

Here |in) and |out) denote generic “in” and “out” states. We can relate the two bases by
introducing a unitary operator S such that

¢in(x) = S(bout(w) ST (412)
[in) =S |out), |out) =St |in), STS=1. (4.13)

S is called the S-matrix or S-operator. Note that the plane wave solutions of ¢, and doye
also imply that
oy =SalS', i = Sdou S, (4.14)

out

By comparing “in” with “out” states one can extract information about the interaction —
this is the very essence of detector experiments, where one tries to infer the nature of the
interaction by studying the products of the scattering of particles that have been collided
with known energies. As we will see below, this information is contained in the elements
of the S-matrix.

By contrast, in the absence of any interaction, i.e. for £;; = 0 the distinction between
¢in and @oyut 1s not necessary. They can thus be identified, and then the relation between
different bases of the Fock space becomes trivial, S = 1, as one would expect.

What we are ultimately interested in are transition amplitudes between an initial
state 7 of, say, two particles of momenta p;, pe, and a final state f, for instance n particles
of unequal momenta. The transition amplitude is then given by

(f, out| 7, in) = (f, out| S|, out) = (f, in| S |4, in) = Sj. (4.15)

The S-matrix element S therefore describes the transition amplitude for the scattering
process in question. The scattering cross section, which is a measurable quantity, is then
proportional to |Ss|?. All information about the scattering is thus encoded in the S-
matrix, which must therefore be closely related to the interaction Hamiltonian density
Hint. However, before we try to derive the relation between S and Hi,. we have to take a
slight detour.

4.2 More on time evolution: Dirac picture

The operators ¢(x,t) and 7(x,t) which we have encountered are Heisenberg fields and
thus time-dependent. The state vectors are time-independent in the sense that they do
not satisfy a non-trivial equation of motion. Nevertheless, state vectors in the Heisenberg
picture can carry a time label. For instance, the “in”-states of the previous subsection are
defined at ¢ = —oo. The relation of the Heisenberg operator ¢y (x) with its counterpart
¢s in the Schrodinger picture is given by

¢H(X, t) = eth ¢5 e_“”, H = Ho + Hintv (416)
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Note that this relation involves the full Hamiltonian H = H, + Hj,, in the interacting
theory. We have so far found solutions to the Klein-Gordon equation in the free theory,
and so we know how to handle time evolution in this case. However, in the interacting
case the Klein-Gordon equation has an extra term,

O+ m?)é(z) + i‘i{%@ =0, (4.17)
due to the potential of the interactions. Apart from very special cases of this potential, the
equation cannot be solved anymore in closed form, and thus we no longer know the time
evolution. It is therefore useful to introduce a new quantum picture for the interacting
theory, in which the time dependence is governed by Hy only. This is the so-called Dirac
or Interaction picture. The relation between fields in the Interaction picture, ¢, and in
the Schroédinger picture, ¢g, is given by

¢r(x,t) = ¢t gg e, (4.18)

At t = —oo the interaction vanishes, i.e. H;,; = 0, and hence the fields in the Interaction
and Heisenberg pictures are identical, i.e. ¢y(x,t) = ¢r(x,t) for t = —oo. The relation
between ¢y and ¢y can be worked out easily:

¢H(X7 t) - eth ¢S efth
oMt gmiHot giflot g o—iMot oiHlot oMt
¢[(X,t)
= U () dr(x,t) U(2), (4.19)
where we have introduced the unitary operator U(t)
U(t) = etfhotemt - I = 1. (4.20)

The field ¢y (x,t) contains the information about the interaction, since it evolves over
time with the full Hamiltonian. In order to describe the “in” and “out” field operators,
we can now make the following identifications:

t— —00 : ¢m(x,t) = ¢r(x,t) = du(x,1), (4.21)
t— 400 1 Pout(x,t) = du(x,t). (4.22)

Furthermore, since the fields ¢; evolve over time with the free Hamiltonian Hy, they
always act in the basis of “in” vectors, such that

Pin(x,t) = ¢1(x,1), —o0 < t < 00. (4.23)
The relation between ¢; and ¢y at any time ¢ is given by
br(x,t) = U(t) du(x,t) U 1 (t). (4.24)
As t — oo the identifications of egs. (4.22) and (4.23) yield

bin = U(00) o UT(00). (4.25)
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From the definition of the S-matrix, Eq. (4.12) we then read off that

lim U(t) = S. (4.26)
t—o0
We have thus derived a formal expression for the S-matrix in terms of the operator U(t),
which tells us how operators and state vectors deviate from the free theory at time ¢,
measured relative to tp = —o0, i.e. long before the interaction process.
An important boundary condition for U(t) is
lim U(t) =1. (4.27)
t——o0
What we mean here is the following: the operator U actually describes the evolution
relative to some initial time ¢y, which we will normally suppress, i.e. we write U(t)
instead of U(t, ty). We regard t; merely as a time label and fix it at —oco, where the
interaction vanishes. Equation (4.27) then simply states that U becomes unity as t — g,
which means that in this limit there is no distinction between Heisenberg and Dirac fields.
Using the definition of U(t), Eq. (4.20), it is an easy exercise to derive the equation
of motion for U(t):

d

iU (t) = Hin (1) U(1), Hipi(t) = et Hy e tHot, (4.28)

The time-dependent operator Hiy (%) is defined in the interaction picture, and depends
on the fields ¢i,, mi, in the “in” basis. Let us now solve the equation of motion for U(t)
with the boundary condition tlim U(t) = 1. Integrating Eq. (4.28) gives

——00

" t
/ -!ﬂ—{,)"('ﬁl)(“l = _i/ Hint(tl) U(tl) dt,

5B {.','l'.']

U(t) — U(—oc0) = —i[ Hi(t,) U(t) dty
= U(t) = 1~i/t His(t1) U(t1) dty. (4.29)

The rhs. still depends on U, but we can substitute our new expression for U(¢) into the
integrand, which gives

Ut) = 1—1/_; Hint(tl){l—i/_: Him(tz)U(tz)dtg}dtl
_ 1o /_ ; Hine(t1)dty — / " ity Hog(t) / "ty Ho(t2) U(ty), (4.30)

— — 00
where t5 < t; < t. This procedure can be iterated further, so that the nth term in the

sum 1is

tn—
—c0

(—2)" /_:o dt, /_to dt2--~/ 1dthint(tl)Hint(tg)---Him(tn). (4.31)

This iterative solution could be written in much more compact form, were it not for the
fact that the upper integration bounds were all different, and that the ordering t, <

-30 -



th1 < ... <ty <t had to be obeyed. Time ordering is an important issue, since one
has to ensure that the interaction Hamiltonians act at the proper time, thereby ensuring
the causality of the theory. By introducing the time-ordered product of operators, one
can use a compact notation, such that the resulting expressions still obey causality. The
time-ordered product of two fields ¢(¢;) and @(t2) is defined as

[ et)e(t) >t
Tola) olea)} = {¢(t2)¢(t1> b<ty

= 0t — t2) d(t1)p(t2) + 0(t2 — t1) P(t2)B(t1), (4.32)

where 6 denotes the step function. The generalisation to products of n operators is
obvious. Using time ordering for the nth term of Eq. (4.31) we obtain

=\ 71 mn t

—1

CLTT ) e (o) Hinlt) - Hia(t) (4.33)
A=

and since this looks like the nth term in the series expansion of an exponential, we can

finally rewrite the solution for U(¢) in compact form as

t
U(t) =T exp {—1/ Hin (1) dt’} : (4.34)
where the “7T™ in front ensures the correct time ordering.

4.3 S-matrix and Green’s functions

The S-matrix, which relates the “in” and “out” fields before and after the scattering
process, can be written as
S =1+1T, (4.35)

where T' is commonly called the T-matrix. The fact that S contains the unit operator
means that also the case where none of the particles scatter is encoded in S. On the other
hand, the non-trivial case is described by the T-matrix, and this is what we are interested
in. However, the S-matrix is not easily usable for practical calculations. As it stands
now, it is a rather abstract concept, and we still have to relate it to the field operators
appearing in our Lagrangian. This is achieved by establishing a general relation between
S-matrix elements and n-point Green’s functions,

G™ (21, - 2a) = (OIT((21) - - - (24))]0). (4.36)

Once this step is completed, then for any given Lagrange density we may compute the
Green’s functions of the fields, which will in turn give us the S-matrix elements providing
the link to experiment. In order to achieve this, we have to express the ”in/out”-states in
terms of creation operators a;fn fout and the vacuum, then express the creation operators
by the fields ¢i,/out, and finally use the time evolution to connect those with the fields ¢

in our Lagrangian.
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Let us consider again the scattering process depicted in Fig. 4. The S-matrix element
in this case 1s

S = <k1,k2,---,kn;OUt’PhP2;in>

= <k1,k2, .. ky,; out pg;in>, (4.37)

aiTn (pl)

I is the creation operator pertaining to the “in” field ¢,. Our task is now to
express al in terms of ¢in, and repeat this procedure for all other momenta labelling our

mn g
Fock states.

The following identities will prove useful

d(p) = i / @ { (9 e7%) $(z) — 7% (3pg(z)))}

where a

= —i/d% e e 5: é(z), (4.38)
ap) = —i [ o {(@e) o) - & (@up(a))
= i/d% el® (8_()) (). (4.39)

The S-matrix element can then be rewritten as
. —
Sy = —i/cl:"scle*””'“’81 o <k1,...,kn;out‘¢in(xl)|p2;in>
. >
= —i lim [ d’n e g, <k1,...,kn;out|¢(x1)|p2;in>, (4.40)
1——0C0

where in the last line we have used Eq.(4.4) to replace ¢;i, by ¢. We can now rewrite
limy, ,_ using the following identity, which holds for an arbitrary, differentiable function
f(t), whose limit ¢ — 40 exists:

li (t) = lim f(¢ +OO ﬁdt 4.41
t—>lr—noof = oo (t) - e dt (4.41)
The S-matrix element then reads
~ —
Sg = —1 lim A3z, e 1T g, <k1, i ..,kn;outl¢(x1)‘p2;in>
t1—+o0
+o00 a ] “—
+i/ dt, ETe {/d3x1 e "PrEL g, <k1, : ..,kn;out’(b(atl) p2;in>} (4.42)
—00 1

The first term in this expreséion involves limy, -, {00 ¢ = Pout, Which gives rise to a contri-
bution
x <k1, ..., ky;out

abu(P1) [P in ). (4.43)

This is non-zero only if p; is equal to one of ki, ..., k,. This, however, means that the
particle with momentum p; does not scatter, and hence the first term does not contribute
to the T-matrix of Eq. (4.35). We are then left with the following expression for Sg:

Sg = —i/d4331 <k1, e Ky OUt‘ao {(306_””‘“) P(x1) —e MM (Bogp(21))}

P2; in>.
(4.44)
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The time derivatives in the integrand can be worked out:

B { (Boe™™") () — ™™™ (Godh(s1)) }
== [B@)]" e ¢(z1) — e 0(z1)
=—{((-V*+m?) e ) §(z1) + e 5 §(z1) } (4.45)

where we have used that —VZe~"P1%1 = p2 ¢ =121 For the S-matrix element one obtains

Sg = i/d4x1 g 1 <k1, R ' outl (83 - V%4 m2) &(z1)

P2; in>

= z’/d4w1 e 1T (Dxl +m2) <k1, - ,kn;out‘gb(:pl) P2; in>. (4.46)
What we have obtained after this rather lengthy step of algebra is an expression in which
the field operator is sandwiched between Fock states, one of which has been reduced to a
one-particle state. We can now successively eliminate all momentum variables from the
Fock states, by repeating the procedure for the momentum p,, as well as the n momenta
of the “out” state. The final expression for Sy is

Sﬁ _ (i)n+2/d4$1/d4$2/d4y1'i'/d4yn e(—iplmlAipz-xz+ik1-y1+“-+kn-yn)
X (Bay +m*) (@, +m") @y +m%) - (O, +m?)
(05 0ut| T{b(y1) - $(n) (1) w2) |03 m), (4.47)

where the time-ordering inside the vacuum expectation value (VEV) ensures that causality
is obeyed. The above expression is known as the Lehmann-Symanzik-Zimmermann (L.SZ)
reduction formula. It relates the formal definition of the scattering amplitude to a vacuum
expectation value of time-ordered fields. Since the vacuum is uniquely the same for
"in/out”, the VEV in the LSZ formula for the scattering of two initial particles into n
particles in the final state is recognised as the (n + 2)-point Green’s function:

Gria U, 02, Yo 71,72) = (OT{D(31) -+ B(un) (2 )b(z)} 0}, (4.48)

You will note that we still have not calculated or evaluated anything, but.merely rewritten
the expression for the scattering matrix elements. Nevertheless, the LSZ formula is of
tremendous importance and a central piece of QFT. It provides the link between fields in
the Lagrangian and the scattering amplitude SZ, which yields the cross section, measurable
in an experiment. Up to here no assumptions or approximations have been made, so this
connection between physics and formalism is rather tight. It also illustrates a profound
phenomenon of QFT and particle physics: the scattering properties of particles, in other
words their interactions, are encoded in the vacuum structure, i.e. the vacuum is non-
trivial!

4.4 How to compute Green’s functions

Of course, in order to calculate cross sections, we need to compute the Green’s functions.
Alas, for any physically interesting and interacting theory this cannot be done exactly,
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contrary to the free theory discussed earlier. Instead, approximation methods have to
be used in order to simplify the calculation, while hopefully still giving reliable results.
Or one reformulates the entire QFT as a lattice field theory, which in principle allows to
compute Green’s functions without any approximations (in practice this still turns out
to be a difficult task for physically relevant systems). This is what many theorists do for
a living. But the formalism stands, and if there are discrepancies between theory and
experiments, one "only” needs to check the accuracy with which the Green’s functions
have been calculated or measured, before approving or discarding a particular Lagrangian.

In the next section we shall discuss how to compute the Green’s function of scalar
field theory in perturbation theory. Before we can tackle the actual computation, we must
take a further step. Let us consider the n-point Green’s function

Gn(%1, -+ 7n) = (O[T{$(z1) - - b(zn) }| 0) - (4.49)

The fields ¢ which appear in this expression are Heisenberg fields, whose time evolution
is governed by the full Hamiltonian Hy + Hj,.. In particular, the ¢’s are not the ¢;,’s. We
know how to handle the latter, because they correspond to a free field theory, but not the
former, whose time evolution is governed by the interacting theory, whose solutions we
do not know. Let us thus start to isolate the dependence of the fields on the interaction
Hamiltonian. Recall the relation between the Heisenberg fields ¢(t) and the “in”-fields?

B(t) = U™ (t) $un(8) U (2). (4.50)

We now assume that the fields are properly time-ordered, i.e. t; > t3 > ... > t,, so
that we can forget about writing 7'(- - -) everywhere. After inserting Eq. (4.50) into the
definition of (G, one obtains

G = (0[UT (1) din(t)U (1) U™ () in (t2) U (22) - - -
X U™ (bn)in () U (1)[0). (4.51)

Now we introduce another time label ¢ such that t > ¢; and —t < ¢;. For the n-point
function we now obtain

G, = <0{U—1(t){U(t)U—l(tl)qﬁm(tl)U(tl) U™ (o) (t2)U (22) - -
X U™ tn)n(t)U U (=0 JU(-0)|0).  (452)

The expression in curly braces is now time-ordered by construction. An important obser-
vation at this point is that it involves pairs of U and its inverse, for instance

UR)U(t) = U(t, ty). (4.53)

One can easily convince oneself that U(t,¢;) provides the net time evolution from ¢; to ¢.
We can now write GG,, as

€h = <O‘U*1(t) T{qﬁ-m(tl) : --¢in(tnjy(t,tl)U(t1,t2) U, —tl}U(—t)‘0>. (4.54)
U(t:r—t)

2Here and in the following we suppress the spatial argument of the fields for the sake of brevity.
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Let us now take ¢ — oco. The relation between U(¢) and the S-matrix Eq. (4.26), as well
as the boundary condition Eq. (4.27) tell us that

lim U(—t) =1,  lim U, —t) = S, (4.55)

t—oo t—o0

which can be inserted into the above expression. We still have to work out the meaning
of (0]JU"!(c0) in the expression for G,,. In a paper by Gell-Mann and Low it was argued
that the time evolution operator must leave the vacuum invariant (up to a phase), which
justifies the ansatz

(0lU~(c0) = K(0), (4.56)
with K being the phase. Multiplying this relation with |0) from the right gives

(0jU1(0)|0) = K{0]0) = K. (4.57)

'Furthermore, Gell-Mann and Low showed that

1
(O[T H(00)]0) = e, (4.58)
-' OIU(c<)[0
which implies
1
K=—. (4.59)
(01510)
After inserting all these relations into the expression for GG,, we obtain
Gy, ... Ty) = . 4.60
The S-matrix is given by
+00
S =T exp {—’L Hint(t) dt} 3 Hint e Hint(¢in: '/Tin): (461)

and thus we have finally succeeded in expressing the n-point Green’s function exclusively
in terms of the “in”-fields. This completes the derivation of a relation between the general
definition of the scattering amplitude S and the VEV of time-ordered “in”-fields. The
link between the scattering amplitude and the underlying field theory is provided by the
n-point Green’s function.

Problems
4.1 Using the definition U(t) = e*ffot e=* 1t derive the evolution equation for U(t):

d

1% U(t) = Hin (1) U (1),

l l t Z'H()t ’ ' —L’H()t
int( ) € int € N
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4.2 Given that ¢, is a free field, obeying the Heisenberg equation of motion

iq;in = [HO(¢in77rin)7 ¢in]a

show that ¢y is also a free field, which obeys
7;¢20ut e [H0(¢0ut) Wout)a ¢out] .

[Hint: use ¢ou = ST¢inS and 7oy = StrnS. Keep in mind that the S-matrix has
no explicit time dependence.]

5 Perturbation Theory

In this section we are going to calculate the Green’s functions of scalar quantum field
theory explicitly. We will specify the interaction Lagrangian in detail and use an approx-
imation known as perturbation theory. At the end we will derive a set of rules, which
represent a systematic prescription for the calculation of Green’s functions, and can be
easily generalised to apply to other, more complicated field theories. These are the famous
Feynman rules.

We start by making a definite choice for the interaction Lagrangian L;,. Although
one may think of many different expressions for L;,;, one has to obey some basic principles:
firstly, Lin must be chosen such that the potential it generates is bounded from below
— otherwise the system has no ground state. Secondly, our interacting theory should be
renormalisable. Despite being of great importance, the second issue will not be addressed

in these lectures. The requirement of renormalisability arises because the non-trivial vac-
uum, much like a medium, interacts with particles to modify their properties. Moreover,
if one computes quantities like the energy or charge of a particle, one typically obtains
a divergent result®. There are classes of quantum field theories, called renormalisable,
in which these divergences can be removed by suitable redefinitions of the fields and the
parameters (masses and coupling constants).

For our theory of a real scalar field in four space-time dimensions, it turns out that
the only interaction term which leads to a renormalisable theory must be quartic in the
fields. Thus we choose

A
Lint = —E(f)‘l(ﬂ?); (5-1)

where the coupling constant A describes the strength of the interaction between the scalar
fields, much like, say, the electric charge describing the strength of the interaction between
photons and electrons. The full Lagrangian of the theory then reads

1 1 A
L=Ly+ Lin, = 5 (3u¢)2 — §m2¢2 - Eg&“, (5.2)

3This is despite the subtraction of the vacuum energy discussed earlier.
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and the explicit expressions for the interaction Hamiltonian and the S-matrix are

A

Hint - _‘Cinta Hint = E/d:;w ¢?n(xa t)

S =T exp {—i% [d“x ¢§n(x)} : (5.3)

The n-point Green’s function is

Gn(z1,. -, Zn)
(4] 3ot (s
== CEN ; . (5.4)
S ERIEEmI

This expression cannot be dealt with as it stands. In order to evaluate it we must expand
G, in powers of the coupling A and truncate the series after a finite number of terms. This
only makes sense if A is sufficiently small. In other words, the interaction Lagrangian must
act as a small perturbation on the system. As a consequence, the procedure of expanding
Green’s functions in powers of the coupling is referred to as perturbation theory.

51 Wick’s Theorem

The n-point Green’s function in Eq. (5.4) involves the time-ordered product over at least
n fields. There is a method to express VEV’s of n fields, i.e. (0|7 {¢in(21) - - - din(z,)} |0)
in terms of VEV’s involving two fields only. This is known as Wick’s theorem.

Let us for the moment ignore the subscript “in” and return to the definition of
normal-ordered fields. The normal-ordered product : ¢(zq)@(z2) : differs from ¢(z1)P(z2)
by the vacuum expectation value, i.e.

P(z1)p(w2) =: d(z1)p(x2) - +(0p(21)B(2)]0). (5.5)

We are now going to combine normal-ordered products with time ordering. The time-
ordered product T{¢(z1)¢(xq)} is given by

T{p(z1)p(z2)} = G(z1)P(w2)0(t1 — t2) + p(w2)P(21)0(t2 — £1)
— - p(z) () : (9@1 ~ 1) + O(t, —tl))
+(0|¢(z1)$(22)0(t1 — t2) + ¢(z2)B(21)0(t2 — 11)[0).  (5.6)

Here we have used the important observation that

D p(T1)B(x2) T =1 P(m2)B(21) 1, (5.7)

which means that normal-ordered products of fields are automatically time-ordered.?
Equation (5.6) is Wick’s theorem for the case of two fields:

T{p(z1)p(x2)} =: ¢(z1)9(z2) - +(0IT {p(21)¢(x2) } 0). (5-8)

4The reverse is, however, not true!
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For the case of three fields, Wick’s theorem yields

T{¢(z1)p(z2)b(23)} = : P(z1)@(72)(3) : + : d(m1) ¢ (0T {b(w2)p(3)}|0)
+ 1 ¢(x2) : (OIT{d(z1)p(x3) HO)+ : d(z3) : (0T {¢(z1)e(22)}0)  (5.9)
At this point the general pattern becomes clear: any time-ordered product of fields is
equal to its normal-ordered version plus terms in which pairs of fields are removed from the’
normal-ordered product and sandwiched between the vacuum to form 2-point functions.

Then one sums over all permutations. Without proof we give the expression for the
general case of n fields (n even):

T{p(x1) - d(zn)} =

+i(zy) E . @ 1 9zn)  OIT{9(w:)(25)}10) + perms.

¢
+ (@) P(m) - b(zy) - lmn) - Blm) - Blza) :
x (O|T{$(x:)b(z;)}0) (OIT{$(x)$(w1)}|0) + perms.
+...+
+(OIT{ (1) B(2) }O) O|T{$(5) $(24) }|0) - - - (O|T{ (1) () }|0)
+ perms.. (5.10)

The symbol q@ indicates that ¢(z;) has been removed from the normal-ordered product.

Let us now go back to (0|T{¢(z1) - - - #(z,)}|0). If we insert Wick’s theorem, then we
find that only the contribution in the last line of Eq. (5.10) survives: by definition the VEV
of a normal-ordered product of fields vanishes, and it is precisely the last line of Wick’s
theorem in which no normal-ordered products are left. The only surviving contribution
is that in which all fields have been paired or “contracted”. Sometimes a contraction is
represented by the notation:

¢ (z:)9(z;) = (O|T{¢(z:)#(z;) }0), (5.11)
——

i.e. the pair of fields which is contracted is joined by the braces. Wick’s theorem can now
be rephrased as

O|T{p(x1) - - - #(x,)}|0) = sum of all possible contractions of n fields. (5.12)

Let us look at a few examples. The first is the 4-point function-

(OIT{9(a1)b(@2) () ()} 0) = 6 (1)) () ()

—~ ———— I
+¢\($1)¢ ($3)¢($3) 1(964) + ¢(21)¢ (w2)d(z3)P(z4) (5.13)

The second example is again a 4-point function, where two of the fields are also normal-
ordered:

OIT{¢(21)¢(x2) : P(23)B(24) :}10) = ¢ (21)B(22) : ¢ (x3)p(4) :

S~ ——
—_—— —T—
4 (208 (5)  Don)dlo) : +6(2)8 (w0) : Blza)doa) (5.14)
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In this example, though, the contraction of : ¢(x3)@(x4) : vanishes by construction, so only
the last two terms survive! As a general rule, contractions which only involve fields inside a
normal-ordered product vanish. Such contractions contribute only to the vacuum. Normal
ordering can therefore simplify the calculation of Green’s functions quite considerably, as
we shall see explicitly below.

5.2 The Feynman propagator

Using Wick’s Theorem one can relate any n-point Green’s functions to an expression
involving only 2-point functions. Let us have a closer look at

Ga(z,y) = (O[T{in(z)¢in(y) }|0). (5.15)

We can now insert the solution for ¢ in terms of @ and at. If we assume ¢, > t, then
Go(z,y) can be written as

B d*p d3q
Go(z,y) = / (2 4E(p)E(q) . | .
< (0](8(9) ¥ + a(p) =) (a'(@) €Y +(a) ") )
N / (2W)6d4§)?P?E(Q) s (0 |&(p)dT(Q)| - 10

This shows that G5 can be interpreted as the amplitude for a meson which is created at
y and destroyed again at point z. We can now replace a(p)a'(q) by its commutator:

Galwy) = / (m)dpdq e~ (0| [a(p), ' (a)]| 0)

S4E(p)E(q)
d®p :
e Y 5.17
| e o4
and the general result, after restoring time-ordering, reads
d*p , -
G = | —— = (e, ¢ P E=0g(t, — 1)) . 5.18
2(z,y) ./(2WP2EKp)(e ( y) e (ty — tz)) (5.18)

Furthermore, using contour integration one can show that this expression can be rewritten
as a 4-dimensional integral

G — 4 5.19
2($)y) Z/(Qﬁ)4 pz_m2+i€7 ( )

where € is a small parameter which ensures that (G5 does not develop a pole. This cal-
culation has established that G»(z,y) actually depends only on the difference (z — y).
Equation (5.19) is called the Feynman propagator Gp(z — y):

d4p e_ip'(m'y)
(2m)4 p2 —m2 +1c

Grlz — ) = (OIT{$(@)p()}[0) = /

The Feynman propagator is a Green’s function of the Klein-Gordon equation, i.e. it
satisfies

(5.20)

(0. +m?*) Gp(z —y) = —id*(z — y), (5.21)

and describes the propagation of a meson between the space-time points z and y.
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P k1

P2 k2

Figure 5: Scattering of two initial particles with momenta p; and p, into 2 particles with
momenta k; and k,.

5.3 Two-particle scattering to O()\)

Let us now consider a scattering process in which two incoming particles with momenta
p1 and p; scatter into two outgoing ones with momenta k; and k,, as shown in Fig. 5.
The S-matrix element in this case is

S = (ki, ky;out|py, pg;in)
= (ky, ko;in|S|p1, p2;in), " (5.22)

and S =1+ 47. The LSZ formula Eq. (4.47) tells us that we must compute G4 in order
to obtain Si. Let us work out G4 in powers of A using Wick’s theorem. To make life
simpler, we shall introduce normal ordering into the definition of S, i.e.

A
S =T exp {—ia / d'z : ¢! (z) :} (5.23)

Suppressing the subscripts “in” from now on, the expression we have to evaluate order by
order in A is

Gn(zy, ... 20) (5.24)

> (<5) 5 (0| {tenstastensian ([ @ - 600:) o)
L) bl (foew)l)

r=0
r=20: denominator = 1. (5.25)

Starting with the denominator, we note that for » = 0 one finds

If r = 1, then the expression in the denominator only involves fields which are normal-
ordered. Following the discussion at the end of section 5.1 we conclude that these contri-
butions must vanish, hence

r=1: denominator = 0. (5.26)

The contribution for » = 2, however, is non-zero. But then the case of r = 2 corresponds
already to O(A?), which is higher than the order which we are working to. Therefore

- denominator = 1 to order A. (5.27)
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Turning now to the numerator, we start with » = 0 and apply Wick’s theorem, which
gives

r=0:  (0[T{¢(x1)(z2)¢(x3)$(z4)}]0)
. GF(ZL‘l — IL‘Q) Gp(xg, — .’.134) + Gp(ml o .’L‘3) GF(.CEQ = .’E4)
+GF(.’E1 —.'134) GF(QZZ—I;;), (528)

which can be graphically represented as

Ty T3 T I3 Tq T3
[

T2 T4 T2 T4 T2 T4

But this is the same answer as if we had set A = 0, so r = 0 in the numerator does not
describe scattering and is hence not a contribution to the T-matrix. '
For r = 1 in the numerator we have to evaluate

iA
=1 =S (ojr{s@etedstaots : [aty et :}o)
iA
= 0 d'y 4! Gr(z1 — y)Gr(z: — y)Gr(zs — y)Gr(za —y), (5.29)
where we have taken into account that contractions involving two fields inside : - - - : vanish.

The factor 4! inside the integrand is a combinatorial factor: it is equal to the number of
permutations which must be summed over according to Wick’s theorem and cancels the
4! in the denominator of the interaction Lagrangian. Graphically this contribution is
represented by

vl T3
Y
—iA / d*y
Ty

where the integration over y denotes the sum over all possible locations of the interaction
point y. Without normal ordering we would have encountered the following contributions
for r = 1:

T4

v OO | s

Ty T4 X9 . T4

Such contributions are corrections to the vacuum and are cancelled by the denomina-
tor. This demonstrates how normal ordering simplifies the calculation by automatically
subtracting terms which do not contribute to the actual scattering process.
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To summarise, the final answer for the scattering amplitude to O()) is given by
Eq. (5.29).

5.4 Graphical representation of the Wick expansion: Feynman rules

We have already encountered the graphical representation of the expansion of Green'’s
functions in perturbation theory after applying Wick’s theorem. It is possible to formulate
a simple set of rules which allow to draw the graphs directly without using Wick’s theorem
and to write down the corresponding algebraic expressions.

We again consider a neutral scalar field whose Lagrangian is

| 1 A
S o 202 4
L= 23,1 dO* ¢ 5™ o) —4!4) : (5.30)

Suppose now that we want to compute the O(A™) contribution to the n-point Green’s
function G, (z1,...,%,). This is achieved by going through the following steps:

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

e Draw n dots and label them z, ..., z, (external points)
e Draw m dots and label them y, ...,y (vertices)
e Join the dots according to the following rules:

— only one line emanates from each z;
— exactly four lines run into each y;

— the resulting diagram must be connected, i.e. there must be a continuous
path between any two points.

2
(2) Assign a factor —14—' / d*y; to the vertex at y;

(3) Assign a factor Gg(z; — y;) to the line joining z; and y;

(4) Multiply by the number of contractions C from the Wick expansion which lead to
the same diagram.

These are the Feynman rules for scalar field theory in position space.
Let us look at an example, namely the 2-point function. According to the Feynman
rules the contributions up to order A\? are as follows:

0(1): ,® * = Gr(z) — 72)

O(\): I ) “tadpole diagram”;
o (cancelled by normal ordering)

Lo
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O(12): & “ladpole diagram”;
(cancelled by normal ordering)

Iy m T2
2y.
O 1y, Yp T2
i\ >
=C (‘I) /d4y1d4y2 Gr(z1 — 1) [Gr(yr — 12)]? Grlyy — 22)

The combinatorial factor for this contribution is worked out as C = 4 - 4!. Note that
the same graph, but with the positions of y; and y, interchanged is topologically distinct.
Numerically it has the same value as the above graph, and so the corresponding expression
has to be multiplied by a factor 2.

Another contribution at order A? is

O()\?): (1 Y2

vacuum contribution;

not connected
I e L)

This contribution must be discarded, since not all of the points are connected via a
continuous line.

Let us end this discussion with a small remark on the tadpole diagrams encountered
above. These contributions to the 2-point function are cancelled if the interaction term
is normal-ordered. However, unlike the case of the 4-point function, the corresponding
diagrams satisfy the Feynman rules listed above. In particular, the diagrams are connected
and are not simply vacuum contributions. They must hence be included in the expression
for the 2-point function.

5.5 Feynman rules in momentum space

It is often simpler to work in momentum space, and hence we will discuss the derivation
of Feynman rules in this case. If one works in momentum space, the Green’s functions
are related to those in position space by a Fourier transform

d'p, " d'pn o 55
G = o [ e gL EIE I ey Pn)- 5.31
n(xh 3 In) (Q?T)'I / (271')4 € n(ph » P ) ( )
The Feynman rules then serve to compute the Green’s function é’n(pl, .. .,Dn) order by

order in the coupling.
In every scattering process the overall momentum must be conserved, and hence

Zn: pi = 0. - (5.32)
i=1
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This can be incorporated into the definition of the momentum space Green’s function one
is trying to compute:

Grlp1, ..., pn) = (21)*0" (Z pi) Gu(D1, -, Dn). (5.33)

Here we won’t be concerned with the exact derivation of the momentum space Feynman
rules, but only list them as a recipe.
Feynman rules (momentum space)

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

e Assign momenta py,...,p, to the external lines

e Assign momenta k; to the internal lines

(2) Assign to each external line a factor
(

pi —m? +ie

(3) Assign to each internal line a factor

/. d4k‘j 2
J (2m)* k3 —m? +ie
(4) Each vertex contributes a factor

—%(2#)454 (Z momenta) ,

(the delta function ensures that momentum is conserved at each vertex).

(5) Multiply by the combinatorial factor C, which is the number of contractions leading
to the same momentum space diagram (note that C may be different from the
combinatorial factor for the same diagram considered in position space!)

5.6 S-matrix and truncated Green’s functions

The final topic in these lectures is the derivation of a simple relation between the S-
matrix element and a particular momentum space Green’s function, which has its external
legs amputated: the so-called truncated Green’s function. This further simplifies the
calculation of scattering amplitudes using Feynman rules.

Let us return to the LSZ formalism and consider the scattering of m initial particles
(momenta pi, ..., Ppn) into n final particles with momenta k;, ..., k,. The LSZ formula
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tells us that the S-matrix element is given by

<k1, ~E kn; OUt‘pla <+ Pm; 1n>

_ (z')”+m/Hd4a:i/Hd4yjexp {_ini - T+ iij : yj}
i=1 j=1 i=1 j=1

X H (Dmi + m2) H (Dyj + m2) Gram(ZT1y oy Tma ULy - -« s Yn)- (5.34)

Let us have a closer look at Gpim(z1,--., Tm,Y1,---,Yn)- As shown in Fig. 6 it can
be split into Feynman propagators, which connect the external points to the vertices at
Z1y- -y Zn+m, and a remaining Green’s function G, 1., according to

Gn+m - /d421 e d4zn+m GF(wl - Zl) o 'GF(yn - zn—l—m) an+m(Zla s ,Zn—l—m)a (535)

where, perhaps for obvious reasons, G m is called the truncated Green’s function.

Ty

T2

T3

Figure 6: The construction of the truncated Green’s function in position space.

Putting Eq. (5.35) back into the LSZ expression for the S-matrix element, and using
that
(Dzi + m2) Gz — z) = —i6* (z; — z) (5.36)

one obtains

<k1, ... k,; out

P1, - ,pm;in>
= (i)™ / Hd4$i / H d*y; exp {—i Zpi ;4 Z kj - yj} (5.37)
i=1 =1 i=1 j=1

(i) / 21 - B2y 41— 21) - 5t — Znee) Gt Zs e+ Zmsm)-

After performing all the integrations over the z;’s, the final relation becomes

<k1,...,kn;out pl,...,pm;in>
= /Hd4xin4yJ—exp{~i2p,~-mi+iz.’§j-yj}
Y=l j=1 =1 7=1
X an-{-m(xlw")xmayl""7yn)
= gn-i—m(pl:"';pmuklw")kn)7 (538)
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where G, ., is the truncated n +m-point function in momentum space. This result shows
that the scattering matrix element is directly given by the truncated Green’s function
in momentum space. The latter can be obtained using the Feynman rules without the
expression for the external legs.

Problems
5.1 Verify that
D p(@1)d(m2) 1 =1 p(z2) (1) :
Hint: write ¢ = ¢t+¢~, where ¢+ and ¢~ are creation and annihilation components

of ¢.

5.2 Verify that )

d4p eflp(x—y)
G —y)=1
rle—y) =1 [ (2m)% p?> — m? + e

is a Green’s function of (88, + m?) as ¢ — 0 (where 9, = 9/0z").

5.3 Find the expressions corresponding to the following momentum space Feynman di-
agrams

Integrate out all the é-functions but do not perform the remaining integrals.

6 Concluding remarks

Although we have missed out on many important topics in Quantum Field Theory, we got
to the point where we established contact between the underlying formalism of Quantum
Field Theory and the Feynman rules, which are widely used in perturbative calculations.
The main concepts of the formulation were discussed: we introduced field operators,
multi-particle states that live in Fock spaces, creation and annihilation operators, the
connections between particles and fields as well as that between n-point Green’s func-
tions and scattering matrix elements. Besides slight complications in accounting for the
additional degrees of freedom, the same basic ingredients can be used to formulate a quan-
tum theory for electrons, photons or any other fields describing particles in .the Standard
Model and beyond. Starting from relativistic wave equations, this is discussed in the
lectures by David Miller at this school. Renormalisation is a topic which is not so easily
discussed in a relatively short period of time, and hence we refer the reader to standard
textbooks on Quantum Field Theory, which are listed below. The same applies to the
method of quantisation via path integrals.
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A Notation and conventions

4-vectors:

o = (2%,x) = (t,x)

T, = gu i’ = (2°, —x) = (t, —x)
1 0 0 0
. Y 0o -1 0 0
Metric tensor: g, = g*" = 0 0 -1 0
0O 0 0 -1
Scalar product:
*z, = z'zo+x'my +2lTy + P23
— 2y
Gradient operators:
0 d
oH=—=|(-—,-V
0z, (6‘1’;‘ )
0 7]
o=—=|=—,V
#T Ogm (3(.’ )
d’Alembertian: 040, = a2 vVe=0
Momentum operator:
o .
P = ihOH = (ihb—t, —z‘hV) - (E p) (as it should be)

6-functions:

/ & f() 8 (b — ) = f(a)
/d3x e P> = (27)°6%(p)

[

(similarly in four dimensions)

Note:
Sz —x2) = 6{(z — zo)(z + :0)}

= 2—1:; (8(z — ) + 6(z + o)}
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1 Introduction

The aim of this course is to teach you how to calculate transition amplitudes, cross
sections and decay rates, for elementary particles in the highly successful theories of
Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). Most of our
work will be in understanding how to compute in QED. By the end of the course you
should be able to go from a Feynman diagram, such as the one for e7¢™ — pu g™ in
figure 9, to a number for the cross section. To do this we will have to learn how to
.cope with relativistic, quantum, particles and anti-particles that carry spin. In fact all
these properties of particles will emerge rather neatly from thinking about relativistic
quantum mechanics. The rules for calculating in QCD are slightly more complicated
that in QED, as we will briefly review, however,- the basic techniques for the calculation
are very similar.

We have a lot to cover so will necessarily have to take some short cuts. Our main
fudge will be to work in relativistic quantum mechanics rather than the full Quantum
Field Theory (QFT) (sometimes referred to as ‘second quantization’). We will be in
good company though since we will largely follow methods from Feynman’s papers and
text books such as Halzen and Martin. In quantum mechanics a classical wave is used to
describe a particle whose motion is subject to the Uncertainty Principle. In a full QFT
the wave’s motion itself is subject to the Uncertainty Principle too - the quanta of that
field are what we then refer to as particles. Luckily at lowest order in a perturbation
theory calculation one neglects the quantum nature of the field and the two theories
give the same answer. At higher orders the quantum nature of the field gives rise to
virtual pair creation of particles - in the quantum mechanics version of the story these
are included in a more ad hoc fashion as we will see. Luckily the simultaneous QFT
course will give you a good grounding in more precise methodologies.

Thus our starting point will be ordinary Quantum Mechanics and our first goal
(section 2) will be to write down a ‘relativistic version’ of Quantum Mechanics. This will
lead us to look at relativistic wave equations, in particular the Dirac equation, which
describes particles with spin 1/2. We will also develop a wave equation for photons
and look at how they couple to our fermions (section 3) - this is the core of QED. A
perturbation theory analysis will result in quantum mechanical probability amplitudes
for particular processes. After this, we will work out how to go from the probability
amplitudes to cross sections and decay rates (section 4). We will look at some examples of
tree level QED processes. Here you will get hands-on experience of calculating transition
amplitudes and getting from them to cross sections (section 5). We will restrict ourselves
to calculations at tree level but, at the end of the course (section 6), we will also take a
first look at higher order loop effects, which, amongst other things, are responsible for
the running of the couplings. For QCD, this running means that the coupling appears
weaker when measured at higher energy scales and is the reason why we can sometimes
do perturbative QCD calculations. However, in higher order calculations divergences
appear and we have to understand — at least in principle — how these divergences can
be removed.

In reference [1] you will find & list of textbooks that may be useful.

-52.-



1.1 Relativity Review

An event in a reference frame S is described by the four coordinates of a four-vector (in
units where ¢ = 1)

' = (&, F), (1.1)

where the Greek index u € {0,1,2,3}. These coordinates are reference frame dependent.
The coordinates in another frame S’ are given by z'#, related to those in S by a Lorentz
Transformation (L.T)

* — '* = A* xY (1.2)

where summation over repeated indices is understood. This transformation identifies z*
as a contravariant 4-vector (often referred to simply as a wvector). A familiar example of
a LT is a boost along the z-axis, for which

¥y 0 0 —By
0 10 0

A-u“: O 0 1 O 3 (13)
—By 0 0 1~

with, as usual, # = v and y = (1 — 82)~%2. LT’s can be thought of as generalized
rotations.

The “length” of the 4-vector (¢? — [Z|?) is invariant to LTs. In general we define the
Minkowski scalar product of two 4-vectors x and y as

T-Yy= x#y]’guu = xuym (14)

where the metric

1 ifu=v
pv — di —1.—1. — s =gt = ot = #
g - glﬂl dla‘g(la ]-) ]-1 1)) g v g v 611 {0 lf ,LL ?é v ’ (15)

has been introduced. The last step in eq. (1.4) is the definition of a covariant 4-vector
(sometimes referred to as a co-vector),

Ty = G’ (1.6)
This transforms under a LT according to
T, — T, =AVz,. (1.7)
Note that the invariance of the scalar product implies
ATgA = g=gATg=A"", (1.8)

i.e. a generalization of the orthogonality property of the rotation matrix RT = R™!.

> Exercise 1.1
Show eq. (1.8), starting from the invariance of the scalar product.
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To formulate a coherent relativistic theory of dynamics we define kinematic variables
that are also 4-vectors (i.e. transform according to eq. (1.2)). For example, we define a
4-velocity
_dzx*
==
where 7 is the proper time measured by a clock moving with the particle. Everyone
will agree what the clock says at a particular event so this measure of time is Lorentz
invariant and u* transforms as z*. Note

uH

(1.9)

dt dx*
h= 2 — (1.7 1.10
and has invariant length
utu, = (12 — |9)?) = 1. (1.11)
Similarly 4-momentum provides a relativistic definition of energy and momentum
p" =mu* = (E, p). (1.12)
The invariant length provides the crucial relation
p'pu = B* — [p* = m®. (1.13)

> Exercise 1.2
Check that dt/dr = v and that our relativistic definitions of F and p make sense in the
non-relativistic limit.

The differentiation operator,

— 0 0 < v v
8” b oxr (a’v) , 8”I B 6;“ (1‘14)

is a covariant 4-vector (i.e. according to eq. (1.7)). This means that the contravariant

equivalent 4-vector will have an extra minus sign in its space-like components,

o -
|
& = (5, =), (1.15)

The convention for the totally antisymmetric Levi-Civita tensor is

+1 if {p, v, A, 0} an even permutation of {0, 1,2, 3}

€2 = ¢ _1 if an odd permutation - (1.16)
0  otherwise

Note that e*"*? = —¢,,,,, and €""2?p,.q, 728, changes sign under a parity transformation

since it contains an odd number of spatial components.

> Exercise 1.3
Verify the above two properties of e#¥A?.

I will use natural units, ¢ = 1, i = 1, so mass, energy, inverse length and inverse time
all have the same dimensions. Generally think of energy as the basic unit, e.g. mass has
units of GeV and distance has units of GeV 1.

> Exercise 1.4
Noting that E has SI unit kg.m?.s72, ¢ has SI unit m.s™ and A has SI unit kg.m?.s,
what is a mass of 1 GeV in kg and what is a cross-section of 1 GeV~2 in microbarns?
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2 Relativistic Wave Equations

Let’s review how wave cquations describe non-relativistic quantum particles. Experimen-
tally we know that a particle with definite momentum 7 and energy E can be associated
with a plane wave

P = ei(’;‘f_“’t), with k= , w=

(2.1)

Il les Tt

E
=
To extract F and p from the wave we use operators

Ey = m%p, P = —ihV. (2.2)

In quantum mechanics, it is more usual to refer to the energy operator as the Hamiltonian
H, and write (with i = 1)
oY
Hy =i—. 2.3
p=i (23)
I shall usually reserve the Greek symbol v for spin 1/2 fermions and ¢ for spin 0 bosons.
So for pions and the like I shall write

.0¢

Hp=1—. 24
b=it (24)
In non-relativistic systems, conservation of energy can be written

H=T+YV, (2.5)

where T' is the kinetic energy and V is the potential energy. A particle of mass m and
momentum p has non-relativistic kinetic energy,
ﬁz
T= 5" (2.6)

Replacing the energy and momentum operators with the forms seen in eq. (2.2), we
arrive at the Schrodinger equation

L d R,

zTLEw e QmV Y+ V. (2.7)
In this equation 1) is the wave function describing the single particle probability ampli-
tude. For a slow moving particle v < ¢ (e.g. an electron in a Hydrogen atom) this is
adequate, but for relativistic systems (v ~ ¢) the Hamiltonian above is incorrect.

For a free relativistic particle the total energy E is given by the Einstein equation

E? =p* +m?. (2.8)

Thus the square of the relativistic Hamiltonian H? is simply given by promoting the
momentum to operator status: ‘

H? =% + m®. : (2.9)
So far, so good, but how should this be implemented into the wave equation of eq. (2.3),
which is expressed in terms of H rather than H2? Naively the relativistic wave equation

looks like p
S5+ rR(t) = i ‘f;f‘)- (2.10)

but this is difficult to interpret because of the square root. There are two ways forward:
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1. Work with H2. By iterating the wave equation we have

H24(t) = _32;;2“ [or (g?t- - V)2¢(t)J (2.11)

This is known as the Klein-Gordon (KG) equation. In this case the wave function
describes spinless bosons.

