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RAL Summer School for Experimental High Energy Physicists

Somerville College, Oxford, 31 August - 12 September 2008
Preface

Somerville College, a new venue for the School in 2008, offered a pleasant location in Oxford, with
the facilities of a college available which match well to the requirements of the school.

There were some teething troubles. For example, the computing took a couple of days to sort out,
which caused frustration. However, from the director's perspective, removing the distractions of the
internet was not such a bad idea! Also, for various reasons, which included large windows which
were difficult to close, the lecture theatre was not ideal. The cool/cold draughts experienced
reminded one that the English summer does not always stretch into September and a proposal that
the school be re-titled as an Autumn school would find many supporters.

On the whole the accommodation was satisfactory. Some problems were encountered but the
college was able to address these. The food was good, but repetitive, and in the second week the
overall quality declined. There were also some complications with the meals required for the
Ramadan fast.

The Conference Organiser at Somerville, Charlotte de Buriatte, was very helpful and keen to engage
with the problems encountered and to solve them.

The School was attended by 62 students, 4 lecturers, 7 tutors and the director. The coordination
was provided by Margaret Evans, who will continue to provide much-needed expertise for the next
couple of years. The lecturers at the school, and the courses they gave, were:

Mrinal Dasgupta (Manchester), “Quantum Field Theory”
Nick Evans (Southampton, “Quantum Electrodynamics”
Frank Krauss (IPPP Durham), “Phenomenology”

Thomas Teubner (Liverpool), “Standard Model”

The lectures were all well prepared and delivered and appreciated by the students, as is evinced by
the results of the questionnaire they completed. There was perhaps, an over-emphasis on the LHC
and the Higgs, but probably this was inevitable in the circumstances.

In addition to the lectures, we had two guest seminars: Mike Lamont (CERN) gave a presentation on
the commissioning of the LHC and Colin Roach (Culham) on tokamak plasma fusion. Both succeeded
in enthusing their audiences whilst educating them at the same time.

The seven tutors at the School were: Tim Adye (RAL), Andy Buckley (Durham), Chris Collins-Tooth
(Glasgow), Kristian Harder (RAL), Nikos Konstantinidis (UCL), Ben Morgan (Warwick) and Alessandro
Tricoli (RAL). Four poster sessions with the students work were held in the lecture theatre. These
were well attended and went on for much longer than scheduled. On the day of the LHC startup
some of the students created, in difficult circumstances, an LHC cake (see pictures) which lasted
nearly as long as the real machine.



A tour of DIAMOND was organised for the Saturday afternoon between the two weeks of the School.
This benefited from a lecture by Riccardo Bartolini of Oxford/DIAMOND. It was rated very highly and
if it could be repeated in future years it would be much appreciated. The School dinner was in the
main Hall at Somerville, with excellent food, a magnificent summary and outlook by Roger Cashmore
and the traditional prize-giving for the students.

The school at Somerville was a great success. There were one or two individuals who had problems
and we shall endeavour to catch any repetition early in future. The attractions of the Oxford bright
lights (including the St Giles Fair) provides alternative outlets, which are occasionally distracting.
However, Somerville is a good location to which we shall return in 2009.

Bill Murray
STFC/RAL
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When I became a student of Pomeranchuk
wn 1950 I heard from him o kind of joke
that the Book of Physics had two volumes:
vol.1 ts “Pumps and Manometers”, vol.2
18 “Quantum Field Theory”

Lev Okun

0 Prologue

The development of Quantum Field Theory is surely one of the most important achieve-
ments in modern physics. Presently, all observational evidence points to the fact that
Quantum Field Theory (QFT) provides a good description of all known elementary parti-
cles, as well as for particle physics beyond the Standard Model for energies ranging up to
the Planck scale ~ 10'® GeV, where quantum gravity is expected to set in and presumably
requires a new and different description. Historically, Quantum Electrodynamics (QED)
emerged as the prototype of modern QFT’s. It was developed in the late 1940s and early
1950s chiefly by Feynman, Schwinger and Tomonaga, and is perhaps the most successful
theory in physics: the anomalous magnetic dipole moment of the electron predicted by
QED agrees with experiment with a stunning accuracy of one part in 10!

The scope of these lectures is to provide an introduction to the formalism of Quantum
Field Theory, and as such is somewhat complementary to the other lectures of this school.
It is natural to wonder why QFT is necessary, compelling us to go through a number
of formal rather than physical considerations, accompanied by the inevitable algebra.
However, thinking for a moment about the high precision experiments, with which we
hope to detect physics beyond the Standard Model, it is clear that comparison between
theory and experiment is only conclusive if the numbers produced by either side are
“water-tight”. On the theory side this requires a formalism for calculations, in which
every step is justified and reproducible, irrespective of subjective intuition about the
physics involved. In other words, QFT aims to provide the bridge from the building
blocks of a theory to the evaluation of its predictions for experiments.

This program is best explained by restricting the discussion to the quantum theory
of scalar fields. Furthermore, I shall use the Lagrangian formalism and canonical quan-
tisation, thus leaving aside the quantisation approach via path integrals. Since the main
motivation for these lectures is the discussion of the underlying formalism leading to the
derivation of Feynman rules, the canonical approach is totally adequate. The physically
relevant theories of QED, QCD and the electroweak model are covered in the lectures by
Nick Evans, Sacha Davidson and Stefano Moretti.

The outline of these lecture notes is as follows: to put things into perspective, we shall
review the Lagrangian formalism in classical mechanics, followed by a brief reminder of
the basic principles of quantum mechanics in Section 1. Section 2 discusses the step from
classical mechanics of non-relativistic point particle to a classical, relativistic theory for
non-interacting scalar fields. There we will also derive the wave equation for free scalar
fields, i.e. the Klein-Gordon equation. The quantisation of this field theory is done is
Section 3, where also the relation of particles to the quantised fields will be elucidated.
The more interesting case of interacting scalar fields is presented in Section 4: we shall



introduce the S-matrix and examine its relation with the Green’s functions of the theory.
Finally, in Section 5 the general method of perturbation theory is presented, which serves
to compute the Green functions in terms of a power series in the coupling constant. Here,

Wick’s Theorem is of central importance in order to understand the derivation of Feynman
rules.

1 Introduction

Let us begin this little review by considering the simplest possible system in classical
mechanics, a single point particle of mass m in one dimension, whose coordinate and
velocity are functions of time, x(t) and (t) = dz(t)/dt, respectively. Let the particle be
exposed to a time-independent potential V'(z). It’s motion is then governed by Newton’s
law P o

magz—gng@% (1.1)
where F(z) is the force exerted on the particle. Solving this equation of motion involves
two integrations, and hence two arbitrary integration constants to be fixed by initial
conditions. Specifying, e.g., the position z(ty) and velocity @(to) of the particle at some
initial time t, completely determines its motion: knowing the initial conditions and the
equations of motion, we also know the evolution of the particle at all times (provided we

can solve the equations of motion).

1.1 Lagrangian formalism in classical mechanics

The equation of motion in the form of Newton’s law was originally formulated as an
equality of two forces, based on the physical principle actio = reactio, i.e. the external
force is balanced by the particle’s inertia. The Lagrangian formalism allows to derive the
same physics through a formal algorithm. It is formal, rather than physical, but as will
become apparent throughout the lectures, it is an immensely useful tool allowing to treat
all kinds of physical systems by the same methods.

To this end, we introduce the Lagrange function

Lz, 2)=T -V = %mzﬁz —V(z), (1.2)

which is a function of coordinates and velocities, and given by the difference between the
kinetic and potential energies of the particle. Next, the action functional is defined as

5= [ dt L(z ). (1.3)

to

From these expressions the equations of motion can be derived by the Principle of least
Action: consider small variations of the particle’s trajectory, cf. Fig. 1,

x'(t) = z(t) + 0z(t), dr/r < 1, (1.4)
with its initial and end points fixed,

' (t1) = z(t1)

2 (ts) = 2(ts) } = Sa(ti) = dulte) = 0. (1.5)

-5-



x A

Figure 1: Variation of particle trajectory with identified initial and end points.

The true trajectory the particle will take is the one for which
05 =0, (1.6)

ie. the action along z(t) is stationary. In most systems of interest to us the stationary
point is a minimum, hence the name of the principle, but there are exceptions as well
(e.g. & pencil balanced on its tip). We can now work out the variation of the action by
doing a Taylor expansion to leading order in the variation §z,

to
S+4685 = / L(z + dz, & + 6%) dt, (5;1%:%6:10
t1
2 ) oL oL .
= /t1 {L(x,m)—i—%éazﬂ—%&v#—...}dt
OL_|? [ (oL doL .
= S+ %&E tl+/tl {a—x—d“t%}(s.%dt, (17)

where we performed an integration by parts on the last term in the second line. The
second and third term in the last line are the variation of the action, §S, under variations
of the trajectory, dz. The second term vanishes because of the boundary conditions for
the variation, and we are left with the third. Now the Principal of least Action demands
6S = 0. For the remaining integral to vanish for arbitrary dz is only possible if the
integrand vanishes, leaving us with the Euler-Lagrange equation:

oL doL
et 1.8
Ox dt ot (18)
If we insert the Lagrangian of our point particle, Eq. (1.2), into the Euler-Lagrange
equation we obtain

oL  oV(z)
or or F
a0 d .
dor  oat
. ov
= mi=F= - (Newton’s law). (1.9)



Hence, we have derived the equation of motion by the Principal of least Action and
found it to be equivalent to the Euler-Lagrange equation. The benefit is that the latter
can be easily generalised to other systems in any number of dimensions, multi-particle
systems, or systems with an infinite number of degrees of freedom, such as needed for
field theory. For example, if we now consider our particle in the full three-dimensional
Euclidean space, the Lagrangian depends on all coordinate components, L(x, %), and all
of them get varied independently in implementing Hamilton’s principle. As a result one
obtains Euler-Lagrange equations for the components,

OL doL

aﬂii dt 8213'@ N
In particular, the Lagrangian formalism makes symmetries and their physical conse-
quences explicit and thus is a convenient tool when constructing different kinds of theories
based on symmetries observed (or speculated to exist) in nature.

For later purposes in field theory we need yet another, equivalent, formal treatment,
the Hamiltonian formalism. In our 1-d system, we define the ’conjugate momentum’ p by

_ oL _
==

(1.10)

mi, (1.11)
and the Hamiltonian I via

= ma® — imi® +V(z)
= tmi*+V(@)=T+V. (1.12)

The Hamiltonian H(zx,p) corresponds to the total energy of the system; it is a function
of the position variable z and the conjugate momentum® p. It is now easy to derive

Hamilton’s equations

oH . OH _

EU- = —D, "8_p— —
These are two equations of first order, while the Euler-Lagrange equation was a single
equation of second order. Taking another derivative in Hamilton’s equations and substi-
tuting one into the other, it is easy to convince oneself that the Euler-Lagrange equations
and Hamilton’s equations provide an entirely equivalent description of the system. Again,
this generalises obviously to three-dimensional space yielding equations for the compo-
nents,

. (1.13)

on o
3x2 - p’L) ap/l,

= ;. (1.14)

1.2 Quantum mechanics

Having set up some basic formalism for classical mechanics, let us now move on to quantum
mechanics. In doing so we shall use ’canonical quantisation’, which is historically what
was used first and what we shall later use to quantise fields as well. We remark, however,
that one can also quantise a theory usifig path integrals.

1Tt should be noted that the conjugate momentum is in general not equal to ma.



Canonical quantisation consists of two steps. Firstly, the dynamical variables of a
system are replaced by operators, which we denote by a hat. For example, in our simplest
one particle system,

position: z; — I;

. ., 0
momentum: p; — p; = —ih
5372-
1 P 1% i %
Hamiltonian: H = — X) = — X). 1.15
amiltonian — v + V(%) o T (%) (1.15)
Secondly, one imposes commutation relations on these operators,

(£, D;] = ik &y (1.16)
[£:, 2;] = [B:, B;] = O. (1.17)

The physical state of a quantum mechanical system is encoded in state vectors |1}, which
are elements of a Hilbert space H. The hermitian conjugate state is (1| = (|9))!, and the
modulus squared of the scalar product between two states gives the probability for the
system to go from state 1 to state 2,

|(¥1]12)|* = probability for [t) — |ths). (1.18)

On the other hand physical observables O, i.e. measurable quantities, are given by the
expectation values of hermitian operators, O = Of,

O = (h|0f), Oz = (Ws|Ohy). (1.19)

Hermiticity ensures that expectation values are real, as required for measurable quantities.
Due to the probabilistic nature of quantum mechanics, expectation values correspond to
statistical averages, or mean values, with a variance

(A0)? = (9|0 — O)I4) = WIO% ) — (WIO)2 (1.20)

An important concept in quantum mechanis is that of eigenstates of an operator, defined
by

Oly) = Oly). (1.21)
Evidently, between eigenstates we have AO = 0. Examples are coordinate eigenstates,
X|x) = x|x), and momentum eigenstates, p|p) = p|p), describing a particle at position
X or with momentum p, respectively. However, a state vector cannot be simultaneous
eigenstate of non-commuting operators.AThis leads to the Heisenberg uncertainty relation

~

for any two non-commuting operators A, B,
1 PN
AAAB 2 ZI(p14, Blig)|. (L.22)

Finally, sets of eigenstates can be orthonormalized and we assume completeness, i.e. they
span the entire Hilbert space,

Pp) =8(p—p), 1= j & p)(p]. (1.23)
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As a consequence, an arbitrary state vector can always be expanded in terms of a set
of eigenstates. In particular, the Schrodinger wave function of a particle in coordinate
representation is given by ¥(x) = (x|¥).

Having quantised our system, we now want to describe its time evolution. This can
be done in different quantum pictures.

1.3 The Schridinger picture

In this approach state vectors are functions of time, |1(t)), while operators are time
independent, 0,0 = 0. The time evolution of a system is described by the Schréodinger
equation,

ih-%w(x, t) = Hip(x,t). (1.24)

If at some initial time ¢, our system is in the state ¥(x, ty), then the time dependent state
vector

U(x,t) = e"%mt*t‘))lll(x, to) (1.25)

solves the Schrodinger equation for all later times ¢.
The expectation value of some hermitian operator O at a given time ¢ is then defined
as

(O = / B 0 (x, )0 (x, 1), (1.26)
and the normalisation of the wavefunction is given by
[ B2 (x, )T (x, 1) — (1),. (1.27)

Since ¥*W is positive, it is natural to interpret it as the probability density for finding
a particle at position x. Furthermore one can derive a conserved current j, as well as a
continuity equation by considering

X (Schr.Eq.) — ¥ x (Schr.Eq.)". (1.28)
The continuity equation reads
i -V-j (1.29)
where the density p and the current j are given by
p=U*U (positive), (1.30)
j= QZh (U*V¥ — (VI )T)  (real). (1.31)

Now that we have derived the continuity equation let us discuss the probability interpre-
tation of Quantum Mechanics in more detail. Consider a finite volume V with boundary
S. The integrated continuity equation is

8/’3 _ 3
Otd e fV_}d

- ﬁ .8 (1.32)



where in the last line we have used Gauss’s theorem. Using Eq.(1.27) the lhs. can be
rewritten and we obtain

Sne [ras-e o am

In other words, provided that j = 0 everywhere at the boundary S, we find that the time
derivative of (1), vanishes. Since (1); represents the total probability for finding the par-
ticle anywhere inside the volume V, we conclude that this probability must be conserved:
particles cannot be created or destroyed in our theory. Non-relativistic Quantum Me-
chanics thus provides a consistent formalism to describe a single particle. The quantity
U(x,t) is interpreted as a one-particle wave function.

1.4 The Heisenberg picture

Here the situation is the opposite to that in the Schrédinger picture, with the state vectors
regarded as constant, 0;|¥y) = 0, and operators which carry the time dependence, O (t).
This is the concept which later generalises most readily to field theory. We make use of
the solution Eq. (1.25) to the Schrodinger equation in order to define a Heisenberg state
vector through o o

W(z,t) = e #HE0G (3 1) = e RHEtG (), (1.34)

i.e. Uy (x) = U(x,t). In other words, the Schrodinger vector at some time ¢, is defined
to be equivalent to the Heisenberg vector, and the solution to the Schrodinger equation
provides the transformation law between the two for all times. This transformation of
course leaves the physics, i.e. expectation values, invariant,

(T[0T (L)) = (W(to)|er 1O #HE10)|W (1)) = (U |Op ()T ), (1.35)
with . -
Ox(t) = erft-t) Og=7H(t-to) (1.36)

From this last equation it is now easy to derive the equivalent of the Schrédinger equation
for the Heisenberg picture, the Heisenberg equation of motion for operators:
dOx(t)  » =
i) _ (O, H]. (1.37)
dt

Note that all commutation relations, like Eq. (1.16), with time dependent operators are
now intended to be valid for all times. Substituting %, p for O into the Heisenberg equation
readily leads to

~

dii _ OH
at — op;’
dp; O0H
o o S 1.38
dt 0z;’ (1.38)

the quantum mechanical equivalent to the Hamilton equations of classical mechanics.
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1.5 The quantum mechanical harmonic oscillator

Because of similar structures later in quantum field theory, it is instructive to also briefly
recall the harmonic oscillator in one dimension. Its Hamiltonian is given by

e L (P 2,42
H(x,p)=§ E—I—mwm . (1.39)

Employing the canonical formalism we have just set up, we easily identify the momentum
operator to be p(t) = md;i(t), and from the Hamilton equations we find the equation of
motion to be 8% = —w?2, which has the well known plane wave solution & ~ exp iwt.

An alternative path useful for later field theory applications is to introduce new
operators, expressed by the old ones,

a:%(\/——ﬁh—%ﬂ'\/%ﬁ), &T:%(\/?ﬁ—i\/%ﬁ). (1.40)

Using the commutation relation for , 5, one readily derives
[a,a1] =1, [H,a] = —hwa, [H,a] = hwal. (1.41)

With the help of these the Hamiltonian can be rewritten in terms of the new operators,
a il 1
H = shw (a'a + aal) = (eﬁa + 5) . (1.42)

With this form of the Hamiltonian it is easy to construct a complete basis of energy
eigenstates |n),
Hn) = E,|n). (1.43)

Using the above commutation relations, one finds
al Hln) = (Hal — hwat)|n) = E,a'|n), (1.44)

and from the last equation
Haln) = (E, + hw)al|n). (1.45)

Thus, the state af|n) has energy E, 4w, and therefore &' may be regarded as a “creation
operator” for a quantum with energy hw. Along the same lines one finds that a|n) has
energy I, — hw, and & is an “annihilation operator”.

Let us introduce a vacuum state |0) with no quanta excited, for which a|n) = 0,
because there cannot be any negative energy states. Acting with the Hamiltonian on that
state we find

H|0) = hw/2, (1.46)

i.e. the quantum mechanical vacuum has a non-zero energy, known as vacuum oscillation
or zero point energy. Acting with a creation operator onto the vacuum state one easily
finds the state with one quantum excited, and this can be repeated n times to get

|1> i ATIO) y El = (1+ §)hwa
at
)=o) = ﬁ(aﬁﬂm , Eu=(n+ o, (1.47)



The root of the factorial is there to normalise all eigenstates to one. Finally, the "number
operator” N = &'a returns the number of quants in a given energy eigenstate,

Nin) = n|n). (1.48)

Problems
1.1 Starting from the definition of the Hamiltonian,
H(z,p) = pi — L(z, ),
derive Hamilton’s equations

on _ . on_,
or D op

(Hint: the key is to keep track of what are the independent variables]

1.2 Using the Schrodinger equation for the wavefunction ¥(x,t),

2m ot
show that the probability density p = W*W satisfies the continuity equation

{_h2V2 + V(x)} W, 1) = ih U, b),

0 .

where "
j= — [TV — (VI*) 0},
J= 5 UV~ (V) ¥)
[Hint: Consider ¥*x (Schr.Eq.) — ¥x (Schr.Eq.)*]

1.3 Let |4} be a simultaneous eigenstate of two operators A, B. Prove that this implies
a vanishing commutator [A, B].

1.4 Let O be an operator in the Schrédinger picture. Starting from the definition of a
Heisenberg operator, o o
OH(t) — e-;;;H(t—to) O e—%H(t—to),
derive the Heisenberg equation of motion

,dOg

ih dt =[OH,H]

1.5 Consider the Heisenberg equation of motion for the momentum operator p of the
harmonic oscillator with Hamiltonian

n 1 a2 ’
H=_ (Z)—-i—nwzi”z),
2\m

and show that it is equivalent to Newton’s law for the position operator Z.
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2 Classical Field Theory

2.1 From N-point mechanics to field theory

In the previous sections we have reviewed the Lagrangian formalism for a single point
particle in classical mechanics. A benefit of that formalism is that it easily generalises to
any number of particles or dimensions. Let us return to one dimension for the moment but
consider an N-particle system, i.e. we have N coordinates and N momenta, z;(t), pi(t),7 =
1,...N. For such a system we get 2N Heisenberg equations,

_OH _dp 0H _ds,
Bxi N dt, 6pi N dt ’

(2.1)

To make things more specific, consider a piece of a guitar string, approximated by N
coupled oscillators, as in Fig. 2. Each point mass of the string can only move in the

() %W
‘ N — o0

45(217, t) /—\-_”/

Figure 2: From N coupled point masses to a continuous string, i.e. infinitely many degrees

of freedom.

direction perpendicular to the string, i.e. is a particle moving in one dimension. This
approximation of a string gets better and better the more points we fill in between the
springs, and a continuous string obtains in the limit N — oo. The displacement of the
string at some particular point z along its length is now given by a field coordinate ¢(x, t).
Going back to the N-point system and comparing what measures the location of a point

and its displacement, we find the following “dictionary” between point mechanics and
field theory:

Classical Mechanics: Classical Field Theory:
z(t) — ¢(z,)
i(t) — Pz, t)
i1 — T
L(z, &) — L[¢, 4] (2.2)

In the last line we have introduced a new notation: the square brackets indicate that
L[, ¢] depends on the functions ¢(z, ), ¢(z,t) at every space-time point, but not on the
coordinates directly. Such an object is called a “functional”, as opposed to a function
which depends on the coordinate variables only.
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Formally the above limit of infinite degrees of freedom can also be taken if we are
dealing with particles in a three-dimensional Euclidean space, for which there are N three-
vectors x; specifying the positions. We then obtain a field ¢(x,t), defined at every point
in space and time.

2.2 Relativistic field theory

Before continuing to set up the formalism of field theory, we want to make it relativistic
as well. Coordinates are combined into four-vectors, z* = (¢,z;) or z = (¢,x), whose
length z? = t2 — x? is invariant under Lorentz transformations '

o = Abg”. (2.3)

A general function transforms as f(z) — f/(z), i.e. both the function and its argument
transform. A Lorentz scalar is a function which is the same in all inertial frames,

¢'(z') = (z) for all A. (2.4)
On the other hand a vector function transforms as
Vi(a) = AV (2). (25)
An example is the covariant derivative of a scalar field,

0 (x)

0¢(x)

H = =

oia) = T2 Bt = 5, (26)
whose square evaluates to

(0"4)(0up) = (8°9)* — (Vg)”. (2.7)

2.3 Action for a scalar field

We are now ready to write down the action for a relativistic scalar field. According to
our dictionary, the action from point mechanics, Eq. (1.3), should go into

S=fﬁLm@. (2.8)

However, for a relativistic theory we require Lorentz invariance of the action, and this
is not obvious in the current form. The integration is over time only, rather than over
the Lorentz-invariant four-volume element d*z = dt d®z, and so the non-invariance of the
integration measure has to cancel against that of the Lagrange function in order to have
an invariant action. Similar reasoning applies to the arguments of the Lagrangian. In
order to have the symmetries manifest, we instead rewrite

S~ [ £lg,0"), Lig,d= / &z L[, 0] (2.9)

Now everything is expressed in covariant quantities, and the action is Lorentz-invariant
as soon as the newly defined Lagrangian density £ is.
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We now follow the same procedure as in point mechanics and apply the Hamiltonian
principle by demanding 45 = 0. For the variation of the field and its derivative we have

¢ — b+0¢, Oudp— Oup+ 60,9, 60, = 0,6¢. (2.10)

Using the rule for functional differentiation, §¢(z)/d¢(y) = §*(x — ), the variation of the
action then is (to first order in a Taylor expansion)

58 = ~/d4x{5¢5¢+ (5f¢) (3u¢)}

5L . ocC
d4 {5¢ 8“W}5¢' (2.11)

=0 at boundaries

Again the integrand itself must vanish if §S = 0 for arbitrary variations of the field, §¢.
This yields the Euler-Lagrange equations for a classical field theory:

oL oL

— —8,——— =10, 2.12
5~ 509 =
where in the second term a summation over the Lorentz index p is implied.
Let us now consider the specific Lagrangian
L =310"40,¢ — tm?¢’. (2.13)
The functional derivatives yield
oL 5 oL
— = —m~¢, ot e, 2.14
% 558 249
so that
a£~aaﬂ¢—m¢ (2.15)
G # ' '
The Euler-Lagrange equation then implies
(O + m?)¢(x) = 0. (2.16)

This is the Klein-Gordon equation for a scalar field. It is the simplest relativistic wave
equation and can be deduced from relativistic energy considerations. Here we have derived
it from the Lagrange density following our canonical formalism, in complete analogy to
point mechanics. Relativistic invariance of the equations of motion is ensured because we
started from an invariant Lagrange density. This is the power of the formalism.

In keeping the analogy with point mechanics, we can define a conjugate momentum

m through
7r(x) 8‘C(¢7 aud’) - 8‘C(¢) 8Il¢)
8(x) 9(God())
Note that the momentum variables p, and the conjugate momentum = are not the same.

The word “momentum” is used only as a semantic analogy to classical mechanics. Further,
we define the Hamilton function and a corresponding Hamilton density,

H(t) = / Bz g1, M, 7] = md— L. - (218)

fll

= Opp(z). (2.17)
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For the Lagrangian density we considered, this gives

H = % (@) + (Vé(2))? + m?¢(z)] . (2.19)

2.4 Plane wave solution to the Klein-Gordon equation

Let us consider real solutions to Eq. (2.16), characterised by ¢*(z) = ¢(z). To find them
we try an ansatz of plane waves

d(z) oc e Kt-kx), (2.20)
The Klein-Gordon equation is satisfied if (k%)2 — k% = m? so that
K = £vVk? + m2 (2.21)
If we choose the positive branch of the square root then we can define the energy as
E(k) = vk2 +m? > 0, (2.22)
and obtain two types of solutions which read
by (z) oc fEWEKN) g (1) o g HEU)kx) (2.23)
The general solution is a superposition of ¢, and ¢_. Using
Et-—k-x=kt'k, =kk'=k- -z (2.24)

this solution reads

o) = | (27r)d3k

arpaEg (¢ k) +e alk), (2.25)

where a(k) is an arbitrary complex coefficient. From the general solution one easily reads
off that ¢ is real, i.e. ¢ = ¢*.

2.5 Symmetries and conservation laws

Symmetries play such a fundamental role in physics because they are related to conser-
vation laws. This is stated in Noether’s theorem. In a nutshell, Noether’s theorem says
that invariance of the action under a symmetry transformation implies the existence of a
conserved quantity. For instance, the conservation of 3-momentum p is associated with
translational invariance of the Lagrangian, i.e. the transformation

x —x-+a, a: constant 3-vector, (2.26)
while the conservation of energy comes from the invariance under time translations

t—t+7, 7: constant time interval. (2.27)
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Let us apply this to our relativistic field theory and consider four-translations, z# —
z# + e*. The variation of the Lagrangian is

g _LOB L 0@'),
= 300" T 5(0rg) 0w
o [ s 86,
= oz, [5(31«;3) 8:1:”6}’ (228)

where we have made use of the Euler-Lagrange Egs. (2.12), to get to the last expression.
If the action is to be invariant under such translations, its variation has to vanish for
arbitrary €”, which leads to

o [ oL
9z, [5(0r¢)

The quantity in square brackets is called the energy-momentum tensor O, and thus we
have

00 gut] =0 (2.20)

M0, = 0", — 6, =0, (2.30)
i.e. four conservation laws (one for every value of v). Let us look in more detail at the
components of the energy-momentum tensor,

oL
O = 8(8%¢) 77008 — goo L = m(x)(Oop(z)) —
oL
®0j = (80¢)8 ¢ gOJ (x)aj¢ (231)

The first line is nothing but the Hamiltonian density, and integrating it over space will
thus be the Hamiltonian, or the energy. Its conservation can then be shown by considering

0
E/V d3$ @00 = / d“:r: 80800

where we have used Eq. (2.30) in the second line. The Hamﬂtoman density is a conserved
quantity, provided that there is no energy flow through the surface S which encloses the
volume V. In a similar manner one can show that the 3-momentum p;, which is related
to Oy,, is conserved as well. It is then useful to define a conserved energy-momentum
four-vector

= / d*z Oy, (2.33)

In analogy to point mechanics, we thus see that invariances of the Lagrangian density
correspond to conservation laws. An entirely analogous procedure leads to conserved
quantities like anguluar mometum and spin. Furthermore one can study so-called inter-
nal symmetries, i.e. ones which are not related to coordinate but other transformations.
Examples are conservation of all kinds of charges, isospin, etc.

We have thus established the Lagrange-Hamilton formalism for classical field theory:
we derived the equation of motion (Euler-Lagrange equation) from the Lagrangian and
introduced the conjugate momentum. We then defined the Hamiltonian (density) and
considered conservation laws by studying the energy-momentum tensor ©,,
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Problems

2.1

2.2

2.3

Given the relativistic invariance of the measure d*k, show that the integration mea-

sure
&k

(2m)3 2E (k)
is Lorentz-invariant, provided that E(k) = vk? + m2.

[Hint: Start from the Lorentz-invariant expression

d4k 2 2
and use 1
5(%2 - .’173) = m(&(m — 1170) + (5(117 + .’Bo))

What is the significance of the § and @ functions above? If you’re really keen, you
may prove the relation for §(z? — z2).]

Verify that ;
b(z) = / @%@—) [*2a(k) + e *=b(k))

is a solution of the Klein-Gordon equation. Show that a real scalar field ¢*(z) = ¢(z)
requires the condition b(k) = a*(k).

Show that the Hamiltonian density H for a free scalar field is given by
1
H = = {(809)" + (V9)? + mig?}.

Derive the components Py, P of the energy-momentum four-vector P in terms of
the field operators ¢, .

3 Quantum Field Theory

After many preparations, we have finally arrived at the proper subject of the lecture. In
this section we shall apply the canonical quantisation formalism to field theory.

3.1

Canonical field quantisation

To lighten notation, let us follow common practice in quantum field theory and set h =
¢ = 1. Our starting point is the Lagrangian density for the free scalar field,

L= 10"pdup — tm*¢?, (3.1)

which led to the Klein-Gordon equation in the previous section. We have seen that in field
theory the field ¢(x) plays the role of the coordinates in ordinary point mechanics, and
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we defined a canonically conjugate momentum, 7(z) = 6£/5¢ = $(z). We then continue
the analogy to point mechanics through the quantisation procedure, i.e. we now take our
canonical variables to be operators,

(z) = d(e), w(z) - #(z). (3.2)

Next we impose equal-time commutation relations on them,

B 7(y,8)] = B x-y),
[366,6),8,8)] = [7x,8),7(y,8)] = 0. (3.3)

As in the case of quantum mechanis, the canonical variables commute among themselves,
but not the canonical coordinate and momentum with each other. Note that the commu-
tation relation is entirely analogous to the quantum mechanical case. There would be an
h, if it hadn’t been set to one earlier, and the delta-function accounts for the fact that we
are dealing with fields. It is one if the fields are evaluated at the same space-time point,
and zero otherwise.

After quantisation, our fields have turned into field operators. Note that within the
relativistic formulation they depend on time, and hence they are Heisenberg operators.

3.2 Causality and commutation relations

In the previous paragraph we have formulated commutation relations for fields evaluated
at equal time, which is clearly a special case when considering fields at general z,y. The
reason has to do with maintaining causality in a relativistic theory. Let us recall the
light cone about an event at y, as in Fig. 3. One important postulate of special relativity
states that no signal and no interaction can travel faster than the speed of light. This has
important consequences about the way in which different events can affect each other.
For instance, two events which are characterised by space-time points z#* and y* are said
to be causal if the distance (z —y)? is time-like, i.e. (z—y)? > 0. By contrast, two events
characterised by a space-like separation, i.e. (x —y)? < 0, cannot affect each other, since
the point z is not contained inside the light cone about y.

In non-relativistic Quantum Mechanics the commutation relations among operators
indicate whether precise and independent measurements of the corresponding observables
can be made. If the commutator does not vanish, then a measurement of one observable
affects that of the other. From the above it is then clear that the issue of causality must
be incorporated into the commutation relations of the relativistic version of our quantum
theory: whether or not independent and precise measurements of two observables can be
made depends also on the separation of the 4-vectors characterising the points at which
these measurements occur. Clearly, events with space-like separations cannot affect each
other, and hence all fields must commute,

[0(2),80)] = (@), 7)) = [d@), 7 @w)] =0 for (z-y?<0.  (34)

This condition is sometimes called micro-causality. Writing out the four-components of
the time interval, we see that as long as |t —¢| < |x — y|, the commutator vanishes in
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(z — y)? > 0, time-like
time

+~— (z —y)? = 0, light-like

(x — y)? < 0, space-like

space

Figure 3: The light cone about y. Events occurring at points z and y are said to be
time-like (space-like) if z is inside (outside) the light cone about .

a finite interval |t' —¢|. It also vanishes for ' = ¢, as long as x # y. Only if the fields
are evaluated at an equal space-time point can they affect each 6ther, which leads to
the equal-time commutation relations above. They can also affect each other everywhere
within the light cone, i.e. for time-like intervals. It is not hard to show that in this case

$@),60)] = (@), 2w)] = 0, for (w—y)?*>0

b)) = § [ Sl e rere). @)

3.3 Creation and annihilation operators

After quantisation, the Klein-Gordon equation we derived earlier turns into an equation for
operators. For its solution we simply promote the classical plane wave solution, Eq. (2.25),
to operator status,

" d3k ik-T i
— B A"' —ik-x ~
)= [ ————c (e k a(k)) . 3.6
6@) = [ Grrame (€47 0+ o a) (3.6
Note that the complex conjugation of the Fourier coefficient turned into hermitian con-
jugation for an operator.

Let us now solve for the operator coefficients of the positive and negative energy
solutions. In order to do so, we invert the Fourier integrals for the field and its time

derivative,
1

/ Po e = o [alk) +at (e ] (3.7)

1

[ @ doxoes = =2 [al) - ataoehon] (3.8)

and then build the linear combination ¢E(k)(3.7)—(3.8) to find

f Pz [iEER)Hx, 1) — dx,1)] 4+ = iak), (3.9)
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Following a similar procedure for af(k), and using #(z) = qg(x) we find
k) = / iz [E(k)qB(x, £) + i (x, t)] ik
atk) = / & [B(R)dx, 1) — i (x,0)] e (3.10)

Note that, as Fourier coefficients, these operators do not depend on time, even though
the right hand side does contain time variables. Having expressions in terms of the
canonical field variables ¢(z), #(x), we can now evaluate the commutators for the Fourier
coefficients. Expanding everything out and using the commutation relations Eq. (3.3), we
find

[6"(k1),6"(ky)] = 0 (3.11)
[a(k1),a(ke)] = O (3.12)
[a(ki),a"(ko)] = (27)°2E(k1)d%(ky — k) (3.13)

We easily recognise these for every k to correspond to the commutation relations for the
harmonic oscillator, Eq. (1.41). This motivates us to also express the Hamiltonian and

the energy momentum four-vector of our quantum field theory in terms of these operators.
This yields

A

= %/ @rﬁ%% (a'(k)a(k) + a(k)al (k)

P = % / #:“T(k—)k(mk)a(k)jua(k)af(k)). (3.14)

We thus find that the Hamiltonian and the momentum operator are nothing but a contin-
uous sum of excitation energies/momenta of one-dimensional harmonic oscillators! After
a minute of thought this is not so surprising. We expanded the solution of the Klein-
Gordon equation into a superposition of plane waves with momenta k. But of course a
plane wave solution with energy E'(k) is also the solution to a one-dimensional harmonic
oscillator with the same energy. Hence, our free scalar field is simply a collection of in-
finitely many harmonic oscillators distributed over the whole energy/momentum range.
These energies sum up to that of the entire system. We have thus reduced the problem of
handling our field theory to oscillator algebra. From the harmonic oscillator we know al-
ready how to construct a complete basis of energy eigenstates, and thanks to the analogy
of the previous section we can take this over to our quantum field theory.

3.4 Energy of the vacuum state and renormalisation

In complete analogy we begin again with the postulate of a vacuum state |0) with norm
one, which is annihilated by the action of the operator q,

00y =1, ak)j0)=0 forall k. (3.15)

Let us next evaluate the energy of this vacuum state, by taking the expectation value of
the Hamiltonian,

d*k

= OU10) = 5 [ s B {061 (930010} + 019 N0Y} . (316

il =



The first term in curly brackets vanishes, since a annihilates the vacuum. The second can
be rewritten as

a(k)al(k)[0) = {[a(k),a' (k)] + &l (k)a(k)} |0). (3.17)

It is now the second term which vanishes, whereas the first can be replaced by the value
of the commutator. Thus we obtain

By = 01A10) = 5°(0) / Bk E(k) = 53(0)% / BkVIEF T2 = oo, (3.18)
which means that the energy of the ground state is infinite! This result seems rather
paradoxical, but it can be understood again in terms of the harmonic oscillator. Recall
that the simple quantum mechanical oscillator has a finite zero-point energy. As we have
seen above, our field theory corresponds to an infinite collection of harmonic oscillators,
ie. the vacuum receives an infinite number of zero point contributions, and its energy
thus diverges.

This is the first of frequent occurrences of infinities in quantum field theory. Fortu-
nately, it is not too hard to work around this particular one. Firstly, we note that nowhere
in nature can we observe absolute values of energy, all we can measure are energy differ-
ences relative to some reference scale, at best the one of the vacuum state, [0). In this
case it does not really matter what the energy of the vacuum is. This then allows us to
redefine the energy scale, by always subtracting the (infinite) vacuum energy from any
energy we compute. This process is called “renormalisation”.

We then define the renormalised vacuum energy to be zero, and take it to be the
expectation value of a renormalised Hamiltonian,

EE = (0|A%|0) = 0. (3.19)

According to this recipe, the renormalised Hamiltonian is our original one, minus the
(unrenormalised) vacuum energy,

AR = H - E,
= 5 | Gram £ {d'09409 +09a109 — (01309300 + 404 1))}

. % / (%;,,iTkE(k-)E(k) {2a%(k)a(k) + [a(k),al (k)] — (0] [a(k), &' (k)] |0) }(3.20)

Here the subtraction of the vacuum energy is shown explicitly, and we can rewrite is as

YR d®p = =
" = [ s Bl (0)a(p)

+% / Wi;E—(mE(p) {[a(p),a’(p)] — (0] [a(p),a!(p)] |0)} .

d’p - N
————— E(p)al(p)a H™ 3.21
| G )il eate) + (3.21)
The operator A ensures that the vacuum energy is properly subtracted: if |¢) and |¢')
denote arbitrary N-particle states, then one can convince oneself that (y/|H"™|y) = 0.
In particular we now find that

(0|HE|0) = 0, (3.22)
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as we wanted. A simple way to automatise the removal of the vacuum contribution is to
introduce normal ordering. Normal ordering means that all annihilation operators appear
to the right of any creation operator. The notation is

caal - = ala, (3.23)
i.e. the normal-ordered operators are enclosed within colons. For instance
13 (@' (p)a(p) + a(p)a'(p)) : = a'(p)a(p). (3.24)

It is important to keep in mind that @ and &' always commute inside : - - - :. This is true
for an arbitrary string of & and af. With this definition we can write the normal-ordered
Hamiltonian as

N i d3 IR A
M = g [ s B (@ (0)ae) + (e (p))
d3p S
/WE(D) a'(p)a(p), (3.25)
and thus have the relation
HE = H . +0™, (3.26)
Hence, we find that ) X
W' H: ) = (@' H ), (3.27)

and, in particular, (0] : H : |0) = 0. The normal ordered Hamiltonian thus produces a
renormalised, sensible result for the vacuum energy.

3.5 Fock space and particle number representation

After this lengthy grappling with the vacuum state, we can continue to construct our basis
of states in analogy to the harmonic oscillator, making use of the commutation relations
for the operators @,4f. In particular, we define the state |k) to be the one obtained by
acting with the operator af(k) on the vacuum,

k) = af(k)|0). (3.28)
Using the commutator, its norm is found to be
(klk) = (0a(k)a’(K)[0) = (0l[a(k), a'(k")}|0) + (0la' (k)a(k)|0)
= (2n)%2E(k)6*(k — k'), (3.29)

since the last term in the first line vanishes (4(k) acting on the vacuum). Next we compute
the energy of this state, making use of the normal ordered Hamiltonian,

cH: k) = f @ﬂ%a{—,)E(k’)&f(k’)d(k’)&f(k)|0)

-/ #’;f;(—k’)]ﬂ(k')(%)a%(kﬁ(k — Kl (k)[0)
At

= E(k)a'(k)|0) = E(k)[k), (3.30)
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and similarly one finds )
: P k) =k[k). (3.31)

Observing that the normal ordering did its job and we obtain renormalised, finite results,
we may now interpret the state |k). It is a one-particle state for a relativistic particle of
mass m and momentum k, since acting on it with the energy-momentum operator returns
the relativistic one particle energy-mometum dispersion relation, E(k) = v/k? + m2. The
af(k), a(k) are creation and annihilation operators for particles of momentum k.

In analogy to the harmonic oscillator, the procedure can be continued to higher states.
One easily checks that

s P at(kg)at (k))]0) = (A + kB)al (ko)at (k1)|0), (3.32)

and so the state ]
ko, k1) = ﬁdf(kz)&T(kl)l()) (3-33)

is a two-particle state (the factorial is there to have it normalised in the same way as the
one-particle state), and so on for higher Fock states.

At the long last we can now see how the field in our free quantum field theory is
related to particles. A particle of momentum k corresponds to an excited Fourier mode of
a field. Since the field is a superpositon of all possible Fourier modes, one field is enough
to describe all possible configurations representing one or many particles of the same kind
in any desired momentum state.

Let us investigate what happens under interchange of the two particles. Since
[aT(k1), &t (k)] = O for all ky, ks, we see that

ka2, k1) = [ki, ka), (3.34)

and hence the state is symmetric under interchange of the two particles. Thus, the
particles described by the scalar field are bosons.

Finally we complete the analogy to the harmonic oscillator by introducing a number
operator

N(k) = at(k)a(k), N = / &k ot (k)a(k), (3.35)
which gives us the number of bosons described by a particular Fock state,
N0y =0, NK)=|k), Nki...k) =nlks...ky). (3.36)

Of course the normal-ordered Hamiltonian can now simply be given in terms of this
operator,

: i s / ﬁ%(k—)E(k)N(k), (3.37)

i.e. when acting on a Fock state it simply sums up the energies of the individual particles
to give
tHlky. . ky) = (B(ky) +... E(ky)) k1. . kn). (3.38)

This concludes the quantisation of our free scalar field theory. We have followed the
canonical quantisation procedure familiar from quantum mechanics. Due to the infinite
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number of degrees of freedom, we encountered a divergent vacuum energy, which we had
to renormalise. The renormalised Hamiltonian and the Fock states that we constructed
describe free relativistic, uncharged spin zero particles of mass m, such as neutral pions,
for example.