2. Invent a new Hamiltonian Hp that is linear in momentum, and whose square is
equal to H? given above, H% = p2 + m2. In this case we have

Hpp(t) = ia_gg (2.12)

which is known as the Dirac equation, with Hp being the Dirac Hamiltonian. In
this case the wave function describes spin 1/2 fermions, as we shall see.

2.1 The Klein-Gordon Equation

Let us now take a more detailed look at the KG equation (2.11). In position space we
write the energy-momentum operator as

p' — ot (2.13)
so that the KG equation (for zero potential V') becomes
(0* +m?) p(x) =0 (2.14)
where we recall the notation,
9* = 0,0" = 6*/ot* — V° (2.15)

and z is the 4-vector (¢, Z).

The operator 62 is Lorentz invariant, so the Klein-Gordon equation is relativistically
covariant (that is, transforms into an equation of the same form) if ¢ is a scalar function. .
That is to say, under a Lorentz transformation (¢, %) — (¥, ),

o(t, %) — ¢'(t', 7)) = ¢(t, T) (2.16)

so ¢ is invariant. In particular ¢ is then invariant under spatial rotations so it represents
a spin-zero particle (more on spin when we come to the Dirac equation); there being no
preferred direction which could carry information on a spin orientation.

The Klein-Gordon equation has plane wave solutions:

¢(z) = Ne "F-7) (2.17)

where N is a normalization constant and E = +4+/p2 + m?2. Thus, there are both positive
and negative energy solutions. The negative energy solutions pose a severe problem if we
try to interpret ¢ as a wave function (as indeed we are trying to do). The spectrum is no
longer bounded from below, and we can extract arbitrarily large amounts of energy from
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the system by driving it to ever more negative energy states. Any external perturbation
capable of pushing a particle across the energy gap of 2m between the positive and
negative energy continuum of states can uncover this difficulty. Furthermore, we cannot
just throw away these solutions as unphysical since they appear as Fourier modes in any
realistic solution of (2.14). Note that if one interprets ¢ as a quantum field there is no
problem, as you will see in the field theory course. The positive and negative energy
modes are just associated with operators which create or destroy particles.

A second problem with the wave function interpretation arises when trying to find a
probability density. Since ¢ is Lorentz invariant, |¢|2 does not transform like a density
(i.e. as the time component of a 4-vector) so we will not have a Lorentz covariant con-
tinuity equation Op + V - J = 0. To search for a candidate we derive such a continuity
equation. Defining p and J by

p = i(qs*%if— 8;;*), [or ¢*(i%—v>+¢(—i%—\/)¢*}, (2.18)

J = —i(¢'V—¢Ve"), | (2.19)

we obtain (see problem) a covariant conservation equation
9,J* =0, (2.20)

where J is the 4-vector (p, j} It is thus natural to interpret p as a probability density
and J as a probability current. However, for a plane wave solution (2.17), p = 2|N|*E,
so the negative energy solutions also have a negative probability!

> Exercise 2.5,
Derive the continnity equation (2.20). Start with the Klein-Gordon equation multiplied
by ¢* and subtract the complex conjugate of the KG equation multiplied by ¢.

Thus, p may well be considered as the density of a conserved quantity (such as elec-
tric charge), but we cannot use it for a probability density. To Dirac, this and the
existence of negative energy solutions seemed so overwhelming that he was led to intro-
duce another equation, first order in time derivatives but still Lorentz covariant, hoping
that the similarity to Schrodinger’s equation would allow a probability interpretation.
Dirac’s original hopes were unfounded because his new equation turned out to admit
negative energy solutions too! Even so, he did find the equation for spin-1/2 particles
and predicted the existence of antiparticles.

Before turning to discuss what Dirac did, let us put things in context. We have found
that the Klein-Gordon equation, a candidate for describing the quantum mechanics of
spinless particles, admits unacceptable negative energy states when ¢ is interpreted as
the single particle wave function. We could solve all our problems here and now, and
restore our faith in the Klein-Gordon equation, by simply re-interpreting ¢ as a quantum
field. However we will not do that. There is another way forward (this is the way followed
in the textbook of Halzen & Martin) due to Feynman and Stiickelberg. Causality forces
us to ensure that positive energy states propagate forwards in time, but if we force the
negative energy states to propagate only backwards in time then we find a theory that
is consistent with the requirements of causality and that has none of the aforementioned
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problems. In fact, the negative energy states cause us problems only so long as we
think of them as real physical states propagating forwards in time. Therefore, we should
interpret the emission (absorption) of a negative energy particle with momentum p* as
the absorption (emission) of a positive energy antiparticle with momentum —p#.

In order to become more familiar with this picture, consider a process with a 7% and
a photon in the initial state and final state. In figure 1(a) the 7+ starts from the point
A and at a later time ¢; emits a photon at the point Z;. If the energy of the 7t is still
positive, it travels on forwards in time and eventually will absorb the initial state photon
at ty at the point F5. The final state is then again a photon and a (positive energy) 7.

There is another process however, with the same initial and final state, shown in
figure 1(b). Again, the 7t starts from the point A and at a later time ¢, emits a photon
at the point ;. But this time, the energy of the photon emitted is bigger than the energy
of the initial 7. Thus, the energy of the 7 becomes negative and it is forced to travel
backwards in time. Then at an earlier time #; it absorbs the initial state photon at the
point Ty, thereby rendering its energy positive again. From there, it travels forward in
time and the final state is the same as in figure 1(a), namely a photon and a (positive
energy) 7.

space
>

- (a)

time
Figure 1: Interpretation of negative energy states

In todays language, the process in figure 1(b) would be described as follows: in the
initial state we have an #* and a photon. At time ¢, and at the point Z; the photon
creates an mtn~ pair. Both propagate forwards in time. The 7% ends up in the final
state, whereas the m~ is annihilated at (a later) time ¢, at the point #; by the initial
state 71, thereby producing the final state photon. To someone observing in real time,
the negative energy state moving backwards in time looks to all intents and purposes
like a negatively charged pion with positive energy moving forwards in time.

> Exercise 2.6
Consider a wave incident on the potential step shown in figure 2. Show that if the
step size V > m + E,, where E, = v/p? + m? then one cannot avoid using the negative

square root k= —\/ (Ep — V)2 + m?, resulting in negative currents and densities. Hint:

use the continuity of ¢(z) and d¢(z)/0x at x = 0, and ensure that the group velocity
vy = OF /0k is positive for:z > 0. Interpret the solution.

2.2 The Dirac Equation

Dirac wanted an equation first order in time derivatives and Lorentz covariant, so it
had fo be first order in spatial derivatives too. His starting point was to assume a
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bexp(—ip - L) «~—

aexp(ip- ¥) — dexp(ik - ) —

Figure 2: A potential step

Hamiltonian of the form,
Hp = a1p1 + oopy + azps + fm, (2.21)

where p; are the three components of the momentum operator p, and «; and 3 are
some unknown quantities, which we will show must be interpreted as 4 x 4 matrices.
Substituting the expressions for the operators eq. (2.13) into the Dirac Hamiltonian of
eq. (2.21) results in the equation

5 -
ia—f = (—id@-V + Bm) (2.22)
which is the position space Dirac equation.

If 1) is to describe a free particle it must satisfy the Klein-Gordon equation so that
it has the correct energy-momentum relation. This requirement imposes relationships
among oy, cg, a3 and S. To see this, apply the Hamiltonian operator to 1 twice, to give

~ap = [~a'adViVI — i (Ba’ + o' B)mV* + BZm?)y, (2.23)
with an implicit sum of 7 and j over 1 to 3. The Klein-Gordon equation by comparison
is

PP i

It is clear that we cannot recover the KG equation from the Dirac equation if the o and
3 are normal numbers. Insisting that the terms linear in V* vanish independently would
require either A to vanish or all the o to vanish. This would remove either VV? term
or the m? term, both of which are unacceptable. Instead we must insist that the terms
linear in V* vanish in their sum without any of o* or B vanishing, i.e. we must assume
that o and 8 anti-commute. We recover the KG equation only if

;04 + o = 20
ﬁai + a,—,@ =0 (225)
g =1
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for 4,5 = 1,2,3. In principle, these equations define o' and 3, and any objects which
obey these relations are good representations of them. However, in practice, we will
represent them by matrices. In this case, 9 is a multi-component spinor on which these
matrices act. '

> Exercise 2.7
Prove that any matrices & and f satisfying eq. (2.25) are traceless with eigenvalues 1.
Hence argue that they must be even dimensional.

In two dimensions a natural set of matrices for the @ would be the Pauli matrices

le((l) (1)) 02:(? Bi), 03:((1) _01>. (2.26)

However, there is no other independent 2 x 2 matrix with the right properties for 3, so
we must use a higher dimensional form. The smallest number of dimensions for which
the Dirac matrices can be realized is four. One choice is the Dirac representation:

a=(00), s=(12) @)

Note that each entry above denotes a two-by-two block and that the 1 denotes the 2 x 2
identity matrix. The spinor 1 therefore has four components.

There is a theorem. due to Pauli that states that all sets of matrices obeying the
relations in eq. (2.25) are equivalent. Since the hermitian conjugates &' and g clearly
obey the relations, you can, by a change of basis if necessary, assume that & and /3 are
hermitian. All the common choices of basis have this property. Furthermore, we would
like o; and 8 to be hermitian so that the Dirac Hamiltonian (2.42) is hermitian.

If we define

p=I0=yly,  JT=ylay, (2:28)
then it is a simple exercise using the Dirac equation to show that this satisfies the
continuity equation d,J* = 0. We will see in section 2.8 that (p, f) transforms, as it
must, as a 4-vector. Note that p is now also positive definite.

2.3 Solutions to the Dirac Equation

We look for plane wave solutions of the form

= (ggg) —i(E-53) (2.29)

where ¢(p) and x(p) are two-component spinors that depend on momentum F but are
independent of Z. Using the Dirac representation of the matrices, and inserting the trial
solution inta the Dirac equation gives the pair of simultaneous equations

2(5)=(" T0) () (2:30)

There are two simple cases for which eq. (2.30) can readily be solved, namely

1. =0, m # 0, which might represent an electron in its rest frame.
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2. m = 0, p # 0, which describes a massless particle or a particle in the ultra-
relativistic limit (E > m).

For case (1), an electron in its rest frame, the equations (2.30) decouple and become
simply,

Ex=mx, E¢=-m¢. (2.31)
So, in this case, we see that x corresponds to solutions with E = m, while ¢ corresponds
to solutions with ¥ = —m. In light of our earlier discussions, we no longer need to recoil

in horror at the appearance of these negative energy states.

The negative energy solutions persist for an electron with 5 # 0 for which the solutions
to equation (2.30) are
d-p G-p

¢=E+mx, X= % m

. (2.32)

> Exercise 2.8
Show that (7 - p)? = p°.

Using (0 - p)? = p* we see that E = +|/p? +m?|. We write the positive energy
solutions with F = +|/p? + m?| as

v = (& ) e, (239
E-I—mx

while the general negative energy solutions with E = —|/p? + m?| are
GP 3 -
W(z) = <E_£1¢) ¢ iB—FE) (2.34)

for arbitrary constant ¢ and y. Clearly when p'= 0 these solutions reduce to the positive
and negative energy solutions discussed previously.

It is interesting to see how Dirac coped with the negative energy states. Dirac inter-
preted the negative energy solutions by postulating the existence of a “sea” of negative
energy states. The vacuum or ground state has all the negative energy states full. An
additional electron must now occupy a positive energy state since the Pauli exclusion
principle forbids it from falling into one of the filled negative energy states. On promot-
ing one of these negative energy states to a positive energy one, by supplying energy, an
electron-hole pair is created, i.e. a positive energy electron and a hole in the negative
energy sea. The hole is seen in nature as a positive energy positron. This was a radical
new idea, and brought pair creation and antiparticles into physics. The problem with
Dirac’s hole theory is that it does not work for bosons. Such particles have no exclusion
principle to stop them falling into the negative energy states, releasing their energy.

It is convenient to rewrite the solutions, egs. (2.33) and (2.34), introducing the spinors
v (p) and v (¥ (p). The label o € {1,2,3,4} is a spinor index that often will be sup-
pressed, while s € {1,2} denotes the spin state of the fermion, as we shall see later. We
take the positive energy solution eq. (2.33) and define

E+m( we ) P = 4 (p)eP. (2.35)
EtmXs
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For the negative energy solution of eq. (2.34), change the sign of the energy, £ — —E,
and the three-momentum, p'— —p, to obtain,

e ) :
VE+tm ( EimXs ) P = o) (p)ePe. (2.36)
In these two solutions E is now (and for the rest of the course) always positive and given
by E = (p? +m?)Y/2. The x, for s = 1,2 are

X1=((1)>, xzz((l)). (2.37)

For the simple case p = 0 we may interpret x; as the spin-up state and x» as the
spin-down state. Thus for § = 0 the 4-component wave function has a very simple
interpretation: the first two components describe electrons with spin-up and spin-down,
while the second two components describe positrons with spin-up and spin-down. Thus
we understand on physical grounds why the wave function had to have four components.
The general case p # 0 is slightly more involved and is considered in the next section.

The u-spinor solutions will correspond to particles and the wv-spinor solutions to
antiparticles. The role of the two x’s will become clear in the following section, where it
will be shown that the two choices of s are spin labels. Note that each spinor solution
depends on the three-momentum p, so it is implicit that p° = E.

2.4 Orthogonality and Completeness

Our solutions to the Dirac equation take the form
Y= Nul®e ™ o = NoWeP®  with r,s5=1,2, (2.38)

where N is a normalization factor. We have already included a factor v/ E+m in our
spinors (see egs. (2.35) and (2.36)), which results in

u®(p)u® (p) = v (p)o) (p) = 2E6™. (2.39)

This convention allows ufu to transform as the time component of a 4-vector under
Lorentz transformations, which is essential to its interpretation as a probability density
(see eq. (2.28) and section 2.8). Also note that the spinors are orthogonal.

> Exercise 2.9
Check the normalization condition for the spinors in eq. (2.39).

We must further normalize the wave functions. A plane wave is not normalizable in
an infinite space so we will work in a large box of volume V. The number of particles in
the box will be

/ Py ddz = 2E N2V, ' (2.40)

so setting N = 1/ V'V allows us to adopt the standard relativistic normalization con-
vention of 2F particles per box of volume V. This is the convention that I will use
throughout this course. I will usually set V' to be a unit volume, but I will occasionally
keep V explicit for clarity.
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Remember that the solutions to the wave equation form a complete set of states
meaning that we can expand (like a Fourier expansion) an arbitrary function x(z) in
Lerms ol thein

x(z) = Za,ﬂ,bn(a:) (2.41)

The a, are the equivalent of Fourier coefficients and if x is a wave function in some
quantum mixed state then |a,|? is the probability of being in the state v,.

2.5 Spin

Now it is time to justify the statements we have been making that the Dirac equation
describes spin-1/2 particles. The Dirac Hamiltonian in momentum space is given in
eq. (2.21) as

Hp=da-p+ pm, (2.42)

and the orbital angular momentum operator is

— —

L=Rxp (2.43)

Evaluating the commutator of L with H D

[L,Hp] = [Rxpa-pl
= [R,&ﬁ]Xﬁ
= 1d X P, (2.44)

we see that the orbital angular momentum is not conserved (otherwise the commutator
would be zero). We would like to find a total angular momentum J that s conserved,
by adding an additional operator S to L,

J=L+§, [J Hp)=0. (2.45)

To this end, consider the three matrices,

. 7 0 ) .
D% = (g [7') = —ia1 03, (2.46)

where the first equivalence is merely a definition of ¥ and the last equality can be verified
by an explicit calculation. The by /2 have the correct commutation relations to represent
angular momentum, since the Pauli matrices do, and their commutators with & and (8
are, B

[2, ﬂ] = O, [Ei, O.’j] = QiEijkOjk. (247)

From the relations in (2.47) we find that
[%, Hp] = —2id x p. (2.48)

> Exercise 2.10
Using ayana3 = %eijkaiajak verify the commutation relations in eqs. (2.47) and (2.48).
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Comparing eq. (2.48) with the commutator of L with Hp in eq. (2.44), you see that
1

and we can identify
L 1
S —a= (2.50)

[\)

as the additional quantity that, when added to L in equation (2.45), yields a conserved
total angular momentum J. We interpret S as an angular momentum intrinsic to the

particle. Now
~ l¢od-d O 371 0
2—_ — —
o “4( 0 &.5) 4(0 1)’ (2.51)

and, recalling that the eigenvalue of J? for spin j is 7(j+1), we conclude that S represents
spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised. We worked
in the Dirac representation of the matrices for convenience, but the result is necessarily
independent of the representation.

Now consider the u-spinor solutions u(*(p) of eq. (2.35). Choose 7 = (0,0,p,) and

write R
VE+m 0
0 Vv E+m
up = u(p) = VE=m |’ uy =u®(p) = 0 . (2.52)
0 —VE-m
With these definitions, we get
1 1
SzuT = EUT, Szul = —-2—’11,1. (253)

So, these two spinors represent spin up and spin down along the z-axis respectively. For
the v-spinors, with the same choice for p, write,

vVE-m 0
w=10m=| LAl w=m)= | VI @
0 VE+m
where now, |
Syv = %vl, Syut = —%'UT. (2.55)

This apparently perverse choice of up and down for the v’s is actually quite sensible
when one realizes that a negative energy electron carrying spin +1/2 backwards in time
looks just like a positive energy positron carrying spin —1/2 forwards in time.

2.6 Lorentz Covariance

There is a much more compact way of writing the Dirac equation, which requires that
we get to grips with some more notation. Define the y-matrices,

V=6 J=pa (2.56)
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In the Dirac representation,

8 _ (1 0> ,,_(0 5) ‘

In terms of these, the relations between the & and £ in eq. (2.25) can be written compactly
as’
{7} =2¢"". (2.58)
> Exercise 2.11
Prove that {y*,v"} = 2¢".

Combinations like a,y* occur frequently and are conventionally written as,

d = a, ¥ = aty,,

pronounced “a slash.” Note that y* is not, despite appearances, a 4-vector. It just
denotes a set of four matrices. However, the notation is deliberately suggestive, for when
combined with Dirac fields you can construct quantities that transform like vectors and
other Lorentz tensors (see the next section).

Observe that using the y-matrices the Dirac equation (2.22) becomes

(i —m)p =0, (2.59)
or, in momentum space,
(# —m)yp=0. (2.60)
The spinors u and v satisfy
#—m)u(p) = 0, ‘ (2.61)
#+m)o®(p) = 0, (2.62)

since for v*)(p), E — —F and § — —p.

We want the Dirac equation (2.59) to preserve its form under Lorentz transformations
eq. (1.2). We've just naively written the matrices in the Dirac equation as -y, however
this does not make them a 4-vector! They are just a set of numbers in four matrices
and there’s no reason they should change when we do a boost. Since 0* does transform,
for the equation to be Lorentz covariant we are led to propose that 1) transforms too.
We know that 4-vectors get their components mixed up by LT’s, so we expect that the
components of ¢ might get mixed up too:

Y(x) = ' (2') = S(A)h(z) = S(A)p(A ') (2.63)

where S(A) is a 4 x 4 matrix acting on the spinor index of 7). Note that the argument
A~'z' is just a fancy way of writing z, i.e. each component of 1(z) is transformed into
a linear combination of components of 9(x).

In order to appreciate the above it is useful to consider a vector field, where the
corresponding transformation is

At (z) — A™(2))
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where 2’ = Az. This makes sense physically if one thinks of space rotations of a vector
field. For example the wind arrows on a weather map are an example of a vector field:
with each point on the map there is associated an arrow. Consider the wind direction
at a particular point on the map, say Abingdon. If the map is rotated, then one would
expect on physical grounds that the wind vector at Abingdon always point in the same
physical direction and have the same length. In order to achieve this, both the vector
itself must rotate, and the point to which it is attached (Abingdon) must be correctly
identified after the rotation. Thus the vector at the point z’ (corresponding to Abingdon
in the rotated frame) is equal to the vector at the point x (corresponding to Abingdon
in the unrotated frame), but rotated so as to keep the physical sense of the vector the
same in the rotated frame (so that the wind always blows towards Oxford, say, in the
two frames). Thus having correctly identified the same point in the two frames all we
need to do is rotate the vector:

A() = B A (x). (2.64)

A similar thing also happens in the case of the 4-component spinor field above, except
that we do not (yet) know how the components of the wave function themselves must
transform, i.e. we do not know S.

We now need to figure out what S is. The requirement is that the Dirac equation
has the same form in any inertial frame. Thus, if we make a LT from our original frame
into another (‘primed’) frame and write down the Dirac equation in this frame, it has to
have the same form.

(170 —m)p(x) =0 —  (iy*0, — m)p'(z’) =0, (2.65)

where we used the fact that m is a scalar, i.e. m' = m.

The derivative transforms as a covector, eq. (1.7), so using the orthogonality condition
of eq. (1.8), we can write 9, = A?,&, and multiplying the Dirac equation in the original
frame by S it becomes

S(i7*A7,8, — m)(x) = 0. (2.66)

On the other hand, we can use the definition of S in eq. (2.63) to rewrite the equation
in the primed frame as

(iv"8,, — m)Sy(z) = 0. (2.67)

We can see that the second term (containing m) of eqs. (2.66) and (2.67) are now
identical. To make the first term identical we need SA°,y* = 47S. Thus, in order for
the Dirac equation to be Lorentz invariant, S(A) has to satisfy

o _¢o-1_0
A A =8577"S (2.68)

We still haven’t solved for S explicitly. We need to find an S that satisfies eq. (2.68).
Since S depends on the LT, we first have to find a convenient parameterization of a LT
and then express S(A) in terms of these parameters. For an infinitesimal LT, it can be
shown that,

A*, = g", + W, (2.69)
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where w,,, is an antisymmetric set of infinitesimal parameters. For example, a boost
along the z-axis corresponds to wy3 = —ws3g = —F (remember that wy; = W% = —wy® etc)
with all other entries of wy, zero,

1 00 -8
0 10 0

T B

Mo=ghvt+ofu=1 106 o1 o (il0)
B0 0 1

This corresponds to eq. (1.3) when one makes an expansion in small g3, i.e. v = 1+
O(4?). Non-zero wy, or wyy correspond to boosts along the z and y axes respectively.
The remaining combinations, non-zero w3, ws; or wys, correspond to infinitesimal anti-
clockwise rotations through an angle w;; about the z, y and z axes respectively. It’s a
nice exercise to check this out.

For an infinitesimal LT we are at liberty to write

S(A) =1+ iwu,,a’“’, (2.71)

which is nothing but a definition of the set of matrices o#”. Our task is to determine
these matrices. To do this, substitute the expression for S, eq. (2.71), into eq. (2.68) (and
remember that S7'(A) = 1 — Zw,,0*). After some algebra, we can convince ourselves
that the solution is

vV 1: v
ot =5 7] (2.72)

Thus S can be written explicitly in terms of y-matrices for a general LT by building the
finite transformation out of lots of infinitesimal ones.

> Exercise 2.12
Verify that eq. (2.72) is true.

Now that we now how ¢ transforms we can find quantities that are Lorentz invariant,
or transform as vectors or tensors under L/I”s. To this end, we will find it useful to
introduce the Dirac adjoint. The Dirac adjoint 1) of a spinor ¢ is defined by

B =ty (2.73)
With the help of
ST(A)° =1°S7H(A) ' (2.74)
we see that 1) transforms under LT’s as
P — P =9SHA). (2.75)

> Exercise 2.13

1. Verify that y#T = 40440,

2. Prove eq. (2.74)

3. Show that 1) satisfies the equation

P (i —m) =0

where the arrow over @ implies the derivative acts to the left.
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4. Hence prove that 1 transforms as in eq. (2.75).

Combining the transformation properties of 1 and 9 in egs. (2.63) and (2.75) we see
that the bilinear 11 is Lorentz invariant. In section 2.8 we will consider the transforma-
tion properties of general bilinears.

Let’s close this section by recasting the spinor normalization eq. (2.39) in terms of
Dirac inner products. The conditions become

ﬂ(”) (p)u(s) (p) = 29mds
a(p)®(p) = (P (p) =0 (2.76)
(P (p) = —2md™

where, in analogy to eq. (2.73), we defined 4 = uty° and v = v'+°.

> Exercise 2.14
Verify the normalization properties in the above equations (2.76).

2.7 Parity, charge conjugation and time reversal
2.7.1 Parity

We usually use LT’s which are in the connected Lorentz Group, SO(3, 1), meaning they
can be obtained by a continuous deformation of the identity transformation (i.e. by lots
of little transformations)®. This class of LT is often referred to as proper LT. However,
the full Lorentz group consists not only of the proper transformations but also includes
the discrete operations of parity (space inversion), P, and time reversal, T:

1 0 0 0 -1 0 0 0
0 -1 0 0 0100

Ar=1o o -1 o M7l o010 (25
0 0 0 -1 0001

LT’s satisfy AT gA = g, so taking determinants shows that det A = 1. Proper LT’s are
continuously connected to the identity so must have determinant 1, but both P and T
operations have determinant —1.

Let us now find the action of parity on the Dirac wave function and determine the
wave function 1p in the parity-reversed system. According to the discussion of the
previous section, we need to find a matrix P satisfying

PP =4 PTYP=—9. (2.78)

Using some properties of the fy—matrices we see that P = P~! = 40 is an acceptable
solution (Clearly one could multiply +° by a phase and still have an acceptable definition
for the parity transformation.), from which it follows that the transformation is

W(t, ) — Yp(t, —F) = Py(t, T) = Y°¢(t, D). (2.79)

Tndeed in the last section we considered LT’s very close to the identity in equation (2.69)
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Since -
7"2-(0 _1), (2.80)

the u-spinors and v-spinors at rest have opposite eigenvalues, corresponding to particle
and antiparticle having opposite intrinsic parities.

2.7.2 Charge Conjugation

Another discrete invariance of the Dirac equation is charge conjugation, which takes you
from particle to antiparticle and vice versa. For scalar fields the symmetry is just complex
conjugation, but in order for the charge conjugate Dirac field to remain a solution of
the Dirac equation, you have to mix its components as well. The transformation on the
fermion wavefunction is

,'7[) - IlpC = C,()-b— T) (281)

_ T
where 9T = (W’yo) = WOTY!T = 40%)*. To find the form of C, let’s take the complex
conjugate of the Dirac Equation, ‘

(i')’“au - m)* Y= (Z (’YM)T aﬂ - m) (W)T
= A7 (—i’y“Tau — m) P, (2.82)

where we have additionally used ¥#T = 4%y#4%. Premultiply by C and the Dirac equation
becomes :

(—iCy"TCT' 8y —m) o =0. (2.83)

In order for 1¢ to satisfy the Dirac equation we require C' to be a matrix satisfying the
condition

CyCl =~y (CT'=0CM. (2.84)
In the Dirac representation,a suitable choice for this operator is
2.0 _ 0 —i0'2>
C =ivy"y" = (—i02 R (2.85)

The charge-conjugation transformation is then
P(t, &) = Yo(t, &) = CPT (1, 2) = iy’ y"9" (¢, D). (2.86)

When Dirac wrote down his equation everybody thought parity and charge conju-
gation were exact symmetries of nature, so invariance under these transformations was
essential. Now we know that neither of them, nor the combination CP, is respected by
the standard electroweak model.

2.7.3 Time reversal

As already noted, time reversal is an improper LT, given by Ar in eq. (2.77). Naively
one would expect to derive a time reversal operation in the same way as for parity.
However, there is a subtlety that the momentum of a particle is a rate of change, so if we
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reverse the direction of time, the momentum must change direction. When we reverse
the momentum p’in a plane wave we find

e~ UBt=PE) __, —HEBt—(=p)F) _ HE(-1)-PT) _ (e—i(E(—t)—ﬁ-f))* ) (2.87)
In this example, taking the complex conjugate is the equivalent of reversing the time

coordinate and reversing the momentum. So once again, we must take the complez
conjugate of the field, transforming it according to

P(t,Z) — Yr(—t, Z) = TY*(t, 7). (2.88)

To find the form of T', let’s take the complex conjugate of the Dirac equation, premultiply
by T and interchange t — —t,

0 - -
(ifyo-a—t +i5-V — m> P(t, %) — St (—ifyo* -V — m) T Hy*(—t, )

9
a(-1)

= <7, [Ty 7] Ly -7 TV - m> Pr(t, 7).

ot
(2.89)
For ¢ to satisfy the Dirac equation we need
[T =, [-TYTTY =7 (2.90)
A suitable choice is
0 1 0 0
T = iy'y® = ( _Z.glog _i‘(’)m ) =i _01 g g ? , (2.91)
0 0 -1 0
and the time reversal transformation on a fermion field is
»(t, T) — Pr(—t, @) = TY*(t, &) = iv' V9" (1, 2) (2.92)

2.74 CPT

We are now in the position to ask what is the effect of performing charge conjugation,
parity and time-reversal all together on a Dirac field. The combined transformation is
known as CPT. Using egs. (2.79), (2.86) and (2.92), the CPT transformation is,

¥(t,Z) > Yepr(—t,—8) = T [Yir' Py (, 2)]
= i’ (i)' (e, ©)
= V72 (¢, ©)
= —i7°Y(t, %) (2.93)

Thus, apart from the factor of 7%, a particle moving forward in time is equivalent to an
anti-particle moving backwards in time and in the opposite direction. In fact, the extra
+® makes no difference to observable quantities (see the next section) so this justifies the
Feynman-Stiickelberg interpretation of negative energy states we used earlier.
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2.8 Bilinear Covariants

Now, as promised, we will construct and classify the bilinears. These are nseful for defin-
ing quantities with particular properties under Lorentz transformations, and appearing
in Lagrangians for fermion field theories.

To begin, note that by forming products of the y-matrices it is possible to construct 16
linearly independent 4 x 4 matrices. Any constant 4 x 4 matrix can then be decomposed
into a sum over these basis matrices. In equation (2.72) we have defined

)
T N
ot = [,
and now it is convenient to define
. 0 1
Y =7 =iy = (1 o) , (2.94)
where the last equality is valid in the Dirac representation. This new matrix satisfies

=7  {PF}=0, (PFP=1 (2.95)

> Exercise 2.15
Prove the three results in eq. (2.95) independently of the y-matrix representation.

Now, the set of 16 matrices
{199, 0™}
form a basis for y-matrix products. There are 16 matrices since there is 1 unit matrix,
1 4® matrix, 4 v* matrices and 4 y*v5 matrices, and 6 ¢*” matrices (see equation (2.72)
for the definition of o). -
Using the transformations of 1 and v from egs. (2.63) and (2.75), together with the

transformation of v* in eq. (2.74), the 16 fermion bilinears and their transformation
properties can be written as follows:

P = Py S scalar
PyPp —  det(A) Py°y P pseudoscalar
Py — ALY V vector
Yy —  det(A) A DY Y A axial vector
Yoy — AN PP T tensor (2.96)

In particular we note that

Py = iy = (W', yla) (2.97)
which is our previous definition eq. (2.28) of the current 4-vector J¥, i.e. we now see
that it is really a 4—vector.

> Exercise 2.16
Derive the transformation properties of the bilinears in equation (2.96) under C, P, T
and CPT transformations.
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2.9 Massless (Ultra-relativistic) Fermions

At very high energies we may neglect the masses of particles (E2 ~ |p|?). Therefore, let
us look at solutions of the Dirac equation with m = 0, on the basis that this will be an
extremely good approximation for many situations.

From equation (2.30) we have in this case

E¢=0d-px, Ex=7-p¢. (2.98)

These equations can easily be decoupled by taking linear combinations and defining the
two component spinors ¥y, and Vg,

xXte

5 (2.99)

\I]R/L =
which leads to
EVg =7 -pVpg, EVY, =—d-pV¥y,. (2.100)

The system is in fact described by two entirely separated two component spinors. If we
take them to be moving in the z direction, and noting that o3 = diag(1, —1), we see that
there is one positive and one negative energy solution in each.

Further since E = |p] for massless particles, these equations may be written

- =

o-p o-p
—V;, =¥y, —VUp=¥p 2.101
T |1 ( )

Now, %%}f is known as the helicity operator (i.e. it is the spin operator projected in the
direction of motion of the momentum of the particle). We see that the ¥, corresponds to
solutions with negative helicity, while ¥ g corresponds to solutions with positive helicity.
In other words ¥ describes a left-handed particle while ¥y describes a right-handed
particle, and each type is described by a two-component spinor.

The two-component spinors transform very simply under LT’s,

U, — es?0@0-idy, (2.102)
Up — esd@Hdyg, (2.103)

where § = 70 corresponds to space rotations through an angle 6 about the unit 7
axis, and ¢_>' = Y¢ corresponds to Lorentz boosts along the unit vector ¥ with a speed
v = tanh ¢. Note that these transformations are consistent with the fact that it is not
possible to boost past a massless particle (i.e. its helicity cannot be reversed).

However, under parity transformations ¢ — & (like R x p), § — —p, therefore
d-p— —0 - p, i.e. the spinors transform into each other:

So a theory in which ¥, has different interactions to ¥ (such as the standard model in
which the weak force only acts on left handed particles) manifestly violates parity.
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Although massless particles can be described very simply using two component
spinors as above, they may also be incorporated into the four-component formalism
by using the v° we defined earlier. Let’s define projection operators

PrjL = % (1 +7°). (2.105)

In the Dirac representation, these are,

1 1 +1
Pr/r, = 3 ( 1 ) : (2.106)

where 1 denotes the 2 x 2 identity matrix. Acting these projection operators on a general
Dirac field of the form eq. (2.29) projects onto right- or left-handed eigenstates. To see
this, first note that

me(3) 1 () () e

The helicity operator in four-component Dirac space is given by S - p/|pl, with S = %f],
where Y is defined in equation (2.46). Acting this operator on the projected state gives

1(% o o 1( T
| e [ ER/AL ) - [ PR/L ~(2.108
2( 0 %’-)(‘I’R/L) 2(‘I’R/L)’ ( )

indicating that the projected states are indeed right- or left-handed eigenstates with
helicity +3.

This can be made more explicit by using a different representation for the y-matrices.
In the chiral representation (sometimes called the Weyl representation) we define the -

matrices to be - 0 s
0: _': U
g —(1 0), 7—(5 0), (2.109)

so that, with 7®> = i7%y'y2+3 as before, the projection operators eq. (2.105) become

r-(90). n=(59) 2110

Now, the left-handed Weyl spinor sits in the upper two components of the Dirac spinor,
while the right-handed Weyl spinor sits in the lower two components of the Dirac spinor.
The projection operators pick out only the upper or lower component, ¢.g.

m(in)-(02)(e)=(e) e

so the projected states are once again helicity eigenstates.
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3 Quantum Electrodynamics

3.1 Classical Electromagnetism

So far, we have only considered relativistic wave equations for free particles. Now we want
to include electromagnetic interactions, so let’s start by reviewing Maxwell’s Equations
in differential form:

E= 0, V.B= 0,

<u

oB OE (3.1
VXE:—E, VXB=J+§

We can rewrite the Maxwell equations in terms of a scalar potential ¢, and a vector
potential A. Writing

B=-92_%s,
ot (3.2)
B=VxA,

we automatically have solutions of two of the Maxwell equations,

V.B=V.(VxA)=0 (3.3)
and .
VxE = Vx (—8—13—6(25)
_ O(VxA4A) S x (Vo) (3.4)
ot
_ 9B
ot

This simplifies things greatly since now there are only two Maxwell equations to solve.

Let’s write them out in terms of the potentials,

V.E=-V-— d(zéﬁ ) _ P, (3.5)
and (since Vx V x A= —V2A + V.(V.A)),
V(V.A) -V A=J+ % (—% - v"c,b) . (3.6)
Or rearranging,
— 62/1’ = = = T a¢
—_— 2 iy | = — —_—
VA + 5 J—V(V.A+ t). (3.7)
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Unfortunately these two equations we are left with are quite complicated. To simplify
them up we note that we can redefine our potentials,

A - A+ ﬁd),
oY

without changing E and B. This redefinition of the potentials is known as a gauge
transformation.

> Exercise 3.17 B :
Check that E and B are invariant under the gauge transformation in eq. (3.8).

We can choose a gauge transformation such that
VA=-— (3.9)

In this gauge (the Lorentz gauge) Maxwell’s equations simplify to

82
—V2d)+a—£ = p, (310)
L OA -
—V2A+%7 = J. (3.11)

As well as being prettier, these equations also have a very suggestive form. They suggest
we should define the 4-vectors,

J* = (p, J), A* = (¢, A), (3.12)
so the Maxwell equations may be written in a manifestly covariant form,
o* A = J*. (3.13)

The u = 0 equation is the ¢ eq. (3.10) and the p = 1,2, 3 equations give the components
of the eq. (3.11) for A. The gauge condition, eq. (3.9), becomes

BA, = 0. (3.14)

Eq. (3.13) is the classical wave equation for the electromagnetic field. In free space
we have eq. (3.13) with no source, i.e.

A =0, (3.15)

which has plane wave solutions, -
AF = Heht® (3.16)

where €* is the polarization tensor and ¢ = 0.
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The Lorentz condition, eq. (3.14), enforces
q"¢, =0, (3.17)

which means the component of ¢# in the direction of motion vanishes. Even after enforc-
ing this condition, there is still room to make more gauge transformations,

A¥ — A¥ + 0%y  where 0%y =0. (3.18)

This can be used to remove one extra degree of freedom from ¢*. For example, in the
Coulomb gauge we set
A® = 0. (3.19)

3.2 The Dirac Equation in an Electromagnetic Field

We will now treat A* as a quantum mechanical wave function for photons. In the limit
of a large number of photons the wave function is interpreted as a number density and
produces the classical wave theory. But so far we have no interactions; to allow electrons
to interact with electromagnetism we have to include the photon field into our Dirac
equation.

The ’obvious’ thing to do is to just be led by Lorentz invariance. The field A* is a
vector field so we need to 'soak up’ its free index with a y-matrix. We therefore include
it into the Dirac equation as

(70, — e, A —m)p = 0, (3.20)

where the factor of e is a free constant which quantifies how strongly the electron couples
to the photon (the charge of the electron is —e).
It is convenient to incorporate this extra term into a new definition of a covariant
derivative?,
DF = 9" 4 ie A", (3.21)
Our interacting Dirac equation was therefore obtained from the free Dirac equation by
the minimal substitution O* — D", and the Dirac equation becomes

(1) —m)y = 0. (3.22)
There is a much nicer and theoretically much more appealing way to get the interac-

tion term. That is if we require the QED Lagrangian to be invariant under a local gauge
symmetry consisting of the transformations

Wb — e~ioAE)y, A* = AP — 9P (z). (3.23)

then we are forced to the wave equation in eq. (3.22). For more details, I refer you to
the Standard Model course.

We must also allow the electrons to enter into the photon wave equation but here the
classical theory already tells us how a current density enters. We expect

FA* = J+ (3.24)

where J* is just given by the charge times the Dirac equation number density (—ey*y)).

2Conventions for the covariant derivative vary. Halzen and Martin, and Mandl and Shaw both use
D# = §* —ie A* whereas Peskin and Schroeder both use eq. (3.21). Both conventions define the electron
charge to be —e but differ by a sign in the definition of the photon field, A*.
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3.3 g —2 of the Electron

We now have a wave equation which describes how an electron behaves in an electro-
magnetic field, i.e. eq. (3.20). We will immediately put this to use by investigating the
interaction between the spin of a non-relativistic electron and a magnetic field.

Writing the electron field in the form of eq. (2.29), we see that eq. (3.20) gives

X m & - (—iV — eA) X\
= i . 3.25
(¢> (5(4V—&® —m b (8.25)
Substituting the equation from the second row into the that from the first leads to,
" 12
. |7+ (—iV — ed)] . 490
—m—+ E+m X=V. ( : )
We can simplify this somewhat by using to relation
0;0; = 035 + i€k 0%, (3.27)
to show . g . . R
- (~iV —eA)] = |-V —ed?—e(Vx A+ Ax V)4, (3.28)
and note L L . .
VxAp+AxVip=(VxA)p=By (3.29)
Putting all this together we find,
p_my PmeAl—eB & 0 (3.30)
—m = (). 3
E+m e

In the non-relativistic limit we can write FF =~ m and observe that the lower 2-component
spinor is
7 (7 A)
P~ 7
m
This allows us to write, for the 4-component spinor 1,

X < X (3.31)

eB- %
2m

]_ -
—|p — eAl* — P =0. (3.32)
2m

Notice that we have a coupling between the magnetic field B and the spin of the
electron S = %Z. This is known as a magnetic moment interaction and takes the form

_ji-B. (3.33)

Our Dirac equation in an electromagnetic field has predicted

i=-—7%. ‘ (3.34)
2m
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In classical physics the magnetic moment of an orbiting charge is written

(3 —
forb = ——L. 3.35
Horb . - ( )
This is the magnetic moment associated with orbital angular momentum. By analogy
we define the magnetic moment due to intrinsic angular momentum (i.e. spin) as

. e = g e =
spin — —S=—=—% 3.36

where g is the gyromagnetic ratio of the particle. The Dirac equation predicts
g=2. (3.37)
Experimentally one finds for the electron that
g = 2.0023193043738 £ 0.0000000000082, (3.38)

so the Dirac equations prediction is pretty close. It is not exactly correct, as we can see
from the incredible precision with which this quantity has been measured. The discrep-
ancy is due to us not yet including quantum corrections to our prediction. The interaction
of an electron with a photon (and thus the gyromagnetic ratio) will be changed by pro-
cesses of the form seen in fig. 3, and processes involving yet more particle loops. When

Figure 3: Quantum corrections to the electron-photon interaction.

one performs a more careful analysis, including these quantum effects, one predicts the
deviation from 2 to be
qg—2

' 2 3 4
=21+ % 0328 (9‘—> +1.181 (g) 1510 (95) +...+4303% 10712, (3.39)
2 2m Fia s T

and comparing this prediction with experiment:
g —2 :
Theory gT — 1159652140(28) x 10~12,
(3.40)

2
Experiment : 92— = 1159652186.9(4.1) x 10712,
The figure in brackets denotes the error on the last significant figure. We can see that

the experimental measurement matches the theoretical prediction to 8 significant figures,
making this prediction of QED the most precisely tested prediction in physics.
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3.4 Interactions in Perturbation Theory

The principle technique for the computation of particle scattering cross-sections at high
energies is perturbation theory. We assume that the coupling is small, i.e. e < 1 and
expand our expressions around e = 0. We will be interested in processes such as that of
fig. 4. Outside the shaded interaction region we assume the particles are free.

a C

Figure 4: A 2 — 2 scattering.

The Dirac equation can be written,

iy° 811/5} + iy —mip —ey® V o = 0. (3.41)
where the electromagnetic interaction is contained in V,

V =+0#A,. (3.42)

Note that (v°)2 = 1 so the «° have been included simply for notational convenience. It
will be convenient to write this in terms of the free Dirac Hamiltonian (i.e. the Dirac
Hamiltonian with no interaction term),

Hy = —in'01p + ma. (3-43)
Then eq. (3.41) becomes
(Ho+eV)y = z%—f. (3.44)

We will assume that the scattering particles begin in a pure 4-momentum eigenstate
and the interaction then scatters them to another 4-momentum eigenstate with some
(small) probability. Let’s denote this 4-momentum eigenstate, with 3-momentum p,
by ¥z (z) (we need only specify p' since the energy is fixed by the on-shell condition
FE? = m%c* + |p|?c?). 1t is a solution of the free Dirac equation (since it is outside the
interaction area), so,

B\If (w)
ot

These eigenstates form a complete set, so, in general, they may be used as a basis
for writing any electron field, even inside the interaction area. We write

W(z) = / d'p 25, 7 (%5 (@) (3.46)

HoWy (z) = (3.45)
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The k5 (t) are at this stage just coefficients which change with time, but we will later
interpret their modulus-squared as a probability density for a final state of 3-momentum
P. The factor of 2E; in the denominator (where Ej is the energy associated with p by
the on-shell condition) is to ensure that k7 will have this interpretation. We substitute
this expression into eq. (3.44), to give

1 0Ok oYz
/d3p—2£ (zfy ap\Il + fi,;fwoa—tp — kY  HoWys — e’yOVﬁﬁ\IJI;) =0, (3.47)
2

and note that the two middle terms cancel by eq. (3.45).

At time t = —oo the electron will be in a pure momentum eigenstate, so, if p; is the
initial momentum of the electron, then eq. (3.46) tells us that,

k5 (—00) = 2E5 6% (5 — ;). (3.48)

If there were no interaction then these coefficients would not change, and if the interaction
is small, they will only change very slightly. We can therefore perform an expansion
around their unperturbed values in terms of the coupling, i.e. we write,

kp(t) = SR e, (3.49)

n=0

We may now insert this into eq. (3.47) (with the two middle terms removed) and, since
at this stage e is a free parameter, we Will have an infinite tower of equations, one for
each power of e. To leading order, i.e. €°, the equation contains no dependence on V

and is ©
1 8&
/ d'p 7 (w = \1/,-,-) —0, (3.50)

1

which is simply a statement that the & ”(0) don’t change. At order e' we have our first

non-trivial equation,

1 Bm(l)
Pp = | iYLV — VED U5 | = 0. (3.
/ P3E, (w 5t 5| =0 (3.51)

Now we will make use of the orthogonality of the momentum eigenstates ¥ to extract

the coefficient H . We multiply through by ¥l g Yo, integrate over space, and use
/ ErUlT, = 2E;69(F - ), (3.52)

where FEj is the energy associated with ¢, and we have used the usual normalisation of
2F particles in a unit box. Eq. (3.51) becomes,

/d3p—n@/d3x\ll VU (3.53)
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But we know that RI(TO ) doesn’t change with time, so to leading order, it must be given
by eq. (3.48), allowing us to remove the integration over momentum states,
=(1)
Ok
ot

= i / Br UV Uy, (3.54)

We may now integrate this expression over time,

[ = fafemvve ws
= Rg)(m) - 176571)(—00) = —z/d4x \I’Q'V ‘Iliii (3.56)

Finally, we set §'to the final electron momentum 7y and note that to order e', K, = ekz% ).