If we want to describe charged pions as well, we need to introduce complex scalar
fields, the real and imaginary parts being necessary to describe opposite charges. For
particles with spin we need still more degrees of freedom and use vector or spinor fields,
which have the appropriate rotation and Lorentz transformation properties. Moreover, for
fermions there is the Pauli principle prohibiting identical particles with the same quantum
numbers to occupy the same state, so the state vectors have to be anti-symmetric under
interchange of two particles. This is achieved by imposing anti-commutation relations,
rather than commutation relations, on the corresponding field operators. Apart from
these complications which account for the nature of the particles, the formalism and
quantisation procedure is the same as for the simpler scalar fields, to which we shall stick
for this reasomn.

Problems

3.1 Using the expressions for qg and 7 in terms of & and a!, show that the unequal time
commutator |@(z), #(« )] is given by

b)) =1 [ (311;3 (#9641,

Show that for ¢t = ¢’ one recovers the equal time commutator

[q“s(x, 1), #(x, t)] = i83(x — ).

3.2 Being time-dependent Heisenberg operators, the operators O = qAﬁ(x, t), 7(x,t) of
scalar field theory obey the Heisenberg equation

DA A a

In analogy to what you did in problem 1.5, demonstrate the equivalence of this
equation with the Klein-Gordon equation.

3.3 Express the Hamiltonian

H= % / d3z {aqu)2 + (Vé)? + m2q32}

of the quantised free scalar field theory in terms of creation and annihilation oper-
ators and show that it is given by

| d3p NI P
A= / Gran) P {E Pam) + )il p)}
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3.3 Prove the commutator relation
[: 2 &T(k)] = kPat (k)
to show that
P Pt (ko)at () [0) = (K + k%) af (kp)a! (Ky)|0). (3.39)
Interpret the physics of this result.

3.4 Prove by induction that

d3p ;
—_——— a k....k) = k,... k) .
| G ) k) = K
N momenta n momenta

[Hint: induction proceeds in two steps. i) show that the statement is true for some
starting value of n; ) show that if the statement holds for some general n, then it
also holds for n + 1.]

4 Interacting scalar fields

From now on we shall always discuss quantised real scalar fields. It is then convenient to
drop the “hats” on the operators that we have considered up to now. So far we have only
discussed free fields without any interaction between them, which we could solve exactly
in terms of plane waves. As this does not make for a very interesting theory, let us now
add an interaction Lagrangian L. The full Lagrangian £ is given by

L= Lo+ Lin, (4.1)

where

Lo = 30,0 0¢ — tm?¢? (4.2)

is the free Lagrangian density discussed before. The Hamiltonian density of the interaction
is related to Ly, simply by
Hint e ~£int, (43)

which follows from its definition. We shall leave the details of £y, unspecified for the
moment. What we will be concerned with mostly are scattering processes, in which two
initial particles with momenta p; and p, scatter, thereby producing a number of particles
in the final state, characterised by momenta k;,...,k,. This is schematically shown in
Fig. 4. Our task is to find a description of such a scattering process in terms of the
underlying quantum field theory.
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Figure 4: Scattering of two initial particles with momenta p; and p, into n particles with
momenta ki, ...,k, in the final state.

4.1 The S-matrix

The timescales over which interactions happen are extremely short. The scattering (in-
teraction) process takes place during a short interval around some particular time ¢ with
—o0 K t €« oco. Long before ¢, the incoming particles evolve independently and freely.
They are described by a field operator ¢;, defined through
tlim d(x) = (), (4.4)
——00
which ‘acts on a corresponding basis of |in) states. Long after the collision the particles
in the final state evolve again like in the free theory, and the corresponding operator is

hm gb(x) Pous (), (4.5)

acting on states |out). The fields ¢in, dour are the asymptotic limits of the Heisenberg
operator ¢. They both satisfy the free Klein-Gordon equation, i.e.

(O+m)¢in(x) =0,  (O+m?)dou(z) = 0. (4.6)

Operators describing free fields can be expressed as a superposition of plane waves (see
Eq. (3.6)). Thus, for ¢;, we have

nls) = [ oo (¢4 oh00+e 0 00), (@7)

with an entirely analogous expression for ¢ou(z). Note that the operators al and a also
carry subscripts “in” and “out”.

We can now use the creation operators a;rn
vacuum. For instance

and afmt to build up Fock states from the

al(p1) ay(p2)[0) = |p1, po;in), (4.8)
alut(kl) o a’iut(k’n)m) = Ikl, ey kn; Ollt). (49)

We must now distinguish between Fock states generated by a;rn and a:‘mt, and therefore we
have labelled the Fock states accordingly. In eqs. (4.8) and (4.9) we have assumed that
there is a stable and unique vacuum state:

|0) = |0;in) = |0; out). (4.10)
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Mathematically speaking, the aiTn’s and aiut’s generate two different bases of the Fock
space. Since the physics that we want to describe must be independent of the choice of
basis, expectation values expressed in terms of “in” and “out” operators and states must
satisfy

(in| ¢in(z) |in) = (out| gout(z) Jout) . (4.11)

Here |in) and |out) denote generic “in” and “out” states. We can relate the two bases by
introducing a unitary operator .S such that

(;bin(m) E= S¢out(x) ST (412)
lin) = S |out), |out)=ST|in), STS=1. (4.13)

S is called the S-matrix or S-operator. Note that the plane wave solutions of ¢y, and ¢out
also imply that
af,=Saly S, G =5G0uS". (4.14)

out

By comparing “in” with “out” states one can extract information about the interaction —
this is the very essence of detector experiments, where one tries to infer the nature of the
interaction by studying the products of the scattering of particles that have been collided
with known energies. As we will see below, this information is contained in the elements
of the S-matrix.

By contrast, in the absence of any interaction, i.e. for L, = 0 the distinction between
¢in and ¢y is not necessary. They can thus be identified, and then the relation between
different bases of the Fock space becomes trivial, S = 1, as one would expect.

What we are ultimately interested in are transition amplitudes between an initial
state ¢ of, say, two particles of momenta p, ps, and a final state f, for instance n particles
of unequal momenta. The transition amplitude is then given by

(f, out| 7, in) = (f, out| S [¢, out) = (f, in| S |7, in) = S;. (4.15)

The S-matrix element Sy therefore describes the transition amplitude for the scattering
process in question. The scattering cross section, which is a measurable quantity, is then
proportional to |S5|?>. All information about the scattering is thus encoded in the S-
matrix, which must therefore be closely related to the interaction Hamiltonian density
‘Hint- However, before we try to derive the relation between S and H; we have to take a
glight detour.

4.2 More on time evolution: Dirac picture

The operators ¢(x,t) and 7(x,t) which we have encountered are Heisenberg fields and
thus time-dependent. The state vectors are time-independent in the sense that they do
not satisfy a non-trivial equation of motion. Nevertheless, state vectors in the Heisenberg
picture can carry a time label. For instance, the “in”-states of the previous subsection are
defined at t = —oo. The relation of the Heisenberg operator ¢y (z) with its counterpart
¢s in the Schrédinger picture is given by

b (x,t) = et pge H = Hy + Hyy, (4.16)
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Note that this relation involves the full Hamiltonian H = Hy + Hjy in the interacting
theory. We have so far found solutions to the Klein-Gordon equation in the free theory,
and so we know how to handle time evolution in this case. However, in the interacting
case the Klein-Gordon equation has an extra term,

5‘/1111: (¢)

(O + m?)p(x) + op

= 0, (4.17)
due to the potential of the interactions. Apart from very special cases of this potential, the
equation cannot be solved anymore in closed form, and thus we no longer know the time
evolution. It is therefore useful to introduce a new quantum picture for the interacting
theory, in which the time dependence is governed by Hy only. This is the so-called Dirac
or Interaction picture. The relation between fields in the Interaction picture, ¢, and in
the Schrodinger picture, ¢g, is given by

dr(x,t) = et gg e 00", (4.18)

At t = —oco the interaction vanishes, i.e. Hjy, = 0, and hence the fields in the Interaction
and Heisenberg pictures are identical, i.e. ¢g(x,t) = ¢1(x,t) for t — —oo. The relation
between ¢y and ¢; can be worked out easily: '

¢H(X, t) — eth ¢S e%th
gl g—iHot giFotyp . o~iHot giHot o—ilt
¢I (){,t)
= UT'(t) dir(x, 1) U(1), (4.19)
where we have introduced the unitary operator U(t)
U(t) = et e—tHt [T = 1. (4.20)

The field ¢u(x,t) contains the information about the interaction, since it evolves over
time with the full Hamiltonian. In order to describe the “in” and “out” field operators,
we can now make the following identifications:

t— — ¢in(x, t) = ¢[(X, t) = ¢H(X,t), (421)
t— 400 1 Pout(X,t) = Pn(x,1). (4.22)

Furthermore, since the fields ¢; evolve over time with the free Hamiltonian Hy, they
always act in the basis of “in” vectors, such that

din(X,t) = ¢r(x,t), —00 < t < 0. (4.23)
The relation between ¢; and ¢y at any time ¢ is given by
¢r(x,t) = U(t) du(x,t) U™ (2). (4.24)
As t — oo the identifications of egs. (4.22) and (4.23) yield

Pin = U(00) dhous UT(00). (4.25)
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From the definition of the S-matrix, Eq. (4.12) we then read off that
tlim Ut)=S. ' (4.26)

We have thus derived a formal expression for the S-matrix in terms of the operator U(t),
which tells us how operators and state vectors deviate from the free theory at time ¢,
measured relative to tp = —o0, i.e. long before the interaction process.

An important boundary condition for U(¢) is

lim U(t) = (4.27)
t——00
What we mean here is the following: the operator U actually describes the evolution
relative to some initial time ?p, which we will normally suppress, i.e. we write U(t)
instead of U(t,tp). We regard t; merely as a time label and fix it at —oo, where the
interaction vanishes. Equation (4.27) then simply states that U becomes unity as t — tg,
which means that in this limit there is no distinction between Heisenberg and Dirac fields.
Using the definition of U(t), Eq. (4.20), it is an easy exercise to derive the equation
of motion for U(t):

A U(t) Hio(t) U(t),  Hipe(t) = ™ot Hy e Hot, (4.28)

The time-dependent operator Hj,(t) is defined in the interaction picture, and depends

on the fields ¢;n, 7y in the “in” basis. Let us now solve the equation of motion for U(¢)
with the boundary condition thm U(t) = 1. Integrating Eq. (4.28) gives
——00

/" %U(tl)dtl = wz/_w Hins(t1) U(t1) dty
I}r(f)—U(—OO) = ‘h'i/t Hint(tl)U(tl)dtl
= Ut) = 1—i /t Hing(t2) U (1) dty. (4.29)

The rhs. still depends on U, but we can substitute our new expression for U(t) into the
integrand, which gives

U(t) = 1- 7’/ Hmt(tl {1 . Z/ Hiy tz) U(tz) dtz} dt,
= 1 —Z/ Hmt tl)dtl / dt1 int t1 / dtz int tz (tg) (430)

where t5 < t; < t. This procedure can be iterated further, so that the nth term in the
sum is

t ty tn—1
(—i)"/ dtl/ dtz"'/ dtn Hing(t1) Hing(t2) - « - Hing(£n)- (4.31)

This iterative solution could be written in much more compact form, were it not for the
fact that the upper integration bounds were all different, and that the ordering ¢, <
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tho1 < ... < t; <t had to be obeyed. Time ordering is an important issue, since one
has to ensure that the interaction Hamiltonians act at the proper time, thereby ensuring
the causality of the theory. By introducing the time-ordered product of operators, one
can use a compact notation, such that the resulting expressions still obey causality. The
time-ordered product of two fields ¢(t1) and ¢(t;) is defined as

_ [ d(t)e(ts) ti> 1
T{o(t1) ¢(t2)} = {¢(t2)gb(t1) b <ty

= 00t —t2) o(t1)d(t2) + 0(t2 — 1) B(t2)B(t1), (4.32)

where 6 denotes the step function. The generalisation to products of n operators is
obvious. Using time ordering for the nth term of Eq. (4.31) we obtain

'TL T

= H/ dty T { Hing (t1) Hine(t2) - - - Hine (ta) } (4.33)

and since this looks like the nth term in the series expansion of an exponential, we can
finally rewrite the solution for U(¢) in compact form as

t
U(t)="T exp {—z’ / Hint(t) dt’} : (4.34)
where the “I"” in front ensures the correct time ordering.

4.3 S-matrix and Green’s functions

The S-matrix, which relates the “in” and “out” fields before and after the scattering
process, can be written as
S=1+1T, (4.35)

where T is commonly called the T-matrix. The fact that S contains the unit operator
means that also the case where none of the particles scatter is encoded in S. On the other
hand, the non-trivial case is described by the T-matrix, and this is what we are interested
in. However, the S-matrix is not easily usable for practical calculations. As it stands
now, it is a rather abstract concept, and we still have to relate it to the field operators
appearing in our Lagrangian. This is achieved by establishing a general relation between
S-matrix elements and n-point Green’s functions,

G™ (21, .. %) = (O[T(¢(@1) . .. d())|0). (4.36)

Once this step is completed, then for any given Lagrange density we may compute the
Green’s functions of the fields, which will in turn give us the S-matrix elements providing
the link to experiment. In order to achieve this, we have to express the in/out”-states in
terms of creation operators a;rn fout and the vacuum, then express the creation operators

by the fields ¢in/out, and finally use the time evolution to connect those with the fields ¢
in our Lagrangian.
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Let us consider again the scattering process depicted in Fig. 4. The S-matrix element
in this case is

S = <k1,k2,...,kn;0ut

P1,Da2; lIl>

= <k1, ks, ..., kp;out afn(pl)‘pg; in>, (4.37)

where a;rn is the creation operator pertaining to the “in” field ¢y,. Our task is now to
express al in terms of ¢y, and repeat this procedure for all other momenta labelling our
Fock states.

The following identities will prove useful

al(p) = i / &z { (9o ™) p(z) — e70° (Dop(z))}

= ~z’/d3a: e e (50’ o(x), (4.38)
a(p) = —i / &z { (80 €"%) p(z) — €77 (Gogp())}
= 4 /d% glae 3(; o(z). (4.39)

The S-matrix element can then be rewritten as

Sg = —i/d3ﬂ31e_ipl'm1 9o <k1,---,kn;0ut

¢ia(71) lpz; iﬂ>

= —3 lim 3z, e~ P1 T <3—0) <k1,...,kn;0ut‘qﬁ($1)

t1——00

P2; in>, (4.40)

where in the last line we have used Eq.(4.4) to replace ¢ by ¢. We can now rewrite
limg, _,_oo using the following identity, which holds for an arbitrary, differentiable function
f(t), whose limit ¢t — oo exists:

lim f(t) = lim f(¢) /+w ﬁdt (4.41)
t——}—oo o t—}+oo s dt ' '
The S-matrix element then reads
Sqg = —i tll_i)rfoo d3z, 7P G, <k1, R out‘qﬁ(xl)lpz; in>
—+00 o ) -
+Z/ dtl I {/ dSwl g P 80 <k1, cee ,kn; out‘qﬁ(ml)‘pz; 1n>} (442)
IR oty

The first term in this expression involves limy, 1 ¢ = ¢out, Which gives rise to a contri-
bution

X <k1a R ak'n; out azut(pl)‘pZ; 111> (443)

This is non-zero only if p; is equal to one of k;, ..., k,. This, however, means that the
particle with momentum p, does not scatter, and hence the first term does not contribute
to the T-matrix of Eq. (4.35). We are then left with the following expression for Ss:

Sg = —1 / d*zy <k1, N % 011'6‘80 {(Boe™™ ™) (1) — e~ (Bop(1)) } ‘PQ; in>.
(4.44)
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The time derivatives in the integrand can be worked out:

O { (Boe™ ™) p(z1) — P (Bop(1)) }
=~ [B(py)] ¢ §(a1) — ¢ G ()
= — {((—V2 o m2) e—ipl-ml ) ¢(.’131) i e—ipl-m 83 ¢(551)} ) (4.45)

where we have used that —VZe~P1'%1 = p2e~%#1%1, For the S-matrix element one obtains
Sﬁ = Z'/d4iL'1 e—"pl'”“ <k1, P ,kn; Out‘ (83 - V2 + m2) (b(iL'l) ’p2, lIl>

= i [ dme e (O ) (i sout] (o)

pP2; in>. (4.46)

What we have obtained after this rather lengthy step of algebra is an expression in which
the field operator is sandwiched between Fock states, one of which has been reduced to a
one-particle state. We can now successively eliminate all momentum variables from the
Fock states, by repeating the procedure for the momentum p,, as well as the n momenta
of the “out” state. The final expression for Sy is

X (O +2) (T +m2) (O, +10%) -+ (O, + 1)
x(050u8| T{$(a1) - - p(yn) (1) $(22)} |05 im), (4.47)

where the time-ordering inside the vacuum expectation value (VEV) ensures that causality
is obeyed. The above expression is known as the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula. It relates the formal definition of the scattering amplitude to a vacuum
expectation value of time-ordered fields. Since the vacuum is uniquely the same for
"in/out”, the VEV in the LSZ formula for the scattering of two initial particles into n
particles in the final state is recognised as the (n + 2)-point Green'’s function:

Grs2(y1,8a, -+ Uy 1, 83) = (O|T{0(0n) - dlum)d(z)be)}0).  (4.48)

You will note that we still have not calculated or evaluated anything, but merely rewritten
the expression for the scattering matrix elements. Nevertheless, the LSZ formula is of
tremendous importance and a central piece of QFT. It provides the link between fields in
the Lagrangian and the scattering amplitude Sz, which yields the cross section, measurable
in an experiment. Up to here no assumptions or approximations have been made, so this
connection between physics and formalism is rather tight. It also illustrates a profound
phenomenon of QFT and particle physics: the scattering properties of particles, in other
words their interactions, are encoded in the vacuum structure, i.e. the vacuum is non-
trivial!

4.4 How to compute Green’s functions

Of course, in order to calculate cross sections, we need to compute the Green’s functions.
Alas, for any physically interesting and interacting theory this cannot be done exactly,
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contrary to the free theory discussed earlier. Instead, approximation methods have to
be used in order to simplify the calculation, while hopefully still giving reliable results.
Or one reformulates the entire QFT as a lattice field theory, which in principle allows to
compute Green’s functions without any approximations (in practice this still turns out
to be a difficult task for physically relevant systems). This is what many theorists do for
a living. But the formalism stands, and if there are discrepancies between theory and
experiments, one ”only” needs to check the accuracy with which the Green’s functions
have been calculated or measured, before approving or discarding a particular Lagrangian.

In the next section we shall discuss how to compute the Green’s function of scalar
field theory in perturbation theory. Before we can tackle the actual computation, we must
take a further step. Let us consider the n-point Green’s function

Gol(@1, ., 2n) = (O |T{p(x1) - - - $(n)}| 0) . (4.49)

The fields ¢ which appear in this expression are Heisenberg fields, whose time evolution
is governed by the full Hamiltonian Hy+ Hiy. In particular, the ¢’s are not the ¢;,’s. We
know how to handle the latter, because they correspond to a free field theory, but not the
former, whose time evolution is governed by the interacting theory, whose solutions we
do not know. Let us thus start to isolate the dependence of the fields on the interaction
Hamiltonian. Recall the relation between the Heisenberg fields ¢(¢) and the “in”-fields?

$(t) = U™ (t) $in(t) U(2). (4.50)

We now assume that the fields are properly time-ordered, ie. t; > t3 > ... > t,, so
that we can forget about writing T(---) everywhere. After inserting Eq. (4.50) into the
definition of &,, one obtains

= (0JU Y (t2) i (t)U (1) U (t2) hin(t2) U (t) - - -
() bin () U (t0)]0). (4.51)

Now we introduce another time label ¢ such that ¢ > ¢; and —t <« ¢;. For the n-point
function we now obtain

G = <OlU'l(t){U(t)U‘l(tl)qbin(tl)U(tl) U~ (t)in(t2)U () - - -
><U"l(tn)qbin(tn)U(tn)U"l(—t)}U(——t)‘0>. (4.52)

The expression in curly braces is now time-ordered by construction. An important obser-
vation at this point is that it involves pairs of U and its inverse, for instance

UU ) = Ut ty). (4.53)

One can easily convince oneself that U(t,t;) provides the net time evolution from ¢; to ¢.
We can now write G,, as

G = (O]U O T{dnlts) - dunlta) Ult, ) Ultr, ) -+ Ultw, =) JU(=1)[0).  (4.59)
U(t, —t)

*Here and in the following we suppress the spatial argument of the fields for the sake of brevity.
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Let us now take t — co. The relation between U(t) and the S-matrix Eq. (4.26), as well
as the boundary condition Eq. (4.27) tell us that

lim U(—t) =1,  lim U(t,~%) = S, (4.55)

t—00 t—oo

which can be inserted into the above expression. We still have to work out the meaning
of (0)U~*(c0) in the expression for G,,. In a paper by Gell-Mann and Low it was argued
that the time evolution operator must leave the vacuum invariant (up to a phase), which
justifies the ansatz

(0)U Y (o0) = K(0], (4.56)

with K being the phagse. Multiplying this relation with |0) from the right gives
(0|U1(c0)|0) = K(0]0) = K. (4.57)

Furthermore, Gell-Mann and Low showed that

|
0]U(00)|0) = o—av, 4.58
01U 90 = 77T (4.58)
which implieg
1
K=——. 4.59
OED 459
After inserting all these relations into the expression for G, we obtain
_ 0T {¢n(=1) - - fin(wn) S} |0)
Gn(Z1,. .., Zn) = — 01570y : (4.60)
The S-matrix is given by
+o0 :
S =T exp {—i Hin(2) dt} ,  Hiny = Hipg(¢in, Tin), (4.61)
-0

and thus we have finally succeeded in expressing the n-point Green’s function exclusively
in terms of the “in”-fields. This completes the derivation of a relation between the general
definition of the scattering amplitude Sz and the VEV of time-ordered “in”-fields. The
link between the scattering amplitude and the underlying field theory is provided by the
n-point Green’s function.

Problems

4.1 Using the definition U(t) = 'ffot =t derive the evolution equation for U(t):

d

T U(t) = Hine(2) U(2),

¢

where
i Hot —iHot
Hint(t) = eho Hinte i
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4.2 Given that ¢y, is a free field, obeying the Heisenberg equation of motion
iq'sin . [H0(¢in; 7Tin)) ¢in] )
show that ¢y is also a free field, which obeys

Z.(»'boul; - [HO(¢out7 Wout)a ¢out] .