Then Fs((il)(éo) = 1kz and Rg)(—oo) = 0 if gy # p;. So, the transition amplitude Ky;
from an initial state 1; to a final state )¢ is given by,

Kpi = —ie /d4a:¢fv¢,-. (3.57)
Now let’s use our explicit form for V in QED and concentrate on the scattering of a
particle a — ¢ by a photon A, as see in fig. 5. The transition amplitude is,

a C

Figure 5: The scattering of a particle a — ¢ by a photon A*.

Keag =— _ie/"/_}c’YuAuwa d'z
= / JEAR gy, (3.58)
where the current is,
I = —ethyutha = —e Uy ut PP, (3.59)

However, we are really interested in two particles scattering off each other so we’d
better compute the A* field produced when another particle scatters from state b — d,
as seen in fig. 6. The photon field is given by,

FPA* = Jh = —elgy uy P o)e, (3.60)

-81-



b d
Figure 6: The photon field A* created by the current a — c.

with solution ]
A¥ = —?ng, where q = pg — pp. (3.61)

Substituting this back into our expression for ., we find

1

1 )
= —u(iey*)u’ (—i?gw,) a(iey”)ub /e’(”””d_p“_”“)"”d% (3.63)

The integral is just a delta function that ensures 4-momentum conservation in the inter-
action.

In order to make this result more memorable Feynman developed his famous rules
that associate different parts of the expression with elements of a diagram of the scat-
tering. For this precess, these factors are assigned as shown in fig. 7, with momentum

Up

Figure 7: The scattering ab — cd and its associated Feynman terms.

conserved at the vertices. Applying these rules gives us iMg; where
ki = —i(27)46*(pe + Pa — Pa — Do) M i (3.64)

> Exercise 3.18
Derive the Feynman rules for the scattering of two particles described by the Klein
Gordon equation to leading order in e. You may assume the form of the result in
eq. (3.57).
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3.5 Internal Fermions and External Photons

We concentrated above on a scattering with external fermions interacting by the exchange
of a photon. We can also imagine processes where there are external photon fields or
internal virtual fermions. What are the Feynman rules for these cases? Given time
constraints, rather than derive them, I'll present some simple arguments to motivate the
rules.

If we have an external photon interacting with a fermion in some way, then the vertex
rule is still —iey*. Since the amplitude we wish to calculate is Lorentz invariant we can
not allow a stray p index to survive but must soak it up with a 4-vector. The obvious
4-vector associated with the external photon is its polarization vector ¢* and indeed this
is the appropriate factor for an external photon. Compare this to the way an external
fermion closes the gamma matrix space indices, to give a number, with the external
spinor.

We have seen that an internal photon (satisfying 0% A* = () generates a Feynman
rule (or propagator),

Far=0 - = (3.65)
P
Since a photon is just a collection of four scalar fields we can deduce that a massless,
scalar field (which satisfies the KG equation d¢ = 0) will have a Feynman rule

*¢p =0 — — (3.66)

The sign is that of a space-like photon degree of freedom.

To find the propagator of a massive scalar field we can treat the mass as a perturbing
interaction of the free particle. Writing the KG equation as

p=Vep=-—m’¢p (3.67)
will generate a Feynman rule for the scalar self interaction

—m
@

Now we can consider the set of perturbation theory diagrams that contribute to the full
scalar propagator

e e o
_|_

+
1( oz 3 i T (. )
I—)g( zm)I—)g 4 I—)g( zm)z—)g( im)

"GM|@
—~ -

i
’

We can resum this series,

i m?2  m? i 1 i
F(1+F+p_4+"'> = 1[?( _m_;) = E (3.68)
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and this is indeed the full propagator in the massive case.

We can see that the propagator is just —i times the inverse of the free field equation
operator in momentum space. A sensible guess for the fermionic field is
i i g+m (g +m)

Fm = Fomprm  pom O

(@-mpp=0 -

This is in fact the correct answer. You will gain more insight into these results from the
Field Theory course.

3.6 Summary of Feynman Rules of QED

The Feynman rules for computing the amplitude My; for an arbitrary process in QED
are summarized in Table 1.

For every ... draw ... write . . .
: [0 v —igh”
Internal photon line ANANNAN -
P2+ e
a 8 1
Internal fermion line i M
P — P> —m? +ie
o B
Vertex (fermion charge Q) g —1eQY 5
u
Outgoing electron — Ua(S,p)
Incoming electron el Ua(S, D)
Outgoing positron '—-—a Va(S, P)
Incoming positron Z Ua(s, D)
Outgoing photon CAAAAAN e**(A, p)
Incoming photon VIV e*(\, p)

e Attach a directed momentum to every internal line
e Conserve momentum at every vertex, i.e. include §® (3" p;)
e Integrate over all internal momenta

Table 1: Feynman rules for QED. u, v are Lorentz indices, «,  are spinor indices and
s and ) fix the polarization of the electron and photon respectively.

The spinor indices in the Feynman rules are such that matrix multiplication is per-
formed in the opposite order to that defining the flow of fermion number. The arrow on
the fermion line itself denotes the fermion number flow, not the direction of the momen-
tum associated with the line: I will try always to indicate the momentum flow separately
as in Table 1. This will become clear in the examples which follow. We have already
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met the Dirac spinors v and v. 1 will say more about the photon polarization vector ¢
when we need to use it. Lastly, the ie in the propagators is to avoid the singularity when
2 2
p° — m*.
To summarize, the procedure for calculating the amplitude for any process in QED
is:
Draw all possible distinct diagrams

Associate a directed 4-momentum with all lines

Apply the Feynman rules for the propagators, vertices and external legs

W D

Ensure 4-momentum conservation at each vertex by adding (27)*6*(k; — ks),where
k; and ky are the total incoming and outgoing 4-momenta of the vertex respectively

5. Perform the integration over all internal momenta with the measure [ d*k/(2m)*

It is also part of the Feynman rules for QED that when diagrams differ by an inter-
change of two fermion lines, a relative minus sign must be included. This is a reflection
of Pauli’s exclusion principle or equivalently of the anticommutation of the fermion oper-
ators discussed in the appendix. The Fermi statistics also dictate that we must multiply
every closed fermion loop by —1. Note, however, that you don’t need to get the abso-
lute sign of any contribution to an amplitude right, just its sign relative to the other
contributions, since it is the modulus of the amplitude squared that we ultimately need.

This sounds rather complicated. In particular there seem to be an awful lot of
integrations to be done. However, at tree-level, i.e. if there are no loop diagrams, the delta
functions attached to the vertices together with the integration over the internal momenta
simply result in an overall 4-momentum conservation, i.e. a factor (27)*3*(P,— Pf), where
P; and Py are the total incoming and outgoing 4-momenta of the process. Thus at tree-
level, no ‘real’ integration has to be done. At one loop, however, there is one non-trivial
integration to be done. Generally, the calculation of an n-loop diagram involves n non-
trivial integrations. Even worse, these integrals very often are divergent. Still, we can
get perfectly reasonable theoretical predictions at any order in QED. The procedure to
get these results is called renormalization and will be the topic of section 6.

At this point, some remarks concerning step 1, i.e. drawing all possible distinct
Feynman diagrams, might be useful. In order to establish whether two diagrams are
distinct, we have to try to convert one into the other. If this is possible without cutting
lines or joining lines — that is solely by twisting and stretching the lines and rotating
the whole figure — then the two diagrams are identical. It should be noted that the
external lines are labeled in this process. Therefore, the two diagrams shown in fig, 10
are different. Finally, let me mention that the diagrams shown in fig. 1 are not Feynman
diagrams. When drawing Feynman diagrams we are only interested in which particles
are incoming and which are outgoing and there is no time direction involved.

4 Cross Sections and Decay Rates

Before explicitly calculating transition amplitudes we will examine how to connect those
amplitudes to physical observables such as cross sections and particle widths.
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4.1 The Transition Rate

Consider an arbitrary scattering process with an initial state ¢ with total 4-momentum p;
and a final state f with total 4-momentum p;. Let’s assume we computed the scattering
amplitude for this process in quantum field theory, i.e. we know the matrix element

~iM (27 5 (p; — pi)- (4.1)

Our task in this section is to convert this into a scattering cross section (relevant if there
is more than 1 particle in the initial state) or a decay rate (relevant if there is just 1
particle in the initial state), see fig. 8.

(a) (b)

Figure 8: Scattering (a) and decay (b) processes.

The probability for the transition to occur is the square of the matrix element, i.e.
Probability = | — iM z;(27)*6*(p; — pi)|. (4.2)

Attempting to take the squared modulus of the amplitude produces a meaningless square
of a delta function. This is a technical problem because our amplitude is expressed
between plane wave states. These states are states of definite momentum and so extend
throughout all of space-time. In a real experiment the incoming and outgoing states
are localized (e.g. they might leave tracks in a detector). To deal with this properly we
would have to construct normalized wave packet states which do become well separated
in the far past and the far future. Instead of doing this we will do a much simpler but
rather sloppy derivation. First of all, we will put our system in a box of volume V = L3.
We also imagine that the interaction is restricted to act only over a time of order T'. The
final answer is independent of V' and T', reproducing the ones we would get if we worked
with localized wave packets. Using

(27r)46(4)(pf —p) = /ei(pf—pi):v dir (4.3)
we get in our space-time box the result
|2m)46 (g — I = (2m)*6 O (py — i) [ P17 @ = VT (2m)* 9 (py — ). (44)
The transition rate per unit volume per unit time W is then
K

LY

VT M i2(27)*6@ (ps — pi). (4.5)
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As expected, the dependence on V' and T is canceled. Usually we are interested in much
more detailed information than just the total transition rate. We want to know the
differential transition rate dW, i.e. the transition rate into a particular element of the
final state phase space per particle. To get dW we have to multiply by the number of
states available to a particle in the (small) part of phase space under consideration.

For a particle in a box of side L, recall that boundary conditions will constrain
the particle’s momentum, g, such that its components can only take discrete values
p; = 2mn;/L, n; € Z. Therefore the number of states available to each particle in the

box is % . 3 P
P
dn = dn,d dz:(—dm)(—d )(—dz)=v— 46
1= Ana Gy an on P2 ) \or Py ) \or *P (2m)3 (46)
where V = L3 is the volume of the box, which we now set to the unit volume. However,
this is the number states available to a single particle. Recall our normalisation is that
we have 2F particles per unit volume. Therefore, the number of states available per
particle is,
1 d%
0= = v - 4.7
"7 2F (2n) (47)

Notice that this is a covariant measure since,

1 d% - d*p
2F (2m)3  J (2m)*

2mé (p2 - m2) . (4.8)
For an N particle final state, we have N momenta, p, 1 < k < N, with each state

normalised to 2F), particles per unit volume. The obvious generalization is,

A
dn= || == ;
kl;Il 2Elc (27’(‘)3

(4.9)

The transition rate for transitions into a particular element of final state phase space
is thus given by combining eqs. (4.5) and (4.9),

2

1 d3pk
2Ek (27T)

dW = |Mg|*(2r)*6® (ps — pi) H

= |Mpl*dLipsy, (4.10)

where we have defined the Lorentz invariant phase space with N particles in the final
state,

. 3
dLipsy = (27r)4(5(4)(pf =) H (27r f;E
_ 15(4) -~ S d*py,
- (271') (p.f - pz) H 2m ( mk‘) (27r)4' (411)
k=1
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4.2 Decay Rates

We turn now to the special case where we have only one particle with mass m in the
initial state, ¢, and consider the decay of this particle into some final state, f. In this
case, the transition rate is called the partial decay rate and denoted by I',_,;. While
we have included a correction for our normalization of the final state to ensure we are
accounting for the correct number of particles, we have not yet done so for our initial
state. Since we have 2F particles per unit volume in the initial state, we must divide
dW by 2E; to give,

A / | M |2dLips (4.12)

For the important special case of two particles in the final state, there exists a par-
ticularly simple result. Consider the partial decay rate for a particle a of mass m, and
momentum p,, into two particles b and ¢, with momenta p, and p, respectively. The
Lorentz-invariant phase space is

) d3ﬁ b dgﬁ c

dLips = (27r)454(Pa —Pb — Pe (2r)32F, (21)3 2B,

(4.13)

In the rest frame of a the four-vectors of the particles are,

= (m,O), Dby = (Eb: ﬁ)a Dec = (EC7 —17)- (4'14)

We can eliminate one three-momentum in the phase space using three components of
the d-function,

. d*p
dLips = (2 72 =5 0(Ma — EC)F(,EC’ (4.15)
and hence the partial decay rate becomes,
2 W
rwng(% | MacaePSme — By — Eo) 7 dipl a2 (4.16)

where df) is the solid angle element for the angle of one of the outgoing particles with
respect to some fixed direction. From the on-shell condition E? = |p|? + m, we know
dE, = |p|d|p|/ Eb» and similarly for ¢, so,

By + E.,
d(By + E.) = Hﬂ1b
|7 T
= —EbEcdlﬂ = T 1E Ecd(Eb+Ec). (4.17)

Using this in eq. (4.16) and integrating over (E; + F3) we obtain the final result
1
Pamte = 5575 | [Ma-nel?/ldS2 41
be 3271_2”,1% |M b I |161 ( 8)

The total decay rate of particle 7 is obtained by summation of the partial decay rates
into all possible final states

Teor = Z Ly (4.19)
f
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The total decay rate is related to the mean life time T via (Uyy) > = 7. The branching
ratio for the decay into a specific final state f is

(4.20)

4.3 Cross Sections

The total cross section for a static target and a beam of incoming particles of momentum
is defined as the total transition rate for a single target particle and a unit beam flux.
The differential cross section is similarly related to the differential transition rate. How-
ever, we have calculated the differential transition rate with a choice of normalization
corresponding to 2F ‘target’ particles in the box of unit volume, and a ‘beam’ corre-
sponding also to 2F particles in the box. So our beam has N, particles crossing unit
area per unit time, where

N, =2E, |v], (4.21)

and v is the velocity of particles in the beam in the direction of the target. We must
also take into account the stationary target which has
N, =2F, (4.22)
particles per unit volume. Thus, the flur of the initial state is,
F = Ny N, = 4E,E,|7] (4.23)

and the differential cross section is related to the differential transition rate in eq. (4.10)
by
aw aw

e Ry W AT

(4.24)

Now let us generalize to the case where we have two colliding beams. The first beam
has a velocity 7, but now the ‘target’ particles are also moving with a velocity vj. In a
colliding beam experiment ¥, and vj will point in opposite directions in the laboratory.
In this case the definition of the cross section is retained as above, but now the beam
flux of particles is effectively increased by the fact that the target particles are moving
towards it. The flux is the total number of particles per unit area which run past each
other per unit time,

F = 4FE Ey|v, — U] (4.25)
Notice that
F=4(Bylfil — Buliil) = 4y [0 - 1) — m2m], (4.26)
so this flux is covariant.

> Exercise 4.19
Prove eq. (4.26) in a frame where the momenta are collinear.
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Finally, the differential cross-section for 2 — N scattering becomes
1 9 e
do = FlMﬁl dLlpSN

1 Y AR d3pk
= IMsl*(2m)* 6D (3" Pk — P — 1) ] 5 7o (4:27)
o poy? — mzm] 5 2B, )7

where p, and p, are the momenta of the initial state particles and pi, k = 1, ..., N, are
the momenta of the final state particles. The total cross-section can be obtained by
integrating this expression over the final state momenta {p;}.

Beware double counting when you have identical particles in the final state. If parti-
cles 7 and j are identical then a final state with p; = k and p; = ¢ is the same as a final
state with p; = q and p; = k, so they should not be counted twice.

> Exercise 4.20
Show that in the centre-of-mass frame the differential cross section for the scattering

a(pa) + b(ps) — c(pe) + d(pa) is

do _ 1 |7
dQ  6472s |p,|

Ml (4.28)

4.4 Mandelstam Variables

Invariant 2 — 2 scattering amplitudes are frequently expressed in terms of the Mandel-
stam variables. These are defined by

s = (patm)’ = (pe+pa)’,
t = (pa . pc)2 b (pb - pd)27
U = (pa—pa)® = (po—pc)’ (4.29)

In fact there are only two independent Lorentz invariant combinations of the available
momenta in this case, so there must be some relation between s, ¢t and w.

>Exercise 4.21
Show that
s+t+u=m’+m+m+m. (4.30)

> Exercise 4.22
Show that, for two body scattering of particles of equal mass m,

5> 4m?, t<o, u < 0.

(Hint: since all variables are invariant work in the centre of mass frame.)
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5 Processes in QED and QCD

5.1 Electron—Muon Scattering

This is as simple a process as one can find since at lowest order in the electromagnetic
coupling, just one diagram contributes. It is shown in figure 9. The amplitude obtained
by applying the Feynman rules to this diagram is

iM i = ie u(pe) v u(pa) (—Zﬂ“" ) ie &(pa) Y u(ps), (5.1)

where ¢2 = (p, — p.)?. Note that, for clarity, I have dropped the spin label on the
spinors. I will restore it when I need to. In constructing this amplitude we have followed
the fermion lines backwards with respect to fermion flow when working out the order of
matrix multiplication (which makes sense if you think of an unbarred spinor as a column
vector and a barred spinor as a row vector and remember that the amplitude carries no
spinor indices).

Do — Dec —

e * g e

Do — Dd —

Figure 9: Lowest order Feynman diagram for e p~ — e~y scattering.
The cross section involves the squared modulus of the amplitude, | M z|*. Let us see
how we obtain a neat form for this. The hermitian conjugate of a ‘spinor sandwich’ is
the same as its hermitian conjugate,

(@(pe)r*u(pa)* = (@lpe)yulpa))!

since it is just a number. Using rules of matrix algebra we see that this is

(uPe) v ul(pa))’ = (u(pa)'v* 1y ulpe))

= (u(pa) """ u(po))- (5.2)
But in section 2.6 we saw that 4%y#14? = 4#, and so this becomes
(@(pe)7*w(pa))” = w(pa) ¥ ulpe)- (5.3)

> Exercise 5.23
If I' represents a string of y-matrices (not including +°) and g is its reverse (i.e. the
same -y-matrices in reverse order), show that,

[a(k" ) Tu(k)]* = a(k)T ru(k).

-9] -



Using this result in the expression for | M f;|> we obtain
4
et _ _ _ y _
|Mpl* = E @(pe) 7" u(pa)i(pa) vsu(Ps)8(Pa) " w(pe) a(po) 1o (pa)
= L(e)L(u) ) (5.4)

where the subscripts e and 1 refer to the electron and muon respectively and

Ligy = a(pe)v*u(pa)i(pa)y ulpe),

with a similar expression for L?u)'

Usually we have an unpolarized beam and target and do not measure the polarization
of the outgoing particles. Thus we calculate the squared amplitudes for each possible
spin combination, then average over initial spin states and sum over final spin states.
Note that we square and then sum since the different spin configurations are in principle
distinguishable. In contrast, if several Feynman diagrams contribute to the same process,
you have to sum the amplitudes first. We will see examples of this below.

The spin sums are made easy by the results

Zu(s)(p)ﬁ(s)(p) = g+m,
Zv(s) i) = g—m. (5.5)

Do not forget that by m, we really mean m times the unit 4 x 4 matrix.

> Exercise 5.24
Prove eq. (5.5).

Using the spin sums we find that
YL = YA (prsus” ()5 (pa) v ul (pe)

SplnS Sa,Sc
= ’YZB [Fo + me}ﬁp’)':a [P + Meloa

= Tr (v*(#a + me)7" (@ +me)) - (5.6)

where in the first line, we have make explicit the spinor indices in order to show how the
trace emerges. Since all calculations of cross sections or decay rates in QED require the
evaluation of traces of products of y-matrices, you will generally find a table of “trace
theorems” in any quantum field theory textbook [1]. All these theorems can be derived
from the fundamental anti-commutation relations of the y-matrices in eq. (2.58) together
with the invariance of the trace under a cyclic change of its arguments. For now it suffices
to use

Tr(y*...4**) = 0 forn odd
Tr(y* ... ) = gH# Tr(y#e .. qtn) — g Tr(yP2yHe .o oykn) - -
+ g Te(y# Ly
Te(dy) = 4a-b,
Tr(dl¢d) = 4(a-bc-d—a-cb-d+a-db-c) (5.7)
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> Exercise 5.25
Derive the trace results in equation (5.7). (Hint: for the first one use (y°%)* = 1.)

Using these trace theorems,

SSLE = A(phpl — ¢"pa - pe + pipl) + 49" ml, (5.8)

spins

with a similar result for Li‘:). Putting this altogether, the spin averaged/summed ampli-
tude squared is :

1
i Z |M;il?
spins

_ 2_14 (vt +9pt = (po- 2o —m2) 8") (PouPav + Pupas — (o9 = 11,) g

4
e
= 83 ((pe + Pa)(Pa - Do) + (P Do) (Pa - Pa) — M(Py - Pa) — M (Pa - pe) + 2mims,)

(5.9)

(Notice that we have divided by 4 since we are averaging over initial states, and there
are 4 possible initial spin configurations.)

This takes on a more compact form if expressed in terms of the Mandelstam variables
of eq. (4.29),

1 2e*
7 2 Mg = t%(s? +u? — 4(m2 +m2)(s + u) + 6(m2 + m2)?). (5.10)

spins

Finally, we can derive the differential cross section for this process in the centre-of-
mass frame using eq. (4.28). In the high energy limit where s, |u| > m2, m?, i.e. setting
the masses to zero,

do et $24+u?

aQ - 32725 2 (5.11)

Other calculations of cross sections or decay rates will follow the same steps we have
used above. Draw the diagrams, write down the amplitude, square it and evaluate the
traces (if you are using spin sum/averages). There are one or two more complications to
be aware of, which we will illustrate below.

5.2 Electron—Electron Scattering

For the scattering e"e~ — e~ ¢~ we now have identical particles in the final state which
may only be distinguished by their momenta. Therefore we cannot just replace m, by m.
in the calculation we performed above. Labeling the momenta in the process according
toe (p.)+e (ps) — € (pc)+ e (pa) in analogy to e” ™ scattering, we realize that when
particle a emits a photon we do not know whether it ‘becomes’ particle ¢ (as it did in
the e~ scattering) or ‘becomes’ particle d. Since either is possible, we need to include
both cases, resulting in the two diagrams of fig. 10. Applying the Feynman rules, the
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Py — DPd — Do — Dd

Figure 10: Lowest order Feynman diagrams for electron—electron scattering.

two diagrams give the amplitudes,

My = alp )y ulpa)ama ), C 512)
My =~ alpaulpalp ) (5.9

Notice the additional minus sign in the second amplitude, which comes from the anti-
commuting nature of fermion fields. Remember that when diagrams differ by an inter-
change of two fermion lines, a relative minus sign must be included. This is important
because

Mgl = M1+ My?
= |./\/(1|2 + |M2|2 + 2Re M Mo, (5.14)

so the interference term will have the wrong sign if you don’t include the extra sign
difference between the two diagrams. |M;|? and |[My|? are very similar to the previous
calculation. The interference term is a little more complicated due to a different trace
structure.

Performing the calculation explicitly yields (in the limit of negligible fermion masses),

1 ) S Hur S 287
1 Z Ml = 2e ( rra E Bl B (5.15)
spins
> Exercise 5.26
Prove the result in eq. (5.15). It will be helpful first to prove
q p p
TV Ya = —29*
TV Ve = Ag™ (5.16)
TV Y YV = —29P9 M.

5.3 Electron—Positron Annihilation

The two diagrams ete™ scattering are shown in fig. 11, with the one on the right known
as the annihilation diagram. They are just what you get from the diagrams for electron—
electron scattering in fig. 10 if you twist round the fermion lines. The fact that the
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diagrams are related in this way implies a relation between the amplitudes. The inter-
change of incoming particles/antiparticles with outgoing antiparticles/particles is called
crossing. For our particular example, the squared amplitude for ete™ — ete™ is related
to that for e e~ — e e~ by performing the interchange s < u. Hence, squaring the
amplitude and doing the traces yields (again neglecting fermion mass terms)

1 s+u? w42 242
- M2 =2e* = e 5.17
4Sp.§sl si € ( 12 + s2 . s ( )
et < - el et et
e e e e

Figure 11: Lowest order Feynman diagrams for electron-positron scattering in QED.

If electrons and positrons collide and produce muon—antimuon or quark-antiquark
pairs, then the annihilation diagram is the only one that contributes. At sufficiently high
energies that the quark masses can be neglected, this immediately gives the lowest order
QED prediction for the ratio of the annihilation cross section into hadrons to that into
phrp:
o(ete” — hadrons)

R=

5 .
e 3%?@ : (5.18)
where the sum is over quark flavours f and ()s is the quark’s charge in units of e. The
3 comes from the existence of three colours for each flavour of quark. Historically this
was important: you could look for a step in the value of R as your ete™ collider’s CM
energy rose through a threshold for producing a new quark flavour. If you did not know
about colour, the height of the step would seem too large. At the energies used at LEP
you have to remember to include the diagram with a Z replacing the photon.

Finally, we compute the total cross section for ete™ — ptu~, neglecting the lepton
masses. Here we only have the annihilation diagram, and for the amplitude, we get

My = (=ie)*u(pa)y"v(p) — 2o (p) ul(p)

ie?
ES —S—ﬂd'y“vc'l—)a'yuub. (5.19)

Summing over final state spins and averaging over initial spins gives,

i S IMgP= 46—823(7“7507%)7&(%%%%),

spins
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where we have neglected m, and m,. Using the results in equation (5.7) to evaluate the
traces gives,

- ZIMﬁI2 (pa P Db - Pe + Da - De Po - Pa)-

splns

Neglecting masses we have,

Pa Pc = Pbo-Pa=—t/2, (5.20)
Pa~Pd = Pb-Pe=—uf2. (5.21)
Hence \ ,
t
T Z Mpf? = 264 - (5.22)
spms 8

which incidentally is what you get by applying crossing to the electron-muon amplitude
of section 5.1. We can use this in eq. (4.28) to find the differential cross section in the
CM frame,
do et ?+u?
sy 32m2s  s2
You could get straight to this point by noting that the appearance of v spinors instead
of u spinors in M; does not change the answer since only quadratic terms in m,, survive
the Dirac algebra and we go on to neglect masses anyway. Hence you can use the result
of eq. (5.11) with appropriate changes.
Neglecting masses, the CM momenta, are

(5.23)

po=3VA(LD)  pe= 151, (5.24)
P=5Va(Le)  pa=byE(1,E) (5.25)

which gives t = —s(1 — cos6)/2 and u = —s(1 + cos0)/2, where cosd = €'- &’. Hence,
finally, the total cross section is,

4o
e —2 0 . .26
o= /1dQ md(cos ) = P (5.26)

5.4 Compton Scattering

The diagrams which need to be evaluated to compute the Compton cross section for
e — e are shown in fig. 12. For unpolarized initial and/or final states, the cross
section calculation involves terms of the form

Ze*“(x\,p) (A, p), (5.27)
Y

where )\ represents the polarization of the photon of momentum p. Since the photon is
massless, the sum is over the two transverse polarization states, and must vanish when
contracted with p, or p,. In principle eq. (5.27) is a complicated object. However, there
is a simplification as far as the amplitude calculation is concerned. The photon is coupled
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to the electromagnetic current J* = 1y*1) of eq. (2.28). This is a conserved current, i.e.
0,J* = 0, and in momentum space p,J* = 0. Hence, any term in the polarization sum,
eq. (5.27), proportional to p* or p” does not contribute to the cross section. This means
that in calculations one can make the replacement

Y (A p)e" (A, p) - —¢g*, (5.28)

and we have a simple, Lorentz-covariant prescription.

Y %’ g')’ v Y
e” - > > e e . B

Figure 12: Lowest order Feynman diagrams for Compton scattering.

> Exercise 5.27
Show that the spin summed/averaged squared matrix element for Compton scattering
in the massless limit is given by
2 of U S
M jif? = 2¢ (-S - u) (5.29)
Evaluate the total cross section using the expressions in the centre-of-mass frame at the
end of the last sub-section. Why does this create a problem?

5.5 QCD Processes

The theory of quarks and gluons, QCD, is in many ways very similar to QED. We
have done most of the hard work to calculate tree level amplitudes already. The main
difference between the theories is that QCD has three types of charges (called ‘colours’,
e.g. red, green and blue). We can write a quark as a vector with the three colour states

shown
U

u=| uC (5.30)

There are more possible interactions than in QED which are mediated by eight photon-
like gauge fields called “gluons”. We encode the couplings of the gluons to the quarks by
matrices which act on the above colour vector. For example there are two gluons with
matrix “generators”

1 1L 0 0 1

0
m=—_|o0o 10| 1= 0
Vizl g o o 2 9

These are just photon-like interactions with each of the two photons having different
couplings to the different colours.

10
01 (5.31)
00
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> Exercise 5.28
Check that the strength of a colour anti-colour quark pair scattering to itself at tree level
is the same no matter which colour you pick. Show that the strength of a scattering of a
colour anti-colour quark pair to a different colour pair is also the same no matter what
colours you pick.

The remaining six gluons change the colour of the quark and are associated with
generators of the form

L (010 1 {0 i 0
™=-{100], T4=5 i 0 0 (5.32)
000 0 0 0

The remaining four generators are of the same form but interchange the other two colour
combinations. Note these matrices are traceless and normalized so that TrT*T® = 2§%.

You will learn more about the origin of these fields and their couplings in the Standard
Model course. From the point of view of calculating cross sections though the Feynman
Rules are all we need to proceed, and these are very similar to those of QED. The
generator T is included in the Feynman rule for the gluon—-quark—anti-quark vertex as
shown in fig. 13 (upper), where g is the QCD coupling constant. Also, since a gluon

a,
_igTaryl‘
a, o
le i o
~gf((p — 9)9™ + (g = 7)¢"" + (r — )9
/N
c, Y b,

Figure 13: An example of some QCD Feynamn Rules.

associated with, for example, T can pair produce a red quark and an anti-green quark
we see that the gluons themselves are charged. Therefore gluons can interact with other
gluons, and there are multi-gluon vertices that do not occur in QED where the photon is
chargeless. The Feynman rule for these vertices are given in fig. 13 (lower), where f°,
a,b,c=1,...,8 are the QCD structure constants defined by

[T®, T = faTe, (5.33)

The QCD Feynman rules will be discussed at greater length in the Standard Model
course.
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6 Introduction to Renormalization

6.1 Ultraviolet (UV) Singularities

So far, everything was computed at tree-level, that is, at the lowest nontrivial order
in perturbation theory. Very often, a more precise determination of a cross section is
desirable and we are thus led to consider loop diagrams. In order to illustrate this,
consider the example ete™ — putpu~. The perturbative expansion of the corresponding
amplitude is written as

M= aM() + 0(2./\/[1 + a3M2 -+ O(a4), (61)

where a = ;i% ~ 1/137. When we computed the corresponding amplitude in section 5.3

we only computed the leading order term

aMy = >«w-~< x e’ x a (6.2)

Using this expression for the amplitude, we will get the leading-order cross section
oo < &®|My|®. If we want to compute corrections of order o® to this result, we will
have to compute the amplitude to an accuracy of order o?.

In fact this set of diagrams is one place where the distinction between relativistic quantum
mechanics and true field theory raises its head. The diagram with an internal quark loop
is naturally generated in quantum field theory but not in a perturbative expansion in
quantum mechanics. In principle, a quark must also be included in this loop, but in QM
you have to treat the quark as an external particle that is put there by hand. While the
Feynman rules we derived are correct, you will see a much more rigorous derivation of
the (scalar theory) Feynman rules in your QFT course.

The one-loop correction to the cross section is related to the interference term of Mg
and M,

o1 o |[aMg + a? My + O(a®) 2 = o?| M| + 20°Re(Mo M?}) + O(a?). (6.4)

The whole procedure looks pretty straightforward. However, if we try to compute a loop
diagram, we run into trouble.

Consider as an example the vertex correction V, depicted in fig. 14. Using the Feyn-
man rules listed in section 3.6 we end up with an expression of the form

d*k kk
Ve | G TR G R ) N

where we did not bother to write down the full algebraic expression resulting from the
spinor and Lorentz algebra but only the terms involving k. The two factors of k in the
numerator stem from the two fermion propagators. The important point is that this
integral diverges. Indeed, considering the limit £ — oo we can neglect p,, p, and m and

e dk 1 dk 1
v [ e~ [ Eor = (6:6)
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Figure 14: Vertex correction for ete™ — ptpu~ scattering.

where we used d*k ~ k3dk. These singularities are called ultraviolet (UV) singularities
because they come from the region k — oo.

Similar problems are encountered if we try to compute the other one-loop diagrams
and our final answer for the cross section at next-to-leading order seems to be infinity.

6.2 Infrared (IR) Singularities

There is another class of singularities that shows up in QED and QCD. As we saw in
section 6.1 that UV singularities are related to the region of large k. However, there is
also a potential danger of singularities from the region k& ~ 0 or more generally, from
zeros in the denominators of the integrand. These singularities are called infrared (IR)
singularities. These occur if some (massless) particle becomes very soft or two become
very collinear. These singularities have nothing to do with the UV singularities. The
solution to the problem is completely different in the two cases. In fact, you already
should have encountered an IR singularity. When you tried to compute the total cross
section for Compton scattering in section 5.4 you should have found that the total cross
section diverges. This is due to an IR singularity. Indeed, the final state photon can
become arbitrarily soft, in which case the electron-photon pair becomes indistinguishable
from a single electron. One possibility to get a well defined finite answer is to require
that the final state photon has some minimal energy but the general solution will be
discussed in the phenomenology course.

I will not discuss the IR singularities any further and will simply ignore them, safe
in the knowledge that they can be dealt with in a manner totally different to that for
the UV singularities. Thus in what follows I will call a cross section finite if it has no
UV singularities, but it might well have IR singularities. Strictly speaking, we should
replace every ‘finite’ below by ‘UV-finite’.

6.3 Renormalization

It is important to realize that renormalization is not really about the removal of diver-
gences, but simply an expression of the fact that in quantum field theories the value of
certain parameters, e.g. the coupling constants, change with the energy scale used in a
process. The infinities we encounter are then just a consequence of our ignorance of what
is happening as F© — oo although we integrate up to this limit in any loop diagrams.
We will demonstrate this below, and show how results do turn out to be finite after all.
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To to obtain a prediction for any measurable quantity S, say a cross section, we
started with wave equations from which we deduced the Feynman rules, which in turn
were used to compute S. The wave equations of QED, eqgs. (3.22) and (3.24), have some
parameters. So far, we denoted them by e, m and referred to them as mass and charge
of the electron. Therefore, our result S will depend on these parameters. However, the
parameter m in the Lagrangian is not the real mass of the electron, nor is e its charge.
The identification of the parameter in the Lagrangian and the measurable quantity is
only justified at tree level, because beyond this level the parameters themselves receive
corrections, i.e. the propagator and vertex diagram which define the mass and coupling
strength are themselves corrected. Therefore, from now on we will be more precise and
denote the parameters in £ by mg and ey and call them the bare mass and bare charge
respectively. Note that the bare parameters are not measurable. The (measurable)
physical mass and charge of the electron will be denoted (as always) by m and e. £ also
depends on the fields, which we denoted so far by ¢ and A. From now on, we denote
them by 1)y and Ay and call them the bare fields.

We are now ready to reformulate the problem we encountered in section 6.1. If we
try to compute a measurable quantity in terms of the unmeasurable bare quantities as
a perturbative expansion in the coupling constant we generally encounter divergences.
That is, if we compute

S(eo, mo, 1o, Ao) = Soleo, Mo, 1o, Ao) + ez S1(en, mo, o, Ao) + O(e5) (6.7)

then we may find that Sj(eg, mg, %o, Ag) = co. In particular, this is true for two special
physical quantities, namely the mass and the charge of the electron,

m = mg+ e mi(eo, Mo, Yo, Ao) + O(e€g)

e = e+ e% e1(eg, Mo, o, Ag) + O(eg). (6.8)

But this is an expression for two measurable quantities in terms of unknown parame-
ters. If the unknowns mg and eg are finite then we would get divergences in m, and e;
and hence in m and e. Since m and e are finite quantities we conclude that the bare
quantities are infinite. This is the root of the problem. UV divergences in our perturba-
tive calculations show up if we try to express our results in terms of the unmeasurable,
unphysical bare parameters, i.e. the parameters of the original Lagrangian.

In order to save the situation, we have to find new parameters such that the result of
any physical quantity expressed in these new parameters — at any order in perturbation
theory — is finite. Is this possible? Generally, the answer is no. However, for some
special theories (and luckily QED is one of them) it is possible. Such theories are called
renormalizable theories. The new parameters are called the renormalized quantities and
are denoted by e, mg and g, Ag. They are related to the bare quantities as follows:

Yo = Zy*yg

Ay = 25" Ag
my = Z,f{sz
eg = Z]_Z2_1Z3_1/2QR (69)
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This is simply a definition of the renormalization factors Z,, Z,, Z3 and Z,,. Since the
renormalization factors relate finite and divergent quantities, they have to be divergent
themselves. More precisely, they can be written as a perturbative series with divergent
coeflicients.

To summarize, if we express the perturbative series for our physical quantity in terms
of the renormalized quantities

S(er, Mg, ¥r, Ar) = So(er, Mg, Yr, Ar) + %, Si(er, mr, Vg, Ar) + O(er) (6.10)

there will be no UV-divergences at any order in perturbation theory. Some people refer
to this as ‘hiding the infinities’. What is meant by this statement is that if we have a
small number of input values (mg, eg...) and express all results in terms of these input
values we get finite answers for all measurable quantities. Thus, renormalizing QED
enables us to relate any measurable quantity to a small number of measurable input
values.

It is a highly non-trivial exercise to show that QED is indeed a renormalizable theory.
But once we know that we can find a set of renormalized parameters eg, mg, ¥Yr, Ar such
that eq. (6.10) has finite coefficients at each order, it is clear that we can find as many
other sets as we like. Indeed, if we chose ef, M/, ¥k, AR such that mp and m}, (and all
other parameters) are related by a finite series, then

S' (€l Mg, W, AR) = Sp(€hy mip, Y, AR) + (€R)? Si(€hy mp, ¥, AR) + O((eR)") (6.11)

is also finite at each order in perturbation theory. In other words, the divergent pieces
of the renormalization factors in eq. (6.9) are uniquely determined by requiring that the
divergences cancel. However, we are completely free to fix the finite pieces to whatever
we want. Choosing a particular set of renormalized quantities, that is, giving some pre-
scription on how to fix the finite pieces of the renormalization factors, is called choosing
the renormalization scheme. 1t is possible in QED that mpr = m and er = e, i.e. the
renormalized coupling is determined by real electron photon scattering. The renormal-
ization scheme that satisfies these constraints is called the on-shell scheme. Alternatively,
the renormalized coupliﬁg may be determined by scattering with, for example, a virtual
photon. In this case the value of ep will depend on the scale of the scattering, i.e. the
coupling will “run” with the renormalization scale. To be precise let me also mention
that one more constraint is needed to fix the scheme completely. Naively you would
expect that four constraints are needed, since we have four renormalization factors to
fix. However, two of them are related, Z; = Z,. This identity is due to gauge invariance
and is called the Ward identity. As a result, we only need three constraints to fix the
renormalization scheme completely.

> Exercise 6.29
Why is it not possible in QCD to use the on-shell scheme?

Of course, the result of our calculation has to be independent of the renormalization
scheme. This remark is not quite as innocuous as it looks. In fact, it is only true up to
the order to which we decided to compute. If we decide to include the O(e%) but not
the higher order terms in our calculation, we have

S(eR7 Mg, ’l,bR, AR) - S,(eh) mIRJ /‘)b;%’ ,R) = 0(64}1{) (612)
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The numerical result for our prediction will depend on the renormalization scheme! Even
though the difference is formally of higher order it still can be numerically significant, in
particular in QCD.

It’s worth stressing again that this ability to hide UV divergences in the couplings
is not as conspiratorial as it at first seems. In the IR a theory involves long wavelength
modes that are insensitive to UV physics - indeed they (like us!) don’t even know what
the full UV theory of nature is. The incomplete IR theory will break down (generate
infinities) if extended into the UV but since we know (presumably!) that the IR theory
is part of a consistent UV theory there must be a way to hide the infinities. This is
fundamentally why renormalization works.

6.4 Regularization

What we have learned so far is that we have to express the result of our calculation
in terms of renormalized quantities rather than the bare ones. But since the starting
point of any calculation is the Lagrangian, the first step in any calculation is to get the
results in terms of bare quantities. Only then, we replace the bare quantities by the
renormalized quantities, using eq. (6.9) and get a finite result. In intermediate steps we
will have to deal with divergent expressions.

In order to give a mathematical meaning to these intermediate expressions, we will
have to regularize the integrals. That is, we have to change them in a systematic way,
such that they become finite. By doing so, we change the value of the integrals. However,
at the end of our.calculation, we are able to undo this change. Since the final result is
finite, this step will not introduce a singularity.

There are — at least in principle — many different possibilities for regularizing the
integrals. To illustrate the idea of regularization I will discuss first the method of intro-
ducing a cutoff, even though in practice this method is not really used. Consider again
the vertex correction in eq. (6.5). As we saw, we got the UV singularity from the region
k — oo. To regularize this expression, we introduce a cutoff A

A dik k k
S @m)tE (e + k)2 — m?)((pa — k)* — m?)

Of course, by doing so we changed the value of the integral. At the end of our calculation
we will have to let A — oco. Introducing this cutoff, however, gives us the possibility to
deal with such intermediate expressions.

Let me illustrate the interplay between renormalization and regularization with an
oversimplified example. Assume that with the cutoff regularization we get as a result of
our calculation of some physical quantity, say a cross section

V = Vieg ~

(6.13)

S=¢eyA+¢€§ (B ln% + F5> + O(ep) (6.14)

where A, B and Fs are some finite terms. The originally divergent expression for &
has been rendered finite by regularization. At this point we cannot let A — oo since
we would get & — oo. However, we learned that we have to express our results in
terms of eg and not ey (For simplicity, I ignore the mass renormalization). This step is

-103 -



renormalization (not regularization). Computing the relation between e and eg, using
the same regularization, we would find

A
er = €y — € (C lna + Fe> + O(ed) (6.15)

and reversing this
A
eo = en + €& (C >+ Fe) +O() (6.16)

where C and F, are also finite. Plugging in eq. (6.16) into eq. (6.14) we get
A
S—ehAtel ((B +4AC)In = + Fs + 4AFe) +O®E) (6.17)

and we would find (B + 4AC) = 0. Since. QED is a renormalizable theory this ‘miracle’
would happen for any measurable quantity. Finally, in the expression

S = eh A+ €% (Fs + 4AF,) + O(e}) (6.18)

we can let A — oo and ‘undo’ the regularization.

To summarize, regularization enables us to work with divergent intermediate expres-
sions. In the example above, instead of writing co we write log A and have in mind
A — oo. Renormalization, on the other hand removes the (would be) singularities, i.e.
it removes the log A terms. Therefore, after renormalization we can (and have to) undo
the regularization.

Note that we could have defined a different renormalized coupling

A
fn—co— € (0 n =+ Ge> +O@E) (6.19)
and this would have lead to
S = ERA + & (Fs +4AG,) + O(&, (6.20)

and we would have a different expression in terms of a different coupling - both equally
valid, and identical up to the O(&%,) corrections.

As mentioned above, the method of introducing a cutoff for regularization is hardly
ever used in actual calculations. The by far most popular method is to use dimensional
regularization. The basic idea is to do the calculation not in 4 space-time dimensions
but rather in D dimensions. Why does this help?

Consider once more our initial example of the vertex correction in eq. (6.5), which
has an UV singularity in D = 4 space-time dimensions (see eq. (6.6)). For arbitrary D,
using dPk ~ kP~1dk we get

dPk 1 dk o«

and the integral is UV-finite for say D < 3. Thus changing the dimension can regulate
integrals. It is important to note that this is only a technicality. There is no Physics
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associated with D # 4 and at the end of the calculation we have to let D — 4. If we did
renormalize our theory properly this last step will not lead to UV divergences.

The reason why dimensional regularization is so popular is that it preserves gauge
invariance and is technically relatively simple. Another very important issue is that this
regularization not only regulates UV singularities, but also IR singularities. As men-
tioned in section 6.2, theories like QED or QCD are very often plagued by IR singulari-
ties. It is therefore very convenient if we do not have to introduce another regularization
for IR singularities. Only after all UV and IR singularities have been removed, we can
let D — 4 and finally obtain a finite result.

7 QED as a Field Theory

7.1 Quantizing the Dirac Field

In this section we return to the Dirac equation and use it as the basis for a a field theory,
which allows the creation and annihilation of particles naturally. Quantizing a field (or
second quantization) basically means that the wave function becomes an operator. The
space in which this operator acts is called the Fock space. The Fock space contains states
with an arbitrary number of particles and therefore we will be able to describe processes
where the number of states changes.

Dirac field theory is defined to be the theory whose field equations correspond to
the Dirac equation. We regard the two Dirac fields (z) and ¢(x) as being dynamically
independent fields and postulate the Dirac Lagrangian density:

£ = () (7"0, — m)b(a). (7.1)
Then the Euler-Lagrange equation
a0 oL oL
I 4 e 2
o0 D0, 0) O (72)
leads to the Dirac equation. The canonical momentum is
m(x) = 6 = ipi(x) (7.3)
0 (x)
and the Hamiltonian density is
. 0
H=m)~ L= ¢Tia—7’f. (7.4)

Now we want to regard 1) as a quantum field rather than as a wave function. In order
to quantize this field, naively we would try to impose the usual equal time commutation
relations, i.e. :

[Wa(Z,1), 1a(7,1)] = 10a0°(Z — ),
[¥a(Z, ), ¥6(7,1)] = O,
[7a(,2), m5(4,8)] = 0, (7.5)
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where o and 3 label the spinor components of ¥ and w. Without proving it for the
moment we note that this would lead to a disaster. In particular, the Hamiltonian is
unbounded from below - there is no ground state. The only way to cure the problem
is to impose anti-commutation relations (we will soon see that this leads to the desired
properties for spin-1/2):

{¥a(,1),m5(7, 1)} = i0apd®(Z ~ 7).
{Q)ba(';f) t)? ¢ﬁ(@7) t)} = 0,
{ﬂ-a(fu t)7 Wﬁ(gv t)} = 0. (76)

There is a very nice discussion in Peskin & Schroeder on this (Chapter 3). In particular,
they show how anti-commutation relations really are the only solution.
The Heisenberg equations of motion for the field operators have the solution
Pk 1

Vo (Z,t) = mﬁ s§2[b(s, E)ua(s, E)e—ik-z + dT'(s, E)va(s’ E)eik.a:] (7.7)

@) = [y X0 6l e ds B Be ) (78)
s5=1,2

Since 7 is now an operator, so are the expansion coefficients bf, df, b and d. They are in-
terpreted as creation and annihilation operators for electrons and positrons respectively.
The anti-commutation relations for the fields, eq. (7.6), imply that

{b(r, k), bl(s,K)} = (2m)°2E6*(k — K')d,
{d(r, k), d!(s,k)} = (2m)°2E8%(k — k)8
{b(r, k), b(s, K)} = {b'(r,k), b (s,K)} =0
{d(r,k),d(s, &)} = {d'(r,k),dl(s,F)} =0 (7.9)

> Exercise 7.30
Show that the anticommutation relations above lead to the correct anticommutation
. relations for the fields 1, (Z,t) and 7g(%,t). You will need the spinor sum relations in

eq. (5.5).
The total Hamiltonian is
H= /d3§:‘ H (7.10)

The symbols : : denote normal ordering of the operator inside, i.e. we put all creation
operators to the left of all annihilation operators so that H|0) = 0 by definition, and is
the way we remove the ambiguity associated with the order of operators. Note that if
we move an anti-commuting (fermion) operator through another such operator then we
pick up a minus sign. Using eq. (7.4) after some algebra we get
= BE Lo s (s, Byb(s, ) + (5, R)d(s, ) (7.11)
=] @ik 2, s, s, s, s, k). X
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> Exercise 7.31
Verify the above form of the Hamiltonian. Can you see from the derivation why com-
mutation relations for ¢ and 7 and therefore for b and d would have led to a disaster?

The formula in eq. (7.11) has a very nice interpretation. The operator b'b is nothing
but the number operator for electrons and dfd that for positrons. Thus, to get the
total Hamiltonian, we have to count all electrons and positrons for all spin states s and
momenta k and multiply this number by the corresponding energy F.

If we had tried to impose commutation relations, the dfd term would have entered
with a minus sign in front, which would signal that something has gone wrong. In par-
ticular, it would mean that d! creates particles of negative energy. This is not supposed
to happen in the quantized field theory. (We could try to fix the problem by simply
re-labeling d «+ df but it may be shown that this leads to acausal propagation.)

S0, in order to quantize the Dirac field we are necessarily led to the introduction of
anti-commutation relations. Remarkably we find that we have automatically taken into
account the Pauli exclusion principle! For example,

{b1(r, k), b1 (s, k) } =0
implies that it is not possible to create two quanta in the same state, i.e.
bt (s, k)bl (s, k)|0) = 0.

This intimate connection between spin and statistics is a direct consequence of desiring
our theory to be consistent with the laws of relativity and quantum mechanics.
Finally consider the charge operator

Q:/dsf : jo(z) =/d3f RULE

which, in terms of the creation and annihilation operators, is
Q=[2% Pk 1 e, R)b(s, B) — di (s, B)d(s, R)] (7.12)
s i
(2m)3 2E i ’

This shows again that b' creates fermions while d! creates the associated antifermions of
opposite charge.

7.2 Quantizing the Electromagnetic Field
The Maxwell equations can be derived from the Lagrangian density
e )
i = —ZF" F, —j.A" (7.13)
where the field strength tensor is
F,. =06,A, - 0,A,, (7.14)

and j, is a source for the field. Maxwell’s equations do not change under the gauge
transformation

Au(z) — Au(x) + 0\ () (7.15)
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where A(z) is some scalar field. This shows that there is some redundancy, and the
4 components of A,(z) are more than is required to describe the electromagnetic field
(there are two transverse polarizations of e.m. radiation). This leads to a problem in
quantization. To see this note that the canonically conjugate field to A, is

oL

= ——=
3(30’4#)

= ¥ (7.16)
and from this it follows that II° = 0. This means there is no possibility of imposing a
non-zero commutation relation between II1° and A°, which we would need if we are to
quantize the field.

To get around this problem we recognize that gauge invariance allows us to impose
an extra condition, which we use to fiz the gauge invariance, and effectively lower the
degrees of freedom. For example, we can impose the Lorentz gauge condition, i.e.

8 A* = 0. (7.17)

Note that, even after fixing the Lorentz gauge, we can perform another gauge transfor-
mation on A,, i.e. A,(z) — Au(z) + 0.x(x) where x(x) must satisfy the wave equation,
0,0*x =0, i.e. we have two unphysical degrees of freedom and the two physical fields.

We impose the constraint by noting that since 8, A* = 0, there is no harm in adding
it to the Lagrangian density as

1 1
B 7 i AR
4F Fo —juA %

Indeed what we are doing here is following the Lagrange multiplier method of imposing
constraints (1/2¢ being the Lagrange multiplier), and recognizing that we should find
the stationary points of S = [ d*zL subject to the constraint [ d*x(9,A#)? =0, i.e. this
comes from the “equation of motion” 9L/3(1/2¢) = 0.

Using the gauge-fixed Lagrangian, the equations of motion are now

L= (0, AM)2. (7.18)

6MF[J.V - ju + %81/(8“14#) = 0.

If we require that these equations are satisfied and then also §,A* = 0, we have the
original equations of motion but in a fixed gauge.

In the Feynman gauge ¢ = 1, the Lagrangian is particularly simple (after some
integration by parts under [ d*z):

1 L
L= 58,LA,,6“A — juA*,
and quantization can now proceed: II* = JyA* and thus
[Aﬂ(a_:: t)’ aOAV(gJ t)] = _Z‘gﬂl’(s?’(f - :’7) (719)

with all other commutators vanishing. The Heisenberg operator corresponding to the
photon field is
Au(z) = / Pk 1 i lex(X B)a(), K)e 7 + g3 (A, B)al (A, k)] (7.20)
" (27)3 2F G ’ s ’ ‘

A=0
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where £,(), E) are a set of four linearly independent basis 4-vectors for polarization
(A =0,1,2,3). For example, if k = (kq, E), we might choose £#(0) = (1,0,0,0), e#(3) =
(0,k)/ko, e*(1) = (0,7,) and e*(2) = (0, ,), where k2 = k2, 7i, - k = 0, 7i5 - k = 0 and
iy -7y = 0. €#(1) and €#(2) are therefore polarization vectors for transverse polarizations
whilst €#(0) is referred to as the timelike polarization vector and £#(3) is referred to as
the longitudinal polarization vector. For example, if k = (k, 0,0, ko), €#(0) = (1,0,0,0),
e4(3) = (0,0,0,1), e#(1) = (0, 1,0,0) and e*(2) = (0,0,1,0).
The commutation relation (7.19) implies that

[a(\ B), af (N, B)] = —gax 2B (2m)**(k — K'). (7.21)

At a glance this looks fine, i.e. we interpret af(), E) as an operator that creates quanta
of the electromagnetic field (photons) with polarization A and momentum k. However,
for A = 0 we have a problem since the sign on the RHS of (7.21) is opposite to that of
the other 3 polarizations. This shows up in the fact that these timelike photons make a
negative contribution to the energy:

37 1 . . . .
H= / (;Tk)aﬁE (—aT(O, k)a(0, k) + i§3 al(i, k)a(i, k)) . (7.22)
Fortunately, although we might not realize it yet, we have already solved the problem.
Recall that we still have to impose §,A* = 0. It turns out that it is impossible to do
this at the operator level, but we can do it for all physical expectation values, i.e. we
can impose the correct physics. It then turns out that contributions from the timelike
and longitudinal photons always cancel. More explicitly, by demanding for any state |x)
that

(x18,A%]x) = 0 (7.23)

it follows that
(xlal(3, k)a(3, k) — a' (0, k)a(0, £)|x) = 0. (7.24)

and therefore (x|H|x) > 0. This is nice because it is in accord with our knowledge that
free photons are transversely polarized.

> Exercise 7.32
Show that eq. (7.24) follows from eq. (7.23).
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Pre School Problems

Rotations, Angular Momentum and the Pauli Matrices

Show that a 3-dimensional rotation can be represented by a 3 x 3 orthogonal matrix R
with determinant +1 (Start with ¥ = RZ, and impose Z' - ¥ = & - ). Such rotations
form the special orthogonal group, SO(3).

For an infinitesimal rotation, write R = 1+ iA where 1 is the identity matrix and
A is a matrix with infinitesimal entries. Show that A is antisymmetric (the ¢ is there to
make A hermitian).

Parameterise A as

0 —ia3 ia2 3
A= iag 0 —da | =) alL
—'ia2 ia1 0 i=1

where the a; are infinitesimal and verify that the L; satisfy the angular momentum
commutation relations

[Li, LJ] = -ieijkLk:
Note that the Einstein summation convention is used here. Compute L2 = L2+ L2+ L2.

What is the interpretation of L2 ?
The Pauli matrices o; are,

_(0 1) __(0 —i) _(1 0)
=1 0) 2T\ o) BT \o 1)

Verify that %0,- satisfy the same commutation relations as L;.

Four Vectors

A Lorentz transformation on the coordinates x# = (ct, Z) can be represented by a 4 x 4
matrix A as follows:

2 = A¥,z"

For a boost along the z-axis to velocity v, show that

v —fy 00
|6y v 00
A= 0 0 1 0 (:25)
0 0 01
where 8 =v/c and y = (1 — %)"'/2 as usual.
By imposing the condition
G T = g, T : (.26)
where
1 0 0 0
o -1 0 o
Iw=10 0 -1 0
0 O 0 -1
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show that
ngAMpAVJ =0Gps O ATgA =g

This is the analogue of the orthogonality relation for rotations. Check that it works for
the A given by equation (.25) above.
Now introduce

_ v
Ty = G

and show, by reconsidering equation (.26) using z*z,, or otherwise, that
T, = z, (A1),

Vectors A* and B, that transform like z* and z,, are sometimes called contravariant
and covariant respectively. A simpler pair of names is vector and covector. A particularly
important covector is obtained by letting 8/0z* act on a scalar ¢:

0¢

Azt

=0,¢

Show that J, does transform like z, and not z*.

Probability Density and Current Density

Starting from the Schrodinger equation for the wave function ¥(Z,t), show that the
probability density p = ¥*1 satisfies the continuity equation

op -

“r J=

2 +V 0
where

T= S ()~ (T9)

What is the interpretation of J? Verify that the continuity equation can be written in
manifestly covariant form.
0" =0

where J# = (cp, J).
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Introduction

An important feature of the Standard Model (SM) is that “it works”: it is consistent with,
or verified by, all available data, with no compelling evidence for physics beyond.! Secbndly,
it is a unified description, in terms of “gauge theories” of all the interactions of known
particles (except gravity). A gauge theory is one that possesses invariance under a set of

“local transformations”, i.e. transformations whose parameters are space-time dependent.

Electromagnetism is a well-known example of a gauge theory. In this case the gauge trans-
formations are local complex phase transformations of the fields of charged particles, and
gauge invariance necessitates the introduction of a massless vector (spin-1) particle, called

the photon, whose exchange mediates the electromagnetic interactions.

In the 1950’s Yang and Mills considered (as a purely mathematical exercise) extending gauge
invariance to include local non-abelian (i.e. non-commuting) transformations such as SU(2).
In this case one needs a set of massless vector fields (three in the case of SU(2)), which were
formally called “Yang-Mills” fields, but are now known as “gauge fields”.

In order to apply such a gauge theory to weak interactions, one considers particles which
transform into each other under the weak interaction, such as a u-quark and a d-quark, or
an electron and a neutrino, to be arranged in doublets of weak isospin. The three gauge
bosons are interpreted as the W+ and Z bosons, that mediate weak interactions in the same

way that the photon mediates electromagnetic interactions.

The difficulty in the case of weak interactions was that they are known to be short range, me-
diated by very massive vector bosons, whereas Yang-Mills fields are required to be massless
in order to preserve gauge invariance. The apparent paradox was solved by the applica-
tion of the “Higgs mechanism”. This is a prescription for breaking the gauge symmetry
spontaneously. In this scenario one starts with a theory that possesses the required gauge
invariance, but where the ground state of the theory is not invariant under the gauge transfor-
mations. The breaking of the invariance arises in the quantization of the theory, whereas the
Lagrangian only contains terms which are invariant. One of the consequences of this is that

the gauge bosons acquire a mass and the theory can thus be applied to weak interactions.

Spontaneous symmetry breaking and the Higgs mechanism have another extremely impor-
tant consequence. It leads to a renormalizable theory with massive vector bosons. This

means that one can carry out a programme of renormalization in which the infinities that

1n saying so we have taken the liberty to allow for neutrino masses (see chapter 7) and discarded some
deviations in electroweak precision measurements which are far from conclusive; however, note that there is
ad.4a deviation between measurement and SM prediction of g — 2 of the muon, see the remarks in chapter 8.
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arise in higher-order calculations can be reabsorbed into the parameters of the Lagrangian
(as in the case of QED). Had one simply broken the gauge invariance explicitly by adding
mass terms for the gauge bosons, the resulting theory would not have been renormalizable
and therefore could not have been used to carry out perturbative calculations. A consequence

of the Higgs mechanism is the existence of a scalar (spin-0) particle, the Higgs boson.

The remaining step was to apply the ideas of gauge theories to the strong interaction. The
gauge theory of the strong interaction is called “Quantum Chromo Dynamics” (QCD). In this
theory the quarks possess an internal property called “colour” and the gauge transformations
are local transformations between quarks of different colours. The gauge bosons of QCD are

called “gluons” and they mediate the strong interaction.

The union of QCD and the electroweak gauge theory, which describes the weak and elec-
tromagnetic interactions, is known as the Standard Model. It has a very simple structure
and the different forces of nature are treated in the same fashion, i.e. as gauge'theories.
It has eighteen fundamental parameters, most of which are associated with the masses of
the gauge bosons, the quarks and leptons, and the Higgs. Nevertheless these are not all
independent and, for example, the ratio of the W and Z boson masses are (correctly) pre-
dicted by the model. Since the theory is renormalizable, perturbative calculations can be
performed at higher order that predict cross sections and decay rates for both strongly and
weakly interacting processes. These predictions, when confronted with experimental data,
have been confirmed very successfully. As both predictions and data are becoming more and

more precise, the tests of the Standard Model are becoming increasingly stringent.
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1 QED as an Abelian (Gauge Theory

The aim of this lecture is to start from a symmetry of the fermion Lagrangian and show
that “gauging” this symmetry (= making it well behaved) implies classical electromagnetism

with its gauge invariance, the eévy interaction, and that the photon must be massless.

1.1 Preliminaries

In the Field Theory lectures at this school, the quantum theory of an interacting scalar
field was introduced, and the voyage from the Lagrangian to the Feynman rules was made.
Fermions can be quantised in a similar way, and the propagators one obtains are the Green
functions for the Dirac wave equation (the inverse of the Dirac operator) of the QED/QCD
course. In this course, I will start from the Lagrangian (as opposed to the wave equation) of
a free Dirac fermion, and add interactions, to construct the Standard Model Lagrangian in
classical field theory. That is, the fields are treated as functions, and I will not discuss creation
and annihiliation operators. However, to extract Feynman rules from the Lagrangian, I will

implicitly rely on the rules developed for scalar fields in the Field Theory course.

1.2 Gauge Transformations

Consider the Lagrangian density for a free Dirac field 1:

L= (4“8, —m) ¥ (1.1)

This Lagrangian density is invariant under a phase transformation of the fermion field
e (1.2)
where @ is the charge operator (Qy = +v, Q¥ = —1)), w is a real constant (i.e. independent

of x) and 1 is the conjugate field.

The set of all numbers e™* form a group?. This particular group is “abelian” which is to
say that any two elements of the group commute. This just means that

— w1 e—iuJ2

e = e Mg, (1.3)

2A group is a mathematical term for a set, where multiplication of elements is defined and results in
another element of the set. Furthermore, there has to be a 1 element (s.t. 1 X a = a) and an inverse (s.t.
a x a”! =1) for each element a of the set.
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This particular group is called U(1) which means the group of all unitary 1 x 1 matrices. A

unitary matrix satisfies Ut = U~! with Ut being the adjoint matrix.

We can now state the invariance of the Lagrangian eq. (1.1) under phase transformations in a
more fancy way by saying that the Lagrangian is invariant under global U(1) transformations.
By global we mean that w does not depend on z.

For the purposes of these lectures it will usually be sufficient to consider infinitesimal group
transformations, i.e. we assume that the parameter w is sufficiently small that we can expand

in w and neglect all but the linear term. Thus we write
e =1—iw + O?. (1.4)
Under such infinitesimal phase transformations the field 1 changes according to

Yo b+ =9+ iQuip, (1.5)
and the conjugate field 4 by
P YY) =P+ iQu =9 — iwd, (1.6)
such that the Lagrangian density remains unchanged (to order w).

At this point we should note that global transformations are not very attractive from a
theoretical point of view. The reason is that making the same transformation at every
space-time point requires that all these points ’know’ about the transformation. But if I
were to make a certain transformation at the top of Mont Blanc, how can a point somewhere
in England know about it? It would take some time for a signal to travel from the Alps to
England.

Thus, we have two options at this point. Either, we simply note the invariance of eq. (1.1)
under global U(1) transformations and put this aside as a curiosity, or we insist that in-
variance under gauge transformations is a fundamental property of nature. If we take the
latter option we have to require invariance under local transformations. Local means that
the parameter of the transformation, w, now depends on the space-time point . Such local

(i.e. space-time dependent) transformations are called “gauge transformations”.

If the parameter w depends on the space-time point then the field 1 transforms as follows
under infinitesimal transformations

W(z) =iw(@)Y(=);  d(z) = —iw(z)Y(a). (1.7)

Note that the Lagrangian density eq. (1.1) now is no longer invariant under these trans-
formations, because of the partial derivative between i and 1. This derivative will act on
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the space-time dependent parameter w(z) such that the Lagrangian density changes by an
amount 6L, where

0L = —p(@) 7" [0.Qu(z)] (). - (18)
The square brackets in [0,Qw(z)] are introduced to indicate that the derivative 8, acts only
inside the brackets. It turns out that we can restore gauge invariance if we assume that the

fermion field interacts with a vector field A,, called a “gauge field”, with an interaction term

— e AQY (1.9)
added to the Lagrangian density which now becomes
L=9Y (i7" (0, +ieQA,) —m). (1.10)

In order for this to work we must also assume that apart from the fermion field transform-
ing under a gauge transformation according to eq. (1.7) the gauge field, Ay, also changes
according to

—eQA, — —eQ(A, +6A,(x)) =—eQ A, + QO w(x). (1.11)
So 0A,(z) = —Q0O, w(z)/e.

Exercise 1.1 }
Using eqs. (1.7) and (1.11) show that under a gauge transformation

S(—ep " Aup) = —p(x) 7" [0,Qu()] P(x).

This change exactly cancels with eq. (1.8), so that once this interaction term has been added
the gauge invariance is restored. We recognize eq. (1.10) as being the fermionic part of the
Lagrangian density for QED, where e is the electric charge of the fermion and A, is the
photon field.

In order to have a proper quantum field theory, in which we can expand the photon field A,
in terms of creation and annihilation operators for photons, we need a kinetic term for the
photon, i.e. a term which is quadratic in the derivative of the field A,. Without such a term
the Euler-Lagrange equation for the gauge field would be an algebraic equation and we could
use it to eliminate the gauge field altogether from the Lagrangian. We need to ensure that
in introducing a kinetic term we do not spoil the invariance under gauge transformations.
This is achieved by defining the field strength tensor, F,, as

F,, =08,A, — d,A,, (1.12)

where the derivative is understood to act on the A-field only.® It is easy to see that under
the gauge transformation eq. (1.11) each of the two terms on the right hand side of eq. (1.12)

3Strictly speaking we should therefore write F,, = [OuAv] — [0uAL]; you will find that the brackets are
often omitted.
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change, but the changes cancel out. Thus we may add to the Lagrangian any term which
depends on [}, (and which is Lorentz invariant, thus, with all Lorentz indices contracted).
Such a term is aF),, F*. This gives the desired term which is quadratic in the derivative of
the field A,. If we choose the constant a to be —1/4 then the Lagrange equations of motion
match exactly (the relativistic formulation of) Maxwell’s equations.*

We have thus arrived at the Lagrangian density for QED, but from the viewpoint of de-
manding invariance under U(1) gauge transformations rather than starting with Maxwell’s

equations and formulating the equivalent quantum field theory.

The Lagrangian density for QED is:

L = —EFM,,F’“’ + 9 (iv* (0, +ieQA,) —m)p. . (1.13)

Exercise 1.2
Starting with the Lagrangian density for QED write down the Euler-Lagrange
equations for the gauge field A, and show that this results in Maxwell’s equa-

tions.

In the Field Theory lectures, we have seen that a term A¢* in the Lagrangian gave 41\ as
the coupling of four ¢s in perturbation theory. Neglecting the combinatoric factors, it is
plausible that eq. (1.13) gives the yée Feynman Rule used in the QED course, —iey*, for
negatively charged particles.

Note that we are not allowed to add a mass term for the photon. A term such as M ZA, AP

added to the Lagrangian density is not invariant under gauge transformations as it would

lead to
2M?

e
Thus the masslessness of the photon can be understood in terms of the requirement that the

oL =

AR (2)d,w(x) # 0. (1.14)

Lagrangian be gauge invariant.

1.3 Covariant Derivatives

Before leaving the abelian case, it is useful to introduce the concept of a “covariant deriva-
tive”. This is not essential for abelian gauge theories, but will be an invaluable tool when

we extend these ideas to non-abelian gauge theories.

4The determination of this constant a is the only place that a match to QED has been used. The rest
of the Lagrangian density is obtained purely from the requirement of local U (1) invariance. A different
constant would simply mean a different normalization of the photon field.
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The covariant derivative D, is defined to be
D,=0,+1eA,. (1.15)

It has the property that given the transformations of the fermion field eq. (1.7) and the gauge
field eq. (1.11) the quantity D, transforms in the same way under gauge transformations

as 1.

Exercise 1.3
Show that under an infinitesimal gauge transformation D, transforms as

Dyp — Dyap + 6(Dyap) with 6(Dyyp) = —iw(z) Dyip.

We may thus rewrite the QED Lagrangian density as
1 —
L = _ZF“VFMV+1/) (iy*D,, — m) . (1.16)

Furthermore the field strength F),, can be expressed in terms of the commutator of two

covariant derivatives, i.e.

1 i )
FuV = _E [Duv D,,] = —E[alh 81/] Y [8#, A,,] gy [Aua 81/] +e [AI“ A,,]
= 9,A, —,A,, (1.17)

where in the last line we have adopted the conventional notation again and left out the
square brackets. Notice that when using eq. (1.17) the derivatives act only on the A-field.

1.4 Gauge Fixing

The guiding principle of this chapter has been to hold onto the U(1) symmetry. This forced
us to introduce a new massless field A, which we could interpret as the photon. In this
subsection we will try to quantise the photon field (e.g. calculate its propagator) by naively
following the prescription used for scalars and fermions, which will not work. This should not
be surprising, because A, has four real components, introduced to maintain gauge symmetry.
However the physical photon has two polarisation states. This difficulty can be resolved by
“fixing the gauge” (breaking our precious gauge symmetry) in the Lagrangian in such a way
as to maintain the gauge symmetry in observables.’

5The gauge symmetry is also preserved in the Path Integral, which is a sum over all field configurations
weighted by exp{i [ Ld*z}. In path integral quantisation, which is an alternative to the canonical approach
used in the Field Theory lectures, Green functions are calculated from the path integral and it is unimportant
that the gauge symmetry seems broken in the Lagrangian.
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In general, if the part of the action that is quadratic in some field ¢(z) is given in terms of
the Fourier transform ¢(p) by

Ss = [ d'pd(-p)OR)Sm), (1.18)
then the propagator for the field ¢ may be written as
i 07 p). (1.19)

In the case of QED the part of the Lagrangian that is quadratic in the photon field is given
by ~1/4 FWE,, = —1/2 A*(~g,,0°0, + 0,0,) A¥, where we have used partial integration
to obtain the second expression. In momentum space, the quadratic part of the action is
then given by

il = AV
Sa = / d'p S A (=p) (g P* + pup) A (p). (1.20)
Unfortunately the operator (—g,, p* + Pupy) does not have an inverse. This can be most
easily seen by noting (—g,, p* + pup,) p* = 0. This means that the operator (— G P* + Duby)
has an eigenvector (p“) with eigenvalue 0 and is therefore not invertible. Thus it seems we

are not able to write down the propagator of the photon. We solve this problem by adding
to the Lagrangian density a gauge fixing term

1

- (8,4%)%. 1.21)
2i-9 (
With this term included (again in momentum space), S, becomes
1. é- Av
Sa = / d'p 5 A"(—p) (—gwpz = ;—gpwu) A”(p), (1.22)
and, noting the relation
£ ’ 'p’
(gu., P+ ——pupv | | 97— Ep—z— = p’g/’, (1.23)
1-¢ p
we see that the propagator for the photon may now be written as
. Pupv \ 1
i (gw - ) = (1.24)

The special choice £ = 0 is known as the Feynman gauge. In this gauge the propagator
eq. (1.24) is particularly simple and we will use it most of the time.

This procedure of gauge fixing seems strange: first we worked hard to get a gauge invariant
Lagrangian, and then we spoil gauge invariance by introducing a gauge fixing term.

The point is that we have to fix the gauge in order to be able to perform a calculation.
Once we have computed a physical quantity, the dependence on the gauge cancels. In other

- 124 -



words, it does not matter how we fix the gauge, and in particular, what value for & we take.
The choice £ = 0 is simply a matter of convenience. A more careful procedure would be to
leave & arbitrary and check that all {-dependence in the final result cancels. This gives us
a strong check on the calculation, however, at the price of making the computation much

more tedious.

‘The procedure of fixing the gauge in order to be able to perform a calculation, even though
the final result does not depend on how we have fixed the gauge, can be understood by
the following analogy. Assume we wanted to calculate some scalar quantity (say the time
it takes for a point mass to get from one point to another) in our ordinary 3-dimensional
Euclidean space. To do so, we choose a coordinate system, perform the calculation and
get our final result. Of course, the result does not depend on how we choose the coordinate
system, but in order to be able to perform the calculation we have to fix it somehow. Picking
a coordinate system corresponds to fixing a gauge, and the independence of the result on the
coordinate system chosen corresponds to the gauge invariance of physical quantities. To take
this one step further we remark that not all quantities are independent of the coordinate
system. For example, the z-coordinate of the position of the point mass at a certain time
depends on our choice. Similarly, there are important quantities that are gauge dependent.
One example is the gauge boson propagator given in eq. (1.24). However, all measurable
quantities (observables) are gauge invariant. This is where our analogy breaks down: in
our Buclidean example there are measurable quantities that do depend on the choice of the

coordinate system.

Finally we should mention that eq. (1.21) is by far not the only way to fix the gauge but
it will be sufficient for these lectures to consider gauges defined through eq. (1.21). These
gauges are called covariant gauges.

1.5 Summary

e It is possible for the Lagrangian for a (complex) Dirac field to be invariant under
local U(1) transformations (phase rotations), in which the phase parameter depends
on space-time. In order to accomplish this we include an interaction with a vector

gauge boson which transforms under the local (gauge) transformation according to
eq. (1.11).

e This interaction is encoded by replacing the derivative 9, by the covariant derivative
D, defined by eq. (1.15). D, 1 transforms under gauge transformations as e™* D, 1.

e The kinetic term for the gauge boson is —%F,‘,,F‘“’, where F),, is proportional to the
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commutator [D,,, D,] and is invariant under gauge transformations.

e The gauge boson must be massless, since a term proportional to A, A" is not invariant
under gauge transformations and hence not included in the Lagrangian.

e The resulting Lagrangian is identical to that of QED,

e In order to define the propagator we have to specify a certain gauge; the resulting
gauge dependence cancels in physical observables.
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2 Non-Abelian Gauge Theories

In this lecture, the “gauge” concept will be constructed so that the gauge bosons have self-
interactions — as are observed among the gluons of QCD, and the W*, Z and « of the
electroweak sector. However, the gauge bosons will still be massless. (We will see how to
give the W* and Z their observed masses in the Higgs chapter.)

2.1 Global Non-Abelian Transformations

We apply the ideas of the previous lecture to the case where the transformations do not
commute with each other, i.e. the group is “non-abelian”.

Consider n free fermion fields {t);}, arranged in a multiplet 1:

(1
(2
Y= : (2.1)
Yn
for which the Lagrangian density is
L = E (zryﬂaﬂ- - m) 1/)7
= ' (i7*0, — m) s, (2.2)

where the index 7 is summed from 1 to n. Eq. (2.2) is therefore a shorthand for
L= (iYu~m)pr+P° ("0 —m) P+ ... . (2.3)

The Lagangian density (2.2) is invariant under (space-time independent) complex rotations
in 1; space:
1 — Uy, P — U, (2.4)

where U is an n x n matrix such that
Uut =1, det[U] = 1. (2.5)

The transformation (2.4) is called an internal symmetry, which rotates the fields (e.g. quarks
of different colour) among themselves.

The group of matrices satisfying the conditions (2.5) is called SU(n). This is the group
of special, unitary n x n matrices. Special in this context means that the determinant is
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equal to 1. In order to specify an SU(n) matrix completely we need n% — 1 real parameters.
Indeed, we need 2n? real parameters to determine an arbitrary complex n X n matrix. But
there are n* constraints due to the unitary requirements and one additional constraint due

to the requirement det = 1.

An arbitrary SU(n) matrix can be written as
o n271 o a ;oaa
U=¢ idun @T° =T (2.6)

where we again have adopted Einstein’s summation convention. The w?, a € {1...n? — 1},

are real parameters, and the T* are called the generators of the group.

Exercise 2.1
Show that the unitarity of the SU(n) matrices entails hermiticity of the gen-
erators and that the requirement of det = 1 means that the generators have

to be traceless.

In the case of U(1) there was just one generator. Here we have n? — 1 generators T®.
There is still some freedom left of how to normalize the generators. We will adopt the usual

normalization convention ;
tr(TT?) = 5 o (2.7)

The reason we can always enforce eq. (2.7) is that tr(T?T?) is a real matrix symmetric in
a < b. Thus it can be diagonalized. If you have problems getting on friendly terms with the
concept of generators, for the moment you can think of them as traceless, hermitian n x n

matrices. (This is, however, not the complete picture.)

The crucial new feature of the group SU(n) is that two elements of SU(n) generally do not
commute, i.e.
g~ wi T ,—iw§ T® £ o~ W5 T g—iwf T (2.8)

(compare to eq. (1.3)). To put this in a different way, the group algebra is not trivial. For
the commutator of two generators we have

[T®, T = ifoTe £ 0 (2.9)'

where we defined the structure constants of the group, £, and used the summation conven-
tion again. The structure constants are totally antisymmetric. This can be seen as follows:
from eq. (2.9) it is obvious that f®¢ = —fb¢ To convince us of the antisymmetry in the
other indices as well, we note that multiplying eq. (2.9) by T¢ and taking the trace, using
eq. (2.7), we get 1/2if%? = tr(T?T*T?) — tr(T*TT?) = tr(T*T*T9) — tr(ToTT).
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2.2 Non-Abelian Gauge Fields

Now suppose we allow the transformation U to depend on space-time. Then the Lagrangian
density changes by §£ under this “non-abelian gauge transformation”, where

6L = Uly* (9,U) . (2.10)

The local gauge symmetry can be restored by introducing a covariant derivative D w giving

interactions with gauge bosons, such that
D,U(2)(2) = U(2)D, (). (2.11)
This is like the electromagnetic case, except that D, is now a matrix,
iD, =10, — gA, (2.12)

where A, = T®A%. It contains n® — 1 vector (spin one) gauge bosons, Ay, one for each
generator of SU(n). Under a gauge transformation U, A, should transform as

A, — UA,U' ¢ ; 6,U) U, (2.13)
This ensures that the Lagrangian density
£ = P ("D, —m) ¢ (2.14)

is invariant under local SU(n) gauge transformations. It can be checked that eq. (2.13)
reduces to the gauge transformation of electromagnetism in the abelian limit.

Exercise 2.2

(For algebraically ambitious people): perform an infinitesimal gauge transfor-
mation on 1), and D, using (2.6), and show that to linear order in the wy,,
1,Z'yMD“1/J is invariant.

Exercise 2.3
Show that in the SU(2) case, the covariant derivative is

D - i0, — WS LW, —iW}?)
. — (Wi +iW?2) 9, + W3 ’

and find the usual charged current interactions for the lepton doublet

()

by defining W+ = (W! xiW?)/V/2.
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Exercise 2.4
Include the U(1) hypercharge interaction in the previous question; show that

the covariant derivative acting on the lepton doublet (of hypercharge Y =
~1/2) is

—J(W+iW?) 0, + W32 - g'YB,

Zy \ [ cosOw —sinby w3
A, sinfw  cosOw B,

and write the diagonal (neutral) interactions in terms of Z, and A,. Extract

D, = ( i0, — W3 — g'YB,  —4(W!—iW2) ) |

Define

sin Oy in terms of g and ¢’. (Recall that the photon does not interact with the

neutrino.)

The kinetic term for the gauge bosons is again constructed from the field strengths F;, which

are defined from the commutator of two covariant derivatives,

Fuu = _1 [D;“Du] ; (2.15)
)
where the matrix F,, is given by
F, =T, (2.16)
with
FL, = 0.A, —0,A; — g [ AZA,C/. (2.17)

Notice that F,, is gauge variant, unlike the U(1) case. We know the transformation of D
from (2.13), so
[D,,D,] — U[D,,D,]U". (2.18)

The gauge invariant kinetic term for the gauge bosons is therefore

1 1
—5T¥ F, W = — 21 o, (2.19)

where the trace is in SU(n) space, and summation over the index a is implied.

In sharp contrast with the abelian case, this term does not only contain terms which are

quadratic in the derivatives of the gauge boson fields, but also the terms

[Vl Yl Tl 7

1
gfabc(auAg)AZAi o Zg2fach¢'adej4b AcAdAe (220)

This means that there is a very important difference between abelian and non-abelian gauge
theories. For non-abelian gauge theories the gauge bosons interact with each other via both
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three-point and four-point interaction terms. The three point interaction term contains
a derivative, which means that the Feynman rule for the three-point vertex involves the
momenta of the particles going into the vertex. We shall write down the Feynman rules in
detail later.

Once again, a mass term for the gauge bosons is forbidden, since a term proportional to

A A%¥ is not invariant under gauge transformations.

2.3 Gauge Fixing

As in the case of QED, we need to add a gauge-fixing term in order to be able to derive a
propagator for the gauge bosons. In Feynman gauge this means adding the term —%(OMAZ)Z
to the Lagrangian density, and the propagator (in momentum space) becomes

o= v

—1 9, b -
a p2

There is one unfortunate complication, which is mentioned briefly here for the sake of com-

pleteness, although one only needs to know about it for the purpose of performing higher

loop calculations with non-abelian gauge theories:

If one goes through the formalism of gauge-fixing carefully, it turns out that at higher
orders extra loop diagrams emerge. These diagrams involve additional particles that are
mathematically equivalent to interacting scalar particles and are known as a “Faddeev-Popov
ghosts”. For each gauge field there is such a ghost field. These are not to be interpreted
as physical scalar particles which could in principle be observed experimentally, but merely
as part of the gauge-fixing programme. For this reason they are referred to as “ghosts”.
Furthermore they have two peculiarities:

1. They only occur inside loops. This is because they are not really particles and cannot
occur in initial or final states, but are introduced to clean up a difficulty that arises in
the gauge-fixing mechanism.

2. They behave like fermions even though they are scalars (spin zero). This means that
we need to count a minus sign for each loop of Faddeev-Popov ghosts in any Feynman
diagram.

We shall display the Feynman rules for these ghosts later.

Thus, for example, the Feynman diagrams which contribute to the one-loop corrections to
the gauge boson propagator are
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(a) (b) (c) (

d)

Diagram (a) involves the three-point interaction between the gauge bosons, diagram (b)
involves the four-point interaction between the gauge bosons, diagram (c) involves a loop of
fermions, and diagram (d) is the extra diagram involving the Faddeev-Popov ghosts. Note
that both diagrams (c) and (d) have a minus sign in front of them because both fermions
and Faddeev-Popov ghosts obey Fermi statistics.

2.4 The Lagrangian for a General Non-Abelian Gauge Theory

Let us summarize what we have found so far: Consider a gauge group G of “dimension”
N (for SU(n) : N = n? — 1), whose N generators, T* obey the commutation relations
[T“, T"] = i farc T, where fu. are called the “structure constants” of the group.

The Lagrangian density for a gauge theory with this group, with a fermion multiplet v;, is
given (in Feynman gauge) by

1 a py e 1 a
L = —ZF;UF Wiy (YD, —mI) e — 5(aﬂAﬂ)2 + Lpp (2.21)
where
Fi, = 8,A}—0,A% — g f*™ AL AL, (2.22)
D, = 0I+ig T“A,‘j (2.23)
and
Lpp = —£°0"0m" + g fahb*AL(0" 7). (2.24)

Under an infinitesimal gauge transformation the N gauge bosons Af, change by an amount
that contains a term which is not linear in Al

a aoc c 1 a
§A5(z) = — [ Al (2)w(z) + Eaﬂw (z), (2.25)
whereas the field strengths F}, transform by a change

0F, (z) = —f* F} (z)w" (2.26)
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In other words, they transform as the “adjoint” representation of the group (which has as
many components as there are generators). This means that the quantity F o e (summa-

tion over a, u, v implied) is invariant under gauge transformations.

2.5 Feynman Rules

The Feynman rules for such a gauge theory can be read off directly from the Lagrangian. As
mentioned previously, the propagators are obtained by taking all terms bilinear in the field
and inverting the corresponding operator (and multiplying by z) The rules for the vertices
are obtained by simply taking (¢ times) the factor which multiplies the corresponding term

in the Lagrangian. The explicit rules are given in the following.

Vertices:

(Note that all momenta are defined as flowing into the vertex!)

—g f** (g;w (Pr = P2),, + Gup (P2 — P3),, + Gou (P35 — pl)u)

a L : eab fec

,LL b —1 ng bf . (gppgua - g;w'gup)
—i g2feacfebd (gp,ugpa . g;urgup)
—1 g2feadfebc (g/,wgpo _ gupgua)

o Qrd pONC

a

—1gy* (Ta)ij

j i

12
u§ a

g fabc qp,
7/

N\
« d
c 7 N
7 N\
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Propagators:

P .
LOOO00Y y Gluon: —i 0 guu/2?
) J Fermion: ¢6;;(y*p, + m)/(p? — m?)

a__P__ b Faddeev-Popov ghost: i 84,/ p?

2.6 An Example

As an example of the application of these Feynman rules, we consider the process of Compton
scattering, but this time for the scattering of non-abelian gauge bosons and fermions, rather
than photons. We need to calculate the amplitude for a gauge boson of momentum p, and
gauge label a to scatter off a fermion of momentum p; and gauge label i producing a fermion
of momentum p; and gauge label j and a gauge boson of momentum ps and gauge label
b. Note that 4,5 € {1...n} whereas a,b € {1...n% — 1}. In addition to the two Feynman
diagrams one gets in the QED case there is a third diagram involving the self-interaction of
the gauge bosons.

D2 Pa
[LONG b £Y,
(p1 + P2) R
P1og k J b3

We will assume that the fermions are massless (i.e. that we are at sufficiently high energies
so that we may neglect their masses), and work in terms of the Mandelstam variables

s = (pL+p2)* = (p3+pa),

t = (p1—ps)* = (p2—pa)?,

u = (p—ps)’ = (p2 *PS)Z‘
The polarizations are accounted for by contracting the amplitude obtained for the above
diagrams with the polarization vectors ¢*(\;) and €”()s). Each diagram consists of two
vertices and a propagator and so their contributions can be read off from the Feynman rules.
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For diagram (a) we get
oy (i ik [ PP ey
O (P ) (=i (P5) (P (s ) g

= —i g?eu()\2)€u(/\4)ﬂ (ps) (77 - (pr + p2)7™) (TOT) u(py).

For diagram (b) we get

U

—q . a . \Pr—D . v i
00w o) (<9 7(T)%) (1P (i g2 o)
2 -
= =i Le.()e 00T (s) (777 (91 = pa)*) (TT) ulpr).
Note that here the order of the T matrices is the other way around compared to diagram
(a).

Diagram (c) involves the three-point gauge-boson self-coupling. Since the Feynman rule for
this vertex is given with incoming momenta, it is useful to replace the outgoing gauge-boson
momentum p; by —p4 and understand this to be an incoming momentum. Note that the
internal gauge-boson line carries momentum ps; — ps coming into the vertex. The three
incoming momenta that are to be substituted into the Feynman rule for the vertex are
therefore ps, —p4, p4 — p2. The vertex thus becomes

—g fabc (g;u/(p2 + p4)p + gpv(p2 - 2174);4 + gup(p4 - 2p2)v) )

and the diagram gives

(Aa)e ()T (ps) (—i 976 (T):) ws(p) (‘i¥>

X (—g fabc) (guu(p2 + p4)p + gpu(p2 - 2p4)u + gup(p4 - 2p2)u)

= i) (AT (pa) [T T ulpr) (g (b2 + pa), = 2(Pe)ur — 2(P2)8is)

where in the last step we have used the commutation relation eq. (2.9) and the fact that the

polarization vectors are transverse so that ps - €(A2) = 0 and py - €(Ay) = 0.

Exercise 2.4
Draw all the Feynman diagrams for the tree level amplitude for two gauge
bosons with momenta p; and p, to scatter into two gauge bosons with momenta

¢1 and gz. Label the momenta of the external gauge boson lines.
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2.7 Summary

e A non-abelian gauge theory is one in which the Lagrangian is invariant under local

transformations of a non-abelian group.

e This invariance is achieved by introducing a gauge boson for each generator of the
group. The partial derivative in the Lagrangian for the fermion field is replaced by a
covariant derivative as defined in eq. (2.23).

e The gauge bosons transform under infinitesimal gauge transformations in a non-linear
way given by eq. (2.25).

e The field strengths, F};,, are obtained from the commutator of two covariant derivatives
and are given by eq. (2.22). They transform as the adjoint representation under gauge
transformations such that the quantity F u FP4# 18 invariant.

o FJ Fe* contains terms which are cubic and quartic in the gauge bosons, indicating
that these gange bosons interact with each other.

e The gauge-fixing mechanism leads to the introduction of Faddeev-Popov ghosts which
are scalar particles that occur only inside loops and obey Fermi statistics.
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3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong interaction. It is nothing but
a non-abelian gauge theory with the group SU(3). Thus, the quarks are described by a
field 4; where ¢ runs from 1 to 3. The quantum number associated with the label i is called
colour. The eight gauge bosons which have to be introduced in order to preserve local gauge
invariance are the eight ‘gluons’. These are taken to be the carriers which mediate the strong
interaction in the same way that photons are the carriers which mediate the electromagnetic

interactions.

The Feynman rules for QCD are therefore simply the Feynman rules listed in the previous
lecture, with the gauge coupling constant, g, taken to be the strong coupling, g, (more
about this later), the generators T* taken to be the eight generators of SU(3) in the triplet
representation, and f%¢, a, b, ¢, = 1...8 are the structure constants of SU(3) (you can look
them up in a book but normally you will not need their explicit form).

Thus we now have a quantum field theory which can be used to describe the strong interac-

tion.

3.1 Running Coupling

The coupling for the strong interaction is the QCD gauge coupling, g;. We usually work in

terms of o, defined as

2

g
= s 3.1
a = (3.1)

Since the interactions are strong, we would expect a; to be too large to perform reliable
calculations in perturbation theory. On the other hand the Feynman rules are only useful
within the context of perturbation theory.

This difficulty is resolved when we understand that ‘coupling constants’ are not constant
at all. The electromagnetic fine structure constant, «, has the value 1/137 only at energies
which are not large compared to the electron mass. At higher energies it is larger than this.
For example, at LEP energies it takes a value close to 1/129. In contrast to QED, it turns
out that in the non-abelian gauge theories of the Standard Model the weak and the strong

coupling decrease as the energy increases.

To see how this works within the context of QCD we note that when we perform higher
order perturbative calculations there are loop diagrams which have the effect of ‘dressing’
the couplings. For example, the one-loop diagrams which dress the coupling between a quark

and a gluon are:
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A AN

where
m@ermﬁm\” 'G'O‘ITO’UUTS‘" ooy roves

>

are the diagrams needed to calculate the one-loop corrections to the gluon propagator.

These diagrams contain UV divergences and need to be renormalized, e.g. by subtracting at
some renormalization scale y. This scale then appears inside a logarithm for the renormalized
quantities. This means that if the squared momenta of all the external particles coming into
the vertex are of order *, where @) > u, then the above diagrams give rise to a correction
which contains a logarithm of the ratio Q?/p?:

o2y n (@71 32

This correction is interpreted as the correction to the effective QCD coupling, a,(Q?), at
momentum scale (), i.e.

(@) = a,(1?) — as(?) fo I (Q*/u?) + ... (3.3)
The coeflicient (3, is calculated to be
11 Nc — 2nf
g el = 3.4
60 127 ) ( )

where N, is the number of colours (=3), ny is the number of active flavours, i.e. the number
of flavours whose mass threshold is below the momentum scale ). Note that 3, is positive,
which means that the coefficient in front of the logarithm in eq. (3.3) is negative, so that the
effective coupling decreases as the momentum scale is increased.

A more precise analysis shows that the effective coupling obeys the differential equation

0 a,(Q?)

_ 2
Ty = Pla@), (3.5)
where 3 has the perturbative expansion
flas) = —foad —Prad+0(af) +.... (3.6)
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Figure 3.1: The running of as(Q?) with 3 taken to two loops.

In order to solve this differential equation we need a boundary value. Nowadays this is usually
taken to be the measured value of the coupling at scale of the Z boson mass, M,z = 91.19
GeV, which is measured to be

a,(M2) = 0.118 £ 0.002. (3.7)

This is one of the free parameters of the Standard Model.®

The running of a,(Q?) is shown in figure 3.1. We can see that for momentum scales above
about 2 GeV the coupling is less than 0.3 so that one can hope to carry out reliable pertur-
bative calculations for QCD processes with energy scales larger than this.