[Hint: use ¢ou; = ST¢inS and moy, = STmnS. Keep in mind that the S-matrix has
no explicit time dependence.]

5 Perturbation Theory

In this section we are going to calculate the Green’s functions of scalar quantum field
theory explicitly. We will specify the interaction Lagrangian in detail and use an approx-
imation known as perturbation theory. At the end we will derive a set of rules, which
represent a systematic prescription for the calculation of Green’s functions, and can be
easily generalised to apply to other, more complicated field theories. These are the famous
Feynman rules.

We start by making a definite choice for the interaction Lagrangian L. Although
one may think of many different expressions for £;,;, one has to obey some basic principles:
firstly, Line must be chosen such that the potential it generates is bounded from below
— otherwise the system has no ground state. Secondly, our interacting theory should be
renormalisable. Despite being of great importance, the second issue will not be addressed
in these lectures. The requirement of renormalisability arises because the non-trivial vac-
uum, much like a medium, interacts with particles to modify their properties. Moreover,
if one computes quantities like the energy or charge of a particle, one typically obtains
a divergent result3. There are classes of quantum field theories, called renormalisable,
in which these divergences can be removed by suitable redefinitions of the fields and the
parameters (masses and coupling constants).

For our theory of a real scalar field in four space-time dimensions, it turns out that
the only interaction term which leads to a renormalisable theory must be quartic in the
fields. Thus we choose

A
Ling = *Z¢4(x), (5.1)

where the coupling constant A describes the strength of the interaction between the scalar
fields, much like, say, the electric charge describing the strength of the interaction between
photons and electrons. The full Lagrangian of the theory then reads

. 1 2 1 55 Ay
L= Lo+ Lim = 5 (9,0)" = 5m¢" — 4%, (5:2)

3This is despite the subtraction of the vacuum energy discussed earlier.
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and the explicit expressions for the interaction Hamiltonian and the S-matrix are

Hint = _['int; Hint = % dBm ¢?n(X,t)

A
S=T exp {—Z—Aﬁ I/ d4£L' ¢;1n($)} . (53)
The n-point Green’s function is

Gn(wl, ey xn)

g (—%) = <0 ’T {%(ml) - () ( / d4y¢?n(y)>r} 0>

- AT e . (54)
> (-a) wlefr (fevarw) o)

This expression cannot be dealt with as it stands. In order to evaluate it we must expand
G, in powers of the coupling A and truncate the series after a finite number of terms. This
only makes sense if ) is sufficiently small. In other words, the interaction Lagrangian must
act as a small perturbation on the system. As a consequence, the procedure of expanding
Green’s functions in powers of the coupling is referred to as perturbation theory.

5.1 Wick’s Theorem

The n-point Green’s function in Eq. (5.4) involves the time-ordered product over at least
n fields. There is a method to express VEV’s of n fields, i.e. (0|7 {¢u(z1) -« Pin(zn)} |0)
in terms of VEV’s involving two fields only. This is known as Wick’s theorem.

Let us for the moment ignore the subscript “in” and return to the definition of
normal-ordered fields. The normal-ordered product : ¢(z1)@(xs) : differs from ¢(z1)p(zs)
by the vacuum expectation value, i.e. '

¢5($1)¢($2) =: ¢($1)¢(332) : +<0|¢($1)¢(332)|0>- (5.5)

We are now going to combine normal-ordered products with time ordering. The time-
ordered product T{¢(z;)¢p(z2)} is given by

T(p(@)d(@2)} = P@1)dlwn)d(ts ~ ) + $la)p(a)0(tz — 1)
= g(e)b(wa): (6t~ t2) +0(t 1))
+(0|¢(21)p(22)0(t1 — t2) + p(z2)B(21)0(2 — £1)[0).  (5.6)

Here we have used the important observation that

D P(@1)p(m2) : = P(w2)P(71) 1, (5.7)

which means that normal-ordered products of fields are automatically time-ordered.
Equation (5.6) is Wick’s theorem for the case of two fields:

T{p(z1)p(z2)} =: ¢(x1)(2) : +(0|T {$(x1)p(z2)} |0). (5.8)

4The reverse is, however, not true!
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For the case of three fields, Wick’s theorem yields

T{p(x1)d(z2)p(z3)} = : d(x1)P(m2)P(w3) : + : d(z1) : (O|T{P(w2)(3)}|0)
+ 1 ¢(22) 1 0T {p(z1)B(x3) }0)+ : p(23) : (O|T{p(z1)d(22)}|0)  (5.9)

At this point the general pattern becomes clear: any time-ordered product of fields is
equal to its normal-ordered version plus terms in which pairs of fields are removed from the
normal-ordered product and sandwiched between the vacuum to form 2-point functions.
Then one sums over all permutations. Without proof we give the expression for the
general case of n fields (n even):

T{p(z1) -~ d(an)} =
Fp(ze) e lan)
1 @) e Plwi) - Plas) - Ban) - (O1T{d(w:)d(25)}[0) + perms.
() B Bay) - FEn) ) - blan)
X (OT{b(2:)(;)}0) OIT{$(xx) (1) }[0) + perms.
Sl . il
HOIT{9(0)8(z)} 0) (O {$(5)d(@)}0) - (01T (n—1) ()} 0}
+ perms.. (5.10)

The symbol qz/S(xT) indicates that ¢(x;) has been removed from the normal-ordered product.

Let us now go back to (0|T{¢(z1) - - - ¢(z,) }|0). If we insert Wick’s theorem, then we
find that only the contribution in the last line of Eq. (5.10) survives: by definition the VEV
of a normal-ordered product of fields vanishes, and it is precisely the last line of Wick’s
theorem in which no normal-ordered products are left. The only surviving contribution
is that in which all fields have been paired or “contracted”. Sometimes a contraction is
represented by the notation:

¢ (:)(z5) = (0]T{¢(z:)(z5) }0), (5.11)
~——

i.e. the pair of fields which is contracted is joined by the braces. Wick’s theorem can now
be rephrased as

O|T{¢(z1) - - - ¢(2,,)}|0) = sum of all possible contractions of n fields. (6.12)

Let us look at a few examples. The first is the 4-point function

(OIT{$(21)8(w2)¢(23) () }O) = ¢ (21)¢(2) b (¥5) ()

—~—= e N,
+¢£$1)¢ (373)415(153)(12(%) + ¢(x1) ¢ (z2)P(23)P(4) (5:13)

The second example is again a 4-point function, where two of the fields are also normal-
ordered:

(OIT{¢(z1)¢(z2) : d(3)$(24) :}0) = ¢(i1/)_f(wz) : ¢££3)_@($4) 1
—— N
+¢ (1) ¢ (z2) : §(s)b(z4) : +(z1)d (22) : P(x3)P(a) : (6.14)
——

LS

v

-38-



In this example, though, the contraction of : ¢(z3)@(x4) : vanishes by construction, so only
the last two terms survive! As a general rule, contractions which only involve fields inside a
normal-ordered product vanish. Such contractions contribute only to the vacuum. Normal
ordering can therefore simplify the calculation of Green’s functions quite considerably, as
we shall see explicitly below.

5.2 The Feynman propagator

Using Wick’s Theorem one can relate any n-point Green’s functions to an expression
involving only 2-point functions. Let us have a closer look at

Ga(x,y) = (O]T{¢m () bin(y) }0). (5.15)

We can now insert the solution for ¢ in terms of & and af. If we assume t, > 1, then
Go(z,y) can be written as

_ d’p &’
Ga(z,y) = /(2#)6 1E)E ()
x (0(a'(p) €™ +a(p)e™™) (a'(a) ¥ + a(q) e7*¥)| 0)

- d®p d*q T
= /(271_)6 1Ep)E(q) e~ P#y (0 |a(p)al(q)| 0) . (5.16)

This shows that G5 can be interpreted as the amplitude for a meson which is created at
y and destroyed again at point z. We can now replace a(p)a'(q) by its commutator:

Bp g
Galery) = / 2n) 64%(1) VE(q) e e (0] [a(p), a'(@]0)

e~ (@—y) )
e 35D ’ (5:17)

and the general result, after restoring time-ordering, reads

—ip-(T—Y) _ ip-(z—y) -

Furthermore, using contour 1ntegration one can show that this expression can be rewritten
as a 4-dimensional integral

d4p e"ip‘(m_y)
=1 1
G2(xa y) l[ (27!')4 pz . mz + 1;6, (5 9)

where ¢ is a small parameter which ensures that GG does not develop a pole. This cal-
culation has established that Gy(z,y) actually depends only on the difference (z — y).
Equation (5.19) is called the Feynman propagator Gr(z — y):

? d4p e—ip'(x—y)

Gr(z —y) = (OIT{d(z)dx)}[0) = i / :

The Feynman propagator is a Green’s function of the Klein-Gordon equation, i.e. it
satisfies

, 2
2m)4 p2 — m? +ie (5:20)

(Op + m*) Gp(z —y) = —i8*(z — y), (5.21)

and describes the propagation of a meson between the space-time points z and y.
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P1

P2

Figure 5: Scattering of two initial particles with momenta p, and p, into 2 particles with
momenta k; and k.

5.3 Two-particle scattering to O(\)

Let us now consider a scattering process in which two incoming particles with momenta
P1 and p; scatter into two outgoing ones with momenta k; and ks, as shown in Fig. 5.
The S-matrix element in this case is

Sg = (ki kg;out|py, po; in)
= (kq, ko; in|S|p1, p2; in), (6.22)

and S = 1+4T. The LSZ formula Eq. (4.47) tells us that we must compute G4 in order
to obtain S5. Let us work out G4 in powers of A using Wick’s theorem. To make life
simpler, we shall introduce normal ordering into the definition of .S, i.e.

S =T exp {~z’é\—’ / d*z : ¢t (x) :} (5.23)

Suppressing the subscripts “in” from now on, the expression we have to evaluate order by
order in A is

Gn(z1, ..., T) (5.24)

5 (-2) 3 (o[r{ewnstapsrsen ([ av: o) }o)

% () 70 (fov-ow:)]o)

r=0
r=0: denominator = 1. (5.25)

Starting with the denominator, we note that for r = 0 one finds

If r = 1, then the expression in the denominator only involves fields which are normal-
ordered. Following the discussion at the end of section 5.1 we conclude that these contri-
butions must vanish, hence

T =uil B denominator = 0. " (5.26)

The contribution for r = 2, however, is non-zero. But then the case of r = 2 corresponds
already to O(A?), which is higher than the order which we are working to. Therefore

denominator = 1 to order A. (5.27)
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Turning now to the numerator, we start with » = 0 and apply Wick’s theorem, which
gives

r=0: OT{¢(z1)d(z2)$(xs)$(x4)}|0)
= Gp(ml - 1122) GF(QT:; - $4) + GF(.’El . 1133) Gp(xg — 164)
+ GF(ICl . x4) GF(.’IJQ — 363), (528)

which can be graphically represented as

A I3 T T3 1 &y

e

Z9 T4 To Ta o Ty
But this is the same answer as if we had set A = 0, so r = 0 in the numerator does not
describe scattering and is hence not a contribution to the T-matrix.
For r = 1 in the numerator we have to evaluate

iA
r=1e G (ofr{owsesse: [ty o)
A
= —77 [ 44 Gr(m1— y)Gr(z2 — y)Gr(vs — y)Gr(za —y), (5.29)
where we have taken into account that contractions involving two fields inside : - - - : vanish.

The factor 4! inside the integrand is a combinatorial factor: it is equal to the number of
permutations which must be summed over according to Wick’s theorem and cancels the
4! in the denominator of the interaction Lagrangian. Graphically this contribution is
represented by

1 I3
Y
—iA / dy
)

where the integration over y denotes the sum over all possible locations of the interaction
point y. Without normal ordering we would have encountered the following contributions
for r =1:

T4

T T3 1 T3

OO e

T2 L4 Zo T4

Such contributions are corrections to the vacuum and are cancelled by the denomina-
tor. This demonstrates how normal ordering simplifies the calculation by automatically
subtracting terms which do not contribute to the actual scattering process.
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To summarise, the final answer for the scattering amplitude to O()) is given by
Eq. (5.29).

5.4 Graphical representation of the Wick expansion: Feynman rules

We have already encountered the graphical representation of the expansion of Green's
functions in perturbation theory after applying Wick’s theorem. It is possible to formulate
a simple set of rules which allow to draw the graphs directly without using Wick’s theorem
and to write down the corresponding algebraic expressions.

We again consider a neutral scalar field whose Lagrangian is

1 1 Ay
- w242 0 4
L 28u PO+ 5 ¢ 4!¢ : (5.30)

Suppose now that we want to compute the O(A™) contribution to the n-point Green’s
function G, (z1,...,z,). This is achieved by going through the following steps:

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

e Draw n dots and label them x4, ..., z, (external points)
e Draw m dots and label them ¥, . .., ym (vertices)
e Join the dots according to the following rules:

— only one line emanates from each x;
— exactly four lines run into each y;

— the resulting diagram must be connected, i.e. there must be a continuous
path between any two points.

A
(2) Assign a factor ——1—' / d*y; to the vertex at y;

(3) Assign a factor Gp(z; — y;) to the line joining z; and y;

(4) Multiply by the number of contractions C from the Wick expansion which lead to
the same diagram.

These are the Feynman rules for scalar field theory in position space.
Let us look at an example, namely the 2-point function. According to the Feynman
rules the contributions up to order A\? are as follows:

O(l) 71 e =$2 = GF(ﬂZl — 332)

O(A): ( ) “tadpole diagram”;
(cancelled by normal ordering)

Ty y T2
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0(A2): “tadpole diagram”,
g ? (cancelled by normal ordering)

T

OX%): 1y yy T2

N 2
=C (—1—),\> /d4y1d4y2 Gr(z1 — ) [Gr(nn — y2))° Gry2 — 22)
The combinatorial factor for this contribution is worked out as C = 4 - 4. Note that
the same graph, but with the positions of y; and y» interchanged is topologically distinct.
Numerically it has the same value as the above graph, and so the corresponding expression
has to be multiplied by a factor 2.
Another contribution at order \? is

2y.
O(A%): h Y2 vacuum contribution;

not connected
Tie— oo

This contribution must be discarded, since not all of the points are connected via a
continuous line.

Let us end this discussion with a small remark on the tadpole diagrams encountered
above. These contributions to the 2-point function are cancelled if the interaction term
is normal-ordered. However, unlike the case of the 4-point function, the corresponding
diagrams satisfy the Feynman rules listed above. In particular, the diagrams are connected
and are not simply vacuum contributions. They must hence be included in the expression
for the 2-point function.

5.5 Feynman rules in momentum space

It is often simpler to work in momentum space, and hence we will discuss the derivation
of Feynman rules in this case. If one works in momentum space, the Green’s functions
are related to those in position space by a Fourier transform

d*p d*Pr i1 Foit P
Gn(ml,...,xn) = (27_‘_)4 (271')4 e p- Gn(pl)"'apn)' (531)
The Feynman rules then serve to compute the Green’s function én(pl, ...,Dn) order by

order in the coupling.
In every scattering process the overall momentum must be conserved, and hence

2”: pi = 0. (5.32)
i=1
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This can be incorporated into the definition of the momentum space Green’s function one
is trying to compute:

Gn(D1, ..., Dn) = (21)%6* (Z pi) Gn(D1y -, Pn) (5.33)

=1

Here we won’t be concerned with the exact derivation of the momentum space Feynman
rules, but only list them as a recipe.

Feynman rules (momentum space)

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

e Assign momenta p,, ..., p, to the external lines

o Assign momenta k; to the internal lines

(2) Assign to each external line a factor
1
P2 —m? +ic
(3) Assign to each internal line a factor

d'k; i
(2m)* k2 —m? + e

(4) Each vertex contributes a factor

_21—!(271-) ) (Z momenta) ,
(the delta function ensures that momentum is conserved at each vertex).

(5) Multiply by the combinatorial factor C, which is the number of contractions leading
to the same momentum space diagram (note that C may be different from the
combinatorial factor for the same diagram considered in position space!)

5.6 S-matrix and truncated Green’s functions

The final topic in these lectures is the derivation of a simple relation between the S-
matrix element and a particular momentum space Green’s function, which has its external
legs amputated: the so-called truncated Green’s function. This further simplifies the
calculation of scattering amplitudes using Feynman rules.

Let us return to the LSZ formalism and consider the scattering of m initial particles
(momenta p;,...,Pm) into n final particles with momenta k;, ..., k,. The LSZ formula
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tells us that the S-matrix element is given by

<k1, R outlpl, ooy P in>

== (i)”+m/ﬁd4mi/ﬁd‘lyjexp{—iipi-xi-i—izn:kj-yj}
i=1 j=1 =
m

X H (Ela:i + m2) H (I:ij + mZ) Gram(T1, - oy Ty Y1y - -+, Yn)- (5.34)

i=1 i=1

Let us have a closer look at Gpim(%1,...,Zm,¥1,.-.,Yn). As shown in Fig. 6 it can
be split into Feynman propagators, which connect the external points to the vertices at
21, -+, Zntm, and a remaining Green’s function Gim, according to

Goam = /d421 . 'd4zn+m Gr(zy —21) - Gr(Yn — Zngm) @,H_m(zl, ooy Zntm), (5.35)

where, perhaps for obvious reasons, G, is called the truncated Green’s function.

Figure 6: The construction of the truncated Green’s function in position space.

Putting Eq. (5.35) back into the LSZ expression for the S-matrix element, and using
that

(Dm,- + m2) Gr(m; — 2z) = —i6*(z; — ) (5.36)

one obtains

<k1, T .,kn;out’pl, e ,pm;in>
= (i)n+m / H d4£l7i / H d4yj exp {‘—"l Zp@ -z 1 Z l{}j . yJ} (537)
i=1 j=1 i=1 J=1

X (=)™ / Az d 2y 04 (21 — 21) - 8 (Yn — Zntm) Grm(21, - - -, Zntm)-
After performing all the integrations over the z,’s, the final relation becomes

<k1, . ,kn;outlpl, ... ,pm;in>
m n m n
- [Tl ewon{Enasi S}
i=1 j=1 i=1 Jj=1

X hén%—m(xla sy Tmy Y1y - 8- :yn)
gn-}-m(pla'-';pm’kl)' "1kn)7 (538)

il
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where G, 4m is the truncated n -+ m-point function in momentum space. This result shows
that the scattering matrix element is directly given by the truncated Green’s function
in momentum space. The latter can be obtained using the Feynman rules without the
expression for the external legs.

Problems

5.1 Verify that
p(m1)p(@2) 1 =1 P(w2)p(w1) :
Hint: write ¢ = ¢+ +¢~, where ¢* and ¢~ are creation and annihilation components

of ¢.

5.2 Verify that

J (2m)% p?2 —m?2 +ic

is a Green’s function of (0#9, + m?) as € — 0 (where 8, = 8/9zH).

GF(ZE—y) =1

9.3 Find the expressions corresponding to the following momentum space Feynman di-

agrams

Integrate out all the d-functions but do not perform the remaining integrals.

6 Concluding remarks

Although we have missed out on many important topics in Quantum Field Theory, we got
to the point where we established contact between the underlying formalism of Quantum
Field Theory and the Feynman rules, which are widely used in perturbative calculations.
The main concepts of the formulation were discussed: we introduced field operators,
multi-particle states that live in Fock spaces, creation and annihilation operators, the
connections between particles and fields as well as that between n-point Green’s func-
tions and scattering matrix elements. Besides slight complications in accounting for the
additional degrees of freedom, the same basic ingredients can be used to formulate a quan-
tum theory for electrons, photons or any other fields describing particles in the Standard
Model and beyond. Starting from relativistic wave equations, this is discussed in the
lectures by Nick Evans at this school. Renormalisation is a topic which is not so easily
discussed in a relatively short period of time, and hence I refer the reader to standard
textbooks on Quantum Field Theory, which are listed below. The same applies to the
method of quantisation via path integrals.
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A Notation and conventions

4-vectors:

o = (2°, %) = (¢,%)

Ty = Guv 7’ = (3;0, —X) = (t’ _X)
1 0 0 0
0 -1 0 0
1 M — i =
Metric tensor: g, =g 0 0 -1 0
0 0 0 -1
Scalar product:
atz, = 1%+ z'®) + %20 + 2075
= 22
Gradient operators:
0 3]
ot=—=|—,-V
Oz, (c’)t )
0 0
0= Bgn = (a’ V)
82
d’Alembertian: 00, = i Vi=0O

Momentum operator:

Il

(E, f)) (as it should be)

P = ihOH = (ih%, —ihV)

d-functions:
/ &*p f(p) 6*(p — ) = f(a)
[z~ npeo)

Jpemnare

(similarly in four dimensions)

Note:
5z —22) = §{(z — zo)(z +20)}
= -21; {6(z — z0) + 6(x + 7o)}
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1 Introduction

The aim of this course is to teach you how to calculate transition amplitudes, cross
sections and decay rates, for elementary particles in the highly successful theories of
Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). Most of our
work will be in understanding how to compute in QED. By the end of the course you
should be able to go from a Feynman diagram, such as the one for e"e™ — p = in
figure 5, to a number for the cross section. To do this we will have to learn how to
cope with relativistic, quantum, particles and anti-particles that carry spin. In fact all
these properties of particles will emerge rather neatly from thinking about relativistic
quantum mechanics. The rules for calculating in QCD are slightly more complicated
that in QED, as we will briefly review, however, the basic techniques for the calculation
are very similar.

We have a lot to cover so will necessarily have to take some short cuts. Our main
fudge will be to work in relativistic quantum mechanics rather than the full Quantum
Field Theory (QFT) (sometimes referred to as ‘second quantization’). We will be in
good company though since we will largely follow methods from Feynman’s papers and
text books such as Halzen and Martin. In quantum mechanics a classical wave is used to
describe a particle whose motion is subject to the Uncertainty Principle. In a full QFT
the wave’s motion itself is subject to the Uncertainty Principle too - the quanta of that
field are what we then refer to as particles. Luckily at lowest order in a perturbation
theory calculation one neglects the quantum nature of the field and the two theories
give the same answer. At higher orders the quantum nature of the field gives rise to
virtual pair creation of particles - in the quantum mechanics version of the story these
are included in a more ad hoc fashion as we will see. Luckily the simultaneous QFT
course will give you a good grounding in more precise methodologies.