Gauge invariance requires that the gauge coupling for the interaction between gluons must
be exactly the same as the gauge coupling for the interaction between quarks and gluons.
The S-function could therefore have been calculated from the higher order corrections to the
three-gluon (or four-gluon) vertex and must yield the same result, despite the fact that it is
calculated from a completely different set of diagrams.

%Previously the solution to eq. (3.5) (to leading order) was written as a,(Q?) = 47/ In(Q?/Acp) and
the scale Aqcp was used as the standard parameter which sets the scale for the magnitude of the strong
coupling. This turns out to be rather inconvenient since it needs to be adjusted every time higher order
corrections are taken into consideration and the number of active flavours has to be specified. The detour
via Aqcp also introduces additional truncation errors and can complicate the error analysis.
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Exercise 3.1

Draw the Feynman diagrams needed for the calculation of the one-loop cor-
rection to the triple gluon coupling (don’t forget the Faddeev-Popov ghost
loops).

Exercise 3.2
Solve equation (3.5) using g to leading order only, and calculate the value of
as at a momentum scale of 10 GeV. Use the value at Mz given by eq. (3.7).

Calculate also the error in a, at 10 GeV.

3.2 Quark (and Gluon) Confinement

This argument can be inverted to provide an answer to the question of why we have never seen
quarks or gluons in a laboratory. Asymptotic Freedom tells us that the effective coupling be-
tween quarks becomes weaker at shorter distances (equivalent to higher energies/momentum
scales). Conversely it implies that the effective coupling grows as we go to larger distances.
Therefore, the complicated system of gluon exchanges which leads to the binding of quarks
(and antiquarks) inside hadrons leads to a stronger and stronger binding as we attempt to
pull the quarks apart. This means that we can never isolate a quark (or a gluon) at large
distances since we require more and more energy to overcome the binding as the distance
between the quarks grows. Instead, when the energy contained in the ‘string’ of bound glu-
ons and quarks becomes large enough, the colour-string breaks and more quarks are created,

leaving more colourless hadrons, but no isolated, coloured quarks.

The upshot of this is that the only free particles which can be observed at macroscopic
distances from each other are colour singlets. This mechanism is known as “quark confine-
ment”. The details of how it works are not fully understood. Nevertheless the argument
presented here is suggestive of such confinement and at the level of non-perturbative field
theory, lattice calculations have confirmed that for non-abelian gauge theories the binding

energy does indeed grow as the distance between quarks increases.”

Thus we have two different pictures of the world of strong interactions: On one hand, at suf-
ficiently short distances, which can be probed at sufficiently large energies, we can consider
quarks and gluons (partons) interacting with each other. In this regime we can perform
calculations of the scattering cross sections between quarks and gluons (called the “par-
tonic hard cross section”) in perturbation theory because the running coupling is sufficiently

"Lattice QCD simulations have also succeeded in calculating the spectrum of many observed hadrons and
also hadronic matrix elements for certain processes from ‘first principles’, i.e. without using perturbative
expansions or phenomenological models.
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small. On the other hand, before we can make a direct comparison with what is observed
in accelerator experiments, we need to take into account the fact that the quarks and glu-
ons bind (hadronize) into colour singlet hadrons, and it is only these colour singlet states
that are observed directly. The mechanism for this hadronization is beyond the scope of
perturbation theory and not understood in detail. Nevertheless Monte Carlo programs have
been developed which simulate the hadronization in such a way that the results of the short-
distance perturbative calculations at the level of quarks and gluons can be confronted with

experiments measuring hadrons in a successful way.

Thus, for example, if we wish to calculate the cross section for an electron-positron annihila-
tion into three jets (at high energies), we first calculate, in perturbation theory, the process
for electron plus positron to annihilate into a virtual photon (or Z boson) which then de-
cays into a quark and anthuark and an emitted gluon. At leading order the two Feynman
diagrams for this process are:®

q q
+ g + *
€ i g € o7
g
e q e q

However, before we can -compare the results of this perturbative calculation with experi-
mental data on three jets of observed hadrons, we need to perform a convolution of this
calculated cross section with a Monte Carlo simulation that accounts for the way in which
the final state partons (quarks and gluons) bind with other quarks and gluons to produce
observed hadrons. It is only after such a convolution has been performed that one can get
a reliable comparison of the calculated observables (like cross sections or event shapes) with
data.

Likewise, if we want to calculate scattering processes including initial state hadrons we need
to account for the probability of finding a particular quark or gluon inside an initial hadron
with a given fraction of the initial hadron’s momentum (these are called “parton distribution

functions”).

Exercise 3.3

Draw the (tree level) Feynman diagrams for the process ete™ — 4jets. Con-
sider only one photon exchange plus the QCD contributions (do not include Z
boson exchange or WW production).

8The contraction of the one loop diagram (where a gluon connects the quark and antiquark) with the
ete” — qd amplitude is of the same order a; and has to be taken into account to get an infra-red finite
result. However, it does not lead to a three-jet event (on the partonic level).
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3.3 6-Parameter of QCD
There is one more gauge invariant term that can be written down in the QCD Lagrangian:

g2
Ly = 025 cwpo po o (3.8)

642 e po

Here ¢#¥#? is the totally antisymmetric tensor (in four dimensions). Since we should work
with the most general gauge invariant Lagrangian there is no reason to omit this term.
However, adding this term to the Lagrangian leads to a problem, called the “strong CP
problem”.

To understand the nature of the problem, we first convince ourselves that this term violates
CP. In QED we would have
¢ F Py = E-B, (3.9)

and for QCD we have a similar expression except that E* and B® carry a colour index —
they are known as the chromoelectric and chromomagnetic fields. Under charge conjugation
both the electric and magnetic field change sign. But under parity the electric field, which
is a proper vector, changes sign, whereas the magnetic field, which is a polar vector, does
not change sign. Thus we'see that the term E - B is odd under CP.

For this reason, the parameter § in front of this term must be exceedingly small in order not
to give rise to strong interaction contributions to C P violating quantities such as the electric
dipole moment of the neutron. The current experimental limits on this dipole moment tell
us that @ < 107'%. Thus we are tempted to think that @ is zero. Nevertheless, strictly
speaking 0 is a free parameter of QCD, and is sometimes considered to be the nineteenth
free parameter of the Standard Model.

Of course we simply could set 6 to zero (or a very small number) and be happy with it.?
However, whenever a free parameter is zero or extremely small, we would like to understand
the reason. The fact that we do not know why this term is absent (or so small) is the strong
CP problem.

There are several possible solutions to the strong C'P problem that offer explanations as
to why this term is absent (or small). One possible solution is through imposing an ad-
ditional symmetry, leading to the postulation of a new, hypothetical, weakly interacting
particle, called the “(Peccei-Quinn) axion”. Unfortunately none of these solutions have been
confirmed yet and the problem is still unresolved.

Another question is why is this not a problem in QED? In fact a term like eq. (3.8) can also

9To be precise, setting § — 0 in the Lagrangian would not be enough, as ¢ 2 0 can also be generated

through higher order electroweak radiative corrections, requiring a fine-tuning beyond 8 — 0.
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be written down in QED. A thorough discussion of this point is beyond the scope of this
lecture. Suffice to say that this term can be written (in QED and QCD) as a total divergence,
80 it seems that it can be eliminated from the Lagrangian altogether. However, in QCD (but
not in QED) there are non-perturbative effects from the non-trivial topological structure of
the vacuum (somewhat related to so called “instantons” you probably have heard about)
which prevent us from neglecting the #-term.

3.4 Summary

e Quarks transform as a triplet representation of colour SU(3) (each quark can have one
of three colours).

e The eight gauge bosons of QCD are the gluons which are the carriers that mediate the

strong interaction.

e The coupling of quarks to gluons (and gluons to each other) decreases as the energy
scale increases. Therefore, at high energies one can perform reliable perturbative cal-
culations for strongly interacting processes.

e As the distance between quarks increases the binding increases, such that it is impos-
sible to isolate individual quarks or gluons. The only observable particles are colour
singlet hadrons. Perturbative calculations performed at the quark and gluon level must
be supplemented by accounting for the recombination of final state quarks and gluons
into observed hadrons as well as the probability of finding these quarks and gluons
inside the initial state hadrons (if applicable).

e QCD admits a gauge invariant strong CP violating term with a coefficient 8. This
parameter is known to be very small from limits on CP violating phenomena such as
the electric dipole moment of the neutron.
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4 Spontaneous Symmetry Breaking

We have seen that in an unbroken gauge theory the gauge bosons must be massless. This is
exactly what we want for QED (massless photon) and QCD (massless gluons). However, if we
wish to extend the ideas of describing interactions by a gauge theory to the weak interactions,
the symmetry must somehow be broken since the carriers of the weak interactions (W and
Z bosons) are massive (weak interactions are very short range). We could simply break the
symmetry by hand by adding a mass term for the gauge bosons, which we know violates the
gauge symmetry. However, this would destroy renormalizability of our theory.

Renormalizable theories are preferred because they are more predictive. As discussed in
the Field Theory and QED lectures, there are divergent results (infinities) in QED and
QCD, and these are said to be renormalizable theories. So what could be worse about
a non-renormalizable theory? The critical issue is the number of divergences: few in a
renormalizable theory, and infinite in the non-renormalizable case. Associated to every
divergence is a parameter that must be extracted from data, so renormalizable theories can
make testable predictions once a few parameters are measured. For instance, in QCD, the
coupling g; has a divergence. But once «, is measured in one process, the theory can be
tested in other processes.'®

In this chapter we will discuss a way to give masses to the W and Z, called “spontaneous
symmetry breaking”, which maintains the renormalizability of the theory. In this scenario
the Lagrangian maintains its symmetry under a set of local gauge transformations. On the
other hand, the lowest energy state, which we interpret as the vacuum (or ground state),
1s not a singlet of the gauge symmetry. There is an infinite number of states each with the

same ground-state energy and nature chooses one of these states as the ‘true’ vacuumn.

4.1 Massive Gauge Bosons and Renormalizability

In this subsection we will convince ourselves that simply adding by hand a mass term for
the gauge bosons will destroy the renormalizability of the theory. It will not be a rigorous
argument, but will illustrate the difference between introducing mass terms for the gauge

bosons in a brute force way and introducing them via spontaneous symmetry breaking.

Higher order (loop) corrections generate ultraviolet divergences. In a renormalizable theory,

1074 should be noted that effective field theories, though formally not renormalizable, can nevertheless be
very valuable as they often allow for a simplified description of a more ‘complete’ or fundamental theory in
a resticted energy range. Popular examples are Chiral Perturbation Theory, Heavy Quark Effective Theory
and Non-Relativistic QCD.
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these divergences can be absorbed into the parameters of the theory we started with, and
in this way can be ‘hidden’. As we go to higher orders we need to absorb more and more
terms into these parameters, but there are only as many divergent quantities as there are
parameters. So, for instance, in QED the Lagrangian we start with contains the fermion
field, the gauge boson field, and interactions whose strength is controlled by e and m. Being
a renormalizable theory, all divergences of diagrams can be absorbed into these quantities
(irrespective of the number of loops or legs), and once e and m are measured, all other

observables (cross sections, g — 2, etc.) can be predicted.

In order to ensure that this programme can be carried out there have to be restrictions on
the allowed interaction terms. Furthermore all the propagators have to decrease like 1/p?
as the momentum p — oo. Note that this is how the massless gauge-boson propagator
eq. (1.24) behaves. If these conditions are not fulfilled, then the theory generates more and
more divergent terms as one calculates to higher orders, and it is not possible to absorb
these divergences into the parameters of the theory. Such theories are said to be “non-

renormalizable” .

Now we can convince ourselves that simply adding a mass term M? A, A* to the Lagrangian
given in eq. (2.21) will lead to a non-renormalizable theory. To start with we note that
such a term will modify the propagator. Collecting all terms bilinear in the gauge fields in

momentum space we get (in Feynman gauge)

1 pv (2 2 oV

5 Au (—9" (0" = MP) +p'p”) Ay, (41)
We have to invert this operator to get the propagator which now takes the form

1 W
R (—g“ +—M2). (4.2)

Note that this propagator, eq. (4.2), has a much worse ultraviolet behavior in that it goes
to a constant for p — oo. Thus, it is clear that the ultraviolet properties of a theory with
a propagator as given in eq. (4.2) are worse than for a theory with a propagator as given
in eq. (1.24). According to our discussion at the beginning of this subsection we conclude
that without the explicit mass term M? A, A" the theory is renormalizable, whereas with
this term it is not. In fact, it is precisely the gauge symmetry that ensures renormalizability.
Breaking this symmetry results in the loss of renormalizability.

The aim of spontaneous symmetry breaking is to break the gauge symmetry in a more subtle
way, such that we can still give the gauge bosons a mass but retain renormalizability.
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4.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking is a phenomenon that is by far not restricted to gauge
symmetries. It is a subtle way to break a symmetry by still requiring that the Lagrangian
remains invariant under the symmetry transformation. However, the ground state of the

symmetry is not invariant, i.e. not a singlet under a symmetry transformation.

In order to illustrate the idea of spontaneous symmetry breaking, consider a pen that is
completely symmetric with respect to rotations around its axis. If we balance this pen on
its tip on a table, and start to press on it with a force precisely along the axis we have a
perfectly symmetric situation. This corresponds to a Lagrangian which is symmetric (under
rotations around the axis of the pen in this case). However, if we increase the force, at some
point the pen will bend (and eventually break). The question then is in which direction will
it bend. Of course we do not know, since all directions are equal. But the pen will pick
one and by doing so it will break the rotational symmetry. This is spontaneous symmetry
breaking. '

A better example can be given by looking at a point mass in a potential
V(F) = p2f- 7+ X7 1) (4.3)

This potential is symmetric under rotations and we assume A > 0 (otherwise there would
be no stable ground state). For u? > 0 the potential has a minimum at ¥ = 0, thus the
point mass will simply fall to this point. The situation is more interesting if u? < 0. For
two dimensions the potential is shown in Fig. 4.1. If the point mass sits at ¥ = 0 the
system is not in the ground state but the situation is completely symmetric. In order to
reach the ground state, the symmetry has to be broken, i.e. if the point mass wants to roll
down, it has to decide in which direction. Any direction is equally good, but one has to be
picked. This is exactly what spontaneous symmetry breaking means. The Lagrangian (here
the potential) is symmetric (here under rotations around the z-axis), but the ground state
(here the position of the point mass once it rolled down) is not. Let us formulate this in
a slightly more mathematical way for gauge symmetries. We denote the ground state by
|0). A spontaneously broken gauge theory is a theory whose Lagrangian is invariant under
gauge transformations, which is exactly what we have done in chapters 1 and 2. The new
feature in a spontaneously broken theory is that the ground state is not invariant under

gauge transformations. This means
e 1 10) # 10) , (4.4)

which entails
T|0) # 0 for some a. (4.5)
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Figure 4.1: A potential that leads to spontaneous symmetry breaking.

Eq. (4.5) follows from eq. (4.4) upon expansion in w®. Thus, the theory is spontaneously
broken if there exists at least one generator that does not annihilate the vacuum.

In the next section we will explore the concept of spontaneous symmetry breaking in the
context of gauge symmetries in more detail, and we will see that, indeed, this way of breaking
the gauge symmetry has all the desired features.

4.3 The Abelian Higgs Model

For simplicity, we will start by spontaneously breaking the U(1) gauge symmetry in a theory
of one complex scalar field. In the Standard Model, it will be a non-abelian gauge theory
that is spontaneously broken, but all the important ideas can simply be translated from the
U(1) case considered here.

The Lagrangian density for a gauged complex scalar field, with a mass term and a quartic

self-interaction, may be written as
1
£ = (D,®)* Do — ZF#,,F’“’ - V(P), (4.6)
where the potential V' (®), is given by

V(®) = p2®*d+ A |0 0|, (4.7)
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and the covariant derivative ), and the field-strength tensor F,, are given in eqs. (1.15) and

(1.12) respectively. This Lagrangian is invariant under U(1) gauge transformations
b — WD \ (4.8)

Provided p? is positive this potential has a minimum at ® = 0. We call the ® = 0 state
the vacuum and expand ® in terms of creation and annihilation operators that populate the
higher energy states. In terms of a quantum field theory, where ® is an operator, the precise

statement is that the operator ® has zero vacuum expectation value, i.e. (0|®|0) = 0.

Now suppose we reverse the sign of u2, so that the potential becomes
V(®) = —p2®*® + \[&*3)?, (4.9)

with p? > 0. We see that this potential no longer has a minimum at ® = 0, but a (local)
mazimum. The minimum occurs at

_ b N_2= io0 U
d=c¢ H2/\_6 7 (4.10)

where 6 can take any value from 0 to 27. There is an infinite number of states each with
the same lowest energy, i.e. we have a degenerate vacuum. The symmetry breaking occurs
in the choice made for the value of # which represents the true vacuum. For convenience we
shall choose § = 0 to be our vacuum. Such a choice constitutes a spontaneous breaking of
the U(1) invariance, since a U(1) transformation takes us to a different lowest energy state.
In other words the vacuum breaks U(1) invariance. In quantum field theory we say that the
field ® has a non-zero vacuum expectation value

v
o) = —. 4.11
(@ = 7 (411
But this means that there are ‘excitations’ with zero energy, that take us from the vacuum to
one of the other states with the same energy. The only particles which can have zero energy
are massless particles (with zero momentum). We therefore expect a massless particle in
such a theory.

To see that we do indeed get a massless particle, let us expand ® around its vacuum expec-
tation value,

@—ﬂ<i+H)~ . <“+H+i¢> (4.12)
V2 \VX V2 VA ' ’
The fields H and ¢ have zero vacuum expectation values and it is these fields that are

expanded in terms of creation and annihilation operators of the particles that populate the
excited states. Of course, it is the H-field that corresponds to the Higgs field.
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We now want to write the Lagrangian in terms of the H and ¢ fields. In order to get the
potential we insert eq. (4.12) into eq. (4.9) and find

)\ ’ 4
V‘=;ﬁHﬂ+uvﬁ(Hﬁ+¢%ﬂ-FZ(H4+¢4+2H%&)+§%. (4.13)

Note that in eq. (4.13) there is a mass term for the H-field, uy?H? = My /2H?, where we
have defined!!

My = V2. (4.14)

However, there is no mass term for the field ¢. Thus ¢ is a field for a massless particle called
the “Goldstone boson”. We will look at this issue in a more general way in section 4.4. Next
let us consider the kinetic term. We plug eq. (4.12) into (D,®)*D#® and get

1 1
(D,®)* D' =5@HWH+§%M%+%fﬁ%M+%f@mﬂﬁ+ﬁ)
— 9A, (0. H — HOu) + gvA, "¢ + g*v A, A*H. (4.15)

There are several important features in eq. (4.15). Firstly, the gauge boson has acquired a
mass term 1/2¢g*v* A, A* = 1/2M3% A, A*, where we have defined

M4 = gv. (4.16)
Secondly, there is a coupling of the gauge field to the H-field,

GPvAAPH = gM4 A, AMH. (4.17)

It is important to remember that this coupling is proportional to the mass of the gauge
boson. Finally, there is also the bilinear term gv A*0,¢, which after integrating by parts
(for the action S) may be written as — M4 ¢ 9, A*. This mixes the Goldstone boson, ¢, with
the longitudinal component of the gauge boson, with strength M, (when the gauge-boson
field A, is separated into its transverse and longitudinal components, A, = Aﬁ + AZ,
where (’?“AZw = 0). Later on, we will use the gauge freedom to get rid of this mixing term.

4.4 Goldstone Bosons

In the previous subsection we have seen that there is a massless boson, called the Goldstone
boson, associated with the flat direction in the potential. Goldstone’s theorem describes the
appearance of massless bosons when a global (not gauge) symmetry is spontaneously broken.

!Note that for a real field ¢ representing a particle of mass m the mass term is 1m%¢?, whereas for a

complex field the mass term is m2¢t .
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Suppose we have a theory whose Lagrangian is invariant under a symmetry group G with
N generators T* and the symmetry group of the vacuum forms a subgroup H of G, with
m generators. This means that the vacuum state is still invariant under transformations
generated by the m generators of ‘H, but not the remaining N —m generators of the original
symmetry group G. Thus we have

T40) = 0 a=1...m,
T0) # 0 a=m+1...N. (4.18)

Goldstone’s theorem states that there will be N —m massless particles (one for each broken
generator of the group). The case considered in this section is special in that there is only
one generator of the symmetry group (i.e. N = 1) which is broken by the vacuum. Thus,
there is no generator that leaves the vacuum invariant (i.e. m = 0) and we get N —m =1
Goldstone boson.

Like all good general theorems, Goldstone’s theorem has a loophole, which arises when one
considers a gauge theory, i.e. when one allows the original symmetry transformations to
be local. In a spontaneously broken gauge theory, the choice of which vacuum is the true
vacuum is equivalent to choosing a gauge, which is necessary in order to be able to quantize
the theory. What this means is that the Goldstone bosons, which can, in principle, transform
the vacuum into any of the states degenerate with the vacuum, now affect transitions into
states which are not consistent with the original gauge choice. This means that the Goldstone

bosons are “unphysical” and are often called “Goldstone ghosts”.

On the other hand the quantum degrees of freedom associated with the Goldstone bosons
are certainly there ab initio (before a choice of gauge is made). What happens to them? A
massless vector boson has only two degrees of freedom (the two directions of polarization
of a photon), whereas a massive vector (spin-one) particle has three possible values for
the helicity of the particle. In a spontaneously broken gauge theory, the Goldstone boson
associated with each broken generator provides the third degree of freedom for the gauge
bosons. This means that the gauge bosons become massive. The Goldstone boson is said to
be “eaten” by the gauge boson. This is related to the mixing term between A7 and ¢ of the
previous subsection. Thus, in our abelian model, the two degrees of freedom of the complex
field ® turn out to be the Higgs field and the longitudinal component of the (now massive)
gauge boson. There is no physical, massless particle associated with the degree of freedom
¢ present in P.
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4.5 The Unitary Gauge

As mentioned above, we want to use the gauge freedom to choose a gauge such that there are
no mixing terms between the longitudinal component of the gauge field and the Goldstone
boson. Recall

—iv 1) ¢ T {
<I>—\/§( + H) e/ \/5(\/,—\+H+ ¢+...), (4.19)

where the dots stand for nonlinear terms in ¢. Next we make a gauge transformation (see

eq. (1.2))
: D =P (4.20)

In other words, we fix the gauge such that the imaginary part of ® vanishes. Under the
gauge transformation eq. (4.20) the gauge field transforms according to (see eq. (1.11))
1
A, — A:L =A,+ %[@lqﬁ]. (4.21)

It is in fact the superposition of A, and ¢ which make up the physical field. Note that
the change from A, to A} made in eq. (4.21) affects only the longitudinal component. If
we now express the Lagrangian in terms of ® and A:‘ there will be no mixing term. Even
better, the ¢ field vanishes altogether! This can easily be seen by noting that under a gauge

transformation the covariant derivative D,® transforms in the same way as ®, thus

A . 1 :
D,® — (D,®) = e /"D, & = e—“f’/v\—/§ (9.H +ig Ay (v + H)), (4.22)

and (D,®)*(D*®)’ is independent of ¢. Performing the algebra (and dropping the ’ for the
A-field) we get the Lagrangian in the unitary gauge

1 M2 1 2
L = SO,HO"H+ —éﬁAﬂA“ = g Fuw ™~ %m

2
+ gMuAA"H + %AuA“H2 - %H“ - \/gMHH3, (4.23)

with M4 and My as defined in eqs. (4.16) and (4.14), respectively. All the terms quadratic

in A, may be written (in momentum space) as
Au(=p) (=9 P* + p'p" + g" M) A(p). (4.24)

The gauge boson propagator is the inverse of the coefficient of A, (—p)A,(p), which is

. Pubv 1
— v — . 4.2
(o= 5%) 7= 29

This is the usual expression for the propagator of a massive spin-one particle, eq. (4.2).

The only other remaining particle is the scalar, H, with mass my = /2 u, which is the
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Higgs boson. This is a physical particle, which interacts with the gauge boson and also has
cubic and quartic self-interactions. The Lagrangian given in eq. (4.23) leads to the following
vertices and Feynman rules:

n .
Ve
e .
21629,“,
N
N
12 N
n
—— 2ieMagu
v
Y rd
N e
\x/ 61
7 AY
4 AN
7 N
A Y
AN
\>__-_ GlmHV2A

The advantage of the unitary gauge is that no unphysical particles appear, i.e. the ¢-field
has completely disappeared. The disadvantage is that the propagator of the gauge field,
eq. {4.25), behaves as p® for p — oo. As discussed in section 4.1 this seems to indicate
that the theory is non-renormalizable. It seems that we have not gained anything at all
by breaking the theory spontaneously rather than by simply adding a mass term by hand.
Fortunately this is not true. In order to see that the theory is still renormalizable, in spite
of eq. (4.25), it is very useful to consider a different type of gauges, namely the R, gauges
discussed in the next subsection.

4.6 R Gauges (Feynman Gauge)

The class of R¢ gauges-is a more conventional way to fix the gauge. Recall that in QED we
fixed the gauge by adding a term, eq. (1.21), in the Lagrangian. This is exactly what we do
here. The gauge fixing term we are adding to the Lagrangian density eq. (4.6) is

1
2(1-¢)

1
- - [ A b
ST g oA A + Madd A

Lrn = (OuA* — (1 — €)Mugp)®

1-¢
2

M2 42, (4.26)
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Again, the special value £ = 0 corresponds to the Feynman gauge. The second term in
eq. (4.26) cancels precisely the mixing term in eq. (4.15). Thus, we have achieved our goal.
Note however, that in this case, contrary to the unitary gauge, the unphysical ¢-field does
not disappear. The first term in eq. (4.26) is bilinear in the gauge field, thus it contributes
to the gauge-boson propagator. The terms bilinear in the A-field are

52 (= l5” — M2)+ i~ ) 2 (a2

which leads to the gauge boson propagator

—1 (gp‘u ¢ lpupu ) _ (4.28)

(p* — M3) p*— (1 - &M}

In the Feynman gauge, the propagator becomes particularly simple. The crucial feature of
eq. (4.28), however, is that this propagator behaves as p~2 for p — oco. Thus, this class
of gauges is manifestly renormalizable. There is, however, a price to pay: The Goldstone
boson is still present. It has acquired a mass, My, from the gauge fixing term, and it has
interactions with the gauge boson, with the Higgs scalar and with itself. Furthermore, for the
purposes of higher order corrections in non-Abelain theories, we need to introduce Faddeev-
Popov ghosts which interact with the gauge bosons, the Higgs scalar and the Goldstone

bosons.

Let us stress that there is no contradiction at all between the apparent non-renormalizability
of the theory in the unitary gauge and the manifest renormalizability in the R, gauge. Since
physical quantities are gauge invariant, any physical quantity can be calculated in a gauge
where renormalizability is manifest. As mentioned above, the price we pay for this is that
there are more particles and many more interactions, leading to a plethora of Feynman
diagrams. We therefore only work in such gauges if we want to compute higher order
corrections. For the rest of these lectures we shall confine ourselves to tree-level calculations
and work solely in the unitary gauge.

Nevertheless, one cannot over-stress the fact that it is only when the gauge bosons ac-
quire masses through the Higgs mechanism that we have a renormalizable theory. It is this
mechanism that makes it possible to write down a consistent Quantum Field Theory which

describes the weak interactions.

4.7 Summary

e In the case of a gauge theory the Goldstone bosons provide the longitudinal component

of the gauge bosons, which therefore acquire a mass. The mass is proportional to the
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magnitude of the vacuum expectation value and the gauge coupling constant. The
Goldstone bosons themselves are unphysical.

It is possible to work in the unitary gauge where the Goldstone boson fields are set to
Zero.

When gauge bosons acquire masses by this (Higgs) mechanism, renormalizability is
maintained. This can be seen explicitly if one works in a R; gauge, in which the gauge
boson propagator decreases like 1/p? as p — oo. This is a necessary condition for
renormalizability. If one does work in such a gauge, however, one needs to work with
Goldstone boson fields, even though the Goldstone bosons are unphysical. The number
of interactions and the number of Feynman graphs required for the calculation of some
processes is then greatly increased.
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5 The Standard Model with one Family

To write down the Lagrangian of a theory, one first needs to choose the symmetries (gauge
and global) and the particle content, and then write down every allowed renormalizable
interaction. In this section we shall use this recipe to construct the Standard Model with
one family. The Lagrangian should contain pieces

E(SM,I) . Egauge bosons T ['fermion masses T EfermionKT + ['Higgs- (51)

The terms are written out in eqns. (5.15), (5.29), (5.30) and (5.55).

5.1 Left- and Right- Handed Fermions

The weak interactions are known to violate parity. Parity non-invariant interactions for
fermions can be constructed by giving different interactions to the “left-handed” and “right-
handed” components defined in eq. (5.4). Thus, in writing down the Standard Model, we
will treat the left-handed and right-handed parts separately.

A Dirac field, 9, representing a fermion, can be expressed as the sum of a left-handed part,
YL, and a right-handed part, g,

Y = P + Yr, (5.2)
where
vy = P . 5 _ (1=1s)
L = L with f;,—-—-——z : (5.3)
wr = Ppy with Pp= -(14;75). (5.4)

Pp, and Py are projection operators, i.e.
PLPL= PL, PRPR=PR and PLPR’—:O:PRPL. (55)

They project out the left-handed (negative) and right-handed (positive) chirality states of
the fermion, respectively. This is the definition of chirality, which is a property of fermion
fields, but not a physical observable.

The kinetic term of the Dirac Lagrangian and the interaction term of a fermion with a vector

field can also be written as a sum of two terms, each involving only one chirality

?bryua;ﬂp = E’Y#au'ﬁbL +%’Y“3ﬂ¢m (56)
YA = YA + YRV Audr. (5.7)
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On the other hand, a mass term mixes the two chiralities:

mpy = mippr +mPryr. (5.8)

Exercise 5.1
Use (v5)% = 1 to verify eq. (5.5) and 9 = %170, ¥°T = 7 as well as y°y* =
—#95 to verify eq. (5.7).

In the limit where the fermions are massless (or sufficiently relativistic), chirality becomes
helicity, which is the projection of the spin on the direction of motion and which is a physical
observable. Thus, if the fermions are massless, we can treat the left-handed and right-handed
chiralities as separate particles of conserved helicity. We can understand this physically from
the following simple consideration. If a fermion is massive and is moving in the positive z
direction, along which its spin is having a positive component so that the helicity is positive
in this frame, one can always boost into a frame in which the fermion is moving in the
negative z direction, but with this spin component unchanged. In the new frame the helicity
will hence be negative. On the other hand, if the particle is massless and travels with the
speed of light, no such boost is possible, and in that case helicity /chirality is a good quantum
number.

Exercise 5.2

For a massless spinor

up) = o= X
P VE\ G ax )

where Y is a two-component spinor, show that

(1£~%)u(p)

are eigenstates of & - p/ FE with eigenvalues +1, respectively. Take

0 1
5 —

and in 4 X 4 matrix notation & - ¥ means

g-p 0
0 7.9/

- 156 -



5.2 Symmetries and Particle Content

We have made all the preparations to write down a gauge invariant Lagrangian. We now
only have to pick the gauge group and the matter content of the theory. It should be noticed
that there are no theoretical reasons to pick a certain group or certain matter content. To
match experimental observations we pick the gauge group for the Standard Model to be

U(l)y x SU(2) x SU(3). (5.9)

To indicate that the abelian U(1) group is not the gauge group of QED but of hypercharge
a subscript Y has been added. The corresponding coupling and gauge boson is denoted by
g’ and B* respectively.

The SU(2) group has three generators (T, = 0,/2), the coupling is denoted by g and the
three gauge bosons are denoted by W, W2, W32. None of these gauge bosons (and neither
B,) are physical particles. As we will see, linear combinations of these gauge bosons will
make up the photon as well as the W* and the Z bosons.

Finally, the SU(3) is the group of the strong interaction. The corresponding eight gauge
bosons are the gluons. In this section we will concentrate on the other two groups, with
one generation of fermions. The strong interaction is dealt with in section 3, and extra

generations are introduced in the next chapter,

As matter content for the first family, we have

qr = ( e ) ; uR; dg; 4L = ( - ) ; er; {va!l} (5.10)

dL er,

Note that a right-handed neutrino vy has appeared. It is a gauge singlet (no strong interac-
tion, no weak interactions, no electric charge), so is unneccessary in a model with massless
neutrinos. However, neutrinos are now known to have small masses, which can be described

by adding the right-handed field vg. Neutrino masses will be discussed further in chapter 7.

Note also that the left- and right-handed fermion components have been given different weak
interactions. The Standard Model is constructed this way, because the weak interactions are
known to violate parity. The left-handed components form doublets under SU(2) whereas the
right-handed components are singlets. This means that under SU(2) gauge transformations
we have

ep — e'R:eR, (511)
by, — EIL:-G_W‘ITGEL. (512)
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Thus, the SU(2) singlets eg, vg,ur and dg are invariant under SU(2) transformations and
do not couple to the corresponding gauge bosons W, W2, W3.

Since this separation of the electron into its left- and right-handed helicity only makes sense
for a massless electron we also need to assume that the electron is massless in the exact
SU(2) limit and that the mass for the electron arises as a result of spontaneous symmetry
breaking in a similar way as the masses for the gauge bosons arise. We will come back to
this later.

Under U(1)y gauge transformations the matter fields transform as
P — o = ey (5.13)

where Y is the hypercharge of the particle under consideration. It is chosen to give the
observed electric charge of the particles. The explicit values for the hypercharges of the
particles listed in eq. (5.10) are as follows:

1 1 2 1
Y(4r) = 5 Y(er)=—-1, Y(vr) =0, Y(qr) = L Y(ug) = 3 Y(dr) = 3 (5.14)
Under SU(3) the lepton fields ¢, eg, vg are singlets, i.e. they do not transform at all. This
means that they do not couple to the gluons. The quarks on the other hand form triplets
under SU(3). The strong interaction does not distinguish between left- and right-handed
particles.

We have now listed all fermions that belong to the first family, together with their transfor-
mation properties under the various gauge transformations. However, since we ultimately
want massive weak gauge bosons, we will have to break the U(1)y x SU(2) gauge group
spontaneously, by introducing some type of Higgs scalar. The transformation properties of

this scalar will be deduced in the discussion of fermion masses.

5.3 Kinetic Terms for the Gauge Bosons

The gauge kinetic terms for abelian and non-abelian theories were presented in the first two

lectures. From the general expression of eq. (2.21), we extract for the SM gauge bosons:

1 1 1
e _ZB,WBW — ZF,‘j,,F““” — ZF'f"FA“V + Lgauge—fixing + LFP ghosts- (5.15)
Here B,, = 0,B, — 0,B, is the hypercharge field strength, the second term contains the
SU(2) field strength, so a runs from one to three (over the three vector bosons of SU(2)),
and the third term is the gluon kinetic term, so A = 1...8. To do an explicit perturbative
calculation, additional gauge fixing terms, and Fadeev-Popov ghosts, must be included. The

form of these terms depends on the choice of gauge.
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5.4 Fermion Masses and Yukawa Couplings

We cannot have an explicit mass term for the quarks or electrons, since a mass term mixes
left-handed and right-handed fermions and we have assigned these to different multiplets of
weak SU(2). However, if an SU(2) doublet Higgs is introduced, there is a gauge invariant
interaction that will look like a mass when the Higgs gets a vacuum expectation value (“vev”).

Such an interaction is called a ‘Yukawa. interaction’ and is written as
Lyuaws = — Yo Iz ®ien + hec., (5.16)

where h.c. means ‘hermitian conjugate’. Note that the Higgs doublet must have Y = 1/2 to
ensure that this term has zero weak hypercharge.

Recalling eq. (5.19) we introduce a scalar “Higgs” field, which is a doublet under SU(2),
singlet under SU(3) (no colour), and has a scalar potential as given in eq. (4.9), i.e.

V(®) = —p2d*® + 1|0 D). (5.17)

This potential has a minimum at &*® = % (2 /A, so some component of the Higgs doublet
should get a vev. In the unitary gauge, this vev can be written as

1 [0
(®) = 7 ( . ) (5.18)

with v = u/VA.

Recall from the previous chapter that ® can be written as its “radial” degree of freedom
times an exponential containing the broken generators of the gauge symmetry:

ei(waT“—w3Y) 0

The unitary gauge choice consists of absorbing this exponential with a gauge transformation,
so that in the unitary gauge eq. (5.16) is

Yo . 0
Lyukawa =—E(VL eL)(v 0 H)eR + he.. (5.20)

The part proportional to the vev is simply

Y.v
V2

(qeR+“eEeL) = ee, (5.21)
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and we see that the electron has acquired a mass which is proportional to the vev of the
scalar field. This immediately gives us a relation for the Yukawa coupling in terms of the

electron mass, m,, and the W mass, My :
Me
V2 My’

Thus, as for the gauge bosons, the strength of the coupling of the Higgs to fermions is

Yo =g (5.22)

proportional to the mass of the fermions.

The quarks also acquire a mass through the spontaneous symmetry breaking mechanism,

via their Yukawa coupling with the scalars. The interaction term
—Yy qTf ®,dr + h.c. (523)
gives a mass to the d quark when we replace ®; by its vev. This mass my is given by

Y, Yy My
= 2y = V2 ; 5.24
my \/ﬁ v \/— 9 ( )

Since the vev is in the lower component of the Higgs doublet, we must do a little more work

to obtain a mass for the upper element u of the quark doublet. In the case of SU(2) there

is a second way in which we can construct an invariant for the Yukawa interaction:
~Y, ;@' ®up + h.c. (i,5 = 1,2), (5.25)

where ¢;; is the two-dimensional antisymmetric tensor. Note that

B¢ = ;07" = ( 01 (1) ) ( ii ) (5.26)
- 0

has Y = —1/2, as required by the U(1) symmetry. This term does indeed give a mass m,

to the v quark, where

u )uIMW
I N 4 5.27

So the SM Higgs scalar couples to both the u and d quark, with interaction terms

My myg —

Hu — dHd. 2
2]V[Wu u g2MW (5.28)

The terms in the Lagrangian that give masses to the first generation quarks and charged

—4g

leptons are
Efermion masses — )fe E:L (I)ieR - Yd q_LZ (I)i dR -Y, €ij qu (I)*juR + h.c.. (529)
We could also have included a Yukawa mass term for the neutrinos: — Y, ¢; Ei ®&*Iyp+ h.c.

However, neutrino masses do not neccessarily arise from a Yukawa interaction (this will be

discussed in chapter 7).
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5.5 Kinetic Terms for Fermions

The fermionic kinetic terms should be familiar from chapter 2:

LfermionkT = ZK—L_T ’}’”D“ {r + i@y“DM e+ iV—R'Yﬂau VR
" YDy + i dp "Dy dr + 1 TR 70, ur (5.30)

where the covariant derivatives include the hypercharge, SU(2) and SU(3) gauge bosons as
required. For instance:

D, = 0,+igT*W; +1ig'Y({)B, for ¢, (5.31)
D, = 0,+1ig'Y(er)B, for eg, (5.32)
D, = 0,+1ig, TG}, + 19'Y (dr) B, for dp, (5.33)

where the strong coupling (g,), the eight generators of SU(3) (Ts*) and the corresponding
gluon fields (GZ) have been introduced, and Y(f) is the hypercharge of fermion f.

This gives the following interaction terms between the leptons and the gauge bosons:

T
g [ 7L i WS \/§Wu_ ' v, ) _
=== — tan 6y B — 19 tand “B.er,
2(_6_1’)’)’((\@[4/; _WS w D, . 1g tanbw €ry Duep
(5.34)
where we have used
Z, = cosby W, —sinfyB,, (5.35)
A, = cosby B, +sin Oy W3 (5.36)

to replace B, and W‘f by the physical particles Z,, and A,. (In the exercises of chapter 2
these definitions followed from requiring that the photon does not interact with the neutrino.
In section 5.6 we will see that the photon is also massless).

Writing out the projection operators for left- and right-handed fermions, egs. (5.3) and (5.4),
we obtain the following interactions:

1. A coupling of the charged vector bosons W+ which mediate transitions between neu-

trinos and electrons (or v and d quarks) with an interaction term

—5% 17 (1 — '75) eW, — %ﬂy“ (1 — 75) dW, + h.c. (5.37)

(h.c. means ‘hermitian conjugate’ and gives the interaction involving an emitted wr
where the incoming particle is a neutrino (or ) and the outgoing particle is an electron

(or d).)
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2. The usual coupling of the photon with the charged fermions is (using, for instance, the
relation eq. (5.54)): '

: 2 : 1 .
gsinfyeyeA, — -gsinfyuy*uA, + —gsinfydy*dA,. 5.38
] 3 M 3 124

Note that the left- and right-handed fermions have exactly the same coupling to the
photon so that the electromagnetic coupling turns out to be purely vector (i.e. no °
term).

3. The coupling of neutrinos to the neutral weak gauge boson Z,,:

g

S A— R & . .
40030WV7( 7)1/ ” (5.39)

4. The coupling of both the left- and right-handed electron to the Z:

9

ToosT (v (1= %) — 4sin® bwr*) e Z,. (5.40)

5. The coupling of the quarks to the Z can be written in the general form

_éc—oi%@ (T8 (1-77) — 2Qusin’ 0wr") g: 7, (5.41)

where quark i has the third component of weak isospin T3 and electric charge Q;.

From these terms in the Lagrangian we can directly read off the Feynman rules for the three-
point vertices with two fermions and one weak gauge boson. Then we can use these vertices
to calculate weak interactions of the quarks and leptons. This allows us, for example, to
calculate the total decay width of the Z or W boson, by calculating the decay width into
all possible quarks and leptons. However, quarks are not free particles, so for exclusive
processes, in which we trigger on known initial or final state hadrons, information is needed
about the probability to find a quark with given properties inside an initial hadron or the
probability that a quark with given properties will decay (“fragment”) into a final state
hadron.
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Exercise 5.3

The decay rate for the Z into a fermion-antifermion pair, Z — ff, is

1 1
T = /dLIPSM2: /dQM2
2M 5 M 6472 M M

where d'FS stands for the Lorentz invariant phase space measure for the two
final-state fermions, and { d(2 is the integral over the solid angle (of one final-
state particle). :
Write the general interaction term for the coupling of the Z boson to a fermion
as

_ 9 o — 5
20080“/’7 <Uf ar )
Show that the squared matrix element, summed over the spins of the (outgoing)
fermions and averaged over the spin of the (incoming) Z boson is

1 g2
2 _ = S 2 2 . v, .
M = = 35 0w oo (007 + (@0)°) Tr (7 - buy“y - ko),

where k; and k2 are the momenta of the outgoing fermions and the gauge

polarization sum is

M* N — Qp v
e e = —g,+ 2

(¢ = k1 + k2 is the initial momentum of the Z boson). Hence show that

1 g9 2 2
F - 487TC0820W (('Uf) +(af) ) MZ'

Neglect the masses of the fermions in comparison to the Z mass.

Exercise 5.4

The Z boson can decay leptonically into a pair of neutrinos or charged leptons
of all three generations and hadronically into u quarks, d quarks, ¢ quarks, s
quarks, or b quarks (¢ quarks couple like u quarks, whereas s quarks and b
quarks couple like d quarks). Deduce the values of v and ay for each of these
cases and consequently estimate the decay width of the Z boson. (The current
experimental value is 2.4952 + 0.0023 GeV.)

[Take Mz = 91.19 GeV, sin® 0y, = 0.23, and the fine-structure constant a =
1/129 (why this value?)].
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5.6 The Higgs Part and Gauge Boson Masses

The Higgs doublet Lagrangian should contain a “spontaneous symmetry breaking” potential
which will give the Higgs a vev and self-interactions, and kinetic terms which will generate
the gauge boson masses and interactions between the Higgs and the gauge bosons. We first
consider the potential:

V(@) = 2% + A (2;97) . (5.42)

This potential has a minimum at ®F®; = 24?/X. Writing ® in the form of eq. (5.19) and
replacing this in the potential eq. (5.42), we find that we get a mass term for the real Higgs
field H, with value my = v/2u. As expected, the w, do not appear in the potential. In an
ungauged theory, they would be the massless goldstone bosons. In a gauge theory like the
Standard Model, they will reappear as the longitudinal degrees of freedom of the massive
gauge bosons.

The remaining term of the ® Lagrangian is the kinetic term (D, ®)t(D*®). Looking at this
term more carefully will help us to understand where the “physical” gauge bosons (i.e. the
W=, Z and photon) come from, and how they are related to the Wl}, Wﬁ, Wi’, B,,. To see the
effect of the Higgs vev on the gauge boson masses, it is most simple to work in the unitary
gauge, that is, we absorb the exponential of eq. (5.19) with a gauge transformation. In this
gauge, the covariant derivative acting on the Higgs doublet is

1 g W3 V2w g 0
D,® = —|0 Z " " B 5.43
. \/i(“+l2(\/§vv; ~w3 )“2 “TNw+ H)’ (5.43)

so that

’1)2

2
3 (g Wj -- g'Bﬂ) + interaction terms, (5.44)

2 1 2 92'1)2 + _
IDM(I)| 25(8uH) +TW MWI-L +

where the ‘interaction terms’ are terms involving three fields (two gauge fields and the H-
field). Eq. (5.44) tells us that the W2 and B, fields mix (as do W, and W?) and the physical
gauge bosons must be superpositions of these fields, such that there are no mixing terms.
Thus we define

Z, = cosby Wﬁ —sinfw B, , (5.45)
A, = cosby B, +sin HWW;f , (5.46)

with the weak mixing angle 8y (“Weinberg angle”) defined by

tan Oy = (5.47)

@ e
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With this eq. (5.44) is rewritten as

Do = L@+ Ll wrwr VT g gy oA
|u,—§(n)+‘4_u +MAL +0u . (5-48)

Here we see how SU(2) and U(1) are unified (or at least ‘entangled’) in the sense that
the neutral gauge boson that acquires a mass through the Higgs mechanism is the linear
superposition of a gauge boson from the SU(2) and the U(1)y gauge boson.

From eq. (5.48) we can read off the masses of the gauge bosons. The last term tells us that
the linear combination eq. (5.46) remains massless. This field is identified with the photon.
For the other fields we have

1 1 gv-
My = - Mgz = — .
W= 59Ys 27 9 cos Oy

(5.49)

The Z boson mediates the neutral current weak interactions. These were not observed until
after the development of the theory. From the magnitude of amplitudes involving weak
neutral currents (exchange of a Z boson), one can infer the (tree level) magnitude of the
weak mixing angle, fy,. The ratio of the masses of the Z and W bosons is a prediction of
the Standard Model. More precisely, we define a quantity known as the p-parameter by

M}, = p M2 cos® Oy . (5.50)

In the Standard Model p = 1 at tree level. In higher orders there is a small correction,
which depends on the definition used for sin 8y, (that is, which loop corrections are included
in sinfy ). Note that the p-parameter would be very different from one if the symmetry
breaking were due to a scalar multiplet which was not a doublet of weak isospin. Accurate
measurements of the p-parameter and other so-called electro-weak precision observables,
together with their prediction at higher order within the SM, serve as very powerful tests of
the SM. The Higgs enters in virtual loops, allowing for an indirect determination of its mass
through fits of the predictions to the data (see the homepage of the Electroweak Working
Group, http://lepewwg.web.cern. ch/LEPEWWG for more information).

The spontaneous symmetry breaking mechanism breaks SU(2) x U(1)y down to U(1). It is
this surviving U(1) that is identified as the U(1) of electromagnetism. It is not the U(1)y
of the original gauge group but a set of transformations generated by a particular linear
combination of the original U(1) and rotations about the third axis of weak isospin. To see
this we note that the explicit representation of the generator Y as a 2 x 2 matrix, which can
be combined with the explicit representation of T!, T? and T3, is given by

110
Y:§(01)' (5.51)
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The factor 1/2 ensures the normalization'? condition eq. (2.7). Using eq. (5.51) it can easily
be seen that the symmetry associated with the generator

_ s (10
Q_Y+T_(O 0) (5.52)

is not broken, i.e. Q|0) = 0 (see eq. (4.5)). Thus, starting with four generators, we get
only three Goldstone bosons. These will become the longitudinal components of three gauge
bosons, thereby giving them a mass, whereas the fourth is left massless.

The coupling of any particle to the photon is always proportional to
gsinfy (Y + T3) = gsinfy Q. (5.53)

Thus we can identify g sin 6y, with one unit of electric charge, and we have the relationship

between the weak coupling g and the electron charge e,

e = gsinfy. (5.54)
We end this subsection by giving the remaining pieces of the SM Lagrangian from eqs. (5.44)
and (5.42),
. \2
Lhige = D0 — 201 + ) (9]9Y)
2,2 2 2

1 gv _ vg
= —(8, H)? 22+ L WHEW, — 7"
2(8“ ) + 4 i +8(:0326’W #

+ interaction terms . (5.55)

5.7 Classifying the Free Parameters

The free parameters in the Standard Model for one generation are:

.o The two gauge couplings for the SU(2) and U(1) gauge groups, g and ¢’
e The two parameters u and A in the scalar potential V' (®).

e The Yukawa coupling constants Y,, Yy, Y. and Y,,.

It is convenient to replace these parameters by others, which are more directly measurable in

experiments, namely e, sin 8y, m, and my, and my, m,, mg and m,. (Note that the gauge

12\We warn the reader that in the literature sometimes a different normalization is used such that eq. (5.52)
reads Q = Y/2 + T3,
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sector is well measured, but the quark masses are not directly observable; we have yet to
find the Higgs, and although we see neutrino mass differences, measuring the absolute mass
scale is difficult — and the neutrino masses might not be directly proportional to Yukawa
couplings anyway.) The relation between these physical parameters and the parameters of
the initial Lagrangian are

g

tanfy = , (5.56)
e = ;sinaw, (5.57)
my = V2pu, (5.58)
My = %, (5.59)
me = Ye%. (5.60)

Note that when we add more generations of fermions, we will acquire more parameters:
additional masses (or yukawa couplings, i.e. 4 parameters per generation), and also mixing

angles, as we will see in the next chapter.

In terms of these measured quantities, the Z mass, M, and the Fermi-coupling, G, are pre-
dictions of the SM (although historically Gy was known for many years before the discovery
of the W boson, and its value was used to predict the W mass).

5.8 Summary

e Weak interactions are mediated by the SU(2) gauge bosons, which act only on the
left-handed components of fermions.

o The (left-handed) neutrino and left-handed component of the electron form an SU(2)
doublet, whereas the right-handed components of the electron and neutino are SU(2)
singlets. Similarly for the quarks.

e There is also a weak hypercharge U(1)y gauge symmetry. Both left- and right-handed
quarks transform under this U(1)y with a hypercharge which is related to the elec-
tric charge by the relation eq. (5.54). The left-handed leptons and the eg also carry
hypercharge, but the vz has no SM gauge interactions.

e In the symmetry limit (before spontaneous symmetry breaking) the fermions with
SU(2) gauge interactions are massless.”®> The spontaneous symmetry breaking mech-
anism which gives a vev to the scalar field also generates the fermion masses.

13This does not apply to vg, which can have an explicit mass term
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e The scalar multiplet that is responsible for the spontaneous symmetry breaking also
carries weak hypercharge. As a result, one neutral gauge boson (the Z) acquires a
mass, whereas its orthogonal superposition is the massless photon. The magnitude of
the electron charge, e, is then given by e = g sin 0y.

e The weak interactions proceed via the exchange of massive charged or neutral gauge
bosons. The old four-fermi weak Hamiltonian is an effective Hamiltonian which is valid
for low energy processes in which all momenta are small compared with the W mass.
The Fermi coupling is obtained in terms of e, My and sin 0w by eq. (6.16).

For completeness, a full set of Feynman rules for the case of a single family of leptons is
given as an appendix to this lecture.
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Feynman Rules in the Unitary Gauge (for one Lepton Generation)

Propagators:
(All propagators carry momentum p.)

w

BANNNN, V ~ i (Gu — PP/ M) (0° — M)
Z . 2\ /(2 2
BNANNSN\ V —1 (g,w — PuPu/M3)/(* — M7)
A . 2
EANNN V —% G /P
¢ Lo 2 2
— i(y-p+me)/(p* —mg)
1% i 9
iy-p/p
H g 2 2
______ i/ (p* — mi)
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Three-point gauge-boson couplings:

(All momenta are defined as incoming.)

AP
P3
B s ig sin Oy ((pl - pZ)p Guv + (pz - pS)u Gup + (p3 - P1)v gpu)
W, Wk
Zp
D3
. % ig cosbw ((p1—p2)p G + (P2 — D3)uGvp + (D3 — P1)v Gppu)
- +
W, 1%
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Four-point gauge-boson couplings:

i g (29up Gvo — Guv Gpo — Guo Gup)

ig2 cos? Ow (29;“/ 9po — GupGve — Guo gvp)

igz Sin2 6W (29;w 9pc = GupGve — YGuo gl/p)

i g% cosOw sinbw (29 oo — Gup Gvo — Yuo Jvp)

i
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Three-point couplings with Higgs scalars:

1 (g/ COS2 QW) MW uv

H

I

:

I

I
H

I

I

:

I

ﬁ'ﬁ 19 Mw g
W, Wi

H

1

I

I

I
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Four-point couplings with Higgs scalars:

H H
AN Ve
~ 7
~ 7
AN Ve
X
7/ \
Ve LS
H “OH
H H
N\ s
N o
AN /7
AN 7/
i H
AN Ve
AN s
N s
\ Ve

— 1197 (my /M)

1.2
2v9 Guv

31 (9%/ cos® Ow) Guv
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Fermion interactions with gauge bosons:

~i (9/2V2) 7. (1 - 7")

t g sin Oy v,

>“/V\/\<£> >V\A/\/§
<

e e
Z/—"
}\ 11 (g/ cosOw) vy (1 — 4 sin? Oy — ')/5)
e €
Zl"

}\ ~Li(g/ cosbw) v, (1 —7°)
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6 Additional Generations

In the previous section, the Lagrangian of the Standard Model with one family was given.
Here we include additional “families” (or “generations”) and briefly outline the phenomeno-
logical consequences in the quark sector. Family-changing processes among the leptons will
be discussed in the neutrino chapter.

6.1 A Second Quark Generation

The second generation of quarks consists of a ¢ (“charm”) quark, which has electric charge
+2 and an s (“strange”) quark, with electric charge —3. We can just add a copy of the left-
handed isodoublet and copies of the right-handed singlets in order to include this generation.

The only difference would be in the Yukawa interaction terms where the coupling constants
are chosen to reproduce the correct masses for the new quarks. But in this case there is
a further complication. It is possible to write down Yukawa terms which mix quarks of
different generations, e.g. the Yukawa couplings of the previous section become matrices in
flavour space, v

- [Yd]ijq_Li i) de — [Yu]ijq_Li loX uRj -+ h.c. (61)

where 4, j are generation indices. The off-diagonal element [Yg];2 seems to gives rise to a

mass mixing between d and s quarks.

The Yukawa matrices are ny x ny matrices, where ny is the number of flavours, and can
be diagonalised by independant unitary transformations on the left and right (because YYT
and Y'Y are hermitian). The physical particles are those that diagonalize the mass matrix.
So it is convenient to rotate to the eigenbasis of the mass matrix, where there is no Yukawa

mixing between quarks of different generations.

Notice that when we add a second generation, it has the same gauge interactions as the first.
So if we make a unitary transformation in generation space, the fermion kinetic terms remain
unchanged. Taking advantage of this freedom, we can rotate ug, dg and qr, respectively to
the mass eigenstafe bases of the ug, dg and uy.

This means, however, that the quark doublets which couple to the gauge bosons are, in

general, superpositions of physical quarks, because we have written the dy; in the uy; mass

(5.

eigenstate basis:
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and

( c ) . - (6.3)

where d and § are related to the physical d and s quarks by

(-l

where V¢ is a unitary 2 x 2 matrix.

Terms which are diagonal in the quarks are unaffected by this unitary transformation of the
quarks. Thus the coupling to photons or Z bosons is the same whether written in terms of
(i, § or simply s, d. We will return to this later.

On the other hand the coupling to the charged gauge bosons is

9 _ 5\ Jyhr— g _ 5\ = 11/—
on muy”(l i Y )dWM e mc’)’ﬂ(l - )SWM + h.c. (65)
which we may write as
g u i 5 -
- — 1-9)V W h.c.. 6.6
2\/5 (E) ’Y( 7) C(S) m + h.c ( )

The most general 2 x 2 unitary matrix may be written as

e~ cosfc sinfg e (6.7)
v il —sinfc cosfo eB |’ '

where we have set one of the phases to 1 since we can always absorb an overall phase by
adjusting the remaining phases, «, 3 and 7.

The phases, «, 3, v can be absorbed by performing a global phase transformation on the d,
s and u quarks respectively. This again has no effect on the neutral terms. Thus the most
general observable unitary matrix is given by

Ve = co.s 0c sinfc 1 (6.8)
—sinfc cosfc

where 0¢ is the Cabibbo angle.
In terms of the physical quarks, the charged gauge boson interaction terms are
g _ 5 . _ 5
——= (cosbcuy*"(1 —~v°)d + sinfcuy"(1 —7°)s
775 (080T (L= ) d + sinfouy"(1—+")

+ cosfcTy* (1 —9°)s — sinfecyt (1 —ys)d) W, +he. (6.9)
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This means that the u quark can undergo weak interactions in which it is converted into
an s quark, with an amplitude that is proportional to sinf. It is this that gives rise to
strangeness violating weak interaction processes, such as the leptonic decay of K~ into a

muon and antineutrino. The Feynman diagram for this process is

6.2 Flavour Changing Neutral Currents

Although there are charged weak interactions that violate strangeness conservation, there
are no known neutral weak interactions that violate strangeness. For example, the K° does
not decay into a muon pair or two neutrinos (branching ratio < 107°). This means that
the Z boson only interacts with quarks of the same flavour. We can see this by noting that
the Z boson interaction terms are unaffected by a unitary transformation. This absence of
flavour changing neutral currents (FCNC) in experimental data is rather important. As we
will see, in the Standard Model there are no FCNC at tree level, and the absence of FCNC
is an important constraint for many extensions of the Standard Model.

The Z boson interactions with d and s quarks are proportional to-

5 (6.10)

il

dd+
(we have suppressed the y-matrices which act between the fermion fields). Writing this out

in terms of the physical quarks we get

cos’Ocdd + sinfg cosbo5d + cosfo sinfods + sin?0c35s

+ cos?0o35s — sinfg cosbods — cosbe sinfo35d + sin0cdd. (6.11)
We see that the cross terms cancel out and we are left with simply
dd + 3s. (6.12)

This cancellation is the reason for the absence of FCNC and is simply a consequence of the
unitarity of the mixing matrix eq. (6.7). This effect is also known as the “GIM” (Glashow-
Iliopoulous-Maiani) mechanism. It was used to predict the existence of the ¢ quark.
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There can be a small contribution to strangeness changing neutral processes from higher
order corrections in which we do not exchange a Z boson, but two charged W bosons. The
Feynman diagrams for such a contribution to the leptonic decay of a K% (which consists of
a d quark and an s antiquark) are:

W~ w-

M 2
_d.—’\/\/\/\/—*—— i"——’\/\/\/\/—-——'-—
ul 2% + cl ry
< ’\/\é/\{\,—‘—ﬂ —_—— ’\/\d}\lf\, i

These diagrams differ in the flavour of the internal quark which is exchanged, being a u
quark in the first diagram and a ¢ quark in the second. Both of these diagrams are allowed
because of the Cabibbo mixing. The first of these diagrams gives a contribution proportional
to

+sin ¢ cosfc

which arises from the product of the two couplings involving the emission of the W bosons.

The second diagram gives a term proportional to
—cosf¢g sinbe .

If the ¢ and u quarks had identical masses then these two contributions would cancel precisely.
However, because the ¢ quark is much more massive than the u quark, there is some residual
contribution. This was used to limit the mass of the ¢ quark to < 5 GeV, before it was
discovered.

6.3 Adding Another Lepton Generation

We first neglect the vp and neutrino masses. In this approximation, there will be no gen-
eration mixing in the lepton sector, so we can include other lepton families, the muon and
its neutrino, and the tau-lepton with its neutrino, simply as copies of what we have for the
electron and its neutrino. For each family we have a weak isodoublet of left-handed leptons
and a right-handed isosinglet for the charged lepton.

Thus, the mechanism which determines the decay of the muon (u) is one in which the muon
converts into its neutrino and emits a charged W~, which then decays into an electron and

(electron-) antineutrino. The Feynman diagram is
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The amplitude for this process is given by the product of the vertex rules for the emission (or
absorption) of a W~ with a propagator for the W boson between them. Up to corrections of
order mi /MZ,, we may neglect the effect of the term ¢*q” /M2, in the W-boson propagator,
so that we have

-9 5 5 —~ 4 9p0 -9 ~ 0o 5
—i—==7 1— —— | | -1 ==Y (1 —7°)ve |, 6.13
( 2\/5”( ””)(qLM%v)( 2\/—2-7( 7)) (6.13)
where ¢ is the momentum transferred from the muon to its neutrino. Since this is negligible
in comparison with My we may neglect it and the expression for the amplitude simplifies to
2

g
8M2,

1

7y (1= )p Ey,(1 —7°)ve. (6.14)

Before the development of this model, weak interactions were described by the “four-fermi

model” with a weak interaction Hamiltonian given by
_ Gr — " 5 N 5
Higu = 5 iy (=) Yyl = 7). (6.15)

We now recognize this as an effective low-energy Hamiltonian which may be used when the
energy scales involved in the weak process are negligible compared with the mass of the W
boson. The Fermi coupling constant, G, is related to the electric charge, e, the W mass
and the weak mixing angle by

62

4/2 M3, sin? By,

Gr = (6.16)

This gives us a value for Gg ,
Gr =1.12x107° GeV 2, ' (6.17)

which is very close to the value of 1.17 x 10™® GeV 2 as measured from the lifetime of the
muon.

We see that the weak interactions are ‘weak’, not because the coupling is particularly small
(the SU(2) gauge coupling is about twice as large as the electromagnetic coupling), but
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because the exchanged boson is very massive, so that the Fermi coupling constant of the
four-fermi theory is very small. The large mass of the W boson is also responsible for the
fact that the weak interactions are short range (of order 107® m).

In the Standard Model, however, we also have neutral weak currents. Thus, for example, we
can have elastic scattering of muon-type neutrinos against electrons via the exchange of the
Z boson. The Feynman diagram for such a process is:

Vu

e

Exercise 6.1

Let us write the four-fermi interaction for this process as

H = % T (L= )e Bvp(v — ar®)p,

where v and a give us the vector and axial-vector coupling of the muon to the

Z boson (the muon couples in an identical way to the electron). Determine v

and a in terms of Gy .

6.4 Adding a Third Generation (of Quarks)

Adding a third generation is achieved in a similar way. In this case the three weak isodoublets

)

where d, § and b are related to the physical d, s and b quarks by

of left-handed fermions are

w2

d ;
= VCKM S . (619)

TR Ay

The 3 x 3 unitary matrix Vi is called Cabibbo-Kobayashi-Maskawa (CKM) matrix. Once

again it only affects the charged weak processes in which a W boson is exchanged. For this

- 180 -



reason the elements are written as

Vud Vus Vub
Vaa Vs Vo |- (6.20)
Viae Vis Vi

A 3 x 3 unitary matrix can have nine independent parameters (counting the real and imag-
inary parts of a complex element as two parameters). In this case there are six possible
fermions involved in the charged weak processes and so we can have five relative phase

transformations, thereby absorbing five of the nine parameters.

This means that whereas the Cabibbo matrix only has one parameter (the Cabibbo angle,
fc), the CKM matrix has four independent parameters. If the CKM matrix were real it
would only have three independent parameters. This means that in the case of the CKM
matrix some of the elements may be complex. The four independent parameters can be
thought of as three mixing angles between the three pairs of generations and a complex
phase.

The requirement of unitarity puts various constraints on the elements of the CKM madtrix.

For example we have
Vua Vip + Vea Vi + ViaVyp = 0.

This can be represented as a triangle in the complex plane known as the “unitarity triangle”:

The angles of the triangle are related to ratios of elements of the CKM matrix

a = —arg {M} : (6.21)
"/‘H,d ub
Via Vi

B = —arg {L%} ; (6.22)
I/f,'d ch
V‘h‘.d V*I'J

= —g —_— 5 23

¥ Lrg{ VaVs } (6.23)

A popular representation of the CKM matrix is the Wolfenstein parameterisation which uses
the parameters A, which is assumed to be of order unity, a complex number (p + i7) and
a small number ), which is approximately equal to sin ;. In terms of these parameters the
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CKM matrix is written as

1—A%/2 A AN (p—in)
Vekm = - 1—)2/2 AN + OY. (6.24)
AN (1 —p—in) —AN 1

We see that whereas the W bosons can mediate a transition between a u quark and a b
quark (V,;) or between a ¢ quark and a d quark (V,4), the amplitude for such transitions are
suppressed by the cube of the small quantity which determines the amplitude for transitions
between the first and second generations, A\. The O(\*) corrections are needed to ensure the
unitarity of the CKM maftrix and these corrections have several matrix elements which are
complex.

6.5 CP Violation

The possibility that some of the elements of the CKM matrix may be complex provides a
mechanism for the violation of CP conservation. Violation of CP conservation has been

observed in the K° — &K system, and is currently being investigated for B mesons.

Higher-order corrections to the masses of BY and B9 give rise to mixing between the two

states. Thus the mass matrix can be written as

( (fﬁ)* fj;f ) (6.25)

The mass eigenstates are therefore

|Br) = p|B") + q[B), (6.26)
whose mass is M — $Am, and

|Bu) = p|B%) — q|B), (6:27)

whose mass is M + %Am, where we have introduced the mass difference between the two

mass eigenstates, Am = 2,/AM(AM)*.

If AM were real then we would have p = ¢ = 1/4/2 and these mass eigenstates would be

CP eigenstates, using the fact that
CP|BY = —|B°).

However, the non-zero phases in the CKM matrix give rise to a complex phase for AM,
so that the ratio of p and ¢ is a complex phase, indicating that By and By are not C'P
eigenstates.
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A typical weak interaction contribution to the mass-mixing term, AM, is given by the
Feynman diagram

3

qi ' i

T VYWV

Note that on the left we have a B, consisting of a b quark and a d antiquark, whereas on the
right we have a B° consisting of a d quark and a b antiquark. The internal quarks marked
q; and g; can each be u, c or t quarks, and each of the vertices carries some element of the
CKM matrix. The total contribution, therefore, may be written as
Yo X VaVaViViaas.
i=u,ct j=u.ct

Once again, if all the masses of the quarks were equal then the amplitudes a;; would all be
equal, and the sum would vanish by the unitarity constraints imposed on the elements V.
Since the quarks do not all have the same mass, there is some residual contribution. Indeed,
the above diagram is dominated by the term in which a ¢ quark is exchanged on both sides,
since this quark is much more massive than the rest.

Restricting ourselves to the ¢ quark exchange contribution, we can read off the phase of this
contribution, without calculating the diagram itself. It is given by the phase of the products
of the CKM matrix elements entering in the diagram, namely

(Vi Vie)?.

The phase of this quantity is the square of the ratio of p and ¢, so we have
P _ VaVe

g VuVy

Now suppose that at time ¢ = 0 we prepare a state which is purely B°. Accounting for the
fact that the B° meson has a decay rate I', we can use egs. (6.26, 6.27) to write the state at
time ¢ as

IB(t)) = e~iMtoTu2 (cos (-A2—mt) IBY + i% sin (9227:) |E“)). (6.28)

Now suppose that the amplitude for a state |B%) to decay into some CP eigenstate |f) is
Ay, whereas the amplitude for a state |§0) to decay into the state |f) is A;. Once again, if
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CP were conserved, we would have
A F = +A f

but the CP violating phases give rise to a more general complex phase for the ratio of these
two amplitudes.

This means that the amplitude to find the state |f) after time ¢ is given by
(f|Huk|B(t)) = e Mt T2 (cos <A7mt) Af + i—g— sin (S%nlt) :L) } (6.29)
Similarly, if we had prepared a B’ at t = 0 the amplitude to find the state | f) would be
IHolB()) = e iMt g TH2 (cos (ATmt) A — i§ sin (%”lt) A,) . (6.30)

Taking the moduli squared for the decay rates we derive the result

L(B() - /) ~TBEH —~ 1) _
T(B() - /) + DB - f)

For example, if the state | f) is the C'P even two-pion state |’ %), the Feynman diagram at

. qu)
— sin(Amt)Sm | —— | . 6.31
(omt) 3m (14 (6:31)

the quark level for Ay, is

To fully calculate the decay amplitudes we would need to know the wave functions for the
mesons in terms of the constituent quark-antiquark pairs, but for the ratio Ag,/Ag, we just
need the ratios of the CKM matrix elements occurring in this diagram, namely

ZZ’II‘ _ Vub VJd

A21r Jb V’u.d ’

so that (using eq. (6.21))

o (fl_&) _ VaVii Vi Vi

Sm - = —sin(2a). 6.32
P A27r ‘/tz ‘/tb qub Vud ( ) ( )

As a further example we consider the so-called “golden channel” where |f) is the state
|J/% Kg). In this case the quark level Feynman diagram is
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Here there is a further complication since the outgoing state (sd) is actually a i’ (and
likewise for the B’ decay it would be a K°). As in the BY system, the mass eigenstates are
given by

|Ks) = pxlK®) +qk|K'),
|KL) = pxlK®) —qx|K"). (6.33)

Once again, if CP were conserved we would have px = qx = 1/ V2, and these mass eigen-
states would be eigenstates of CP. The phases in the CKM matrix introduce a phase in the
ratio of px and gk, calculated from diagrams similar to the ones for the B? system (but with
the b quark replaced by an s quark). In this case it is the diagram with an internal ¢ quark
exchange that‘ dominates (although the mass of the c is much smaller than the ¢t quark mass,
the CKM matrix elements are much larger for ¢ quark exchange than for ¢t quark exchange

and this effect dominates), so we have a factor

ax _ Ve Ves

pk VeV
which enters in the ratio of the decay amplitudes, giving

Ajprs  VaVaVaVe VoV

Asjy ks ViV Vaa Vi, Vi Ve

(a minus occurs because the J/v Ky state is CP odd), so that (using eq. (6.22))

QZJ/c,st) Via Vig Voo Vi .
am [ 1208 Ks ) — _ Yo Ved _ gn(28). 6.34
(p Aoy s Vi Vo VaVe ) (6:54)

6.6 Summary

o Additional generations may be added, with gauge interactions copied from the first,
but in this case one can have mass-mixing hetween quarks of different generations.

In terms of the mass eigenstates, the charged W bosons mediate transitions between
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a T® = 43 quark (u, ¢ or t) and a superposition of 7% = —Z quarks (d, s and b).
In two generations, this mechanism allows weak interactions that violate strangeness
conservation, and the mixing matrix has only one independent parameter, the Cabibbo

angle.

The unitarity of the mixing matrix guarantees that there are no strangeness changing
neutral processes. Weak interactions involving the exchange of a Z boson do not change
flavour. There is a small violation of this in higher orders owing to the mass splitting
between the quarks.

Including a third generation, the mixing matrix for the 73 = —1/2 quarks (d, s and
b) is the CKM matrix. This matrix has four independent parameters, so that some of
the matrix elements may be complex.

The possibility that some of the elements of the CKM matrix may be complex leads to
a weak interaction contribution to the mass mixing of B® and B’ which can be complex.
This gives rise to C P violation, since the eigenstates of the B® mass matrix are then
no longer eigenstates of CP. The CKM matrix also introduces phases in the ratios of
the decay amplitudes for B and B’toa given C'P eigenstate. Products of the phase
of the mass mixing and the ratio of the decay amplitudes can be observed directly in
tagged B meson experiments, and the angles a and § of the unitarity triangle can be
directly measured.
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7 Neutrinos

In its original formulation, the Standard Model had massless neutrinos — neutrino masses
were not measured at the time. We now know that neutrinos have a (very small) mass,
which can be accomodated in the SM in a straighforward way. We will discuss this in the
second part of this chapter. There are two possible types of neutrino mass terms, “Dirac”
and “Majorana”, because the neutrino has zero electric charge. This makes neutrino mass
terms a bit different from those of the other fermions and may explain why neutrinos are

much lighter than SM fermions.

In the first part of this chapter we focus on the currently observed consequence of small

neutrino masses, neutrino oscillations.

7.1 Neutrino Oscillations

Recall that in the quark sector, there were flavour changing charged current processes, that
is, the W could interact with an up-type quark of one generation, and a down-type quark
of another. If the neutrinos have mass, we should get exactly the same effect in the lepton
sector, except that the mixing matrix Uy, is called the PMNS matrix (for Pontecorvo, Maki,
Nakagawa and Sakata), rather than CKM. The index order “flavour-mass” in Uy, indicates
that.U rotates a vector from the neutrino mass basis to the neutrino “flavour” basis, which

is the charged lepton mass basis.

The physical consequences of mixing angles are quite different between the lepton sector and
the quarks. This is because neutrinos are very light and have only weak interactions. In the
quark sector one can differentiate D — Kpuv from D — mwjiv, because the m and K have
strong and electromagnetic interactions, which allows us to track them in the detector, and
they have sufficiently different masses that the tracks are distinguishable. This is not the

case in trying to distinguish p — evsi, from p — evsin.

The small masses and weak interactions of neutrinos imply that the wave packets corre-
sponding to different neutrino mass eigenstates remain superposed over long distances. The

effects of flavour mixing can therefore be seen via oscillations.

For simplicity we will consider the case of two generations which in the charged lepton sector

we will take to be the electron and muon.'* We label the neutrino mass eigenstates as 1,

140f course, in the Standard Model we have three families, but the important concepts can be understood
in the simpler case.
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and v,. They are related by an equation very similar to eq. (6.4),

( Ve ) _ ( cofo,() sin ¢ ) ( 2 ) . (7.1)
v, —sinf) cosd sy

Now we would like to compute the amplitude for an oscillation process. Suppose that we have
an initial beam of muons which decays to relativisitic neutrinos of energy F and momentum
k. The neutrinos travel a distance I = 7 to a detector where they produce an e or a u by
charged current (CC) scattering. The amplitude will be

Ay ~ 3 Uy x e TR 5 Ui, (7.2)
J

where the three pieces arise from production, propagation and detection. (From your field
theory notes, you can check that the Feynman propagator in position space, G(0, (7, L)), is
the exponential, where the momentum integral in the propagator was taken care of in the
production process of the neutrinos with 4-momentum (E, k).)

First, suppose that we can neglect the neutrino masses, so (Ej, k;) = (Ey, k,) for any j,n.
The propagation exponential can then be factored out, and (7.2) is the unitarity condition
for U,

ViUl = Bua. (7.3)
Recall that for quarks, with three generations, this relation gives the unitarity triangle.

Now we allow the neutrinos to have small masses, m < FE, k, so that L. ~ 7 remains. Then
the exponent can be written as

) . ) F? — k2 m?
—i(E;T7 — kL) ~ —i(E; —k;)L = —z—£:‘+—l;L ~ —zﬁL , (7.4)
such that
Pua = [Aual® = |3 Upge M EOUL 2. (7.5)
J
Using the explicit form of U given in eq. (7.1) one obtains the muon survival probability
2 02 L

P, = 1— sin?20sin? @zg—l)ﬁ (7.6)

In reality, there are three generations of leptons in the SM, so the MNS matrix U is 3 x 3,
and there are three mass eigenstates in the sum of eq. (7.5). As in the case of CKM, MNS

can be written in terms of three angles and one phase:

)

C13C12 C13512 S13€
T 1) )
U = —C3812 — 523513C12€" C23C12 — $23513512€ S23C13 (7'7)
8 8
S23812 — €23513C12€"  —823C12 — C23513512€"  C23C13
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C12 812 53¢~ %

=~ *812/\/5 012/\/§ 1/\/i ’ (7'8)
s12/V2  —ei2/V2 1/V/2

where the “solar” angle 615 ~ 7/6, and we have used the approximate measured value of the
atmospheric angle a3 ~ 7/4. 513 = sinf3 < 0.2 is known from experimental bounds and
013 is significantly smaller than the other two angles. Note that, unlike the quark sector,
some mixing angles are large. Combined with the small neutrino masses, this is puzzling

and provoking to theorists, who expend much effort into building models of this.

It is often said that MINS has three phases, so let us recall the phase choices that allow us
to write eq. (7.7), so as to understand where the other two phases could be:

e A 3 x 3 complex matrix has 18 real parameters.

e The unitarity condition UUT = 1 reduces this to 9, which can be taken as 3 angles and
6 phases.

e Five of those phases are relative phases between the fields e, u, 7, v1, v and v,

e ... so if we are free to choose the phases of all the left-handed fermions, we are left
with one phase in the mixing matrix. This was the case with the quarks, where any
potential phase in the quark masses could be absorbed by the right-handed fermion
fields.

e If the right-handed fields do not appear in our physical process (which means the masses
appear as mm*), then we are free to make the above phase choice, and our process
is independant of any possible phase of the masses. This is the case for neutrino
oscillations. |

e We will see in a later section that the vy can have so-called “Majorana” masses, between
themselves and their antiparticle. This means that it is the left-handed neutrino field
which must absorb the phase of the Majorana mass. So in physical processes where the
Majorana mass appears linearly (and not as mm?*; this is the case e.g. in neutrinoless
double-beta decay), one can choose the phase such that the mass is real — in which
case one can remove one less phase from MNS, or one can keep MNS with one phase,

and allow complex masses.

e It is always possible to remove the phase from one majorana mass by using the global
overall phase of all the leptons. (This overall phase corresponds to the global symmetry

" of lepton number conservation in a theory without majorana masses and is the sixth
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phase of e, u, 7, v, vp and vy, which we could not use to remove phases from the
lepton number conserving MNS matrix.) So, in three generations, there are possibly
two complex majorana neutrino masses, so two “Majorana” phases in addition to the
“Dirac” phase § of MNS.

Although there are three generations, it is well known that for the oscillation probabilities
we observe, with the mixing angles that are measured, two neutrino probabilities are a very
good approximation. Why is this?

Lets return to the oscillation amplitude A,g(L), and imagine it as the sum of three vectors
in the complex plane. If &« = 3, the unitarity condition at L = 0 says they should sum to a
vector of length one. If & # [, then they should sum to zero and this is the unitarity triangle.
At non-zero L, two of the vectors rotate in the complex plane, with frequencies (mf -m?)/2E

— 80 neutrino oscillations correspond, in some sense, to time-dependent non-unitarity.

Consider the oscillation probabilities P,,, measured for atmospheric neutrinos, on length
scales corresponding to m2 — m2. The solar mass difference can be neglected, because
m2—m? < m3—m?, so there is only one relevant mass difference, and the survival probability
behaves as for two generations. This is easy to visualise in the complex plane, where only
the vector U,sUj; rotates with L. The stationary sum U,UZ, + U, U, can be treated as
a single vector, so this looks like a two generation system. So “atmospheric” oscillations
can be approximated as two-neutrino oscillations because the atmospheric mass difference

is very large compared to the solar one.

In the case of the solar mass difference, measured for instance at KamLAND, the two neutrino
approximation is good because ;3 is small. The observed survival probability is P.. and
since Ueg < Uej, j = 1,2, the last term can be dropped in

Aee = Z Ue; g~ iAmIL/(2E) U:j ) (7.9)
i

7.2 Oscillations in Quantum Mechanics (in Vaccum and Matter)

This subsection reviews a more conventional derivation of neutrino oscillations in two gener-
ations, and includes neutrino oscillations in matter. Electron neutrinos acquire an effective
mass term from their interactions with dense matter — this is the MSW effect — which can

have significant effects in the sun and in supernovae, and over long baselines in the earth.

In the mass eigenbasis we have the Schrodinger equation

d
i~ =H-T 7.10
i (7.10)
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with a diagonal Hamiltonian

E, 0
H:( . E2) (7.11)

This Schrodinger equation can easily be solved. Defining our initial states at ¢ = 0 as
|1) = |1(t = 0)), |2) = |2(t = 0)) we get the time dependent states

11()) = 1),
[2(t)) = e F2). (7.12)

Let us repeat the last few steps in the interaction eigenbasis. Multiplying eq. (7.10) by V
from the left we get the corresponding Schrodinger equation as

d- ~ -
—V =H ¥ 7.1
i (7.13)
with
fIEV~H-V"1=(a+b ¢ ) (7.14)
c a-—b
where
1 :
a = §(E1 + Ea), (7.15)
b= %(E1 — E,)cos(20) | (7.16)
1
c = —§(El — E,)sin(20) . (7.17)

The crucial feature of the new Hamiltonian is that it is no longer diagonal. As a result,
if we start at time ¢ = 0 with an interaction eigenstate |a), then at a later time we get
a superposition of |a) and |3) interaction eigenstates. Indeed, using eq. (7.1) for the time
dependent states we get

l(t)) = e cos|1) + e P sing[2), (7.18)
1B(t)) = —e Fitsing|1) +e 2l cosh2). (7.19)

Let us now use this relation to compute the oscillation probability P, _,5(t). What we mean
by this is the following: assume that at ¢ = 0 we know that our state is a pure interaction
eigeristate [o). To be concrete we can assume this is an electron neutrino v, created.in the
sun. P,_.p(t) then gives us the probability that at a later time ¢ this state has evolved into
an interaction eigenstate |3). Of course, this probability is simply the absolute value of the
amplitude squared

Pap(t) = |(Blat))?
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) iy » D)
= |—Sm€ cosG(e it o ‘Ezt)|

— %sin2(29) (1 — cos(Fy — En)t)

Ey, - F
= sin®(26)sin? (% t) . (7.20)

In the first step we have used eq. (7.18) and the orthogonality of the mass eigenstates
(tlg) = b;;. The expression for P,_g(t) can be brought into a more useful form by noting

that
2

™m;
Ei=y\p+m? = p+ 25 4 7.21
pP+m? = p+ % + (7.21)
and, therefore,

m2 — m? Am?
4F 4F

BB = (7.22)

il

where E is the energy of the beam.'® Furthermore, since the neutrinos travel at the speed
of light, we have L = vt = ct = t, where L is the distance travelled by the neutrino. Thus,

we arrive at the final expression for the oscillation probability,

2

P, p(t) = sin®(26) sin® (L AJZ ) : (7.23)

Eq. (7.23) has the expected properties in that the probability vanishes for . — 0, § — 0
and most notably for Am? — 0. This last limit tells us that there is no mixing if the two

neutrino species have the same mass and, in particular, if they are massless.

So far we have considered oscillations in vacuum, i.e. we have assumed that the neutrinos
were travelling through the vacuum. While this is true most of the time, the neutrinos
produced in the sun first have to travel through the sun before they can reach us. The
matter surrounding the neutrinos can have a crucial effect on the oscillation probability for

the neutrinos. This effect is called the matter effect or the Mikheyev-Smirnov-Wolfenstein
(MSW) effect.

The question at the heart of the problem is: how does the Hamiltonian H, eq. (7.14),
change through interactions of the neutrinos with surrounding matter? There are basically
neutral and charged current interactions. As we have learnt, neutral current interactions are
mediated by the exchange of a Z boson. Taking into account that the surrounding matter

is basically made of protons, neutrons and electrons, a typical Feynman diagram is:

15This argument can be made more rigorously using wave packets.
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Vg Vg

p7n7e pin)e

The important point is that these interactions are independent of the flavour x of the neu-
trino. Thus they affect the two diagonal entries of the Hamiltonian in the same way. This
means they change a, eq. (7.15), i.e. the Hamiltonian is modified by a — a. As we will see

later, this change is irrelevant.

The charged current interactions are mediated by a W*. A typical Feynman diagram is:

v, ew

These interactions take place only for electron neutrinos since there are no p's (or 7's) in
the surrounding matter. In our convention where we identify the |a) state with an electron
neutrino, this means that only the top-left entry of the Hamiltonian, eq. (7.14), is modified.

Thus, including the matter effects we arrive at the following Hamiltonian,

o a+b+w (&
Huvsw = ( B ) " (7.24)
c a—-b

where w comes from the charged current interactions. The explicit form of w is not important
for us. What we want to know is how the w-term modifies the mixing angle. To find the
modified mixing angle fysw we have to diagonalize I;TMSW, i.e. we have to find

0 in 0y
Vesw = COiS MSW Sln‘gMSW (7.25)
—Ssin GMSW Cos GMSW
such that
Husw = Vigsw - Hysw - Visw (7.26)
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is diagonal. If we plug the explicit forms for Visw, eq. (7.25), and Hysw, €q. (7.24), into
eq. (7.26) we find the off-diagonal terms of Hygw to be

2b+w

ccos(20msw) + sin(20msw) - (7.27)

This vanishes for

2 —Am?sin(20)
2b+w  4Ew — Am?2cos(20)

tan(20Msw) = (728)

where we have used egs. (7.16) and (7.17).

We note that fysw does not depend on a, thus as mentioned above, the change a — a induced
by the neutral current interactions does not matter at all. The important point is that
for 4Ew ~ Am?cos(20) there can be a dramatic effect and the oscillation probability can
increase substantially. In fact, this effect is very important in the explanation of experimental
results.

7.3 The See-Saw Mechanism

In this section we are concerned with neutrino masses and offer a possible explanation as to
why they might be so small compared to other fermion masses. We will restrict ourselves to
the case of one family.

As mentioned previously, introducing a right-handed neutrino allows us to write down the
same kind of Yukawa coupling as for the u-type quarks, eq. (5.25). This will result in a
‘usual’ Dirac mass term for the neutrinos of the form

mpurvv = mD(T/—LI/R + le/L) (729)

(compare to eq. (5.27)). There is no doubt that such a term can be introduced in the
Lagrangian, but it leads immediately to the question of why the v mass is so much smaller
than the other fermion masses. In fact, we would expect that the Yukawa couplings of all
fermions are roughly of the same order. This would lead to neutrino masses roughly of the

same size as the masses of the other leptons, obviously in sharp contrast to observations.

However, the very special properties of the right-handed neutrinos allow us to write down
yet another term in the Lagrangian. Recall that we want to write down the most general
gauge invariant Lagrangian, given the gauge group and the matter content. In fact, since vg

is a singlet under all gauge transformations, we can (or even have to) add a term like

Mvgvg+ + hec.. (7.30)
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Note that for this term to be gauge invariant it is mandatory that Y (vg) = 0 and that vg
neither couples to SU(2) nor SU(3) gauge bosons.

This is a Majorana mass term, but its fermion index contraction is perhaps unclear, so let

us consider this with some care:

e The Dirac mass for a four-component spinor is of the form

mppp = mpply(PE+ PRy = mp(Pripr + Prir) - (7.31)

So to get a Lorentz scalar, a left-handed two-component fermion must be contracted
with a rigth-handed two-component fermion.

¢ Recall that the antiparticle of a chiral fermion has opposite chirality from the particle:
1) The negative energy solutions of momentum g became the positive energy solutions
of —p.
2) For a massless (= chiral) particle, helicity = chirality, and helicity is 5'- 9, so the
antiparticle has opposite chirality from the particle.

In analogy with the Dirac mass term, one could try to write a mass term between the chiral
Wy, and its antiparticle as
m (L)Y + he.. (7.32)

One should take care with such expressions in the literature, because the operations =, C
and P, do not commute, and different authors perform them in different order. Eq. (7.32) is
a Lorentz scalar and can also be expressed as milioyyy and is often written as ma 9z,
with the index contraction understood. This is the notation of eq. (7.30).

Whereas mp is expected to be of the same size as charged-lepton masses, the most natural
value for M is much larger. Ultimately we expect that at a high energy scale (maybe the
GUT scale M ~ 10 GeV) there is a theory that explains all of the fermion masses. Then,
the natural value for the fermion masses is of the order M. However, all fermion masses
except for the vgp are ‘protected’ by chiral symmetry. This explains why mp <« M. To
understand the consequences of M > mp consider the neutrino mass matrix

WSD “;4”} ( (V”:)c ) (7.33)

In order to get the masses of the physical particles, i.e. the eigenstates of the mass matrix,

(@) vr)

we have to diagonalize this matrix. The eigenvalues are approximately given by

and M, (7.34)
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where we used mp <« M. Thus we can see that the physical neutrinos are a (nearly)
left-handed nentrino with mass m%/M and a (nearly) right-handed neutrino with mass M.
Taking mp ~ m; and M ~ 10% GeV, we get m ~ 0.03 eV, which is not too far form the
measured atmospheric mass difference. This may serve as an explanation as to why the mass
of the left-handed neutrino is so much smaller than the mass of the other leptons.

If this explanation is correct, then there should also be very heavy (nearly sterile) right-
handed neutrinos. If they have GUT-scale masses, they may not be interesting for collider
experiments, but they can be relevant in cosmology. If the vy are produced in the universe
after inflation, they could produce a lepton asymmetry in their decay. The Standard Model
has non-perturbative B+L violating interactions, which are rapid at tempeératures 7' > myy,
which would partially transform this lepton asymmetry into a baryon asymmetry. This
scenario, called leptogenesis, appears to work (it may require C P violation beyond the SM)
and adds to the attraction of the seesaw model.

7.4 Summary

e When neutrino masses are included in the Lagrangian, mixing angles appear at the
charged current vertex, as in the quark case.

e The experimental signature of (small) neutrino masses is oscillations: a neutrino pro-
duced from one flavour of charged lepton, can be detected by the appearance of a
different charged lepton. Thus, an electron neutrino produced in the sun can arrive as
a neutrino of a different flavour on earth.

e If the neutrinos travel through matter rather than the vacuum the oscillation pattern

can change dramatically.

e The see-saw mechanism provides us with an explanation of why the neutrino masses
are so much smaller than the other lepton masses.
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8 Supersymmetry

This is the only section truly beyond the Standard Model. However, supersymmetry (SUSY)
plays an important role in particle physics phenomenology, so in this section we will outline
the basic ideas of this new symmetry, why so many theorists like it and sketch how to
‘supersymmetrise’ the Standard Model.

Supersymmetry is a big topic, and this is a short lecture. There are books and review
articles for readers of all tastes. In preparing this lecture, I have used, among others, a
phenomenological introduction by S. Martin, hep-ph/9709356 (~ 100 pages) — which uses
the space-time metric (—, 4+, +,+), and also a review of physics beyond the Standard Model
(BSM) by M. Peskin, hep-ph/9705479.

8.1 Why Supersymmetry?

We have learned from LEP and other experiments that loop calculations work. This is a
shining success for the Standard Model: we calculate, as a function of a few input parameters,
quantum corrections to many (precision) observables, and what is measured agrees very well
with the calculations. Nevertheless, there are several arguments as to why the Standard
Model is probably not valid for energies up to the GUT scale.

First of all, the Standard Model requires a ‘light’ Higgs boson of mass ~ 100 GeV. However, if
one calculates loop corrections to the Higgs boson mass, they are “quadratically divergent”,
that is proportional to A%, where Ayp is the scale of New (BSM) Physics. There are various
conclusions that one can draw: there is new physics close to the electroweak scale that does
not contribute visibly in the precision observables of LEP, or the loop contributions cancel
against each other, or the Higgs mass in the Lagrangian has just the right value to cancel the
quadratic divergences (this is called “fine tuning”, and unpopular not only among theorists).

We will see that supersymmetry is a combination of the first and the second solution.

Secondly, the running of the gauge couplings indicates that, at a very high energy scale, the
strong, electromagnetic and weak interactions may combine into one unified force, with one
unique coupling strength. Within the SM, this GUT scenario does not quite work, but it can
be achieved within supersymmetric extensions due to the additional particle content which
contributes to the running of the couplings.

Thirdly, even though the SM works amazingly well in the sector of electroweak precision
observables, one of the most precise tests of all fails by about 3.4 0. The measurement of the
anomalous magnetic moment of the muon, g—2, from BNL, is larger than the SM prediction.
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This discrepancy could well be solved within supersymmetry, but less easily (or not at all)
in other extensions of the SM.

In addition to the above arguments, SUSY could also supply a much sought after dark matter
candidate, e.g. with the neutralino as the lightest stable neutral SUSY particle.

In the following we will give a brief introduction into the formalism and consequences of

SUSY.