Thus our starting point will be ordinary Quantum Mechanics and our first goal
(section 2) will be to write down a ‘relativistic version’ of Quantum Mechanics. This will
lead us to look at relativistic wave equations, in particular the Dirac equation, which
describes particles with spin 1/2. We will also develop a wave equation for photons
and look at how they couple to our fermions (section 3) - this is the core of QED. A
perturbation theory analysis will result in quantum mechanical probability amplitudes
for particular processes. After this, we will work out how to go from the probability
amplitudes to cross sections and decay rates (section 4). We will look at some examples of
tree level QED processes. Here you will get hands-on experience of calculating transition
amplitudes and getting from them to cross sections (section 5). We will restrict ourselves
to calculations at tree level but, at the end of the course (section 6), we will also take a
first look at higher order loop effects, which, amongst other things, are responsible for
the running of the couplings. For QCD, this running means that the coupling appears
weaker when measured at higher energy scales and is the reason why we can sometimes
do perturbative QCD calculations. However, in higher order calculations divergences
appear and we have to understand — at least in principle — how these divergences can
be removed.

In reference [1} you will find a list of textbooks that may be useful.
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1.1 Relativity Review

An event in a reference frame S is described by the four coordinates of a four-vector (in
units where ¢ = 1)
Zr==n({ )l (1.1)

where the Greek index u € {0, 1,2,3}. These coordinates are reference frame dependent.
The coordinates in another frame S’ are given by z™*, related to those in S by a Lorentz
Transformation (LT)

zt — 't = AF zY, (1.2)

where summation over repeated indices is understood. This transformation identifies z#
as a contravariant 4-vector (often referred to simply as a vector). A familiar example of
a LT is a boost along the z-axis, for which

v 0 0 —pv
0 10 0

[ L

Ay = 0o 01 0o | (13)
—By 0 0 «

with, as usual, 8 = v and v = (1 — #2)7Y/2. LT’s can be thought of as generalized
rotations.

The “length” of the 4-vector (t* — |Z|?) is invariant to LTs. In general we define the
Minkowski scalar product of two 4-vectors z and y as

z -y = 'Y g = 2y, (1.4)
where the metric

1 ifu=v
wo__ — A 1 -1 — 2 = g# = §* = B
g = G9w dla’g(L 1) 1, 1)7 9 9w 9 5” {0 if 7 7é v’

has been introduced. The last step in eq. (1.4) is the deﬁmtlon of a covariant 4-vector
(sometimes referred to as a co-vector),

(1.5)

Ty = G’ (1.6)
This transforms under a LT according to

/
T, — X

w =Nz (1.7)

Note that the invariance of the scalar product implies
ATgA =g = gATg=A"1, (1.8)

i.e. a generalization of the orthogonality property of the rotation matrix RT = R™1,

> Exercise 1.1
Show eq. (1.8), starting from the invariance of the scalar product.
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To formulate a coherent relativistic theory of dynamics we define kinematic variables
that are also 4-vectors (i.e. transform according to eq. (1.2)). For example, we define a
4-velocity
_dz*
==
where 7 is the proper time measured by a clock moving with the particle. Everyone
will agree what the clock says at a particular event so this measure of time is Lorentz
invariant and «* transforms as z*. Note

i

(1.9)

u

dt da*
= ———— = (1,7 1.1
w d’r dt ’Y( 7’0) ‘ ( O)
and has invariant length
wu, = ¥*(12 - |9]?) = 1. (1.11)
Similarly 4-momentum provides a relativistic definition of energy and momentum
" =mu' = (E,p). (1.12)
The invariant length provides the crucial relation
P'pu = E* — o = m®. (1.13)

> Exercise 1.2
Check that dt/dr = v and that our relativistic definitions of E and $ make sense in the
non-relativistic limit.

The differentiation operator,
0

dxH

0
. (b—t,v> , Ou’ =6, (1.14)

is a covariant 4-vector (i.e. according to eq. (1.7)). This means that the contravariant
equivalent 4-vector will have an extra minus sign in its space-like components,

8#

il

M = ((%, ~V). (1.15)

The convention for the totally antisymmetric Levi-Civita tensor is

+1 . if {g, v, A, o} an even permutation of {0, 1,2, 3}

A = { —1 if an odd permutation e (1.16)
0  otherwise

Note that e#?? = —¢,,,,, and €***p,q,7s, changes sign under a parity transformation

since it contains an odd number of spatial components.

> Exercise 1.3
Verify the above two properties of e#*A.

I will use natural units, ¢ = 1, i = 1, so mass, energy, inverse length and inverse time
all have the same dimensions. Generally think of energy as the basic unit, e.g. mass has
units of GeV and distance has units of GeV 1.

> Exercise 1.4
Noting that £ has SI unit kg.m?.572, ¢ has SI unit m.s™! and 7% has SI unit kg.m?.s1,
what is a mass of 1 GeV in kg and what is a cross-section of 1 GeV~2 in microbarns?

-54 -



2 Relativistic Wave Equations

Let’s review how wave equations describe non-relativistic quantum particles. Experimen-
tally we know that a particle with definite momentum 7 and energy E can be associated
with a plane wave

Y= ei(E'E_Wt), with k=

Sy

E
St 1

To extract 5 and p from the wave we use operators

Ey = ihd%v,b, P = —ih V. (2.2)

In quantum mechanics, it is more usual to refer to the energy operator as the Hamiltonian
H, and write (with /i = 1)
oy ‘
Hep = i—. 2.
b= (23)
I shall usually reserve the Greek symbol 1 for spin 1 /2 fermions and ¢ for spin 0 bosons.
So for pions and the like I shall write

o
Hp=1i—. 2.4
b= (24)
In non-relativistic systems, conservation of energy can be written
H=T+YV, (2.5)

where T' is the kinetic energy and V is the potential energy. A particle of mass m and
momentum p’ has non-relativistic kinetic energy,
=2
N (2.6)
2m
Replacing the energy and momentum operators with the forms seen in eq. (2.2), we
arrive at the Schrédinger equation
L d hi )
zhdtd) = MZmV W+ Vah. (2.7)
In this equation 1 is the wave function describing the single particle probability ampli-
tude. For a slow moving particle v < ¢ (e.g. an electron in a Hydrogen atom) this is
adequate, but for relativistic systems (v ~ ¢) the Hamiltonian above is incorrect,
For a free relativistic particle the total energy F is given by the Einstein equation

E? = 5% + m?. (2.8)

Thus the square of the relativistic Hamiltonian H? is simply given by promoting the
momentum to operator status:

H? =p% 4 m?. (2.9)
So far, so good, but how should this be implemented into the wave equation of eq. (2.3),
which is expressed in terms of H rather than H?? Naively the relativistic wave equation

looks like Bt
V5?4 m2p(t) = “_ﬁz— (2.10)

but this is difficult to interpret because of the square root. There are two ways forward:
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1. Work with H?. By iterating the wave equation we have

H24(1) = —% [or (g N V) 2¢(t)] (2.11)

"This is known as the Klein-Gordon (KG) equation. In this case the wave function
describes spinless bosons.

2. Invent a new Hamiltonian Hp that is linear in momentum, and whose square is
equal to H? given above, H? = 2 + m?. In this case we have

Hpy(t) = ia‘g—f) (2.12)

which is known as the Dirac equation, with Hp being the Dirac Hamiltonian. In
this case the wave function describes spin 1/2 fermions, as we shall see.

2.1 The Klein-Gordon Equation

Let us now take a more detailed look at the KG equation (2.11). In position space we
write the energy-momentum operator as

p* — 0¥, (2.13)
so that the KG equation (for zero potential V') becomes
(0% +m?) () =0 (2.14)
where we recall the notation,
8* = 0,0" = 8*/ot® — V? (2.15)

and z is the 4-vector (¢, 7).

The operator 6* is Lorentz invariant, so the Klein-Gordon equation is relativistically
covariant (that is, transforms into an equation of the same form) if ¢ is a scalar function.
That is to say, under a Lorentz transformation (¢, %) — (',2"),

o(t, %) — ¢'(t', ) = $(t, %) (2.16)

80 ¢ is invariant. In particular ¢ is then invariant under spatial rotations so it represents
a spin-zero particle (more on spin when we come to the Dirac equation); there being no
preferred direction which could carry information on a spin orientation.

The Klein-Gordon equation has plane wave solutions:

() = Ne #E-73) (2.17)

where N is a normalization constant and E = ++/52 + m?2. Thus, there are both positive
and negative energy solutions. The negative energy solutions pose a severe problem if we
try to interpret ¢ as a wave function (as indeed we are trying to do). The spectrum is no
longer bounded from below, and we can extract arbitrarily large amounts of energy from
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the system by driving it to ever more negative energy states. Any external perturbation
capable of pushing a particle across the energy gap of 2m between the positive and
negative energy continuum of states can uncover this difficulty. Furthermore, we cannot
Just throw away these solutions as unphysical since they appear as Fourier modes in any
realistic solution of (2.14). Note that if one interprets ¢ as a quantum field there is no
problem, as you will see in the field theory course. The positive and negative energy
modes are just associated with operators which create or destroy particles.

A second problem with the wave function interpretation arises when trying to find a
probability density. Since ¢ is Lorentz invariant, |¢|? does not transform like a density
(i.e. as the time component of a 4-vector) so we will not have a Lorentz covariant con-
tinuity equation dp + V - J = 0. To search for a candidate we derive such a continuity
equation. Defining p and J by

p = i(¢*%§— 8;;*), [or ¢*(i%—v>+¢(—i%—v>¢*], (2.18)

J = —i(¢"V¢— V), (2.19)

we obtain (see problem) a covariant conservation equation
o, J* =0, (2.20)

where J is the 4-vector (p, f) It is thus natural to interpret p as a probability density
and J as a probability current. However, for a plane wave solution (2.17), p = 2|N|%E,
so the negative energy solutions also have a negative probability!

>Exercise 2.5
Derive the continuity equation (2.20). Start with the Klein-Gordon equation multiplied
by ¢* and subtract the complex conjugate of the KG equation multiplied by ¢.

Thus, p may well be considered as the density of a conserved quantity (such as elec-
tric charge), but we cannot use it for a probability density. To Dirac, this and the
existence of negative energy solutions seemed so overwhelming that he was led to intro-
duce another equation, first order in time derivatives but still Lorentz covariant, hoping
that the similarity to Schrédinger’s equation would allow a probability interpretation.
Dirac’s original hopes were unfounded because his new equation turned out to admit
negative energy solutions too! Even so, he did find the equation for spin-1/2 particles
and predicted the existence of antiparticles.

Before turning to discuss what Dirac did, let us put things in context. We have found
that the Klein-Gordon equation, a candidate for describing the quantum mechanics of
spinless particles, admits unacceptable negative energy states when ¢ is interpreted as
the single particle wave function. We could solve all our problems here and now, and
restore our faith in the Klein-Gordon equation, by simply re-interpreting ¢ as a quantum
field. However we will not do that. There is another way forward (this is the way followed
in the textbook of Halzen & Martin) due to Feynman and Stiickelberg. Causality forces
us to ensure that positive energy states propagate forwards in time, but if we force the
negative energy states to propagate only backwards in time then we find a theory that
is consistent with the requirements of causality and that has none of the aforementioned
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problems. In fact, the negative energy states cause us problems only so long as we
think of them as real physical states propagating forwards in time. Therefore, we should
interpret the emission (absorption) of a negative energy particle with momentum pH as
the absorption (emission) of a positive energy antiparticle with momentum —pH.

In order to become more familiar with this picture, consider a process with a 7+ and
a photon in the initial state and final state. In figure 1(a) the 7+ starts from the point
A and at a later time ¢; emits a photon at the point #;. If the energy of the 7 is still
positive, it travels on forwards in time and eventually will absorb the initial state photon
at t5 at the point Zz. The final state is then again a photon and a (positive energy) .

There is another process however, with the same initial and final state, shown in
figure 1(b). Again, the 77 starts from the point A and at a later time ¢, emits a photon
at the point Z;. But this time, the energy of the photon emitted is bigger than the energy
of the initial 7. Thus, the energy of the 7+ becomes negative and it is forced to travel
backwards in time. Then at an earlier time ¢, it absorbs the initial state photon at the
point 75, thereby rendering its energy positive again. From there, it travels forward in
time and the final state is the same as in figure 1(a), namely a photon and a (positive
energy) .

space
o S

(a)

time
Figure 1: Interpretation of negative energy states

In todays language, the process in figure 1(b) would be described as follows: in the
initial state we have an 7% and a photon. At time #; and at the point # the photon
creates an w7~ pair. Both propagate forwards in time. The 7% ends up in the final
state, whereas the 7~ is annihilated at (a later) time ¢, at the point Z; by the initial
state 7+, thereby producing the final state photon. To someone observing in real time,
the negative energy state moving backwards in time looks to all intents and purposes
like a negatively charged pion with positive energy moving forwards in time.

> Exercise 2.6
Consider a wave incident on the potential step shown in figure 2. Show that if the
step size V' > m + E,, where E, = \/§Z + m? then one cannot avoid using the negative
square root k = —\/ (Ep — V)2 4+ m2, resulting in negative currents and densities. Hint:
use the continuity of ¢(z) and d¢(z)/8z at = = 0, and ensure that the group velocity
vy = OE/0k is positive for £ > 0. Interpret the solution.
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bexp(—ip - T) «——

aexp(if - &) — dexp(ik - ) —*

x=10

Figure 2: A potential step

2.2 The Dirac Equation

Dirac wanted an equation first order in time derivatives and Lorentz covariant, so it
had to be first order in spatial derivatives too. His starting point was to assume a
Hamiltonian of the form,

Hp = a1p1 + agp2 + azps + fm, (2.21)

where p; are the three components of the momentum operator 7, and «; and 3 are
some unknown quantities, which we will show must be interpreted as 4 x 4 matrices.
Substituting the expressions for the operators eq. (2.13) into the Dirac Hamiltonian of
eq. (2.21) results in the equation

.0 S
i 8_17{} =(—ia-V+pm)y (2.22)
which is the position space Dirac equation.

If 1 is to describe a free particle it must satisfy the Klein-Gordon equation so that
it has the correct energy-momentum relation. This requirement imposes relationships
among a;, ag, a3 and B. To see this, apply the Hamiltonian operator to v twice, to give

% i IXTETT 5 (And L i i
‘Eg = [ V'V — i (Bd’ + o' B)mV* + BPm?y, (2.23)
with an implicit sum of ¢ and j over 1 to 3. The Klein-Gordon equation by comparison
is
Y i
gz = [— V'V + m2y. (2.24)

It is clear that we cannot recover the KG equation from the Dirac equation if the o and
B are normal numbers. Insisting that the terms linear in V* vanish independently would
require either 3 to vanish or all the o* to vanish. This would remove either V¢V/ term
or the m? term, both of which are unacceptable. Instead we must insist that the terms
linear in V* vanish in their sum without any of o* or vanishing, i.e. we must assume
that o and § anti-commute. We tecover the KG equation only if

aiaj-i—ajai s 2(5,"
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Bos+ o = 0 (2.25)
=1

for 4,5 = 1,2,3. In principle, these equations define o® and 3, and any objects which
obey these relations are good representations of them. However, in practice, we will
represent them by matrices. In this case, v is a multi-component spinor on which these
matrices act. ]

> Exercise 2.7
Prove that any matrices @ and f satistying eq. (2.25) are traceless with eigenvalues +1.
Hence argue that they must be even dimensional.

In two dimensions a natural set of matrices for the & would be the Pauli matrices

alz((l) (1)>, azz(? _Oz>’ 03-——((1) _01> (2.26)

However, there is no other independent 2 x 2 matrix with the right properties for £, so
we must use a higher dimensional form. The smallest number of dimensions for which
the Dirac matrices can be realized is four. One choice is the Dirac representation:

&:(g g) ﬂ:(é _01). (2.27)

Note that each entry above denotes a two-by-two block and that the 1 denotes the 2 x 2
identity matrix. The spinor ¢ therefore has four components.

There is a theorem due to Pauli that states that all sets of matrices obeying the
relations in eq. (2.25) are equivalent. Since the hermitian conjugates &' and g8t clearly
obey the relations, you can, by a change of basis if necessary, assume that & and 3 are
hermitian. All the common choices of basis have this property. Furthermore, we would
like a; and # to be hermitian so that the Dirac Hamiltonian (2.42) is hermitiamn.

If we define

p=J=ylp,  T=ytay, (2.28)
then it is a simple exercise using the Dirac equation to show that this satisfies the
continuity equation 8,J# = 0. We will see in section 2.8 that (p, j) transforms, as it
must, as a 4-vector. Note that p is now also positive definite.

2.3 Solutions to the Dirac Equation

We look for plane wave solutions of the form

where ¢(p) and x(p) are two-component spinors that depend on momentum 7 but are
independent of Z. Using the Dirac representation of the matrices, and inserting the trial
solution into the Dirac equation gives the pair of simultaneous equations

=(3)= (" Za) (§) 23

There are two simple cases for which eq. (2.30) can readily be solved, namely
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1. p=0, m # 0, which might represent an electron in its rest frame.

2. m = 0,  # 0, which describes a massless particle or a particle in .the ultra-
relativistic limit (F > m).

For case (1), an electron in its rest frame, the equations (2.30) decouple and become
simply,

Ex=myx, FE¢=-mdo. (2.31)
So, in this case, we see that x corresponds to solutions with E = m, while ¢ corresponds
to solutions with E = —m, In light of our earlier discussions, we no longer need to recoil

in horror at the appearance of these negative energy states.

The negative energy solutions persist for an electron with ' # 0 for which the solutions
to equation (2.30) are
Ay 0P
T Eim © =B m

¢ . (2.32)

> Exercise 2.8
Show that (& - p)? = p2.

Using (¢ - p)* = p® we see that E = £|/p% + m?|. We write the positive energy
solutions with E = +|/p? + m?| as

vo) = (£f ) @, (233)
E+mX

while the general negative energy solutions with E = —|/p? + mZ| are
P ) _
W(z) = (E_qznd)) ¢ilEt—TE) (2.34)

for arbitrary constant ¢ and x. Clearly when p' = 0 these solutions reduce to the positive
and negative energy solutions discussed previously.

It is interesting to see how Dirac coped with the negative energy states. Dirac inter-
preted the negative energy solutions by postulating the existence of a “sea” of negative
energy states. The vacuum or ground state has all the negative energy states full. An
additional electron must now occupy a positive energy state since the Pauli exclusion
principle forbids it from falling into one of the filled negative energy states. On promot-
ing one of these negative energy states to a positive energy one, by supplying energy, an
electron-hole pair is created, i.e. a positive energy electron and a hole in the negative
energy sea. The hole is seen in nature as a positive energy positron. This was a radical
new idea, and brought pair creation and antiparticles into physics. The problem with
Dirac’s hole theory is that it does not work for bosons. Such particles have no exclusion
principle to stop them falling into the negative energy states, releasing their energy.

It is convenient to rewrite the solutions, egs. (2.33) and (2.34), introducing the spinors
u((p) and v (p). The label o € {1,2,3,4} is a spinor index that often will be sup-
pressed, while s € {1,2} denotes the spin state of the fermion, as we shall see later. We
take the positive energy solution eq. (2.33) and define

E'+m< 3.ng > e T = u(s)(p)e_ip'w. (2.35)
E+mX3 .
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For the negative energy solution of eq. (2.34), change the sign of the energy, F — —F,
and the three-momentum, g — —p, to obtain,

v E+m ( E+)Z‘XS) P = ) (p)et, (2.36)
3

In these two solutions E is now (and for the rest of the course) always positive and given

by E = (p2 +m?2)'/2. The y, for s = 1,2 are

Xlz((l)), X2=<(1))- (2.37)

For the simple case p’ = 0 we may interpret x; as the spin-up state and x, as the
spin-down state. Thus for p" = 0 the 4-component wave function has a very simple
interpretation: the first two components describe electrons with spin-up and spin-down,
while the second two components describe positrons with spin-up and spin-down. Thus
we understand on physical grounds why the wave function had to have four components.
The general case p'# 0 is slightly more involved and is considered in the next section.

The wu-spinor solutions will correspond to particles and the wv-spinor solutions to
antiparticles. The role of the two x’s will become clear in the following section, where it
will be shown that the two choices of s are spin labels. Note that each spinor solution
depends on the three-momentum , so it is implicit that p® = E.

2.4 Orthogonality and Completeness

Our solutions to the Dirac equation take the form
= Nu®e™™e o= NoPe?®  with rs=1,2, (2.38)

where N is a normalization factor. We have already included a factor /E+m in our
spinors (see egs. (2.35) and (2.36)), which results in

’U,(T) T(p)u(-‘:‘) (p) — ,U(”‘) T(p)v(s) (p) = 2E875. (239)

This convention allows u'u to transform as the time component of a 4-vector under
Lorentz transformations, which is essential to its interpretation as a probability density
(see eq. (2.28) and section 2.8). Also note that the spinors are orthogonal,

> Exercise 2.9
Check the normalization condition for the spinors in eq. (2.39).

We must further normalize the spatial part of the wave functions. In fact a plane
wave is not normalizable in an infinite space so in the computatuions that follow where
we use them we will work in a large box of volume V - such a construction is not Lorentz
invariant. The number of particles in the box will be

/ i &Pz = 2E N2V, (2.40)

so setting N = 1/ VV allows us to adopt the standard relativistic normalization con-
vention of 2F particles per box of volume V. Most people and the books use this

-G



convention. I frequently find it more intuitive, given we’ve broken Lorentz invariance, to
set N = 1/v/2EV so there’s one particle in the box. T'll try to be clear below when I do
this.

Remember that the solutions to the wave equation form a complete set of states
meaning that we can expand (like a Fourler expansion) an arbitrary function x(z) in
terms of them

X(.’I)) = Z anwn(-x) (2.41)

The a, are the equivalent of Fourier coefficients and if y is a wave function in some
quantum mixed state then |a,|? is the probability of being in the state 1), (or 2E times
thatl).

2.5 Spin

Now it is time to justify the statements we have been making that the Dirac equation
describes spin-1/2 particles. The Dirac Hamiltonian in momentum space is given in
eq. (2.21) as

Hp=a-p+ pm, (2.42)

and the orbital angular momentum operator is

- —

L=Rxp +(2.43)

Evaluating the commutator of L with H D

[L,Hp] = [Rxp,a-p
= [E,a-ﬁ]xp
= {a X P, (2.44)

we see that the orbital angular momentum is not conserved (otherwise the commutator
would be zero). We would like to find a total angular momentum J that s conserved,
by adding an additional operator S to L,

J=L+38, [J Hp=0. (2.45)

To this end, consider the three matrices,

= d 0 . B
Y= (0 6’) = —ia a3, (2.46)

where the first equivalence is merely a definition of ¥ and the last equality can be verified
by an explicit calculation. The f]/ 2 have the correct commutation relations to represent
angular momentum, since the Pauli matrices do, and their commutators with & and g
are, .

[E, ,8] = 0, [27;, aj] = 2i5¢jkak. (247)
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From the relations in (2.47) we find that
[, Hp] = —2id x p. (2.48)

> Exercise 2.10
Using ajopas = %fijkaiajak verify the commutation relations in egs. (2.47) and (2.48).

Comparing eq. (2.48) with the commutator of I with Hp in eq. (2.44), you see that

L+ -;—53 Hp] =0, (2.49)
and we can identify
— 1 —
S= —E (2.50)

as the additional quantity that, when added to L in equation (2.45), yields a conserved
total angular momentum J. We interpret S as an angular momentum intrinsic to the

particle. Now
w» Ll/d-d 0 371 0
2+ =
#=30"" #5)=1(0 1) @51)

and, recalling that the eigenvalue of J2 for spin j is (j+1), we conclude that S represents
spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised. We worked
in the Dirac representation of the matrices for convenience, but the result is necessarily
independent of the representation.

Now consider the u-spinor solutions u(®)(p) of eq. (2.35). Choose 7 = (0,0, p,) and

write JETm 0
ur = u(p) = \/TJO—W , u =u?d@p)=| ° E{]_Fm . (2.52)
0 —VE-m
With these definitions, we get
Sy = %UT: S,u) = —%ul. (2.53)

So, these two spinors represent spin up and spin down along the z-axis respectively. For
the v-spinors, with the same choice for p, write,

vVE-m 0
0 —V E—m
vy = 'U(l)(p) = \/m , v = 1)(2) (p) = 0 ¢ (254)
0 vV E+m
where now,
1 1
Sv) = V0 Svp = ~5ot- (2.55)

This apparently perverse choice of up and down for the v’s is actually quite sensible
when one realizes that a negative energy electron carrying spin +1/2 backwards in time
looks just like a positive energy positron carrying spin —1/2 forwards in time.
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2.6 Lorentz Covariance

There is a much more compact way of writing the Dirac equation, which requires that
we get to grips with some more notation. Define the y-matrices,

V=B, F=pa (2.56)

In the Dirac representation,

o (1 o> ﬂ_<0 5’)

In terms of these, the relations between the & and f in eq. (2.25) can be written compactly
a’S’
{7} = 29" (2.58)
>Exercise 2.11
Prove that {y*,4"} = 2¢"*.

Combinations like a,y* occur frequently and are conventionally written as,
d . a’u,-),l»‘ . a’u’)lyn

pronounced “a slash.” Note that v* is not, despite appearances, a 4-vector. It just
denotes a set of four matrices. However, the notation is deliberately suggestive, for when
combined with Dirac fields you can construct quantities that transform like vectors and
other Lorentz tensors (see the next section).

Observe that using the y-matrices the Dirac equation (2.22) becomes

(29 —m)y =0, (2.59)
or, in momentum space,
(p —m)y =0. (2.60)
The spinors u and v satisfy
# - mu®@p) = o, (2.61)
#+mp(p) = 0, (2.62)

since for v*)(p), E — —F and § — —p.

We want the Dirac equation (2.59) to preserve its form under Lorentz transformations
eq. (1.2). We’ve just naively written the matrices in the Dirac equation as v, however
this does not make them a 4-vector! They are just a set of numbers in four matrices
and there’s no reason they should change when we do a boost. Since 9* does transform,
for the equation to be Lorentz covariant we are led to propose that 1 transforms too.
We know that 4-vectors get their components mixed up by LT’s, so we expect that the
components of ¢ might get mixed up too:

Y(z) = (@) = S(A)p(z) = S(A)p(A™'2) (2.63)
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where S(A) is a 4 x 4 matrix acting on the spinor index of 1. Note that the argument
A=z’ is just a fancy way of writing z, i.e. each component of 1(z) is transformed into
a linear combination of components of ¥(x).

In order to appreciate the above it is useful to consider a vector field, where the
corresponding transformation is

At (z) — A¥(z')

where 2’ = Az. This makes sense physically if one thinks of space rotations of a vector
field. For example the wind arrows on a weather map are an example of a vector field:
with each point on the map there is associated an arrow. Consider the wind direction
at a particular point on the map, say Abingdon. If the map is rotated, then one would
expect on physical grounds that the wind vector at Abingdon always point in the same
physical direction and have the same length. In order to achieve this, both the vector
itself must rotate, and the point to which it is attached (Abingdon) must be correctly
identified after the rotation. Thus the vector at the point z’ (corresponding to Abingdon
in the rotated frame) is equal to the vector at the point z (corresponding to Abingdon
in the unrotated frame), but rotated so as to keep the physical sense of the vector the
same in the rotated frame (so that the wind always blows towards Oxford, say, in the
two frames). Thus having correctly identified the same point in the two frames all we
need tq do is rotate the vector:

A(z) = A% A (z). (2.64)

A similar thing also happens in the case of the 4-component spinor field above, except
that we do not (yet) know how the components of the wave function themselves must
transform, i.e. we do not know S.

We now need to figure out what S is. The requirement is that the Dirac equation
has the same form in any inertial frame. Thus, if we make a LT from our original frame
into another (‘primed’) frame and write down the Dirac equation in this frame, it has to
have the same form.

(V0 —m)p(x) =0 —  (iv*8, —m)Y/(z') =0, (2.65)

where we used the fact that m is a scalar, i.e. m' = m.

The derivative transforms as a covector, eq. (1.7), so using the orthogonality condition
of eq. (1.8), we can write d, = A°,8, and multiplying the Dirac equation in the original
frame by S it becomes

S(iy*A° 0., — m)y(x) = 0. (2.66)

On the other hand, we can use the definition of S in eq. (2.63) to rewrite the equation
in the primed frame as

(78, — m)Sh(z) = 0. (2.67)

We can see that the second term (containing m) of eqs. (2.66) and (2.67) are now
identical. To make the first term identical we need SA°,v* = 4?S. Thus, in order for
the Dirac equation to be Lorentz invariant, S(A) has to satisfy

A% A = 57198 (2.68)
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We still haven’t solved for S explicitly. We need to find an S that satisfies eq. (2.68).
Since S depends on the LT, we first have to find a convenient parameterization of a LT
and then express S(A) in terms of these parameters. For an infinitesimal LT, it can be
shown that,

A¥, = gk + b, (269)
where w,,, is an antisymmetric set of infinitesimal parameters. For example, a boost
along the z-axis corresponds to wy3 = —wzp = —F (remember that wy; = W’ = —wy’ etc)
with all other entries of w,, zero,

1 00 -8
0 1 0 0
B gk T
A*, = gH, + W, 0 01 0 (2.70)
-5 0 0 1

This corresponds to eq. (1.3) when one makes an expansion in small 3, ie. v = 1+
O(3%). Non-zero wgy; or wye correspond to boosts along the x and y axes respectively.
The remaining combinations, non-zero we3, ws; or wye, correspond to infinitesimal anti-
clockwise rotations through an angle w;; about the z, y and z axes respectively. It's a
nice exercise to check this out.

For an infinitesimal LT we are at liberty to write

S(A)zzl#*%uwyo”ﬂ (2.71)

which is nothing but a definition of the set of matrices o#¥. Our task is to determine
these matrices. To do this, substitute the expression for S, eq. (2.71), into eq. (2.68) (and
remember that S™'(A) = 1 — %w,,0"). After some algebra, we can convince ourselves
that the solution is

1
ot = § [’7“7 ,_yu] (272)

Thus S can be written explicitly in terms of y-matrices for a general LT by building the
finite transformation out of lots of infinitesimal ones.

>Exercise 2.12
Verify that eq. (2.72) is true.

Now that we now how 1 transforms we can find quantities that are Lorentz invariant,
or transform as vectors or tensors under LT’s. _To this end, we will find it useful to
introduce the Dirac adjoint. The Dirac adjoint 4 of a spinor 1) is defined by

b =Pty (2.73)
With the help of
SH AN =1"571(A) (2.74)
we see that 1) transforms under LT’s as
Jo B =B A). (2.75)

>Exercise 2.13
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1. Verify that y#f = «0y#40,
2. Prove eq. (2.74)
3. Show that 1) satisfies the equation

Y (=if —m) =0
where the arrow over @ implies the derivative acts to the left.

4. Hence prove that 9 transforms as in eq. (2.75).

Combining the transformation properties of 4 and 1 in eqs. (2.63) and (2.75) we see
that the bilinear 9 is Lorentz invariant. In section 2.8 we will consider the transforma-
tion properties of general bilinears.

Let’s close this section by recasting the spinor normalization eq. (2.39) in terms of
Dirac inner products. The conditions become

WO (p) = 2mo
i) (p) = 57 (p)ul(p) =0 (2.76)
W) (p) = ~2ms™

where, in analogy to eq. (2.73), we defined % = u!4® and 7 = v14°.

> Exercise 2.14
Verify the normalization properties in the above equations (2.76).

2.7 Parity, charge conjugation and time reversal
2.7.1 Parity

We usually use LT’s which are in the connected Lorentz Group, SO(3, 1), meaning they
can be obtained by a continuous deformation of the identity transformation (i.e. by lots
of little transformations)'. This class of LT is often referred to as proper LT. However,
the full Lorentz group consists not only of the proper transformations but also includes
the discrete operations of parity (space inversion), P, and time reversal, T

1 0 0 0 -1 0 0 0
0 -1 0 0 0100

Ar=1g o -1 o M=| 0010 (2.77)
0 0 0 —1 00 0 1

LT’s satisfy ATgA = g, so taking determinants shows that det A = +1. Proper LT’s are
continuously connected to the identity so must have determinant 1, but both P and T
operations have determinant —1.

Let us now find the action of parity on the Dirac wave function and determine the
wave function tp in the parity-reversed system. According to the discussion of the
previous section, we need to find a matrix P satisfying

PP =4%  PTl4P = (2.78)

!Indeed in the last section we considered LT’s very close to the identity in equation (2.69)
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Using some properties of the vy-matrices we see that P = P~! = 40 is an acceptable
solution (Clearly one could multiply 7° by a phase and still have an acceptable definition
for the parity transformation.), from which it follows that the transformation is

w(t; ) — wP(t: —Z) = P’l)/)(t, "E) = 701/)@’ f) (279)

N ((1) _01> , (2.80)

the u-spinors and v-spinors at rest have opposite eigenvalues, corresponding to particle
and antiparticle having opposite intrinsic parities.

Since

2.7.2 Charge Conjugation

Another discrete invariance of the Dirac equation is charge conjugation, which takes you
from particle to antiparticle and vice versa. For scalar fields the symmetry is just complex
conjugation, but in order for the charge conjugate Dirac field to remain a solution of
the Dirac equation, you have to mix its components as well. The transformation on the
fermion wavefunction is

W — o =CypT, (2.81)
where )T = gzbffyo T = ¥TY!T = 4%9*. To find the form of C, let’s take the complex
conjugate of the Dirac Equation,

. * * . T T
(VO —m)"y" = (z (1) 8- m) (v
= T (=", ~ m) 97, (2.82)
where we have additionally used v#1 = 04#4°. Premultiply by C and the Dirac equation

becomes
(—icyTC18, — m) e = 0. (2.83)

In order for ¢ to satisfy the Dirac equation we require C' to be a matrix satisfying the
condition

CriCl =—y, (C'=0CMh. (2.84)
In the Dirac representation,a suitable choice for this operator is
. 0 —ig?
C=iy*y" = (—i02 0 ) . (2.85)

The charge-conjugation transformation is then
P(t, ) — Yo(t, ) = CPT (L, 2) = iv?y"PT (¢, ©). (2.86)

When Dirac wrote down his equation everybody thought parity and charge conju-
gation were exact symmetries of nature, so invariance under these transformations was
essential. Now we know that neither of them, nor the combination CP, is respected by
the standard electroweak model. '
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2.7.3 Time reversal

As already noted, time reversal is an improper LT, given by Ay in eq. (2.77). Naively
one would expect to derive a time reversal operation in the same way as for parity.
However, there is a subtlety that the momentum of a particle is a rate of change, so if we
reverse the direction of time, the momentum must change direction. When we reverse
the momentum p'in a plane wave we find

e UBt—PE) __, (Bt (=)0 _ i(B(-)-77) _ (e—i(EFt)—ﬁ'f ) (2.87)
In this example, taking the complex conjugate is the equivalent of reversing the time

coordinate and reversing the momentum. So once again, we must take the complex
conjugate of the field, transforming it according to

¢(t, f) - d)T(—ta f) = T¢*(t7 f) (288)

To find the form of T', let’s take the complex conjugate of the Dirac equation, premultiply
by T and interchange ¢ — —¢,
0

0 - S
-0 = . = A0 - i —1 *f 4 =
(w 5% +15-V m) ¥(t, ) — Sy ( iy —8(——15) SRRV m) TTy*(—t, %)

= (z [Ty 7] % +i|-T7 TV - m) Wr(t, Z).

(2.89)
For +r to satisfy the Dirac equation we need
i [quo*T‘l] =4 [—Tr?*T‘l] = —7. (2.90)
A suitable choice is
0 1 0 0
rei=( 0 ) 2000 e
0 -1 0
and the time reversal transformation on a fermion field is
Y(t, Z) — Pr(—t, &) = TY*(t, %) = iv'y*y (¢, ©) (2.92)

274 CPT

We are now in the position to ask what is the effect of performing charge conjugation,
parity and time-reversal all together on a Dirac field. The combined transformation is
known as CPT. Using eqgs. (2.79), (2.86) and (2.92), the CPT transformation is,

Y(t,7) = Yorr(—t,~8) = iY*7"°T [Yir'y Py (¢, 7))
= 17"’V (=) v (e, 7)
= Y7 Yy (t, %)
= —iy%y(t, Z) (2.93)
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Thus, apart from the factor of 4°, a particle moving forward in time is equivalent to an
anti-particle moving backwards in time and in the opposite direction. In fact, the extra
7° makes no difference to observable quantities (see the next section) so this justifies the
Feynman-Stiickelberg interpretation of negative energy states we used earlier.

2.8 Bilinear Covariants

Now, as promised, we will construct and classify the bilinears. These are useful for defin-
ing quantities with particular properties under Lorentz transformations, and appearing
in Lagrangians for fermion field theories.

'To begin, note that by forming products of the y-matrices it is possible to construct 16
linearly independent 4 x 4 matrices. Any constant 4 x 4 matrix can then be decomposed
into a sum over these basis matrices. In equation (2.72) we have defined

o =[],
and now it is convenient to define
V= =iy = <(1) (1)) , (2.94)
where the last equality is valid in the Dirac representation. This new matrix satisfies
=2 {Frr)=0, (FP=1 (2.95)

>Exercise 2.15
Prove the three results in eq. (2.95) independently of the ~y-matrix representation.

Now, the set of 16 matrices
{L.2% 2", ", )
form a basis for y-matrix products. There are 16 matrices since there is 1 unit matrix,
1 4° matrix, 4 v* matrices and 4 y~~° matrices, and 6 o** matrices (see equation (2.72)
for the definition of o#*). ~
Using the transformations of ¢ and v from eqs. (2.63) and (2.75), together with the

transformation of v* in eq. (2.74), the 16 fermion bilinears and their transformation
properties can be written as follows:

W — P S scalar
Py —  det(A) PyPy P pseudoscalar
Py — Ny V vector
Py Y —  det(A) A% pv" A axial vector
VoY — AP ho T tensor (2.96)

In particular we note that
Py = iy = (ly, ylay) (2.97)

which is our previous definition eq. (2.28) of the current 4—vector J#, i.e. we now see
that it is really a 4-vector.
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> Exercise 2.16
Derive the transformation properties of the bilinears in equation (2.96) under C, P, T
and CPT transformations.

2.9 Massless (Ultra-relativistic) Fermions

At very high energies we may neglect the masses of particles (E2 ~ |51?). Therefore, let
us look at solutions of the Dirac equation with m = 0, on the basis that this will be an
extremely good approximation for many situations.

From equation (2.30) we have in this case

E¢=3-px, DBx=¢ i (2.98)

These equations can easily be decoupled by taking linear combinations and defining the
two component spinors ¥y, and ¥g,

X=x¢

5 (2.99)

\I’R/L =
which leads to
EVgp=¢6-pUpg, LV, = -6 -pUyp,. (2.100)

The system is in fact described by two entirely separated two component spinors. If we
take them to be moving in the z direction, and noting that o5 = diag(1, —1), we see that
there is one positive and one negative energy solution in each.

Further since E = |p| for massless particles, these equations may be written

PPy gy, 9P
|l

[

Now, %%ﬁ is known as the helicity operator (i.e. it is the spin operator projected in the
direction of motion of the momentum of the particle). We see that the ¥, corresponds to
solutions with negative helicity, while ¥y corresponds to solutions with positive helicity.
In other words ¥y, describes a left-handed particle while ¥ describes a right-handed
particle, and each type is described by a two-component spinor.

The two-component spinors transform very simply under LT’s,

Up=Tp (2.101)

U, — ey, (2.102)
Up — e @iy, (2.103)

where § = 70 corresponds to space rotations through an angle 8 about the unit 7@
axis, and q-ﬁ' = v¢ corresponds to Lorentz boosts along the unit vector ¥ with a speed
v = tanh ¢. Note that these transformations are consistent with the fact that it is not
possible to boost past a massless particle (i.e. its helicity cannot be reversed).

However, under parity transformations ¢ — & (like R x P), b — —p, therefore
0-p— —& - P, i.e. the spinors transform into each other:

Uy« Up, (2.104)
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So a theory in which ¥, has different interactions to ¥ (such as the standard model in
which the weak force only acts on left handed particles) manifestly violates parity.

Although massless particles can be described very simply using two component
spinors as above, they may also be incorporated into the four-component formalism
by using the v° we defined earlier. Let’s define projection operators

Prj1 = % (1£77). (2.105)

In the Dirac representation, these are,

1 1 £1

where 1 denotes the 2 x 2 identity matrix. Acting these projection operators on a general
Dirac field of the form eq. (2.29) projects onto right- or left-handed eigenstates. To see
this, first note that

m(5)4( () () om

The hehmty operator in four-component Dirac space is given by S . - 0/ |p|, with S = —Z
where ¥ is defined in equation (2.46). Acting this operator on the projected state gives

L% ff ( Vr/L ) e i ( Yr/r ) (2.108)
2 0 Yr/L 2\ Vg )’
indicating that the projected states are indeed right- or left-handed eigenstates with
helicity 3.
This can be made more explicit by using a different representation for the y-matrices.

In the chiral representation (sometimes called the Weyl representation) we define the -
matrices to be

o_ (0 1) = (0 &)
*=(1 o) =(2 §) (2.109)
so that, with 4° = i7%y'y?+3 as before, the projection operators eq. (2.105) become
00 10
n=(30). ne(30) g

Now, the left-handed Weyl spinor sits in the upper two components of the Dirac spinor,
while the right-handed Weyl spinor sits in the lower two components of the Dirac spinor.
The projection operators pick out only the upper or lower component, e.g.

PR(‘\%’JII%):(g (1))<$;)=<q?R) (2.111)

so the projected states are once again helicity eigenstates.
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3 Quantum Electrodynamics

3.1 Classical Electromagnetism

So far, we have only considered relativistic wave equations for free particles. Now we want
to include electromagnetic interactions, so let’s start by reviewing Maxwell’s Equations
in differential form:

V.E=p, V.EB=0,
dB OF (3.1)
VXE= —E’ VXB:J"'—E

Note here that I'm using Heaviside Lorentz units - I've used my freedom to choose the
unit of charge to set ¢¢ = 1. Then, since in natural units ¢ = 1, yg = 1 too. When
one plays these games the value of the electron charge changes but the dimensionless
quantity o = e?/4rephic remains unchanged - a = 1/137.

We can rewrite the Maxwell equations in terms of a scalar potential ¢, and a vector
potential A. Writing

o (3.2)
B=VxA,
we automatically have solutions of two of the Maxwell equations,

-,

(VxA) =0 (3.3)

fl
<l

V.B

and N
S - 04
VxE = Vx (~§—\7¢)

VXA o (3.4)
=~ ~Vx(V9)

_98B
=

This simplifies things greatly since now there are only two Maxwell equations to solve.

Let’s write them out in terms of the potentials,

— -

VB = —vzp- VA _ 3 (3.5)
dt
and (since V x V x A = —V24 + V.(V.A)),
VA — 2 === _
V(V.A) - VA J+6t ( a5t V¢> : (3.6)
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Or rearranging,

. P4 . Lo D

them up we note that we can redefine our potentials,

A - Z#—ﬁd),
. O
¢ — ¢ = 5 (3.8)

without changing E and B. This redefinition of the potentials is known as a gauge
transformation.

>Exercise 3.17
Check that E and B are invariant under the gauge transformation in eq. (3.8).