Supersymmetry is a transformation which turns bosons into fermions, and fermions into
bosons. If it is a symmetry of the Lagrangian, then every fermion must have a bosonic
partner and vice versa, and the interactions are restricted by the symmetry. When we
supersymmetrise (exactly) the Standard Model, we will therefore (more than) double the
number of particles — but the number of coupling constants stays (almost) the same.

Exercise 8.1

Consider the interaction Lagrangian

2
L = y;H(tn + Tatr) +%H2(T1T;+T2T;)

where ¢, tr are chiral fermions (the top?), H is a real scalar and Ty and T}
are complex scalars.

e Draw the Feynman diagrams for the one-loop contributions to the Higgs
mass from ¢, T} and T5.

e Using Feynam rules from the lectures, calculate the leading (= most diver-
gent) part of the diagrams at zero external momentum.

e Find a desirable relation between y; and ys, such that the divergences can-
cel.

e Now Include soft scalar masses

take the supersymmetric relation that you have found between y; and y;, and

estimate the same one-loop diagrams.

8.2 A New Symmetry: Boson «+ Fermion
Recall that a symmetry, be it local gauge, or global like Poincaré, is defined by operators

which generate the transformations under which the Lagrangian transforms to itself, plus a
total divergence. These operators are called generators.
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We are looking for an operator @), acting on bosons |b) and fermions |f) such that

Q) =15, Q) =1b). (8.1)

Bosons have even spin and mass dimension (where I am counting the mass dimension of
a field in four dimensions), fermions have odd spin and mass dimension, so we conclude
that the operator  should have spin 1/2 and mass dimension 1/2. And since it transforms
bosons into fermions, and fermions into bosons, our supersymmetric Lagrangian should have
~ exactly the same number of fermionic and bosonic degrees of freedom. So there is a complex
scalar for every chiral fermion, a chiral fermion for each massless vector, and fundamental

real scalars are not allowed.

Since () is a fermion, it should have a spinor index. By statistics and dimensional analysis,

we can imagine it acting on fields (operators) as

(@, ¢] ~ ¥,

8.2
{Q* %} ~ 0up+mop+gd*,... A, (8.2)

It is clear that Q* changes spin, so mixes into the Poincaré group of translations and
rotations. It can be shown that there is one way, and only one way, of extending the
commutation relations of the Poincaré group (Haag-Lopuszanski-Sohnius extension of the
Coleman-Mandula theorem). And this extension is supersymmetry, with the properties we
were looking for above. More precisely, one may introduce fermionic generators Q,, in ad-
dition to the bosonic symmetry generators (P, for translations and M, for proper Lorentz
transformations), which satisfy the following algebra:

{Qa, Qs} = 20%,4P,, (8.3)
{Qa, Qs} = {Qa, Qg = 0, (8.4)
Q.. P, = 0, (8.5)
Qo M| = i(ow) Qs (8.6)

The labels a and 3 are spinor indices taking the values 1 and 2, the bar denotes conjugation
and the algebra involves anticommutators and commutators. Another important point to
note is that in eqs. (8.3), (8.5) and (8.6) the new generators mix with the other Poincaré
generators.

A theory is supersymmetric if it is invariant under the group of transformations generated
by P,, M, and Q.

In such a theory, for every bosonic state there is a fermionic state with the same energy, and
vice-versa. This follows directly from the fact that the Hamiltonian (Py) commutes with Q.
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Another interesting feature is that the cosmological constant vanishes: the Hamiltonian is

bounded from below and the ground state has zero energy (if SUSY is not spontaneously

0

broken). To understand this we simply have to note that since ¢° is equal to the unit matrix

and Py is the Hamiltonian, eq. (8.3) entails
{Qq, Qp} = 20upH. (8.7)
From this we conclude for an arbitrary state 1)
(YIHy) = (#1QQly) = ||Qly)I| > 0. (8.8)
At the same time we see that
(W H|p) =0 < Q) =0, (8.9)

which is precisely the condition for SUSY not to be spontaneously broken (see eq. (4.18)).

8.3 The Supersymmetric Harmonic Oscillator
In this subsection we will consider the simplest supersymmetric model and convince ourselves
that this model indeed has all the nice properties we expect.

Let us start with the usual (bosonic) harmonic oscillator. The Hamiltonian is given by

1

Hp = (p2 +wha?) . (8.10)
If we define creation and annihilation operators
o —iusa), @' = o (ptiwpa) (s.11)
a= — WX a’ = WRT), }
‘ 2&)3 p B 7 2&)3 P B
then the canonical commutation relation [p, z] = —i entails the usual commutation relations
for the creation and annihilation operators
[a,a']=1, [a,a] = [at,at] = 0. (8.12)

If we write the Hamiltonian eq. (8.10) in terms of the creation and annihilation operators,

we get
w 1
Hg = 73(+a+aa+) = wB(NB—l—i), (8.13)
where we have defined the counting operator Ng = a*a. The energy spectrum of this

Hamiltonian (i.e. its eigenvalues) is given by

1
EnB = wpg (HB+§) with ng 20,1,2,3,... . (814)
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A point to note is that the ground state energy Fq is 1/2 and not 0. In a quantum field
theory this leads to the problem with infinite ground state energy. This problem is solved
by normal ordering.

Let us now repeat these steps for a fermionic harmonic oscillator. We introduce fermionic

creation and annihilation operators b and b*. They satisfy
{b,bt} =1, {bb} = {bt,b*} = 0. (8.15)

These relations correspond to eq. (8.12). However, since we are dealing with fermionic
operators now, the commutators are replaced by anticommutators. In analogy to eq. (8.13)

we write the Hamiltonian of the fermionic harmonic oscillator as

_ YF O ) 1
Hp = 2F (55— bb") —wp(Np 2), (8.16)

where we have introduced another counting operator, Np = bt b. Note that there is a relative
minus sign between the b+ b and bb* term. This sign is due to the fermionic nature of the

creation and annihilation operators.

The energy spectrum of this Hamiltonian is given by
1 .
E,, =uwp (np — 5) with np =0, 1. (8.17)

Note that contrary to eq. (8.14), np can only take the values 0 or 1. This is a reflection of

Pauli’s exclusion principle in that there cannot be two fermions in the same state.

If we wish we can find an explicit representation of the creation and annihilation operators

b o . {00
= — 109 =
1 2 1 O 1

b+ = 01+’iO'2 = (0 1) (818)

in terms of Pauli matrices,

00

In this representation the Hamiltonian eq. (8.16) is given by

wg 1 0
Hy = —o03= 8.19
F 9 a3 ( 0 —1 ) ) ( )

and we see that the eigenvalues of Hy are indeed +wp/2 as given in eq. (8.17).

Now we are ready to combine the fermionic and the bosonic harmonic oscillator. If we just
add the two, we do not increase the symmetry of the theory. In order to do this we also have
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to require wp = wp = w. Only in this case do we end up with a supersymmetric model. The
Hamiltonian then is

0 = Hp+ He = Z(a*ataat +b07b—bb*) = w(ata+btb). (8.20)

WRTWFR=W 2

First of all we naively see that H has an additional symmetry a < b. A state is now

determined by two quantum numbers ng and np, and the energy spectrum is
Enpmey = w(np+ng) with ng=10,1,2,3,..., np=0,1. (8.21)

Note that the ground state energy is Fyo = 0. Thus as advertised above, the ground state
has zero energy. This is simply because the bosonic ground state energy +1/2 and the
fermionic ground state energy —1/2 cancel.

The other feature mentioned before, namely that the states appear in pairs (a fermionic
and a bosonic state) with the same energy can be seen from eq. (8.21). Indeed, the states
|ng,np = 0) and |ng — 1,nF = 1) have the same energy. Furthermore |ng,np = 0) is a

bosonic state (integer spin), whereas [ng —1,nF = 1) is a fermionic state (half-integer spin).

8.4 Supercharges

In this subsection we want to look at the symmetry found in subsection 8.2 in a somewhat

more formal way.

Through the Noether theorem, a symmetry is related to a conserved current and a conserved
charge. Thus; in a supersymmetric theory there is a conserved supercurrent and a conserved
supercharge. It is the latter that generates the transformations and we denote it by Q. Since

it is conserved it has to commute with the Hamiltonian.

For the supersymmetric harmonic oscillator the supercharge is given by
Q. = ﬁ(a+b+ab+), Q, = i\/u_)(a+b—ab+), (8.22)

where, as mentioned after eq. (8.3), Q has a spinor index. We now show that the supercharges
as defined in eq. (8.22) have the desired properties. Using the (anti-) commutation rules for
the creation and annihilation operators, egs. (8.12) and (8.15), we can compute

{Q1,Q1} = w{a'b+adb",atb+ab"}
w{atb,ab*} +w{ab", at b}
2w (a+a(1 —-bth) + (1 —I—a+a)b+b)
= 2w(ata+bTb) = 2H. (8.23)
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In a similar way we can compute the remaining anticommutators of Q; and Q, and we get

{Qlqu} = {Qz,Q2} = 2H, {Qth} = 0. (8-24)

Note that this is in agreement with eq. (8.7). Now we can see that, as promised, the
supercharge is conserved:

[QLH = [Q,(Q)? = o, (8.25)
Q2 H] = [Q,(Q)?] = 0. (8.26)

Egs. (8.25) and (8.26) allow us to see that the states in this theory come in pairs. In fact,
let |¥) be an eigenstate of H, i.e. H|¥) = Ey|¥). Then Q:|¥) is an eigenstate of H with

the same energy,
HQ V) = QH|Y) = QiEw|¥) = EyQu|¥) - (8.27)

If |¥) is a bosonic state containing np bosons and no fermions, then

Qi|T) = Qilng,0) = Vw (a*b+ab")|ng,0) = |ns—1,1) (8.28)
is a fermionic state with the same energy. Similarly, if [¥) = [ng,1) is a fermionic state,
then Q;|¥) = |np + 1,0) is a bosonic state with the same energy. Thus the states come

indeed in pairs with the same energy, one fermionic and one bosonic.

Of course, the same argument could have been made with Q rather than with Q;. However,
Q. acting on a state |¥) produces the same state as Q; acting on a state |¥). Thus, there

are not four but only two states with the same energy.

What we have seen is that if we start with the usual bosonic harmonic oscillator and want to
make this theory supersymmetric, then we are led to introduce for every bosonic (fermionic)
state a fermionic (bosonic) state with the same energy. This is exactly what happens if we
want to make the Standard Model supersymmetric: For each boson (fermion) we have to
introduce a fermionic (bosonic) partner, thereby doubling the particle spectrum.

8.5 Superfields

The superfield is a very convenient piece of SUSY notation, which rests on the abstract
idea of supersymmetrising space-time. Suppose that for the four (bosonic) dimensions we
know, that is z,y,z and t, we add a pair of fermionic dimensions n and 7. The SUSY
transformations Q and @ are translations in the fermionic directions of this “superspace”.
Being 1 and # fermions, they anticommute with themselves, so the Taylor expansion in these

fermionic dimensions ends quickly!
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The superfield associated with, say, the Higgs, is a function of superspace:

H(z",n) = H(z")+nh(z") +nnF(2"). (8.29)

H is an example of a (left-handed) “chiral superfield”, a simple sort of superfield that is
independent of 7, suitable for decribing a matter multiplet made of a left-handed fermion
and complex scalar. By a standard abuse of notation, the superfield has the same symbol as
its scalar component. So on the RHS of the equality, H is the scalar Higgs, h is the higgsino,
and F is a bosonic field of mass dimension two, which therefore cannot have kinetic terms
and can be removed from the Lagrangian by using its equations of motion (something like
a Lagrange multiplier). We make no more mention of F', other than to note that it is the
origin of calling part of the SUSY Lagrangian “F-terms”.

The reason that superfields are convenient, is that one can compactly write all the SM
Yukawa interactions, and their supersymmetric relatives (of which there are very many), as
the “superpotential”:

W = Y,HyLE®+Y,H,LN®+ YyHyL.D® + Y, H,LU*. (8.30)

For simplicity, let us consider only one generation. Y; is the Yukawa coupling for fermion
f, and the right-handed fermions (e.g. €g) have been written as left-handed anti-particles
(e°). Notice that there are two physically distinct Higgs doublets H,, and Hg, where in the
SM we have used one doublet and its charge conjugate. We will return later to the reason
for this extra field.

To obtain supersymmetric interactions of component fields, in ordinary four-dimensional
space, one should extract the F-term of W. That is, expand each field as in eq. (8.29) and
pick out all the terms o< n%. It is clear that this will include the SM Yukawa couplings,
because each fermion comes with an 7. It also gives scalar four point interactions. The full
expression is
82
00,09, 50,00, V%1 T 8<I)
= 4+ Y, Hylef+ ... — |V, (HdL)(HdL) -, (8.31)

Lssy = kinetic terms + Z

where 1, §, k run over all the superfields in W, and on the second line are the parts coming
from derivatives with respect to E€. The fermion index contraction is in the same shorthand
as eq. (7.30). The kinetic terms and gauge interactions come from another function of the
superfields.

It is possible to draw diagrams and do calculations in superspace; this can be useful for

obtaining exact supersymmetric cancellations.
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8.6 The MSSM Particle Content (Partially)

The Lagrangian for the Minimal Supersymmetric SM (MSSM) can be motivated as follows:

1. Add a boson for all SM fermions, and a fermion for all SM bosons.
2. “Supersymmetrise” the SM Feynman diagrains.

3. Observe that step 2 gave superpartners with the same masses as their SM relatives.
As we have not observed any superpartners, add “SUSY breaking” mass terms to
make them heavier than current experimental sensitivities. (These masses are called
“soft” because the quadratic divergences still cancel — as you have discovered in the

problem.)

This heuristic recipe will give a Lagrangian with ~ 125 free parameters, compared to 19 in
the SM. The vast majority of the additional parameters come in the SUSY breaking sector
and make the theory unwieldy to study. It is therefore common to work within simplified
SUSY breaking scenarios with fewer parameters, like e.g. mSUGRA, the minimal version
of supergravity grand unification. In this model universality of the soft SUSY breaking
parameters is assumed (there are only four additional new parameters plus one sign), leading

to a suppression of flavour changing neutral currents.

In this subsection we restrict outselves to the first step outlined above, describing the particle
content of the MSSM. Feynman rules can be found elsewhere.

Superpartners are often written as capitalised, or “tilded” SM particles. The partners of
one generation of SM leptons are a slepton doublet, a singlet selectron and a “right-handed”

(2) - (2) «(2)
€ o LK Ne (8.32)

et —  ec or E¢,

sneutrino:

(vr)® - (v5) or N¢,
and sometimes, abusively, the ¢ is dropped from the singlets, although they remain “left-
handed”. Similarly, one introduces squark partners, of all colours and flavours, for the
quarks.

¢

The spartners of the SM bosons are the
they are added before (Bino and three Winos) or after (Photino, Zino and two Winos)

““inos”, who can be names according to whether
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spontaneous symmetry breaking:

v - 7,
Z — Z or z,
W+ — wr or wt, (8.33)

+ - 5+
Ho R0

In supersymmetry, we need a second Higgs doublet. One can see this from the formal
structure of the theory, or from considerations of anomaly cancellation, or by counting
fermionic degrees of freedom. Let us do the last: Suppose we break the electroweak gauge
symmetry in an exactly supersymmetric SM. The spartners must therefore have the same
masses as the SM particles, and notice in the SM after spontaneous symmetry breaking,
there are no massless charged bosons. However, among the inos in eq. (8.33), there are three
chiral charged fermions, and it takes two chiral fermions to make a massive charged “Dirac”

fermion (a Majorana mass would break charge conservation). The solution to this problem

H, = ( il ) 5 ( i ) (8.34)
H- i

which gives mass to the d quarks and charged leptons.

is to add a second Higgs,

Recall that we must add soft masses for all these new fermions, to ensure that they should
not have been discovered yet, so the physical mass eigenstates will be four neutralinos and
two (four component fermion) charginos, respectively linear combinations of ¥, Z, h, and hy,
and W, bt hy.

i T2

8.7 Summary

e Supersymmetry transforms bosons < fermions. It is an (the only possible) extension
of the Poincaré algebra.

e Since fermion lobps come with a relative minus sign, the Higgs mass would have no

quadratic divergence in an exactly supersymmetric theory.

e To supersymmetrise the SM, one has to add a boson (sfermion) for every fermion, and
a fermion (-ino) for every boson. Then one adds a second Higgs doublet and its SUSY

partners.

e No spartners have been observed so far, so one gives them masses in excess of current
experimental bounds. This breaks the supersymmetry, and allows finite corrections to
the Higgs mass.
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e At the time of writing this sentence, supersymmetry has not been found.
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In the LHC era we expect to understand the nature of electroweak symmetry
breaking, the one remaining puzzle in the otherwise incredibly successful Standard
Model of elementary particles. However, the theory and phenomenology of Higgs
studies at the LHC cannot be separated from QCD on the one side and new—physics
models on the other side. This is why this series of lectures will start with QCD for
LHC physicists and then cover Higgs physics as well as models like supersymmetry
and extra dimensions as examples for an ultraviolet completion of the Standard

Model at the TeV scale.
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The LHC era will be dominated by the task of understanding the nature of electroweak sym-
metry breaking. The multi-purpose experiments Atlas and CMS are specifically designed
to find and study this sector, which for example in the Standard Model could be a light
fundamental Higgs boson, as suggested by electroweak precision data from LEP and SLC.
However, we should not forget that we still need to explain dark matter, which could well be
a weakly interacting stable particle with a mass around the electroweak scale. In parallel to
the running of LHC, Planck should tell us more about possible dark—matter agents. In the
best of all worlds, we will produce and study such particles at the LHC as well, which would
shift the focus of the LHC era from electroweak symmetry breaking to the bigger picture of

physics at the TeV scale, maybe even including dark matter.

Before we can study any kind of searches for Higgs bosons or new particles at the LHC,
it is crucial that we understand QCD. The great feature and at the same time the biggest
problem of the LHC is it enormous luminosity. Remember that historically the LHC was
designed as a high~luminosity machine which needed to fit into the LEP tunnel and compete
with the 40-TeV SSC collider in Texas. Due to the nature of the parton densities, to produce
for example as many high—energetic quons as possible, we can either maximize the proton
energy or maximize the proton luminosity. From a theory point of view it is obvious which
of the two approaches will work better — nothing beats energy. The large luminosity at
the LHC will always also lead to a lot of QCD interactions happening around the one high-—
energy parton scattering we are interested in. These additional interactions are very roughly
labelled the underlying event, and from first—principle QCD it is hard (if not impossible) to
describe them. In practice, the high luminosity at the LHC means that the detectors will
be flooded by QCD activity from which we have to extract the physics we are interested
in. In the following, I will not talk about these kinds of non-perturbative QCD effects, but
you should always keep in mind that they are there and trying to keep us from extracting

interesting physics from LHC data.

In addition to this non—perturbative QCD there is also perturbative QCD which makes
our lifes hard. If we want to study ‘the production of new particles at the LHC, the two
partons which enter this hard interaction process will have a life before this interaction
point. In particular, they will for example radiate gluons on the way to the interaction

point. Moreover, quarks and gluons which are produced in the decay of new—physics particles
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will also radiate gluons before they form the hadrons we observe in Atlas and CMS. This
means that any new particle will always be accompanied by a large number of jets from
radiated gluons and quarks. We can in principle describe these jets properly using QCD,
because these processes are mostly perturbative, i.e. in a kinematic region where the strong
coupling «; is small enough to allow us to write a perturbative series. The only thing we
have to take care of is the fact that dl_le to the kinematics this jet radiation is dominated by
collinear radiation, which corresponds to a logarithmic enhancement of certain terms in the
perturbative oy series. The correct description of additional jets is what I consider the most
important progress in LHC-relevant QCD altogether, which is why I am starting my lecture
series with this topic. As you will see, jet radiation is closely tied with the appearance of
renormalization and factorization scales in perturbative QCD, which make their appearance

in two other RAL-school lectures you attend here.

The minimum task of the LHC would be to discover and study the fundamental Higgs
boson we postulate as part of the Standard Model. T am using the term minimal because
the Standard Model is defined by the smallest possible Higgs sector, one Higgs doublet with
only dimension-four operators in the Higgs potential. This construction we would of course
have to carefully test at the LHC, by studying the Higgs boson in as many production and
decay channels as possible. By the way, Higgs physics is a very good example that it is never
too late for good new ideas in LHC physics. When the Atlas technical design report was
written, people thought you could only observe the Standard-Model Higgs boson produced
in gluon fusion or in association with top quarks. Only since around 2000 we know that
the most promising Higgs discovery channels are actually those where the Higgs boson is
produced in vector-boson fusion, and at the same time we have convinced ourselves that it
is very unlikely that we will ever see a light Higgs boson produced in association with top
quarks. So if you want, hardly any of the Higgs phenomenology in the Atlas TDR. is still
correct and relevant. The focus of my Higgs lectures will be to give you an overview how
we can test the Higgs sector if it looks anything like the Standard Model. This includes
measurements of production and decay rates, but also ways to determine the quantum

numbers of a light Higgs state like its spin and its CP symmetry.

There is, however, a well-known problem with any fundamental scalar in field theory: its

mass receives potentially huge corrections by quantum effects. These corrections would make
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it much more natural to expect a Higgs boson with the mass around the Planck or GUT
scales or whatever the highest energy scales in our theory are. This hierarchy problem is
one of the main motivations for physics beyond the Standard Model. Note that while this
is indeed only a mathematical (esthetical) problem, the entire program of writing down the
Standard Model as a renormalizable field theory based on gauge symmetries is driven by
mathematical beauty. Which means, that we have to ask the question: if we introduce the
Higgs boson to construct a truly fundamental theory, why do we need to accept the fact
that the Higgs boson itself ruins this fundamental aspect of the theory and forces us to fix
its low mass by hand? Following this argument, Higgs physics and new physics at the TeV
scale are closely tied, and the more ambitious aim of the LHC should be to unravel this
whole sector, possibly including a dark—maftter candidate predicted by the symmetries of
the underlying fundamental theory. The lectures on supersymmetry should only be viewed
as one worked—out example of new physics which we might discover at the LHC. How likely
is it, really, that new physics at the TeV scale will follow any of the paths we theorists have
thought about until now? On the other hand, again there has been huge phenomenological
and theoretical progress over recent years in how to determine the parameters and properties
of such new particles at hadron colliders. And from the QCD chapter we already know that
the LHC is too complex a machine to rely on something like naively obvious mass peaks
as signatures of new physics. For example a stable and weakly interacting dark-matter
candidate will never lead to a mass peak in Atlas or CMS. By the way, I apologize that T
introduced the supersymmetric Lagrangian on the blackboard instead using transparencies,

but you can find the corresponding notes on my homepage.

In the last lecture I am giving a very brief introduction into maybe the most elegant new
idea in TeV-scale physics in recent years: large extra dimensions. While these ideas are
hard to translate into realistic models at the TeV scale, the same is true for supersymmetry,
technicolor, little-Higgs symmetry breaking or any other underlying concept. Practical
problems should never keep us from getting excited about and carefully studying interesting
new ideas. There are essentially two setups of such extra dimensions, any number of large and
flat extra dimensions or one (large or small) warped extra dimension. The phenomenology of
these two models is very different, while the first could well look similar to supersymmetry,

the latter have signals which resemble heavy neutral gauge bosons Z’. As a matter of fact, I
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noticed that many of you work on searches for Kaluza—Klein gravitons in Randall-Sundrum
models instead of calling them Z’ searches like in the old days. So I should try to explain why

extra dimensions are indeed theoretically far more exciting then additional gauge bosons.

If you want to know more about the topics covered in these lectures, you can find a set
of writeups mostly based on SUPA lectures in Edinburgh on www.ph.ed.ac.uk/~tplehn.
Each of the courses corresponds to roughly 8 lectures, so they will be slightly more extensive
than what I could present at the RAL school. Apart from Modern QCD for Users you
will find notes on Hunting the Higgs and on new—physics topics like Supersymmetry, Extra
Dimensions, Little-Higgs models and Models without a Higgs. Since these courses were given
to a mixed audience of theory and experimental graduate students, they will cover more of
the theoretical backgrounds and less of the phenomenological applications. Nevertheless, I
hope they will turn out useful, including some suggested further reading I included in the
notes. At the end of these lecture I hope I will have convinced you that you might soon
be observing one of the most exciting times in science since James Clerk Maxwell. If the
LHC era tells us what the fundamental ultraviolet extension of the Standard Model is, we
can finally claim back this exciting branch of high—energy physics and cosmology from the
realm of speculation. Leave financial worries and battles to the senior people and help us to

make the LHC a great success!
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Outline

Hadron Colliders — Stars on the Physics Sky

QCD for New Physics Searchers

Important Standard—Model Processes

Jet Radiation
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Organization

8 Lectures on phenomenology

collider basics

QCD for users: jets at colliders
Higgs searches
Higgs properties

why new physics? why supefsymmetry?

searches for supersymmetry or new physics

why extra dimensions?

One way of teaching phenomenology

— let’s try to get to current topics

— past colliders are physics history and PDG entries
— we’'ll all spend 10+ years in the shadow of LHC

— you ask — | answer

— problems sheets together with T(h)om Teubner

Signals for new particles

Real—particle production  (gluon, top quark]

— produce searched—for particle

— observe decay [pefore hadronization]

— reconstruct decay products (mass peak with side bins)
=> measure mass, spin, branching ratios beyond Standard Model
= highest—energy colliders

Virtual-particle effects [gauge bosons w, z, 5 — s+]

— produce and measure something else (like W, Z)
— compare to Standard-Model predictions

= find deviations from Standard—Model relations

= highest—precision colliders

Rare effect or rare decays (8 physics, EDMs]

— produce something else (like Bs,...)

— find effect forbidden in Standard Model
= observe effect beyond Standard Model
= best—chosen experiment -214 -



Collider basics: 1

Most powerful colliders: hadron colliders

inside 27 km LEP tunnel fused to be et e with 200 GeV, not pp with 14 TeV]

proton—pr oton collisions [Tevatron: proton—antiproton at 2 TeV}

!

some technical details [probably outdated]

Colliders Vs C SEJE f n/bunch L
{TeV) | (cm—2s—7) (MHz) (1019) (km)
Tevatron | 1.96 2.1 x 10°¢ 9x 107> 2.5 p:27,p:75 | 628
HERA 0.314 | 1.4 x 103 0.1,0.02% 10 e:3,p:7 6.34
LHC 14 1094 0.01% 40 10.5 26.66
ssct 40 1033 55 x 10~° 60 0.8 87

hadronic c.m. energy divided into partons {first approximation p = (uud)]

luminosity: Ney = oL with £ o< f nynso/a (measuredinem =251 = 10=39p—15—1j

energy limited by dipole magnets and cavities

Aim of collider physics

HERA without physics beyond Standard Model  ipuitt to measure proton structure]

LEP2 without phySiCS beyond Standard Model [LEP1 built to study electroweak gauge sector]
Tevatron with top quark discovery [itaint over yett)
LHC built to find Higgs and new—physics effects

Collider basics: 2

Computing what goes on at hadron colliders

- incoming protons resolved at TeV-scale energy
— to first approximation described by valence quarks (uud)

oAB = z/dxadxb fasa(Xa)fo/8(Xp) Gan
a,b

(1) parton density f;/4(Xa):
probability to find parton a of momentum fraction x5 in proton A

— parton densities measured in many experiments  [mostly HERA]

(2) partonic cross section & 45:
just like e*e—, but with incoming quarks and gluons phard process]

— partonic cross section calculated (numerically) for any imaginabile final state
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Collider basics: 3

Kinematics at a hadron collider

— incoming momenta in lab frame: P, p, = X, 5 (Ea,8,0,0,pa ) Ipartons massiess]
— center-of-mass frame moving in z direction

cylindrical coordinates d3p = prd¢ dpr dpz  (ransverse momentum pr = /2 + 52
(1) usual event sample: ¢ symmetry

(2) transverse momentum and mass: E; = 4/ p% + m2
(3) rapidity
y = 1 log E +p;
2 E—p;
— lego plot (p1,y, @) or (ET,m,d) n=logcoto/2)
— distance between two tracks AR = /(An)2 + (A¢)?

Yboosted = ¥ + Yz—shift lyobservedl 5 5

Collider basics: 3

Kinematics at a hadron collider

— incoming momenta in lab frame: P, p, = X, p, (Ea,8,0,0,04,8) Ipartons massless]
center-of-mass frame moving in z direction
— cylindrical coordinates d°g = prd¢ dpr dpz  [ransverse momentum pr = /o + 5]
- (1) usual event sample: ¢ symmetry
(2) transverse momentum and mass: Er = 1/p$ +m?2
(3) rapidity
y = 1 log E+pz
2 E—p;
— lego plot (pr,y,¢) or (E7,1, @) n=togcoto/2]
— distance between two tracks AR = /(An)2 + (A¢)?

Yooosted = ¥V + Vz—shift Iyobserved| S 5

Useful observables
= invariant mass (pg,1 + pe,2)? = m5, ~ m2

— transverse mass [massless invisible neutrino]

mg,, = (Ee + Eu)2 . (5T,e -+ ﬁT’y)z - (5z,e + 52,:1)2
> (Ere +Eru)? — (Bre +P10)?

= (Ero +IBr1)? = (Bro + Br)? = m2.,
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Collider basics: 4

Trigger

flood of data from each bunch crossing not manageable [event rate 1 GHz with 1 MB]

use some prejudice to write ‘interesting’ events on tape  [realistic 100 Hz)
LHC is not built to test QCD! (interesting events 1/106]
soft jets, multiple interactions,... in garbage

leptons, photons, hard jets, missing momentum,... of high priority
open problems: invisible Higgs decays, stable particles, super-fast top jets,...

= trigger menue T(t, k, $) [a function of time, knowledge and money]

Level-1 trigger menue from Atlas  [down to 105 Hz, always outdated]

Atlas
Objects |mp| X pT" (GeV)
u inclusive 2.4 6 (20)
e/photon inclusive 2.5 17 (26)
two e’s or two photons 2.5 12 (15)
1-jetinclusive 3.2 180 (290)
3jets 3.2 75 (130)
4 jets 3.2 55 (90)
T/hadrons 2.5 43 (65)
Pr 4.9 100
jets+-gr 3.2,49 50,50 (100,100)

QCD: 1

Simple hadron collider process: pp — Z(+jets)

— Drell-Yan process: single gauge boson production [couldbe w, Z with Z — £¢]

— what is the final state in hadronic g45?
additional jets: o(pp — Z) jet-inclusive or no jets?  fimportant later]

— to get an idea: compute qq — Z and q¢ — Zg
— phase space integration over gluon divergent

Initial state radiation

— gluon off incoming quark with py;

= finite—energy jet spectrum IR-divergent [arready partonic cross section & 7]
1p;

O
dozg P1j 1 | pr_lr_}ax 1oy
dpn D2 +m2  pn . %0089

-217 -



QCD: 1

Simple hadron collider process: pp — Z{+jets)

— Drell-Yan process: single gauge boson production couldbe w, z with z — ¢¢]

— what is the final state in hadronic o457
additional jets: o(pp — Z) jet-inclusive or no jets? [mportant ater]

— to get an idea: compute q@ — Z and qq — Zg
— phase space integration over gluon divergent

Initial state radiation

— gluon off incoming quark with p7;
= finite—energy jet spectrum IR-divergent [aiready partonic cross section 5.z,

doy, P1j 1 p171'1'ax
d g. X =3 5=~ = oz xlog nllin
pT/ p;rj + mj p'l] p'[]'

2-_‘
15

Prp, do/dpy ), (gg—btH)
m,=0.46 GeV

1
05 m,=1000 Gov
ol

30 |

20 ©
10 F

ok

QCD: 2

Divergences, regularization and scales in QCD

— NLO process qg — bb via s-channel gluon
— including chain of (reducible) gluon self energies
— regularize gluon self—energy bubbles o =4 — 2

d*k () / d"k . [ d"k
— Ie _—
(2n)* HRY ] e THR | (e

rewrite uf, = exp(log 1) = exp(elog p1g) =1+ elog g + ...
— naked divergent gluon self energy

(p?) _ as re(pr) <4TRNF _ 13CA) (—g“"-{- P“P")

P2 4Ar ¢ 3 6 p2

— add chains of one, two, three,.... one—loop bubbles
call the resulting coupling a.s(p?) s scheme)

1 1 1 /11C4 4TgN 2
= . ( A 4TR F) 55 10_2
as(p?)  as(pg) 4 3 3 HRr

6as(,u2) 5 _a_§ 11CA . 4TRNF> +
dlogu2  4r 3 3

-218 -
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QCD: 3

|n|t|a —st te n radiation o
s qtlple gluon rad|at|on off incoming quark o/
1Ip,u'
— each splitting as Iogp /p o e

— chain just like multiple gluon self energies (R problem instead of UV problem]
— lR-divergent in collinear limit  [soft—cofinear and hard—collinear}
= sum diagrams and absorb in running of parton density (pcLar]

dfa/a(X, 1F) &
d log piz Z/ a+b Z!“S) fo/a(Z, F)

1.0 —rrrmr—rr e 1.0
1 T ;

T
D
|
—
[=]
[#]
%

0.8

xliii’I’IJ_T'l

vll

zP(Q%,z)

xliri

QCD: 3

Inltla —st te radiation
l) citrllple gluon radlatlon off incoming quark

— each splitting as Iogp /p

— chain just like multiple gluon self energies (IR problem instead of UV problem]
- IR—divergent in collinear limit [soft—collinear and hard—collinear]
= sum diagrams and absorb in running of parton density [paLar)

dlaya(X; pe) x
—P b [ — fo/a(z
d log s Z/ acb as) b/A(Z, 1F)

— with universal splitting kernels  [means tactorization]

14 x?
Pge—q(x) = Cr—"— Pa—g(x) = Tr (X* + (1 = x)?)
N +(1 — x)? _ X 1—-x
Pgeq(x) = Cr——"  Pog(x) = Ca 37— + —— +x(1 —x)

— initial-state radiation treated in collinear limit o et distributions for py; < ]
— divergence P mn _, 0 removed, pInax = ur artifical parameter  [smart choice?)
= jet radiation below factorization scale (p7; < ) included in pdf
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QCD: 4

Error estimates in QCD

— QCD at colliders always perturbative in ais  [plus possibly logs]

— let’s hope, large logarithms identified and summed

— all observables function of scales O = O(ug, ugr)
= scales artifact of perturbation theory, so vanish at all orders
= scale dependence (only?) measure of theoretical uncertainty

Example: pp — tH™

Gpolpbl
i

a,fpbl

054"

T s b5
05 0 :;‘5“-‘ ﬁl
Tog (i 3) A Tog,o(1i/p)

o 05 TG
10gq(Mbr) log,o{i1/] p,‘!)

QCD: 4

Error estimates in QCD

— QCD at colliders always perturbative in a;s  [plus possibly logs]

— let’s hope, large logarithms identified and summed

— all observables function of scales O = O(ug, ur)
= scales artifact of perturbation theory, so vanish at all orders
= scale dependence (only?) measure of theoretical uncertainty

Caveats
— total cross section with jets o(ur, pg)

(1) asymptotic freedom: o(ug — 0) = co and o(ug — o0) =0
(2) pr size of proton:  o(ug — 0) =0 and o(ur — o0) =00
= scale dependences can cancel [more on DY process later]
— there is no ‘correct’ scale, but there are idiotic scales [introducing large logs)
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QCD: 4

Error estimates in QCD

— QCD at colliders always perturbative in as  plus possibty logs]

— let’s hope, large logarithms identified and summed

— all observables function of scales O = O(ug, ugr)
= scales artifact of perturbation theory, so vanish at all orders
= scale dependence {only?) measure of theoretical uncertainty

Physics of wrong scales

— ur defining pr-size of parton, perturbative part f; /4 oc log pr

— large ug means (too) many collinear jets included LO
corrected by correct NLO jet radiation: K = onLo/o10 < 1

small ug means (too) few jets included in LO
corrected by correct NLO jets: K >> 1

— ug defining scale in coupling constants or masses o log g1/ 2

— as(ur) leading higher—order contributions, but NLO with explicit argument
log Q/ug explicitely contributing to K

— known trick: mimick soft jet radiation using as(p7;)

QCD:5

Definition of jets

— jet—parton duality < partons in detector

— jet-rich environment at (hadron) colliders  [mostly but not only soft or collinear]
= need jet algorithm to decide what comes from one parton

— stable w.r.t inclusion of soft or collinear jet [rsave]

— crucial for mgq searching for Z/ — qq, etc

— even more crucial if likelihood | M|? of interest

Should be standard: kT algorithm [experts: exclusive with R = 1]

— define a distance jet—jet dy; and jet-beam dyg

only requirement: dj; ~ k%k, for g — 0 [eg. dyg = E262]
- (0) define resolution dcut [or number of jets]

(1) find minimum dyi, = mink,(dk,, dkB)

(2a) if dyin > deut all objects are jets

(2b) if dpin = di < deur combine k and /, go to (1)

(2¢) if dmin = dkg < dout remove k from list, go to (1)

= dcut Separating hard from soft—collinear physics
— if pheno analysis requires jet algorithms, you'll likely get it wrong
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Processes: 1

Example processes everyone will need

— total cross section (coupling) measurements need luminosity

— effectively: normalization to standard candle

— simple (leptonic) final state
well-controlled QCD corrections
high—precision Monte—Carlo [nNLO if possible]

= Drell—Yan production pp — ptp—

Exampie: Drell-Yan at LO, NLO, NNLO [error from scales?]

LHC 742

o {pb]

66 < My < 116 GeV
P13 > Pra

Iml < 25

My/2 § o5 2Mg

Processes: 2

Example processes everyone will need

— new physics usually including bottom jets, lepton, missing momentum

= main background tf+jets
— background rate after cuts problematic [phase space fragmented]
— NLO corrections to pp — tf available in MC@NLO
— exclusive NLO corrections to pp — tj almost done

Example: pp — tij at LO

E T T T T T ¥ - F ¥ s
pp — ti+jet+X CTEQ6LL I
oro[pb]E-T3 V3 = 14TeV

1000:_ ijet > 20GeV
T 3
total TTeesli St ]
----- 99 T ]
10  °7°°°° 9 -‘AI:’E
- 99 ]
""" 24 ol u

0.1

1
-Ba06ac /M

[uy
(=]



Jet radiation properly treated: 1

Hard jets [remember Z + g example]

— described by matrix elements fiinite at given order in as, e.g. Z + gl
— defined only inclusively for soft and collinear jet, distributions wrong (partof paf

Soft and collinear jets  [no technical details here]

— collinear ]et distributions by parton shower  [SCET with improved theoretical description?)
— defined in region where matrix elements diverge (finite atter log summation]
= holy grail of QCD at colliders: combine the two

Sudakov factors

— Poisson statistics: event with expected p hits occuring n times
pe?
f(n;p) =

n!
— probability of observing no event: f(0; p) = e~ P

— collinear gluon/photon radiation described by energy-dependent probability

dP(x) = % P(x) dx f(0; Xmin, Xmax )= €Xp (- /xmax dP(X)>

min

= Sudakov giving praobability of no radiation/spiitting

Jet radiation properly treated: 2

MC@NLO approach

— one hard jet correctly described by exclusive NLO corrections
— soft and collinear jet radiation for all jets from parton shower

Bryan Webber’s toy model

— observable for photon radiated with energy 0 < x < 1

e O(x) | do
(o>_/o ax = [d—x

d_a
ax

gﬂ
v dx

B8

R]
with Born, virtual, real contributions [imy r(x) = B, a: coupling]
B do
=al|l—+V)dkx —
(26 + ) (x) dx
% R
— usual subtraction to cancel IR divergence in photon emission

O =a800) [ drrl +a [ ax B ZBO0O

B O(0) 1 R(x)O(x) — BO(0)
L

do

dx

do
=B§ —
IRELON -

LR
X

X



Jet radiation properly treated: 2

MC @NLO approach

— one hard jet correctly described by exclusive NLO corrections
— soft and collinear jet radiation for all jets from parton shower

Bryan Webber’s toy model
— finite NLO Monte-Carlo

(0) = BO(0) + a [v 0(0) + /01 ax RX)0) — B O(O)]

X

— generating functional with additional photon—emission probability
dO’/XmPS = aBQ(x)/x

[ ol (s 2) et
o ax [F (B+av_£+&(x))+Fa[R(x)—BO(x)1]
0 X X X

— now: two subtraction terms, new one not at x = 0 {narder in practice(]
= MC@NLO subtraction scheme with praper non—collinear subtraction term

Jet radiation properly treated: 2

MC@NLO approach

— one hard jet correctly described by exclusive NLO corrections
— soft and collinear jet radiation for all jets from parton shower

Comments

+ first hard jet correct

+ normalization correct strictly to NLO
+ available from Herwig authors
additional jets only via parton shower

subtraction terms not easy or universal

possible negative weights [why a problem?]
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Jet radiation properly treated: 3

CKKW approach [aiso MM

— combine leading—order X + j, X + jj, X + jij, X + jjj matrix elements
— avoid double counting between hard matrix elements
— parton shower for soft/collinear radiation

Preparing event sample

(1) create the hard final-state event [y algorithm with dgy]
(2) choose jet multiplicty n according to

a )
Pn = —!'.l with g = Uk(dcut)

2 k=0 Ok

(3) compute event weight and the ky algorithm’s splittings

(4) remember: n jets means n hard jets plus many soft/collinear jets
reweight event to make matrix—element predictions exactly n-jets (sudakovj

f(oidcut, d]) .
= "~ £(0; dy, d; lus as terms
11 F(0: dour, di) [1 f(oidk,d)  plusasterm

splittings splittings

(5) normalize to highest known order
= CKKW: combine exclusive n—jet rates with parton shower

Jet radiation properly treated: 3

CKKW approach [also MLM]

— combine leading—order X + j, X + jj, X + jjj, X + jjjj matrix elements
— avoid double counting between hard matrix elements
— parton shower for soft/collinear radiation

Comments

+

all additional jets correct

+

available from Sherpa, Madevent, Alpgen authors

normalization of different processes with error
over-all normalization unknown

Sherpa—CKKW and Tevatron data

SR

DO Rurl Prefiminary|ofa E1e 2

T

Data / SHERPA




QCD Outlook

Collider phenomenologists need to know QCD  modei builders too]

— not all collider events can be analysed: trigger
— perturbative QCD is not perfect, but the best we have
— some processes need to be known precisely: luminosity, backgrounds
— jets should be properly described: ME-PS matching
= next: what colliders can really do

Apologies...

...to the people I did not cite, because it is a lecture
...to youfor not explaining things like parton shower
...to those for whom | went too fast

...to those | bored to death

-226 -



Phenomenology 2: Higgs Searches

Tilman Plehn

MPI {iir Physik & University of Edinburgh

RAL School, Oxford, 9/2007

Outline

Standard—Mode! Higgs Sector
Weak boson fusion

Top—Higgs production

Higgs couplings

Higgs potential and self coupling
Spin and CP

Modern statistics
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Standard—Model Higgs sector: 1

Theory of W, Z bosons

— start with SU(2) gauge theory (ike QED with massless W, z]
— include measured masses L ~ —mW,ZAMA“
= not gauge invariant, not renormalizable, so not pretty, but try...

W w
o
Unitarity and Higgs scalar % - :}{i . }Jﬁ{ . :E{Z
— test theory in WW — WW scattering W w

— A o< GEE? like Fermi’s theory, not unitary above 1.2 TeV  parsly LHC energy]
— postulate additional scalar Higgs boson to conserve unitarity
— fixed coupling guwr < my,

— add fermions and test WW — ff
— fixed coupling gy o< me/my,

— test new theory in WW — WWH
— fixed coupling gy oc m2,/my

— final test: WW — HHH
— fixed coupling grppr o< m?/m2,

= Higgs couplings non-negotiable

Standard—Model Higgs sector: 2

Higgs potential

— remember Lagrangian invariant under SU(2) x U(1)

— break symmetry through vacuum: SU(2) doublet with vev

— minimize Higgs potential ® = (0, (v + H)/2) v = 246 GeV known from W, Z masses]
= first attempt: renormalizable Higgs potential (does all we wany

Lhiggs = |D/uq’|2 -V
v2\?
V = A <|¢'|2 — ?) = —p2|®]2 + A\|®|* + const

— not the whole story with new scale A  [standard Model as effective theory]

2+n
An 2 V2
v = X (%)

n=0
=- gauge—invariant dimension-6 Higgs operators qﬁggs =3 f;/N\?2 O;
1
Oin = 50u(®19)5"(010)
1
Opat = —§(¢T¢)3

= Higgs self couplings reflecting Higgs Egéential



Higgs production and decay: 1

—
Design Higgs searches for LHC TW:D
— (@) unitarity limit: my < 1 TeV v —p—
(b) electroweak precision tests: my < 250 GeV
- — production and decay of light Higgs wr:z >\/»WJJ ;
signal x trigger H — bb M
99 : N H backgrounds H— WW
99 — q9 « | systematics — |H—>7tr7
gg — ttH H ehTe
qq’ — WH S/VBvs. ?S/B — vy
mass resolution... H— pp...
Backgrounds i iy S

10? Gl B> Y20}
10 L)

@ (ab)

b
a_(s,“'> 100 GoV)

T S S (TVRET S C PR SRS G YRRT SISt LAyt o Jopis o
3
jsec

Higgs production and decay: 1

Design Higgs searches for LHC W:D
— (a) unitarity limit: myg < 1 TeV

3

(b) electroweak precision tests: my < 250 GeV

— production and decay of light Higgs mz
.| signal x trigger H — bb
99 : i H backgrounds H— Ww
gg N ?77_, «— | systematics — |H-o71hr,
qq’ — WH S/VBvs. S/B H— vy
mass resolution... H — up...

Production rates [fuminesity 30-300 fo—1;

o(pp—H+X) [pb]

Vs =14 TeV 1
M, =175 GeV
CTEQ4M

‘.‘. = s
\\. ‘-“-:-_":' ﬂ;qq iHIT
10 T

gg,qq—;lﬂ’r\ h"‘"-.._‘_\_‘_ag\ ,"Z

0 200 490229 600 800 1000
M, [GeV]



Higgs production and decay: 1

Design Higgs searches for LHC
— (@) unitarity limit: my < 1 TeV
(b) electroweak precision tests: my < 250 GeV

— production and decay of light Higgs

X

- signal x trigger H—bb ™

99 : H " backgrounds H — Ww

gg o ?ﬁ_/ «— | systematics — |H - TZEU_

qq’ — WH S/vBvs. S/B H — ~y
mass resolution... H— pu..