We can choose a gauge transformation such that

L . 0
V.A= Ty (3.9)
In this gauge (the Lorentz gauge) Maxwell’s equations simplify to
&¢
72 al B 10
L O2A =
VIA+ = = J. 1
V*A+ % J (3.11)

As well as being prettier, these equations also have a very suggestive form. They suggest
we should define the 4-vectors,

Je=(p,J),  A*=(4,A), (3.12)
so the Maxwell equations may be written in a manifestly covariant form,
OPAF = JH, (3.13)

The p = 0 equation is the ¢ eq. (3.10) and the u = 1,2, 3 equations give the components
of the eq. (3.11) for A. The gauge condition, eq. (3.9), becomes

A, =0. (3.14)

Eq. (3.13) is the classical wave equation for the electromagnetic field. In free space
we have eq. (3.13) with no source, i.e.

O*A¥ =0, (3.15)

which has plane wave solutions,
AF = et (3.16)
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where ¢ is the polarization tensor and ¢? = 0.
The Lorentz condition, eq. (3.14), enforces

g, =0, (3.17)

which removes one degree of freedom. Even after enforcing this condition, there is still
room to make more gauge transformations,

AF — A* 4ty where 8%y = 0. (3.18)

This can be used to remove one extra degree of freedom from e*. There are therefore
two physical degrees of freedom, the normal polarizations of a photon.

3.2 The Dirac Equation in an Electromagnetic Field

We will now treat A* as a quantum mechanical wave function for photons. In the limit
of a large number of photons the wave function is interpreted as a number density and
produces the classical wave theory. But so far we have no interactions; to allow electrons
to interact with electromagnetism we have to include the photon field into our Dirac
equation.

The ’obvious’ thing to do is to just be led by Lorentz invariance. The field A* is a
vector field so we need to ’soak up’ its free index with a y-matrix. We therefore include
it into the Dirac equation as

(98 — e —m)p = 0, (3.19)

where the factor of e is a free constant which quantifies how strongly the electron couples
to the photon (the charge of the electron is —e).
It is convenient to incorporate this extra term into a new definition of a covariant
derivative?,
D# = 0* 4 ie AH. (3.20)
Our interacting Dirac equation was therefore obtained from the free Dirac equation by
the minimal substitution O* — D*, and the Dirac equation becomes

(@D —m)p =0. (3.21)
There is a much nicer and theoretically much more appealing way to get the interac-

tion term. That is if we require the QED Lagrangian to be invariant under a local gauge
symmetry consisting of the transformations

W — eTeA@)y, A¥ — AP — OFA(z). (3.22)
then we are forced to the wave equation in eq. (3.21). For more details, I refer you to
the Standard Model course.

We must also allow the electrons to enter into the photon wave equation but here the
classical theory already tells us how a current density enters. We expect

OPAF = J (3.23)

where J* is just given by the charge times the Dirac equation number density (—ey y).

2Conventions for the covariant derivative vary. Halzen and Martin, and Mand! and Shaw both use
D# = 9" —~ieA¥ whereas Peskin and Schroeder both use eq. (3.20). Both conventions define the electron
charge to be —e but differ by a sign in the definition of the photon field, A*.
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3.3 g — 2 of the Electron

We now have a wave equation which describes how an electron behaves in an electro-
magnetic field, i.e. eq. (3.19). We will immediately put this to use by investigating the
interaction between the spin of a non-relativistic electron and a magnetic field.

Writing the electron field in the form of eq. (2.29), we see that eq. (3.19) gives

X m g (—iV —eA) X
= o o 3.24
(qs) (5-(~iV—eA) . b (3.24)
Substituting the equation from the second row into the that from the first leads to,
s [(}'- (~iV — 61‘_1')]2 0 .
-—m+ Et+m x =V (3.25)
We can simplify this somewhat by using to relation
0i05 = (5¢j + iéiijk, (326)
to show . ) . . T T
7 (-iV—ed)] =|-iV-edP—e(Vx A+ Ax V)3, (3.27)
and note L L L
VxAp+AxVyp=(VxA)y=DBy (3.28)
Putting all this together we find,
| —eAl]? — eB - &
_ =0. 2
(E m+ Bim x=0 (3.29)

In the non-relativistic limit we can write E ~ m and observe that the lower 2-component

spinor is
G- (p—eA)
PR
m
This allows us to write, for the 4-component spinor 1,

X < X (3.30)

eB.%
2m

W =0. (3.31)

Notice that we have a coupling between the magnetic field B and the spin of the
electron S = %E. This is known as a magnetic moment interaction and takes the form

—ji-B. (3.32)

Our Dirac equation in an electromagnetic field has predicted

[, ;) (3.33)

2m

~ g



In classical physics the magnetic moment of an orbiting charge is written

e -
fhorh = ——— L. .34
iorb 2me (3 )

This is the magnetic moment associated with orbital angular momentum. By analogy
we define the magnetic moment due to intrinsic angular momentum (i.e. spin) as

B ez geg
=g §=_9°F _
Hopin = =955 = =55 (8:d5)

where g is the gyromagnetic ratio of the particle. The Dirac equation predicts
g=2. (3.36)
Experimentally one finds for the electron that

g = 2.0023193043738 + 0.0000000000082, (3.37)

so the Dirac equations prediction is pretty close. It is not exactly correct, as we can see
from the incredible precision with which this quantity has been measured. The discrep-
ancy is due to us not yet including quantum corrections to our prediction. The interaction
of an electron with a photon (and thus the gyromagnetic ratio) will be changed by pro-
cesses of the form seen in fig. 3, and processes involving yet more particle loops. When

Figure 3: Quantum corrections to the electron-photon interaction.

one performs a more careful analysis, including these quantum effects, one predicts the
deviation from 2 to be

-9 2 3 4
9% 14+ 2 0328 (3) +1.181 (9> — 1510 (9‘-) 4 ... +4.393 x 10712, (3.38)
2 2m T T w
and comparing this prediction with experiment:
Theory : 97"2 = 1159652140(28) x 1072,

o (3.39)

Experiment : 9—2—- = 1159652186.9(4.1) x 10~12,
The figure in brackets denotes the error on the last significant figure. We can see that
the experimental measurement matches the theoretical prediction to 8 significant figures,
making this prediction of QED the most precisely tested prediction in physics.
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3.4 Interactions in Perturbation Theory

The principle technique for computations of particle scatterings is perturbation theory -
in other words we assume that the coupling e < 1 and expand about ¢ = 0. We will be
interested in processes such as

Outside the shaded interaction region we assume the particles are free. We will use the
plane wave particle solutions derived in section 2.3 which, as noted in section 2.4, can
only be normalized in a box of volume V. The shaded region is a sketch of this box - if
we take a very large box then we expect it’s presence to vanish from the answer for the
scattering which is dominated when the particles are close and at the centre of the box.
This will indeed be the case for our final cross-section results but we will need to keep
track of factors of V for a while to see that result. I find it intuitive to have just one
of each of the incoming and outgoing states in the box and to calculate the probability
of that scatter occuring - I therefore pick the normalization N = 1/v/2EV from section
2.4. None of this analysis is Lorentz invariant but as the volume will factor out of our
final results we will finally recover the Lorentz invariant forms for cross-sections.

To begin let’s write the Dirac equation in a way that displays the smallness of the
interaction

0 .
i’yOa—Tf + iy 0 —map +4° SV =0 (3.40)

so for the electromagnetic interaction
8V = —ey'y*A, (3.41)

Note that (7°)? = 1 so the 4° have been included simply for notational convenience. We
will assume that the scattering particles begin in a pure 7 state but the interaction then
scatters them to another ' state with some (small) probability. In general we can write

b= knpn(z)et (3.42)

The ¢,(x) are the free Dirac equation solutions with n labelling the spinor state and the P
state. The «, are the probability amplitudes for the given state n. Before the interaction
all the x, will be zero except one but during the interaction (—T/2 < t < T/2) we allow
kn to change - £, (t). If we now substitute the solution into the perturbed Dirac equation

above then, at leading order, we obtain zero since we have expanded in solutions of the
unperturbed equation. At next order we find

(e i
i), (gh;;) Pne T =30 OV Knpn(z)e it (3.43)
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Now we will make use of the orthogonality of the ¢, to extract the final state x,. We
multiply through by [ d®z qﬁ}')/o

dk . —q —
d_tf = —z;mn/d% ¢}5V¢n e U Bn—Ep)t (3.44)
For a discussion of normalization of the spinors see section 2.4. Remembering that at
t=—T/2 k; =1 and Kz, = 0 at leading order we have

dey . t 3
== / YoV dis (3.45)

and integrating with respect to ¢ we find the important result

K (T)2) = —i / YoV diz (3.46)

Now lets use our explicit form for 6V in QED and concentrate on the scattering of a
particle a — ¢ by a photon A#

a C]
Rea = —ific(—e’YuA”)T/’a d4$
(3.47)
= —ifJPAH d*z
where - _
J = —e Py,p® = —e NyN, iry,u® ¢'Pere)= (3.48)

The Ns here are the normalizations of the spatial wave functions 9 again from section
2.5.

We're really interested in two particles scattering off each other so we’d better com-
pute the A* field produced when another particle scatters from state b — d

b d
OA* = J(l;b = —€ NbNd ﬂd'y“ub ei(pd——pb).a: (349)
the solution is
© 1 b
A* = —?Jdb, q = Pd — Py (3.50)
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So finally substituting this back into our expression for x., we find
1 .
Kfi = —i NoNy NNy @°(—ey,)u® (—?> a4 (—ey*)ul /e’(pb+pd_p“_p“)'zd4x (3.51)

Note that the integral is just a delta function that ensures 4-momentum conservation in
the interaction. In order to make this result more memorable Feynman developed his

famous rules that associate different parts of the expression with elements of a diagram
of the scattering.

=l
)

Uy,

where momentum is conserved at the vertices. Multipling these rules out gives us —iM g;
where

kji = =i NaNoNeNg (2)*6%(ps — pi) My B3

>Exercise 3.18
Derive the Feynman rules for the scattering of two particles described by the Klein
Gordon equation to leading order in e. You may Assume the form of the result in (3.46).

3.5 Internal Fermions and External Photons

We concentrated above on a scattering with external fermions interacting by the exchange
of a photon. We can also imagine processes where there are external photon fields or
internal virtual fermions. What are the Feynman rules for these cases? Given time
constraints, rather than derive them, I'll present some simple arguments to motivate the
rules. If we have an external photon interacting with a fermion in some way, then the
vertex rule is still —iey*. Since the amplitude we wish to calculate is Lorentz invariant we
can not allow a stray p index to survive but must soak it up with a 4-vector. The obvious
4-vector associated with external photon is its polarization vector ¢* and indeed this is
the appropriate factor for an external photon. Compare this to the way an external
fermion closes the gamma matrix space indicies, to give a number, with the external
spinor.
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We have seen that an internal photon (satisfying OA# = 0) generates a Feynman rule
(or propagator) ‘
__Zg o
OA* =0 — p; (3.53)
Since a photon is just a collection of four scalar fields we can deduce that a massless,
scalar field (which satisfies the KG equation O¢ = 0) will have a Feynman rule

O¢p =0 — ? (3.54)

It turns out that the sign is that of a space-like photon degree of freedom. To find the

propagator of a massive scalar field we can treat the mass as a perturbing interaction of
the free particle. Writing the KG equation as

O¢ = —6V¢ = —m’¢ (3.55)
will generate a Feynman rule for the scalar self interaction

—im
=

Now we can consider the set of perturbation theory diagrams that contribute to the full
scalar propagator

+ ® 4 o @ +
512 i ﬁg(-—im)ﬁz + ;’g(—zm)ﬁg(—im);}g +
i T 1 . ] ) . ] . 1
Pleasingly we can resum this series
i m?  m! g 1 i
—_— 1 —_— —_— e = —_———— = -0 | 3-57
p2<+p2+p4+ P \l-Z p? —m? (3:57)

and this is indeed the full propagator in the massive case. By this point we can see that
the propagator is basically just —i times the inverse of the free field equation operator
in momentum space. A sensible guess for the fermionic field is

i i g+m i(p+m)

@-mp=0 = = g T (3.58)

This is in fact the correct answer. You will receive more insight into these results from
the Field Theory course.
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For every ... draw ... write ...

. " v —ig"”
Internal photon line ANNAANAN e
p? 430t
o B ,
Internal fermion line —_— M
P — p? —m? + {0+
a B
Vertex —~ieyhs
u
Outgoing electron Ua(s, p)
Incoming electron Ua(S, p)
Outgoing positron ' o (5, )
Incoming positron Ua(s, p)
Outgoing photon e**(\, p)
Incoming photon e\, p)

o Attach a directed momentum to every internal line
e Conserve momentum at every vertex, i.e. include §® (3 p;)
e Integrate over all internal momenta

Table 1: Feynman rules for QED. p, v are Lorentz indices, o, 3 are spinor indices and
s and ) fix the polarization of the electron and photon respectively.

3.6 Summary of Feynman Rules of QED

The Feynman rules for computing the amplitude M ; for an arbitrary process in QED
are summarized in Table 1.

The spinor indices in the Feynman rules are such that matrix multiplication is per-
formed in the opposite order to that defining the flow of fermion number. The arrow on
the fermion line itself denotes the fermion number flow, not the direction of the momen-
tum associated with the line: I will try always to indicate the momentum flow separately
as in Table 1. This will become clear in the examples which follow. We have already
met the Dirac spinors  and v. I will say more about the photon polarization vector e
when we need to use it.

To summarize, the procedure for calculating the amplitude for any process in QED
is the following;:

1. Draw all possible distinct diagrams
2. Associate a directed 4-momentum with all lines
3. Apply the Feynman rules for the propagators, vertices and external legs

4. Ensure 4-momentum conservation at each vertex by adding (2r)45*(k; — ky),where
ki and ky are the total incoming and outgoing 4-momenta, of the vertex respectively
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5. Perform the integration over all internal momenta with the measure [ d*k/(2m)4

It is also part of the Feynman rules for QED that when diagrams differ by an interchange
of two fermion lines, a relative minus sign must be included. This is a reflection of Pauli’s
exclusion principle or equivalently of the anticommutation of the fermion operators dis-
cussed in'the appendix. Note, however, that you don’t need to get the absolute sign of
an amplitude right, just its sign relative to the other amplitudes, since it is the modulus
of the amplitude squared that we need ultimately. This sounds rather complicated. In
particular there seem to be an awful lot of integrations to be done. However, at tree-level,
i.e. if there are no loop diagrams, the delta functions attached to the vertices together
with the integration over the internal momenta simply result in an overall 4-momentum
conservation, ie. in a factor (2r)*¢4(P; — Py), where P, and P are the total incoming
and outgoing 4-momenta of the process. Thus at tree-level, no ‘real’ integration has to
be done. At one loop, however, there is one non trivial integration to be done. Gen-
erally, the calculation of an n-loop diagram involves n non trivial integrations. Even
worse, these integrals very often are divergent. Still, we can get perfectly reasonable
theoretical predictions at any order in QED. The procedure to get these results is called
renormalization and will be the topic of section 6. At this point, some remarks con-
cerning step 1, i.e. drawing all possible distinct Feynman diagrams, might be useful.
In order to establish whether two diagrams are distinct, we have to try to convert one
into the other. If this is possible without cutting lines and without gluing lines — that
is solely by twisting and stretching the lines and rotating the whole figure — then the
two diagrams are identical. It should be noted that the external lines are labeled in this
process. Therefore, the two diagrams shown in figure 6 are different. Finally, let me
mention that the diagrams shown in figure 1 are not Feynman diagrams. When drawing
Feynman diagrams we are only interested in what particles are incoming and which ones
are outgoing and there is no time direction involved.
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4 Cross Sections and Decay Rates

Before explicitly calculating some transition amlitudes lets see how to connect those
amplitudes to physical observables such as cross sections and particle widths.

4.1 Transition Rate

Consider an arbitrary scattering process with an initial state i with total 4-momentum P;
and a final state f with total 4-momentum Py. Let’s assume we computed the scattering
amplitude for this process in QED, i.e. we know the matrix element

N
=t ]I Ny T N: Myi(2n)'6%(Py — P) (4.1)
=1 in

Our task in this section is to convert this into a scattering cross section (relevant if there

is more than 1 particle in the initial state) or a decay rate (relevant if there is just 1
particle in the initial state), see figure 4.

(a) (b)

Figure 4: Scattering (a) and decay (b) processes.

The probability for the transition to occur is the square of the matrix element, i.e.

N
Probability = | —4 [] Ny [] Ni Ms(2m)*6%(P; — P))J%. (4.2)
f=1 in
Attempting to take the squared modulus of the amplitude produces a meaningless square
of a delta function. This is a technical problem because our amplitude is expressed
between plane wave states. These states are states of definite momentum and so extend
throughout all of space-time. In a real experiment the incoming and outgoing states are
localized (e.g. they might leave tracks in a detector). To deal with this properly we would
have to construct normalized wave packet states which do become well separated in the
far past and the far future. A sloppier derivation is to maintain that our interaction is
occuring in a box of volume V' = L3 and over a time of order 7. The final answers will
come out independent of V' and T, reproducing the ones we would get if we worked with
localized wave packets. Using

(2m)464(P; — P) = / HPr=P)z gty (4.3)
we get in our space-time box the result

[(2m)454(P; — P2 o (20)6%(P; — P) / PP iy~ YT (284 (Py — B).  (4.4)
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We must also use the explicit expressions for the wave function normalizations from
section 2.4. Above we used the normalization N = 1/+/2EV. So putting everything
together, we find for the transition rate W, i.e. the probability per unit time

N 1

W = LMV (2n) s (s - P) 1l 5 Eva II 5z (4.5)

As expected, the dependence on T cancelled. Usually we are interested in much more
detailed information than just the total transition rate. We want to know the differential
transition rate dW, i.e. the transition rate into a particular element of the final state
phase space. To get dW we have to multiply by the number of available states in the
(small) part of phase space under consideration. For a smgle partlcle final state, the
number of available states dn in some momentum range k to k + dk is, in the box
normalization,

dn = Vd®k (4.6)
This result is proved by recalling that the allowed momenta in the box have components
that can only take on discrete values such as k; = 27n,/L where n, is an integer. Thus
dn = dngdny,dn, and the result follows. For a two particle final state we have

dn = dnidnsy

where . .

dny = Vd3ky, dny = Vd3k,,
where dn is the number of final states in some momentum range k1 to k1 +dk; for particle
1 and ky to kg + dks for particle 2. There is an obvious generalization to an N particle
final state,

NV,
S ) i’ 4.
dn };[1 o) (4.7)

The transition rate for transitions into a particular element of final state phase space is
thus given by, using equations (4.7) and (4.5),

N 37

|T1 z57] I o

2E:V 1 2BV (2m)3

AW = |Mln)ts4Ps - P VH[

_ 12
= Myl vg[mv

where in the second step we defined the Lorentz invariant phase space with N particles
in the final state

] « LIPS(N) , (4.8)

N 37
d°k
LIPS(N) = 2m)46%(P; — P) [[ ===t : 4.9
( ) (71') ( ! )]]‘;‘[1(27T)32Ef ( )
Observe that everything in the transition rate is Lorentz invariant save for the initial
. energy factor and the factors of V.

> Exercise 4.19
Show that d3k/2F is a Lorentz-invariant element of phase space. (Hint: Think how you
would write the phase space in a 4-dimensional, integral but with the particle on-shell,
ie. B = (k24 m2)?).
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4.2 Decay Rates

We turn now to the special case where we have only one particle with mass m in the
initial state ¢, i.e. we consider the decay of this particle into some final state f. In this
case, the transition rate is called the partial decay rate and denoted by I';;. First of all,
we observe that the dependence on V' cancels, as advertised above. In the rest frame of
the particle the partial decay rate is given by

1
Ly = o / |M sif? x LIPS (4.10)

The important special case of two particles in the final state deserves further considera-
tion. Consider the partial decay rate for a particle i of mass m into two particles f; and
f2. The Lorentz-invariant phase space is

d*py d3p,

LIPS(N) = (2m)**(p; — py — : 4.11
S(V) = (200~ 1~ 12) gy oA (411)
In the rest frame the four-vectors of each particle are
Pi = (m; 0)1 b1 = (El)]a)) D2 = (E21 "m (412)
Therefore we can eliminate one three-momentum in the phase space
1 . APy
LIPS(N) = o(m—FEy — E . 4.13
S( ) (271')2 (m 1 2)4E1E2 ( )
Hence the partial decay rate becomes
1 . d|ps|*|py |2
I‘iz—————/ N20(m — By — Fo) =L 4.14
f 8m(27r)2 |Mf | (7n 1 2) E]_E?_, ( )

where df2* is the solid angle element for the angle of one of the outgoing particles with
respect to some fixed direction, and p; is the momentum of one of the final state particles.
But from the on-shell condition E; = (p? + m?)'/2, we have dFE, = |p}|/E: d|p}| and
similarly for particle 2 and so

B+ B,
Ey) = |peld|ps| —=——
(B + Bp) = [Psldlpy| =5 5=
therefore .
|57 | dlpy| LIz d(Ey + F). (4.15)
E\E;, FEi+ B,
Using this in eq. (4.14) and integrating over (E; + E2) we obtain the final result
1 .
Tigise = 3337 | IMaPlElae (4.16)

The total decay rate of particle 7 is obtained by summation of the partial decay rates
into all possible final states

Tyt = Y Ty (4.17)
f
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The total decay rate is related to the mean life time 7 via (I'yt) ™! = 7. For completeness
L also give the definition of the branching ratio for the decay into a specific final state f

Ly

B =
d 1—‘tot

(4.18)

In an arbitrary frame we find, W = (m/E)T', which has the expected Lorentz dilation
factor. In the master formula (equation (4.8)) this is what the product of 1/2E; factors
for the initial particles does.