Branching fractions [up to 108 events]

Higgs production and decay: 2

Gluon fusion
— heavy quark loop: ggH coupling
— effective operator £ ~ gggyy H G*Y Gpu /A
— without any approximation [just compute top 1oop]

» .
GggH Yy as
JoH A (1 7)f
2~ e [ (= i)
2 i1 2
) am; [sm \/1/7'] T>1
with 7 = v and f(r) = } T .12
My -3 [Iogf_“; V%—m] T<1

= all we need to compute gg — H at Tevaton/LHC

Effective couplings

— compute heavy—top limit: gggr /A ~ y2as/m3 = as/my
— attach more gluons: gggH, ggggH  1acp gauge invariance]
— attach more nggs bosons [low—energy theorems]

link leading gggnn to gluon self energy; F T,

2
F(n+1)H = mtza(FnH/mt)/amt or FggH = —Fggrn = FggHHH — 5 4 O(m’%’/mf)
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Higgs production and decay: 3

Some numbers behind it

— gluon-fusion production and H — ZZ — 4u no-brainer
['golden channel’ above 140 GeV, mass resolution excellent]
— H — WW only slightly harder, but no mass peak

[above 150 GeV, angular correlation, off-shell still not clear]

6 million light Higgses in gluon fusion: gg — H — vy
[mass resolution Amy; /my ~ [/~/S < 0.5%]

backgrounds smaller in WW fusion: qq — qqH — qqWWwW

[works off-shell down to my; < 120 GeV]

|Ight nggS qq — qqH — qQQTT [mytavorite; will discuss later]

more challenging channels:

gg — ftH — t?bB [also later]

gg — ttH — ttWW  Jikely to worig

gg — ttH — tirr _[yetunclear]

qq’ — WH — Wbb  iter acD backgrounds]
qq — QQH — Qbe [no ATLAS trigger]

qq — qu — Qi [maybe later]
= Very cool, just H — bb a sad story...

Higgs production and decay: 3

Some numbers behind it

— gluon-fusion production and H — ZZ — 44 no-brainer
[‘golden channel’ above 140 GeV, mass resolution excellent]

— H — WW only slightly harder, but no mass peak
{above 150 GeV, angular correlation, off-shell still not clear] PR

— 6 million light Higgses in gluon fusion: gg — H — ~v
[mass resolution Amyy /my ~ [ /+/S < 0.5%]

— backgrounds smaller in WW fusion: gq — qqH — qqWW
[works off-shell down to my; < 120 GeV]

— light Higgs: 9@ — qQqH ~— Q17 [my favorite; will discuss later]

— more challenging channels:

gqg — ttH — tibb [also later]
gg — ttH — ttWW  [ikely to worl]
agg — ttH — ttrr [yet unclear]
qd’ — WH — Wbl_; [killer QCD backgrounds]
qq — qu — Qbe [no ATLAS trigger]
qq — qqH — qqup  [maybe later]
= Very cool, just H — bb a sad story...
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Higgs production and decay: 3

Some numbers behind it

— gluon-fusion production and H — ZZ — 4u no-brainer
['golden channel' above 140 GeV, mass resolution excellent]
—~ H — WW only slightly harder, but no mass peak

[above 150 GeV, angular correlation, off-shell still not clear]

6 million fight Higgses in gluon fusion: gg — H — vy

[mass resolution Amy /my ~ T/~/S < 0.5%}

[works off-shell down to my < 120 GeV]

||ght nggS qq — QQH — QQTT [myfavorite; will discuss later]
more challenging channels:

gg — t?'H — thE [also later] . 8
gg — ttH — tt WW  liikety to work]

ggqg — t?H — ttrr _lyet unclear]

qq" — WH — Wbb  [kiler aCD backgrounds]
qq — qqH — qgbb [no ATLAS trigger]

qq — qqH — qquu  [maybe later]

= Very cool, just H — bb a sad story...

-

Events / 500 MeV for 105 pb-1

Higgs production and decay: 3

Some numbers behind it

— gluon-fusion production and H — ZZ — 4u no-brainer
['golden channel' above 140 GeV, mass resolution excellent]
— H — WW only slightly harder, but no mass peak

[above 150 GeV, angular correlation, off-sheli still not clear]

6 million light Higgses in gluon fusion: gg — H — ~v

[mass resolution Amy; /myy ~ [/+/S < 0.5%]

[works off-shell down to my; < 120 GeV]

light Higgs: q@ — qqH — qQq7T  [mytavorite; will discuss later]

G000 -

&
_3

backgrounds smaller in WW fusion: gq¢ — qqH — qqWW

HSM — Y

80

backgrounds smaller in WW fusion: q@ — qgH — qqWW

more challenging channels:

ag — ttH — ttbb falso later]
agg — t?H — t?WW [likely to work]
qgg — ttH — ttrr [yet unclear]
qa’ — WH — Wbl_-) [killer QCD backgrounds]
qq — qQqH — qqbb o ATLAS triggen]
gq — qqH — qqQuu  [maybe 1ater]
= Very cool, just H — bb a sad story...

103

Signal significance

10

-232 - 1

fLdu=30 n*
(no K-factors)

ATLAS

= H - ww® - v

n qqH - qq WwW"
4 qqH - qqTT

Total slgnificance




Weak boson fusion: 1

Signal: pp — ggH, H — 717 — eT T 4v

— 7 — £Luyvy nOt reconstructable

— 7 from Higgs decay strongly boosted

[lepton (I?) and T (p) approximately collinear: momentum fraction x]

two hard, isolated leptons
missing transverse momentum
two forward tagging jets

90 GeV< m=! <160 GeV

= solve eqs: Kr,1/x1 +Kr2/X2 = Pr1 +Pr2 = Kr 1 + Kr o + s

= solve for xq, x> and obtain m<! ~ 2(ky - k2)/ (X X2)

‘= mass measurement Amy/my ~ 15 GeV//S ~ 5 GeV

Weak boson fusion: 1

Signal: pp — qqH, H — 77 — et T4y

— 7 — v, not reconstructable

— 7 from Higgs decay strongly boosted

[lepton (I?) and T (D) approximately collinear: momentum fraction x]

two hard, isolated leptons
missing transverse momentum
two forward ta?ging jets

90 GeV< m®!' <160 GeV

T

= solve eqs: kr,i/xi + kr2/X = Br1 + Pra = Kr 1 + kr 2 + pmiss

= solve for x1, x2 and obtain m<! ~ 2(ky - ko) /(x1X2)

=> mass measurement Amy /my ~ 15 GeV/v/S ~ 5 GeV

After acceptance cuts

221t | signalpp — Hsp +jf 1myy = 120Gev)

1230 fb pp — t_t—_-l— jets {tagging jet either t — bW or additional jet]

1050fh | pp — bb+jj witht — eval
49f | pp —» WHW— +jj (QCD) minw — 2]
33fb | pp —» WHW— +jj (EW)
57fb | pp — 77+ jj (QCD)
231 | pp— 77+ jj (EW)

pp — Hsy + jj —» WHW— + jj
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Weak boson fusion: 1

Signal: pp — qqH, H — 77 — eTpuFav two forward tagging jets

44

two hard, isolated leptons
missing transverse momentum

90 GeV< m*! <160 GeV

T — £Lipv+ not reconstructable

7 from Higgs decay strongly boosted

[lepton (k) and T () approximately collinear: momentum fraction x]

solve eqs: kr.1/x1 + k7 a/xo = Br 1 + Pr2 = kr 1 ++ kr 2 + B
solve for xq, x> and obtain m ~ 2(kq - k») /(X1 X2)

TT

mass measurement Amy /my ~ 15 GeV/V'S ~ 5 GeV

Background suppression cuts

=

Weak boson fusion: 1

Signal: pp — qgH, H — 77 — eTpuT4v two forward tagging jets

4

veto central p7, > 20 GeV (tisjets down to 72 1b]

0,0020

pI-,T—liSS > 30 GeV [soft bbjj gone]

1/a da/dMy [Gev™']

0.0015

my; > 800 GeV [{anti-acD: gluons with low m]
non-7 rejection  [anti-w
S/Bupto1/1 for my = 120 + 10 GeV

0.06010

0.000%

0.0000 ===

two hard, isolated leptons
missing transverse momentum

90 GeV< m™

T

<160 GeV

T — £Lipv not reconstructable

7 from Higgs decay strongly boosted

[lepton (k) and 7 (B) approximately collinear: momentum fraction x]

solve eqs: kr 1/X1 +kr 2/Xo = Pr1 + Bra = kr 1 + kr o + piss
solve for xq, xo and obtain me! ~ 2(ky - k2)/(x1x2)

mass measurément Amy/my ~ 15 GeV/v/S ~ 5 GeV

Background suppression cuts

=

veto central pPr, > 20 GeV [ffsjets down to 72 fb]

p‘{-‘iss > 30 GeV [soft bbjj gone]
my > 800 GeV (anti-QCD: giuons with low my]

non-r rejection  [anti-wj
S/Bupto 1A for my = 120 £ 10 GeV
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Weak boson fusion: 2

Anti-QCD: central mini-jet veto

— additional jet emission cross section large (e.g. tf, t{j, ttjj)

00 Sos= [ dog  for pP" ~ 10GeV (WBF)
P plin 40 GeV (QCD)

— veto py, > 20 GeV and n;“i“ <7 < 1" to suppress QCD

— probability like Sudakov: additional jet with pje;  [initial state radiation, pIi™ = 20 Gev]

o5 Opiq pL, 6P
pjet = Teg — Teg f(nv pjet) = f(n ;A Ol pjet) E 1 —€e pjel
Oy On n!

veto probabilities 0.88 (signal) and 0.85...0.24 (backgrounds)
= 8/B=2.8/1 for my = 1204+ 10 GeV

Both 77 channels with safe margins (standard Model with 60—

My[GeV] 100 110 120 130 140 150
€ - Ogig (fb) 062 058 050 037 023 011
S 374 350 300 223 137 6.5
B 675 270 108 6.7 5.7 53
S/B 0.6 1.3 2.8 3.3 24 1.2
Tgauss (dual leptonic) 4.2 5.7 6.9 6.2 4.4 23
oGauss (lepton-hadron) 57 7.4 6.3 4.7 2.6

Weak boson fusion: 2

Anti-QCD: central mini-jet veto

— additional jet emission cross section large (e.g. tt, ttj, ttjj)
o0

oo Sog= [ dog for pP" ~ 10GeV (WBF)
T p™" ~ 40 GeV (QCD)

— veto pr, > 20 GeV and n}“i“ < nj < nf™™ to suppress QCD

— probability like Sudakov: additional jet with pje; [initial state radiation, p™ = 20 Gev]

reg reg N a—Pijet
o g pt e Pi
_ Y3 _ “nH R _ Fjet . . —D:
Piet = —teg = —reg f(n; Pjer) = — f(n#0;pjer) =1—¢ Piet
g5 On n!

veto probabilities 0.88 (signal) and 0.85...0.24 (backgrounds)
= S§/B=2.8/1 for my = 120 & 10 GeV

General features of WBF production

— cross section 10 - - - 3 pb for my < 200 GeV
= (H — vy)@50 fo~" for my = 110---145 GeV [y~ mass resolution]
(H — rT)@60 fo—1 for my = 100 ---140 GeV {epton-hadron and dual lepton]
(H - ww)@5 tb—1 for myy = 140 - - - 200 GeV
even invisible higgs decay observabieB3 -



Top—Higgs production

Decay H — bb for a light Higgs?

— what about the 90% of Higgses decaying to bb?

— gluon-fusion: killed by QCD background

— WBF fusion: no trigger, killed by QCD backgrounds

— WH production: killed by low rate and NLO background
— o(ttH) ~ 100 fb

t?H, H — b[—) for a Ilght HIggS [Atlas study, CMS-TDR even worse]

trigger: one t — bW+ — béty
reconstruction and rate: one t — bW+ — bjj
continuum background tfbb, tfjj (weighted by b-ag]
reconstruct my in pp — 4beag 24 Lv

Lo
B g

I
=
a

Fraction of events
=2
|

= higher lumi means poorer b-tag, no-win 02f
= likely to be ‘challenging’

]

Number of choices

Top—Higgs production

Decay H — bb for a light Higgs?

— what about the 90% of Higgses decaying to bb?

— gluon-fusion: killed by QCD background

— WBF fusion: no trigger, killed by QCD backgrounds

— WH production: killed by low rate and NLO background
— o(ttH) ~ 100 fb

tTH H — bbfor a light Higgs [atas study, CMS-TDR even worse]

— trigger: one t — bW+ — bety
— reconstruction and rate: one t — bW — bjj

— continuum background tfbb, tTjj (weighted by btag) 3'°F Euuuzm
. ] O o i
— reconstruct my in pp — 4biag 2j fv o B tbb (QCD)
. ) . g B ubb (£
= higher lumi means poorer b-tag, no-win E %
[~
= likely to be ‘challenging’ 5 “
20
0 100 150 200 250 300 300 200

m,, (GeV)
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Top—Higgs pr_oduction

Decay H — bb for a light Higgs?

— what about the 90% of Higgses decaying to bb?

— gluon-fusion: killed by QCD background

— WBF fusion: no trigger, killed by QCD backgrounds

— WH production: killed by low rate and NLO background
— o(ttH) ~ 100 fb

ﬁH, H — bb fora light Higgs [Atias study, CMS-TDR even worss]

— trigger: one t — bWT — bity

reconstruction and rate: one t — bW+ — bjj
continuum background tfbb, tTjj weigntedby btag) &

@  TUH reconsiruction method
%  Likelihood recomstruction
et ———>J-——| A LHbightum

¥« Ln isthe (low lami)

reconstruct my in pp — 4bgag 2 Lv

e _.|_ T e e

= higher lumi means poorer b-tag, no-win

S e W By S 1 e
M R Bk ol ) e Ak M

= likely to be ‘challenging’ F e T~ | N
__tt'im ;X"Lii_

H———F+

1o l:l‘l |£0 130 luliU
my (GeV)

Higgs couplings

Coupling extraction at the LHC

— motivation: e.g. little Higgs axions vs. radion vs. Higgs?

— measurements: gg : H —» ZZ / WW, vy
W :H—ZZ,WW,yy, 17
ttH : H — WW , bb...

— light Higgs: 8 good o - BR plus H — bb
— extract: couplingsto W,Z,¢t, b, 1,9, , invisible
— most complete: 8 parameters (pius Higgs mass]
— trick: cancel uncertainties

(WBF : H— WW)/(WBF : H— 71)
(WBF : H— WW)/(gg : H— WW)...

— goals: Higgs vs. scalars? SM vs MSSM? doublet vs. general Higgs?

= unwanted assumption: gywy < gzzy via SU(2)
unwanted assumption: gppy — g, -4 Via down-type Yukawa
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Higgs couplings

Coupling extraction at the LHC

— motivation: e.g. little Higgs axions vs. radion vs. Higgs?

— measurements: gg : H — ZZ , WW, v~
\{V cH—=ZZ, WW, vy, 77
ttH : H — WW , bb...

— light Higgs: 8 good ¢ - BR plus H — bb

— extract: couplingsto W, Z,t, b, 1,9,~, invisible &
— most complete: 8 parameters [plus Higgs mass] g

Include total width

— on-shell degeneracy: ¢ BR « (gﬁ/\/rT,) (95/vVThH)

[from (WBF : WW /T ) measure g / 9+ H]

— additional constraint: 3°T;(g%) < Ty = Tt|min
— WW — WW unitarity: guwn < gy = T H|max
= couplings and width extraction great but hard

Higgs potential and self coupling

Higgs self coupling

and self couplings A3y /day = v

Higgs pair production

scalar with Yukawa couplings to fermions, so what?
renormalizable SM potential: 42 = —Av? with A = m? /(2v?)

MSSM: A\3p /gy = vsin(B + a)/ cos2a
D6 operator: u?/v? = —Xg +3XAv2/(4A2%) and X = Xg — 3\ vZ/(2A2).

2 Experiments
L dt=2*300 b '

Bl bl dsebinaliidann et i

oy
110 120 130 140 150 160 170 180 190
m, [GeV]

— HH — 4W': serious detector simulation needed, not hopeless

[use observable m,; to determine Xy, need NLO o (tf/)]

— HH — bbrr: miracle required

— HH — 4b: several major miracles mandatory

[ILC in better shape]

[might come out of 1112 mass resolution]

= serious challenge to detectors and machine i

"HH — bbyy: small miracle would be helpful

HH — bb~y~: some enhancement needed

(- Aaw)/Nsu
[
|

A gy

] T I
pp+t+e]
VE = 14 TeV
857 CL Uimits
i

...... ™ au

.8000 ™"
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Spin and CP

Higgs Spin
— spin-1/2 not coupling to WW, gg; no production
— spin-1 not coupling to vy on mass shell [Landau-Yang theorem for spin-1 bosons]

— threshold behavior in H — ZZ for my; ~ 155 GeV
do 1

= spin-0 fairly obvious
1
7 o 1+ acos ¢ + b cos(2¢) a_1=0 b_;= i a1 (my) > 3

= easywithH — ZZ

Scalar or pseudoscalar?

— pseudoscalar couplings guyy /A ~ e#?P7p,pl A
— decay—plane angle

Spin and CP

Higgs Spin

— spin-1/2 not coupling to WW, gg; no production
— spin-1 not coupling to v+ on mass shell  [Landau-Yang theorem for spin-1 bosons]
— threshold behavior in H — ZZ for my ~ 155 GeV

= spin-0 fairly obvious

Scalar or pseudoscalar?

— pseudoscalar couplings guyyy /A ~ e#*Pop,pl A
— decay-plane angle

do 1
E;oc1+acos¢+bcos(2¢) a_1=0 b_1=Z

= easy withH — ZZ

;
ap1(my) > 7]

Coupling structures - doldad, (h->rr) [fo]

0006 " MA120Gev  ee,

— same azimuthal angle between jets in WBF Y Eha N
~ distinguish: g,..,, CP-even T,,,,, CP-odd e T

= independent of decay ol :
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Modern statistics

Statistics: Neyman—Pearson lemma

assume correct hypothsis my: Higgs signal
assume wrong hypothsis m»: SM background

likelihood ratio p(d|my)/p(d|m2) most powerful estimator

[lowest probability to mistake right for fluctuation of wrong ( type-lt eror)]

probability of event p(d|m) ~ |M|?

combined likelihood ratios of events — PS integral over likelihood ratio
= Compute maximum statistical significance

Matrix element method

— compute likelihood of top events estimating | M |2
— maximize probability p(d|SM, m;) as function of m;...

Modern statistics

Statistics: Neyman—Pearson lemma
— assume correct hypothsis my: Higgs signal
assume wrong hypothsis m>: SM background
— likelihood ratio p(d|my)/p(d|my) most powerful estimator
[lowest probability to mistake right for fluctuation of wrong ( type-Il error)]
— probability of event p(d|m) ~ |M|?
— combined likelihood ratios of events — PS integral over likelihood ratio
= Compute maximum statistical significance

Maximum significance for LHC signals

— example: Poisson statistics [p(n|s + b) = e~ D (s + b)"/n1]
p(n|s + b) ( S) ( s,~>
gq=log——F———=-s+nlog{1+—-}) — — s + ni log {1+ —
9 p(nib) b ; / ; d by

— phase space integration of s, b — p(s,b) ~ | M p|? (LEP-Higgs inspired]

IMs(F)12>

q(r) = —osL 4+ log (1 + W

— probability distribution function via Fourier transform: ps 5(q)
— compute CLy(q) = fq°° dq’'pp(q’) 240, =2.8510~7)



Modern statistics

Statistics: Neyman—Pearson lemma
— assume correct hypothsis my: Higgs signal
assume wrong hypothsis m»: SM background
— likelihood ratio p(d|m1)/p(d|m>) most powerful estimator
[lowest probability to mistake right for fluctuation of wrong ( type-Il error)]
— probability of event p(d|m) ~ |M|?
— combined likelihood ratios of events — PS integral over likelihood ratio
= Compute maximum statistical significance

Py SN Psin 300 b

0.1

0.05

-30 20 -10 0 10 e 30 101171 118 |I19 120 121 122 123
q m, (GeV]

Modern statistics

Statistics: Neyman—Pearson lemma
— assume correct hypothsis m,: Higgs signal
assume wrong hypothsis m»: SM background
- likelihood ratio p(d|m4)/p(d|m2) most powerful estimator
[lowest prabability to mistake right for fluctuation of wrong ( type-Il error)]
— probability of event p(d|m) ~ |M|2
— combined likelihood ratios of events — PS integral over likelihood ratio
= Compute maximum statistical significance

Semi-realistic results
— irreducible & unsmeared
Tiot = /dPS Mps dO’ps = /dFM(F) dO’(F)
— smearing AmWidth - A mmeas
g n M . -
o= [ dFidey, [ o M) do () Wirm 1)

— acceptance cuts to reduce phase space...
= WBF H — pu: 3.50 in 300 fo—!

= Tool works, waiting for applications



Outlook

Standard-Model Higgs at the LHC

— we will find it in more than one channel for all my

— we will measure many properties more or less well:
set of couplings and width
self coupling (only Ayyy)
CP properties and WWH coupling structure
invisible decays

Higgs to muons (2nd generation Yukawa)
former stealth models...

— hardly anything still correct in Higgs chapter of Atlas TDR

for WBF we need to understand central jet veto (or give up and measure it}
for some measurements we need NLO backgrounds

it is a disgrace that we will miss H — bb

¢4

higher-dimensional operators mandatory fitte done yet]
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Phenomenology 3: Supersymmetry

Tilman Plehn

MPI far Physik & University of Edinburgh

RAL School, Oxford, 9/2007

Outline

Standard—Model effective theory
TeV—scale supersymmetry
Supersymmetric signatures

New physics mass measurements
New physics spin measurements

Supersymmetric parameter studies
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Standard—Model effecive theory: 1

What is the Standard Model?

a gauge theory with the group structure SU(3) ® SU(2) ® U(1)
massless SU(3) and U(1) gauge bosons
massive electroweak gauge bosons from spontaneous symmetry breaking

[Higgs mechanism with v = 246 GeV and m; unknown)
— Dirac fermions in doublets and with masses equal to Yukawas
— generation mixing in quark and neutrino sector
= defined by particle content and (gauge) interactions

Confronted with data

— renormalizable Lagrangian a la 't Hooft & Thomas Teubner (ai operators to D4]
— neutrino Masses? (seesawat 1071 Gev?]

— flavor thSiCS? [new operators above 10% GeV7]

— dark matter? [only solid evidence for new physics]

- gr avity? [mostly negligible, and unrenormalizable in usual sensej
= general effective—theory Lagrangian with those interactions and particles
= cutoff scale built in, size of A negotiable
= who the hell cares....???

Standard—Model effective theory: 2

H H
...theorists care! Q {::}
t w

— compute loop corrections to scalar Higgs mass
— top loop in Higgs self energy *
ZN_(gmt>2 d'q  (B+m)(B+d+m) 1 (gm,>2A2+‘”
v @m)* a2 — m{]1[(q + p)? — mi] (4m)2 \ v

— sum to Higgs—mass correction
1 1 1 1 1 1 1
— + + X 7
p2—miy  pP—my  pP—mp pP—mp  pP—mi p?—mp p?—mp
1 = ) B 1 1
- —m? Z p2 — m2 -
H |- H

B R P .
1 m* — my

— and see the desaster after collecting all loop functions
e g S
i Ho 32n2 mg,

= Higgs mass including loops wants to be cutoff scale A
= Standard—Model effective theory destabilized between v and A

[mf,+2mfy+m§—4mf] 8-

{Higgs wants to be at A, but would not function as Higgs there]

= hierarchy problem
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Standard—Model effective theory: 3

Starting from data...

— ...which seems to indicate a light Higgs (e-w precision data]
— ...and seems to require higher—scale physics (neutrino masses, flavor,...]
— problem of light Higgs:  mass driven to cutoff of effective Standard Model:
omz, /m2, oc g2(2m2, 4+ m2 + m?, — 4m?) N2
= easy solution: counter term to cancel loops =- artificial, unmotivated, ugly

= or new physics at TeV scale:  supersymmetry
extra dimensions
littte Higgs (Goldstone Higgs)
Higgsless, composite Higgs, TopColor,
YourFavoriteNewPhysics...

= typically cancellation by new particles or discussing away high scale

= beautiful concepts, but problematic at TeV scale (data seriously in the way]
= new physics models in baroque state

Idea of supersymmetr'y:
cancellation of divergences through statistics factor (-1)

[ SM fermions to scalar; SM gauge bosons to fermions; SM scalars to fermions]

(off to whiteboard to contract lots of indices...)

TeV—scale supersymmetry

SUSY breaking: (yet) unobserved partners heavy

— link to BSM dark matter

— linkto BSM (g — 2),,?

— link to flavor physics and baryogenesis? [standard Mode! fine?7]

— mechanism for SUSY masses unknown [soft SUSY breaking mediated somehow?]

maximally blind mediation: mMSUGRA  jnot a LHC paradigmi]
scalars: mo, fermions: my 5, tri-scalar term: Ag
plus sign(x) and tan 3 in Higgs sector

— alternatives: gauge, anomaly, gaugino mediation - - - ?
=> measure spectrum at LHC instead

LHC phenomenology: MSSM

— conjugate Higgs field not allowed _ Spio_y_col
. P fermion i IR 172 1+1
— give mass to { and b? — sfermion f . Tn 0 141
— two Higgs doublets gluon Gu 7 e ,
— gluino g 172 2 Majorana
— SUSY Higgs alone interesting gaugebosons -, Z 1 243
Higgs bosons ho, HO, A° 0 3
= would be another talk... — neutralinos %2 12 | 4-2 | LsP?
auge bosons w= 1 .
= SUSY partners at LHC Mo HE o | 2
=2fldgmos  xF 172 | 2.4




Supersymmetric signatures: 1

Inclusive: squarks and gluinos at Tevatron

o

— squarks, gluinos strongly interacting
PP — §G*,G43,9G toestit m@) ~ m(G)]
— large rates at hadron colliders
— decays to jets and LSP
d— 69, — 9x3, 4r — X3

[additional jets and leptons possible]

Squark Mass (GeV/c?)
&

— gaugino mass unification assumed for details ~ "°F
= we know inclusive jets plus LSP

Gluino Mass (GeVIcz)

Supersymmetric signatures: 1

Inclusive: squarks and gluinos at Tevatron

— squarks, gluinos strongly interacting
ppP — GG*,q3,9G tbestit m@) ~ m(3)l
large rates at hadron colliders
decays to jets and LSP

g — 4§, 4. — 9%3, Gr — g8

[additional jets and leptons possible]

Squark Mass (GeV/cz)

— gaugino mass unification assumed for details
= we know inclusive jets plus LSP

Gluino Mass (GeWcz)

When do we see SUSY-QCD?

g o f
....p....
— gluinos: strongly interacting Majorana fermions X ; !ﬁi

— first jet in gluino decay: q or q
— final-state leptons with both charges

g i 5
= like—sign dileptons from §g WW
"
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Supersymmetric signatures: 2

New physics at the LHC

(1) possible discovery — signals for new physics, exclusion of parameter space
(2) measurements

(3) parameter studies

1200

ane year

1000 yi@qpa4
>
3
< 500
g one year
@1033
600 —
one month
f@1033
400 4
one week
3 -. :
€0 Sm — cosmologically plausble

region
Fermitab reach: < 500 GeV s:i

500 1000 1500 2000
mgy (GeV)

Supersymmetric signatures: 2

New physics at the LHC

(1) possible discavery — signals for new physics, exclusion of parameter space
(2) measurements — masses, cross sections, decays

() parameter studies — MSSM Lagrangian, SUSY breaking

= approach independent of new physics model

10 T e T

0,,,[pb): pp — 88, 4. 1L, X5X} 99, T8 i ]

Some SUSY signals at Tevatron

1 S =2TeV .
— jets and &r: pp — §4*,39,99 : — Mo
— like—sign dileptons: pp — gg 0l ]
i \ ﬂ \ EL :

— funny tops: pp — Gt

\\

i\

GeV
S L) .."'L'L‘..F

100 150 200 250 300 350 400 450 500

— tri-leptons: pp — X2X1_ L 3

[XO — i —

2 x?d: Xy — x?em
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Supersymmetric signatures: 2

New physics at the LHC

(1) possible discavery — signals for new physics, exclusion of parameter space
(2) measurements — masses, cross sections, decays

(3) parameter studies — MSSM Lagrangian, SUSY breaking

= approach independent of new physics model

Some SUSY signals at LHC
o . Ny oeoe e 103;'""i""l'"'I""I""J""I""I""_I_:
jets and 7 pp — qq ’gg~ ’~qg F o a_ Swd?bl pp 28 30, 4T, X3} 99 138,250
— like—sign dileptons: pp — gg 102;_ = N ««“::xa\ i
— funny tops: pp — H 3 TT'"'T["“‘-‘E%T{‘
10 -0 -
A D
" Iept_c_)ns. PP——’ X2Xi Al \\ % P
%9 — 22 — xJeli %, — =m0 L i ﬂ“ﬂ R
= inclusive: similar to Tevatron w0l ™ i .
= exclusive: enough events for studies 2 TF 2 mimf
10 e e
New physics mass measurements: 1 .
b i
LW/ ”
Spectra from cascade decays * . > 4&
= _ N b b
— decay g — bb — )Zgbb — /1,+,u,_bb)2(1) [better notvia Z orto 7] 8 u
— cross sections some 100 pb  [more than 3 x 107 events]
— thresholds & edges
m, —m2 m5 —m?,
2 X2 £t x4
My < pen .
£ £

= spectrum information from decay kinematics [mass difierences with smaller errors]

Gluino mass from kinematic endpoints

— all decay jets b-tagged [otherwise dead by QCD]
— most of time: cascade as o

= gluino mass to ~ 1%

300 400
icle masses and mass ditferences [GeV]
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New physics mass measurements: 2

Squarks and gluinos always with many jets [aco lecture]

cascade studies sensitive to jet simulation?

matrix element gg+2j and &, g+2j ipy; > 100Gev]

o [pb] ttang gg g
— compared with Pythia shower E, R s
ay;j 0.73 2.89 2.74
— hard scale pg huge for SUSY oo 026 109 085
= Shower and matrix element identical for SUSY
3 P PPotl) ] PI (pp 3t T P (ot
g ; 250GV | Py 250 GoV Pr 250 GeV
a Inj<5. AR0.4 %
§ e )
T RN
2 ~ A ‘Q;;',_-_ .
| L VS 2 LN TN
3 P (pp—20, 0, P (Pp—20,0,)
! P2100GeV | Pr2100GeV |
(<%
g .
S0
5
10 F ~ \
(; 100 200 300 400 0 100 200 300 400 0 100 200 300 400 GeV
New physics spin measurements: 1 i #
M
All new physics is hypothesis testing i ad
ot o R R
— assume squark cascade observed a Rk oa

= strongly interacting scalar? '

= straw-man model where squark is a fermion: universal extra dimensions

[spectra degenerate — ignare; cross section larger — ignore]

Squark cascade §; — qx3 — q¢f — qeex°

(1) compare with first excited Z and £  jassume nearffar lepton for now]
— polarization: 1: (qc, ¢ ,¢/")
2:(qu, &, 0)=(qL, er , €5)=(aL, ¢, €])
— distribution of angle 6 between g and £: dP{Y /d cos 6 o (1 F cos 6)

(2) mass variable: m = mq,/mgflx =sing/2
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New physics spin measurements: 1 a u

All new physics is hypothesis testing ! / {{D;
e Tl

— assume squark cascade observed
= strongly interacting scalar? F

o1

= straw-man model where squark is a fermion: universal extra dimensions

[spectra degenerate — ignore; cross section larger — ignore}

Squark cascade §; — qx3 — q¢f — qefx$

(1) compare with first excited Z and £ {assume nearftar lepton for now]
— polarization: 1: (q., ¢, ¢])
2:(qu, £, 40)=(qu, £, 45)=(GL, £, &)
— distribution of angle 6 between g and ¢£: dP{'}°¥/d cos 6 oc (1 F cos §)

(2) mass variable: m = mq,/mg}a" =sing/2

UED and SUSY distributions [SPS1a spectrum]

PSUSY dPSUSY
P s e am (1 - #)
dm dm
PUE dPUED R R
dd‘m =1.213M+3.108 M -2.310/M°  —2— =2.020 M + 1.493M°—2.310 A°
New physics spin measurements: 2 f n

— assume squark cascade observed
= strongly interacting scalar?

L
All new physics is hypothesis testing Z il Q

= straw-man model where squark is a fermion: universal extra dimensions

[spectra degenerate — ignore; cross section larger — ignore]

Squark cascade G, — q¥3 — g€l — qefx®

(1) compare with first excited Z and £  [assume nearffarlepton for now]
13 T

— polarization: 1: (q;, ¢, ,¢]")

02

2: (gL, 4/ 4) :

01 |- 1 I_r

— distribution of angle 8 between q and ¢
(2) mass variable: m = mq,/mgf”c =sing/2
— typically largest pp — g
(3) production asymmetry q : g* ~2: 1

= A = [O'UE_'_) —_ U([E_)]/[O'(l£+) —+ O'(IK_)] —u.sn_ : ola o.lq = N .n.la = 'o.ls 2
Masses or spin or both? m
— masses from kinematic endpoints fusemy;, myq, mjpq-..1

— spins from distributions between endpoints [endpoints identical in SUSY and UED]
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New physics spin measurements: 3

Back to sign of SUSY-QCD

— like—sign dileptons indicate Majorana fermion?
— always like—sign dileptons from bosonic gluon
= show gluino fermionic
= compare with usual UED straw man

New physics spin measurements: 3

Back to sign of SUSY-QCD

— like—sign dileptons indicate Majorana fermion?
— always like—sign dileptons from bosonic gluon
= show gluino fermionic
= compare with usual UED straw man

Gluino—-bottom cascade

— decay chain like for gluino mass
compare with first KK g, q, Z, ¢, v

replace initial-state asymmetry by b vs. b
independent of production channels

asymmetry to write down:
A= [o(btT) — o(bt™)]/[o(btt) + a(be™)]

[still visible after cuts and smearing]

— Tim: yet another reason for detector upgrade
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do/dm,* [b/GeV]

da/dmyt [{b/GeV]

= (g(bI")-o(bI))/sum

At

A = (0(01*}-0(b)Vaum

Af = (9(bl*)-g(bl))eum

0% Il Liiail L I I i i
Wa 125 150 175 200 225 250 275 300 325 350

b H
Lﬂvﬁvﬁ/ ;
T i
~ e -
b X2 "
g b4

CPEPTY PRTH PPy PPO] o | L
g 125 150 175 200 225 250 715 300 325 350

mt [GeV]

SUSY(eHi+1)
wennes VRt

_____.J;;_r_,_{,_,—}j ol By a3

L=600 i
b cuny

I f L 1 L I i L i L
I 125 150 195 200 225 250 275 300 325 350

mt [GeV)

2 (GeV)



New physics spin measurements: 3

Back to sign of SUSY-QCD

— like—sign dileptons indicate Majorana fermion?

A* = (G(bl*)-a(bl )ysum

— always like—sign dileptons from bosonic gluon
= show gluino fermionic
= compare with usual UED straw man

Gluino—bottom cascade

— interchange 7, g in cascade
— test of lepton-ino couplings

L% da/dAD,, [eventsbin]

purely hadronic ¢pp
independent of weak decays

i L i L I I L L
0 20 o 60 0 100 10 140 o (L

sensitive to gluino/KK-gluon boost 60, laeg)

= masses and spins from decays, but messy

Supersymmetric parameters: 1

Theory output from LHC: SUSY parameters

— parameters: weak-scale Lagrangian

— measurements: masses or edges
branching fractions
cross sections

— errors: general correlation, statistics & systematics & theory

— problem in grid: huge phase space, local minimum?
problem in fit: domain walls, global minimum?

First go at problem

— ask a friend how SUSY is broken = mSUGRA
— fitmg, my s, Ag, tan 3, sign(u), yt, -..
— no problem, include indirect constraints

= probability map as of today

= best {it from LHC/ILC measurements

SPS1a ALHC ALHC AILC ALHC+ILC

masses edges
mg 100 3.9 1.2 0.09 0.08
my /2 250 17 1.0 0.13 0.1

tn'g | 10 1.1 0.9 0.12 0.12
Ag -252 -100 33 20 48 43




Supersymmetric parameters: 1

Theory output from LHC: SUSY parameters

parameters: weak-scale Lagrangian

measurements: masses or edges
branching fractions
cross sections

errors: general correlation, statistics & systematics & theory

problem in grid: huge phase space, local minimum?
problem in fit: domain walls, global minimum?

; HC ic LAC+ILC __ &Psia
MSSM instead of mSUGRA tang 10.22%9.1 10.2610.3 10.06£0.2 70
. My 10245453  102.32:40.1 102.2340.1 102.2

— (1) grid for closed subset M3 578.67+15 fix500  586.05+11 5894
(Efitofohar pammeters Jilw | ies  imeses imgies s

(3) complete fit Mg, 198.745.1 198.740.5 198.740.5 198.7

= too few measurements? Mga, 498.3E110 497 6E4.4 5219139 5013
Secondary minima? ... M—t-R fix 500 4204241 411.731+12 420.2
M, 522.26+113 fix 500 504.35+ 61 525.6

Ar fix0  -202.4189.5 3521 F171 2535

At 507.8491  501.954+27  -505244+33  -504.9

Ap -784.74-35603 fix0O  -977412467  -799.4

Supersymmetric parameters: 2

Probability maps of new physics

— Bayes’ theorem: p(m|d) = p(d]m) p(m)/p(d) [p(d) through normalization]
— Pythia/Herwig/Sherpa: data given a model p(d|m) ~ |M|?
— theorist’s prejudice: model p(m)

= given measurements: (1) compute map p(m|d) of parameter space
(2) rank local maxima

Bayesian or frequentist?

— test function V()?) in 5 dimensions  [general high-dimensional extraction tool]

— bestitting point: small sphere
most likely scenatio: large sphere  waterin spoon/cioud]

V=74.929 @(655.00,253.72,347.83,348.57,349.59)
V=59.972 @(850.04,224.99,650.00,649.99,654.56)
V=58.219 @(849.97,225.01,587.08,650.01,650.02)
V=25.110 @(750.00,749.99,450.00,450.01,450.01)
V=16.042 @(245.45,253.44,5562.51,542.58,544.75)
V=12.116 @(350.70,650.40,650.36,650.40,650.38)




Supersymmetric parameters: 2

Probability maps of new physics

- Bayes’ theorem: p(m|d) = p(d]m) p(m)/p(d) [p(d) through normalization]
— Pythia/Herwig/Sherpa: data given a model p(d|m) ~ |M]?
— theorist’s prejudice: model p(m)

= given measurements: {1) compute map p(m|d) of parameter space
(2) rank local maxima

mSUGRA with today’s measurements alone

— electroweak precision data

my (TeV)

0 0.20.40.60.8 1 1.21.41.61.8 2
M, (TeV)

Supersymmetric parameters: 2

Probability maps of new physics

— Bayes’ theorem: p(m|d) = p(d|m) p(m)/p(d) is(d) through normalization]
— Pythia/Herwig/Sherpa: data given a model p(d|m) ~ |M|?
— theorist’s prejudice: model p(m)

= given measurements: (1) compute map p(m|d) of parameter space
(2) rank local maxima

MSUGRA with LHC measurements alone

— SPS1a kinematic edges

1e+09
1e+08
1e+07
1e+06
100000
10000
1000

Mz

0 200 400 600 800 1000 4] 200 400 600 800 1000
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New physics at the LHC

Supersymmetry as a well-studied example for BSM physics

inclusive signatures from Tevatron
exclusive analysis only at LHC

mass and spin measurements
parameter extraction/probability maps

|
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Phenomenology 4: Extra Dimensions

Tilman Plehn

MPI fiir Physik & University of Edinburgh

RAL School, Oxford, 9/2007

Outline

Large extra dimensions

Large extra dimensions at the LHC

Warped extra dimensions

Warped extra dimensions at the LHC
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Large extra dimensions: 1

Remember the hierarchy problem

— fundamental scalars cannot deal with a high scale in theory

— weakness of gravitational interaction means large Planck scale
Gy = 1/(167Mpianck)?

= solution: there is another reason why we see a huge Mpjancx

Large extra dimensions (ADD)
— Einstein—Hilbert action for fundamental Planck scale
S = —% / d*x+/|g|M2R — —%/ d**"x/1gI M R
— compactify additional dimensions on torus
S= —% / ¢y /IgIMET R = —%(27”)" / d*x+/[g] M2 R
— match the two theories on our brane faiso: match to measurements]

1 1
—E(zwr)”/d“xv |g|M$+"RE—§/d4XV |91 Munex R

= express the 4D Planck scale in terms of fundamental Planck scale
Mplanck = M (27TI’M* )n/2

Large extra dimensions: 1

Remember the hierarchy problem

— fundamental scalars cannot deal with a high scale in theory

— weakness of gravitational interaction means large Planck scale
Gy = 1/(16mMpianck)?

= solution: there is another reason why we see a huge Mpianck

Numbers to make it work

— wanted rM,. > 1
— constraints from gravity tests above O(mm)

— M. =1TeV < Mpjanck fine forn > 2 n !
1 10? m
2| 103m
3] 107 %m
6 | 100" m

= signatures of strong gravitation in extra dimension?
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Large extra dimensions: 2

Only gravitons in extra dimensions

— expand the metric in (4 + n) dimensions (graviton field A}

1
ds? = gitMaxMaxN = (77MN = W’W’V) dxMdxN

include matter into Einstein’s equation

gasR = —

Bae —
ABT 2% n m2+n

00 h(m) (x)

hAB(X;y): Z Z \/W

my=—o0 m]:-—'OO

KK mass splitting . =17V

1 M 2/n 0.003 eV
5m ~ — = 27M, ( - ) —{ 0.1 MeV
r Metanck 0.05 GeV

Large extra dimensions at the LHC: 1

Gravitons for LHC phenomenologists

— tower of KK tensor gravitons G( ) with mass my
— mass splitting 6m < GeV  [below mass resolution]

L( Tuu(X)oé(”)(y) 0 )

only the interacting (tensor) graviton (h,5 — 6., QCD massiess]

1 8 ay
D G u h _T v v
( +mk) a MPlanck [ # + < m + - )

0

Fourier transformation of extra dimensions [k excitations for periodic boundary conditions]

MY
r

TR = =T
3 N MPlanck
(n=2)
(n=4)
(n=6)

— universal couplings to massless SM particles via — T . / Mpjancx

flkt) ~ Flk2) = Guv s — i —
anci

= KK gravitons light and weakly coupled

Hope for collider searches

— real radiation of continuous KK tower (dam/d|k| = 1/ri(do) < 1/M3, 4]

n—1 M
dotower — (dO’) /dm 85_1m"—1r'7 = (dO')/dm 3252_7:&1)’1 ( Planck

M.

— higher-dimensional operator from virtual graviton exchange (s—channetin DY]

A__

1 1 Ss_1 A2

= 1/M? interactions after integration over KK tower
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Large extra dimensions at the LHC: 2

Gravitons radiation

— off single—jet production huge rate]
— off DY pl’OdUCtiOl’l [precise knowledge]
— background: radiation of Z — v [measure Z — ££ and subtract]

104 -\{I L L B S B LA
\b Vs = 14 TeV LHC
B By > 1 TeV

o(pp - jet + By) [fb]

= jet channel no challenge at LHC

Large extra dimensions at the LHC: 2

Gravitons radiation

— off single—jet production [nuge rate]
— off DY pl’OdUCtiOﬂ [precise knowledge]
= jet channel no challenge at LHC

Virtual gravitons

— s channel gg — ptp~ new at LHC
— s channel gg — jets useless [QCD background uncertainty huge]
— effective field theory in Mpanck  11/M2%; better)

§ e 56: pp = 1'T (D8)
MplTeV, Sa:pp - 1'T (D8) Mmrrgv}__
10 | g
[--- 100" . SF
8 -1 = L
g [— 10/ b .
M_
6 [ 3k
. , b
41 : --nr 100 B
2 | 1 F — 10!
o Bt e et iy
0 2 4

8
A {TeV]




Warped extra dimensions: 1

Alternative Solution

— try one extra dimension, but not flat revbrane aty = 6] _oK|y|
2 _ g—2kly| K xY 2 _ (e Vw0
ds“=e Nuvdxtdx” —dy® <& gap =
0 ik
— integration measure in our usual Lagrangian d*xe=* g, = nu.

S= / dys(y) d*% e~ £ — / d*% e~ [IDuHP — M(IHP —v?) + ..

— write effecive 4D theory on TeV brane scaling all fields

A=e"H scalars
A, —e ™A,  orD,=e "D,
U =e /2y fermions
m=e"m

v =e Ky

— assume kb ~ 35 and large M* ~ k ~ Mpianck
= mass scale on TeV brane shifted

¥ ~ 0.1 Mpapex ~ 0.1 TeV

Warped extra dimensions: 2

Gravitons in one warped extra dimension
— re-write the metric including 4D graviton

1 v
ds? = vy (n‘w + hpuu(x, z) dxtdx? — dzz)

—-solve Einstein’s equations separating variables by, (x, z) = h,., (x)®(2)
8,0*h,, = m?h,,

15 k2

= ¢ =nl
2 (kzl+z "

—82¢ +
= Bessel functions, masses given by roots J1(Xj) = 0  Neumann boundary conditions]
mj=x ke X  x=38,7.0,10.2,16.5, ...
— couplings via wave-function overlap in zZ [approximately, neglect Bessel functions]
®(2)| oy LY Kz + 1| pianei -~ 1 1
@l VRl Ve, €072

= universal couplings except for zero mode graviton

1 0 1
E = T,uuh( 3 + Ty E :h(’:'l)
Mpianck # Mpianck e —*° #
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Warped extra dimensions at the LHC

TeV-scale resonances to e.g. leptons, revisited...

Extra Dimensions at the LHC

Extra dimensions alternative scenario for LHC

interesting new model
signal: missing energy or resonances

!

no challenge for LHC trigger

identification of model parameters?
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