4.3 Cross Sections

The total cross section for a static target and a beam of incoming particles is defined as
the total transition rate for a single target particle and a unit beam flux. The differential
cross section is similarly related to the differential transition rate. We have calculated
the differential transition rate with a choice of normalization corresponding to a. single
‘target’ particle in the box, and a ‘beam’ corresponding also to one particle in the box.
A beam consisting of one particle per volume V' with a velocity v has a flux Ny given by

N() = v
particles per unit area per unit time. Thus the differential cross section is related to the
differential transition rate in equation (4.8) by
_dw v

do = No dW x o (4.19)
Now let us generalize to the case where in the frame in which you make the measurements,
the ‘beam’ has a velocity v; but the ‘target’ particles are also moving with a velocity vs.
In a colliding beam experiment, for example, v; and v, will point in opposite directions
in the laboratory. In this case the definition of the cross section is retained as above,
but now the beam flux of particles Ny is effectively increased by the fact that the target
particles are moving towards it. The effective flux in the laboratory in this case is given
by

_ -9

Y

which is just the total number of particles per unit area which run past each other per unit
time. I denote the velocities with arrows to remind you that they are vector velocities,
which must be added using the vector law of velocity addition, not the relativistic law.
In the general case, then, the differential cross section is given by

aw 1 1
No  [th — 0] 4B, By

No

do =

[Mi|? x LIPS (4.20)
where we have used equation (4.8) for the transition rate, and the box volume V has

again canceled. The amplitude-squared and phase space factors are manifestly Lorentz
invariant. What about the initial velocity and energy factors? Observe that

E1E2(171 - 172) = FEbpy — E152-
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In a frame where gy and g, are collinear,
|Eapt — Expal® = (p1 - p2)* — mim,

and the last expression is manifestly Lorentz invariant.

> Exercise 4.20
Prove that | Esp) — F1p2)? = (p1-p2)? —m3m3 in a frame where the momenta are collinear.
Hence we can define a Lorentz invariant differential cross section. The total cross section

is obtained by integrating over the final state phase space:

1 1 )
o= G E B . 3 /lMﬁ| x LIPS. (4.21)

al states

A slight word of caution is needed in deciding on the limits of integration to get the
total cross section. If there are identical particles in the final state then the phase space
should be integrated so as not to double count. An important special case is 2 — 2
scattering

a(pa) + b(ps) — c(pc) + d(pa).

>Exercise 4.21
Show that in the centre-of-mass frame the differential cross section for the scattering

a(pa) + b(ps) — c(pc) + d(pa) is

do 1 |pel

- 2 4.92
dQ  64n2s |]3‘a],Mf | (#22)

4.4 Mandelstam Variables

Invariant 2 — 2 scattering amplitudes are frequently expressed in terms of the Mandel-
stam variables. These are defined by

s = (Patp)? = (pc+pa)’,
t = (pa - pc)2 = (pb - pd)2:
u = (pa - pd)2 = (pb == pc)Z- ‘ (4'23)

In fact there are only two independent Lorentz invariant combinations of the available
momenta in this case, so there must be some relation between s, ¢ and w.

> Exercise 4.22
Show that
s+t+u=m?+mi+m?4+m (4.24)

>Exercise 4.23
Show that, for two body scattering of particles of equal mass m,

s > 4m?, t<0, u<0.

(Hint: since all variables are invariant work in the centre of mass frame.)
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5 Processes in QED and QCD

5.1 Electron—-Muon Scattering

This is as simple a process as one can find since at lowest order in the electromagnetic
coupling, just one diagram contributes. It is shown in figure 5. The amplitude obtained
by applying the Feynman rules to this diagram is

My = ey ulps) (<52 Jiealpa)r ulps), CBY

where ¢* = (p, — pc)?. Note that, for clarity, I have dropped the spin label on the
spinors. I will restore it when I need to. In constructing this amplitude we have followed
the fermion lines backwards with respect to fermion flow when working out the order of
matrix multiplication (which makes sense if you think of an unbarred spinor as a column
vector and a barred spinor as a row vector and remember that the amplitude carries no
spinor indices).

Do — De —

Figure 5: Lowest order Feynman diagram for e=p~ — e~ p~ scattering.

The cross section involves the squared modulus of the amplitude, |M s|?. Let us see
how we obtain a neat form for this. The hermitian conjugate of a ‘spinor sandwich’ is
the same as its hermitian conjugate,

(@(pe)7*ulpa))* = (W(pe)¥"u(pa))!

since it is just a number. Using rules of matrix algebra we see that this is

(@)Y’ ulpa))t = (ulpa) "'y ulpe))

= (u(pa)"r""7 ulpe)).- (5.2)
But in section 2.6 we saw that v%y#14® = 4#, and so this becomes
(@(pe)v*u(pa))™ = B(pa) ¥ ulpe)- (5.3)

> Exercise 5.24
If I' represents a string of y-matrices (not including %) and T'g is its reverse (i.e. the
same y-matrices in reverse order), show that,

[@(K)Tu(k)] = a(k)Tru(k').
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Using this result in the expression for | M f;|> we obtain
4
e _ _ _ _
Mpl* = 7 W(pe) ¥ u(Pa)a(pa) e () Tpa) v w(pe) Ulps) vou(pa)

et .
= 7 Molm (5.4)

where the subscripts e and p refer to the electron and muon respectively and

Lﬁs e 'E(Pc)ﬁ’ﬂu(pa)ﬁ(pa)’y“u(pc) i

with a similar expression for L’(‘ :)

Usually we have an unpolarized beam and target and do not measure the polarization
of the outgoing particles. Thus we calculate the squared amplitudes for each possible
spin combination, then average over initial spin states and sum over final spin states.
Note that we square and then sum since the different spin configurations are in principle
distinguishable. In contrast, if several Feynman diagrams contribute to the same process,
you have to sum the amplitudes first. We will see examples of this below.

The spin sums are made easy by the results

S u@)a¥p) = p+m,
S @)e9m) = p-m. (55)

Do not forget that by m, we really mean m times the unit 4 x 4 matrix.

> Exercise 5.25
Prove eq. (5.5).

Using the spin sums we find that
S L = Y a8 (povsus® (pa) A5 (pa) Ve ul (pe)

SpinS 8a,8c
= 'Ygﬁ [#. + me]ﬁp’YZa [#e + Meloa

= Tr(v*(#a + me)v (B + me)) - ' (5.6)
where in the first line, we have make explicit the spinor indices in order to show how the
trace emerges. Since all calculations of cross sections or decay rates in QED require the
evaluation of traces of products of y-matrices, you will generally find a table of “trace
theorems” in any quantum field theory textbook [1]. All these theorems can be derived
from the fundamental anti-commutation relations of the y-matrices in eq. (2.58) together
with the invariance of the trace under a cyclic change of its arguments. For now it suffices
to use

Te(y* ...4") = 0 forn odd
Tr(y ... qHm) = grBaTr(yhe . yhn) — ghis Tr(ylaghs | i) 4. ..
+ gt Te (Y2 ynt)
Tr(dy) = 4a-d,
Tr(dli¢d) = Ala-be-d—a-cbd+a-db-c) (5.7)
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>Exercise 5.26
Derive the trace results in equation (5.7). (Hint: for the first one use (v°)? = 1.)

Using these trace theorems,

Do Ly = 4ohpl — 9"'pa - pe+ papk) + 49" me, (5.8)

spins

with a similar result for L{). Putting this altogether, the spin averaged /summed ampli-
tude squared is

1
7 2 Ml
spins

- Z—i4 (IDZPCV + Papt — ( o Pe — mg) g“V) (pbupdu + DPbvPdp — (pb Py — mi) gu,,)

e4 .
= 851 ((Pc - pa)(Pa - Pb) + (Pe - Po) (Pa - Pa) — ME(Ds - pa) — M (Pa - Pe) + 2m§mﬁ) :

(5.9)

(Notice that we have divided by 4 since we are averaging over initial states, and there
are 4 possible initial spin configurations.)

This takes on a more compact form if expressed in terms of the Mandelstam variables
of eq. (4.23),

1 2 _ 2 2 2 2 22
1 > Mgl = t—2(s + u? — 4(mJ + m2)(s +u) + 6(m; +m2)?). (5.10)

spins

Finally, we can derive the differential cross section for this process in the centre-of-
mass frame using eq. (4.22). In the high energy limit where s, [u| > m2,m2, i.e. setting
the masses to zero,

do et s? 4
dQ  32m2s 2

Other calculations of cross sections or decay rates will follow the same steps we have
used above. Draw the diagrams, write down the amplitude, square it and evaluate the
traces (if you are using spin sum/averages). There are one or two more complications to
be aware of, which we will illustrate below.

(5.11)

5,2 Electron—Electron Scattering

For the scattering e"e™ — e~ e~ we now have identical particles in the final state which
may only be distinguished by their momenta. Therefore we cannot just replace m, by m.
in the calculation we performed above. Labeling the momenta in the process according
to e (pa) €7 (py) — e (pc)+€ (pq) in analogy to e~ u~ scattering, we realize that when
particle a emits a photon we do not know whether it ‘becomes’ particle ¢ (as it did in
the e pu~ scattering) or ‘becomes’ particle d. Since either is possible, we need to include
both cases, resulting in the two diagrams of fig. 6. Applying the Feynman rules, the two
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 Pa Pc — Pa — Pe
e_ | | e— e_ }76
e” > e” e” e
Py — Dd

P — Pd —

Figure 6: Lowest order Feynman diagrams for electron—electron scattering.

diagrams give the amplitudes,

2

My = i%ﬂ(pc)v“U(pa)ﬂ(pd)m(pb), (5.12)
iMy = —%—2ﬁ(pd)v"U(pa)ﬂ(pc)%LU(pb)- (5.13)

Notice the additional minus sign in the second amplitude, which comes from the anti-
commuting nature of fermion fields. Remember that when diagrams differ by an inter-
change of two fermion lines, a relative minus sign must be included. This is important
because

Mgpl* = |Mi+ My
= [My]* 4+ [Mz]? + 2ReMIM,, (5.14)

so the interference term will have the wrong sign if you don’t include the extra sign
difference between the two diagrams. |M;|* and |M;|? are very similar to the previous
calculation. The interference term is a little more complicated due to a different trace
structure.

Performing the calculation explicitly yields (in the limit of negligible fermion masses),

1 : AP Hu? S+t 242
= =2 2. 1
4S§S|Mf| e ( P iy S (5.15)
>Exercise 5.27
Prove the result in eq. (5.15). It will be helpful first to prove
VY'Y = =29
VY Ve = 49" (5.16)
TV A A = =29y

5.3 Electron—Positron Annihilation

The two diagrams ete™ scattering are shown in fig. 7, with the one on the right known
as the annihilation diagram. They are just what you get from the diagrams for electron -
electron scattering in fig. 6 if you twist round the fermion lines. The fact that the
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diagrams are related in this way implies a relation between the amplitudes. The inter-
change of incoming particles/antiparticles with outgoing antiparticles/particles is called
crossing. For our particular example, the squared amplitude for ete™ — ete™ is related
to that for e"e™ — e7e™ by performing the interchange s < u. Hence, squaring the
amplitude and doing the traces yields (again neglecting fermion mass terms)

1 9 PN A R VA VRS e
- i[“ =2 — . 5.17
4Spizns|Mﬁ| ¢ ( t2 & 52 + ts ( )
et - - et et et
e ” e e e

Figure 7: Lowest order Feynman diagrams for electron-positron scattering in QED.

If electrons and positrons collide and produce muon-antimuon or quark—antiquark
pairs, then the annihilation diagram is the only one that contributes. At sufficiently high
energies that the quark masses can be neglected, this immediately gives the lowest order
QED prediction for the ratio of the annihilation cross section into hadrons to that into

prp

I

_l_ _— — ., Ll
i o(ete hadrons) 33", (5.18)
f

olete” = ptp)

where the sum is over quark flavours f and @ is the quark’s charge in units of e. The
3 comes from the existence of three colours for each flavour of quark. Historically this
was important: you could look for a step in the value of R as your ete™ collider’s CM
energy rose through a threshold for producing a new quark flavour. If you did not know
about colour, the height of the step would seem too large. At the energies used at LEP
you have to remember to include the diagram with a Z replacing the photon.

Finally, we compute the total cross section for ete~ — p*pu~, neglecting the lepton
masses. Here we only have the annihilation diagram, and for the amplitude, we get

YGuv _
(P u(p)

My = (—ie)*u(ps)y*v(pe)

ie? _ P
= ~s—ud’y VeUaYpUb- (519)

Summing over final state spins and averaging over initial spins gives,
ot

i— 2 IMpP = 152 O™ P B T (bbb,

spins

-94 -



where we have neglected m,. and m,,. Using the results in equation (5.7) to evaluate the
traces gives,
il

8et
7 2 IMal = —5(pe - papy - Pe+ Pa Pepy - pa).

spins

Neglecting masses we have,

DPa Pc = Pb-Pd= —t/2, (520)
PaPd = Pb-Pc=—u/2 (5.21)
Hence . \ \
t
=3 Mgt =26t (5.22)
4 spins 32

which incidentally is what you get by applying crossing to the electron-muon amplitude
of section 5.1. We can use this in eq. (4.22) to find the differential cross section in the
CM frame, W ,

do ¢ t4u (5.23)
dQ}  32n%s  s?
You could get straight to this point by noting that the appearance of v spinors instead
of u spinors in M; does not change the answer since only quadratic terms in m,, survive
the Dirac algebra and we go on to neglect masses anyway. Hence you can use the result
of eq. (5.11) with appropriate changes.

Neglecting masses, the CM momenta are

pe= VALY  pe=1yE(LE) (5.24)
m=VELE)  pi= 1AL E) (5.25)

which gives ¢ = —s(1 — cosf)/2 and u = —s(1 + cos6)/2, where cos§ = ¢&- &’. Hence,
finally, the total cross section is,

1 do dra?

o= dQZWd(cos 6) = 35 (5.26)

5.4 Compton Scattering

The diagrams which need to be evaluated to compute the Compton cross section for
~ve — e are shown in fig. 8. For unpolarized initial and/or final states, the cross section
calculation involves terms of the form

e (A p) e"(\p), (5.27)
A

where )\ represents the polarization of the photon of momentum p. Since the photon is
massless, the sum is over. the two transverse polarization states, and must vanish when
contracted with p, or p,. In principle eq. (5.27) is a complicated object. However, there
is a simplification as far as the amplitude calculation is concerned. The photon is coupled
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to the electromagnetic current J# = 1py*1 of eq. (2.28). This is a conserved current, i.e.
OpJ* = 0, and in momentum space p,J* = 0. Hence, any term in the polarization sum,
eq. (5.27), proportional to p* or p” does not contribute to the cross section. This means
that in calculations one can make the replacement

2o\ p) (A p) — —g*, (5.28)

and we have a simple, Lorentz-covariant prescription.

7 %1' K g Y v
> > e e ¥ .3 e

Figure 8: Lowest order Feynman diagrams for Compton scattering.

> Exercise 5.28
Show that the spin summed/averaged squared matrix element for Compton scattering
in the massless limit is given by
N af U S
Ml = 2 (—S - u) (5.29)
Evaluate the total cross section using the expressions in the centre-of-mass frame at the
end of the last sub-section. Why does this create a problem?

5.5 QCD Processes

The theory of quarks and gluons, QCD, is in many ways very similar to QED. We
have done most of the hard work to calculate tree level amplitudes already. The main
difference between the theories is that QCD has three types of charges (called ‘colours’,
e.g. red, green and blue). We can write a quark as a vector with the three colour states

shown
U

uw=| u® (5.30)

’U,B

There are more possible interactions than in QED which are mediated by eight photon-
like gauge fields called “gluons”. We encode the couplings of the gluons to the quarks by
matrices which act on the above colour vector. For example there are two gluons with
matrix “generators”

, (1 00 L [10 0
T'=—|0 -1 0 |, =01 0 |. (5.31)
ViZlg o o 200 -2

These are just photon-like interactions with each of the two photons having different
couplings to the different colours.
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> Exercise 5.29
Check that the strength of a colour anti-colour quark pair scattering to itself at tree level
is the same no matter which colour you pick. Show that the strength of a scattering of a
colour anti-colour quark pair to a different colour pair is also the same no matter what
colours you pick.

The remaining six gluons change the colour of the quark and are associated with
generators of the form

010 1 {0 ~i 0
100 |, T"==14 0 0 (5.32)
000 0 0 0

The remaining four generators are of the same form but interchange the other two colour
combinations. Note these matrices are traceless and normalized so that T+T*T® = %6“1’.

You will learn more about the origin of these fields and their couplings in the Standard
Model course. From the point of view of calculating cross sections though the Feynman
Rules are all we need to proceed, and these are very similar to those of QED. The
generator T is included in the Feynman rule for the gluon—quark—anti-quark vertex as
shown in fig. 9 (upper), where g is the QCD coupling constant. Also, since a gluon

=

[N

a,

—"L'gTa’)/‘l

—gfae(p — q)7g*° + (g — r)%¢?7 + (r — p)Pg™°]

Figure 9: An example of some QCD Feynamn Rules.

associated with, for example, T® can pair produce a red quark and an anti-green quark
we see that the gluons themselves are charged. Therefore gluons can interact with other
gluons, and there are multi-gluon vertices that do not occur in QED where the photon
is chargeless. The Feynman rule for these vertices are given in fig. 9 (lower), where f°
a,b,c=1,...,8 are the QCD structure constants defined by

[T*, T% = fobeTe, (5.33)

The QCD Feynman rules will be discussed at greater length in the Standard Model
course.
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6 Introduction to Renormalization

6.1 Ultraviolet (UV) Singularities

So far, everything was computed at tree-level, that is, at the lowest nontrivial order
in perturbation theory. Very often, a more precise determination of a cross section is
desirable and we are thus led to consider loop diagrams. In order to illustrate this,
consider the example ete™ — ptp~. The perturbative expansion of the corresponding
amplitude is written as

M =aMy+ a2.M1 afs Ot3M2 + (’)(a4), (6.1)

where a = 4521; ~ 1/137. When we computed the corresponding amplitude in section 5.3

we only computed the leading order term

aMy = >m< xe? o« a (6.2)

Using this expression for the amplitude, we will get the leading-order cross section
oo o 2| M| If we want to compute corrections of order o® to this result, we will
have to compute the amplitude to an accuracy of order a.?.

=yl 4 Yol + 30X+ T 4 09

In fact this set of diagrams is one place where the distinction between relativistic quantum
mechanics and true field theory raises its head. The diagram with an internal quark loop
is naturally generated in quantum field theory but not in a perturbative expansion in
quantum mechanics. In principle, a quark must also be included in this loop, but in QM
you have to treat the quark as an external particle that is put there by hand. While the
Feynman rules we derived are correct, you will see a much more rigorous derivation of
the (scalar theory) Feynman rules in your QFT course.

The one-loop correction to the cross section is related to the interference term of M,
and My,

o1 x |aMo + a?M; + O(®) ]2 = o[ Mo|? + 203Re(My M) + O(at). (6.4)

The whole procedure looks pretty straightforward. However, if we try to compute a loop
diagram, we run into trouble.

Consider as an example the vertex correction V, depicted in fig. 10. Using the Feyn-
man rules listed in section 3.6 we end up with an expression of the form

d*k k k
Vo | i o B B (6.5)

where we did not bother to write down the full algebraic expression resulting from the
spinor and Lorentz algebra but only the terms involving k. The two factors of k& in the
numerator stem from the two fermion propagators. The important point is that this
integral diverges. Indeed, considering the limit k¥ — oo we can neglect p,, p, and m and
find

d'k 1 dk 1

Ve [ Gy~ aE = 65)
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Figure 10: Vertex correction for e*e™ — u*pu~ scattering.

where we used d'k ~ k*dk. These singularities are called ultraviolet (UV) singularities
because they come from the region & — oo.

Similar problems are encountered if we try to compute the other one-loop diagrams
and our final answer for the cross section at next-to-leading order seems to be infinity.

6.2 Infrared (IR) Singularities

There is another class of singularities that shows up in QED and QCD. As we saw in
section 6.1 that UV singularities are related to the region of large k. However, there is
also a potential danger of singularities from the region k& ~ 0 or more generally, from
zeros in the denominators of the integrand. These singularities are called infrared (IR)
singularities. These occur if some (massless) particle becomes very soft or two become
very collinear. These singularities have nothing to do with the UV singularities. The
solution to the problem is completely different in the two cases. In fact, you already
should have encountered an IR singularity. When you tried to compute the total cross
section for Compton scattering in section 5.4 you should have found that the total cross
section diverges. This is due to an IR singularity. Indeed, the final state photon can
become arbitrarily soft, in which case the electron-photon pair becomes indistinguishable
from a single electron. One possibility to get a well defined finite answer is to require
that the final state photon has some minimal energy but the general solution will be
discussed in the phenomenology course.

I will not discuss the IR singularities any further and will simply ignore them, safe
in the knowledge that they can be dealt with in a manner totally different to that for
the UV singularities. Thus in what follows I will call a cross section finite if it has no
UV singularities, but it might well have IR singularities. Strictly speaking, we should
replace every ‘finite’ below by ‘UV-finite’.

6.3 Renormalization

It is important to realize that renormalization is not really about the removal of diver-
gences, but simply an expression of the fact that in quantum field theories the value of
certain parameters, e.g. the coupling constants, change with the energy scale used in a
process. The infinities we encounter are then just a consequence of our ignorance of what
is happening as £ — oo although we integrate up to this limit in any loop diagrams.
We will demonstrate this below, and show how results do turn out to be finite after all.
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To to obtain a prediction for any measurable quantity S, say a cross section, we
started with wave equations from which we deduced the Feynman rules, which in turn
were used to compute S. The wave equations of QED, egs. (3.21) and (3.23), have some
parameters. So far, we denoted them by e, m and referred to them as mass and charge
of the electron. Therefore, our result S will depend on these parameters. However, the
parameter m in the Lagrangian is not the real mass of the electron, nor is e its charge.
The identification of the parameter in the Lagrangian and the measurable quantity is
only justified at tree level, because beyond this level the parameters themselves receive
corrections, i.e. the propagator and vertex diagram which define the mass and coupling
strength are themselves corrected. Therefore, from now on we will be more precise and
denote the parameters in £ by mg and ey and call them the bare. mass and bare charge
respectively. Note that the bare parameters are not measurable. The (measurable)
physical mass and charge of the electron will be denoted (as always) by m and e. £ also
depends on the fields, which we denoted so far by v and A. From now on, we denote
them by 1y and Ag and call them the bare fields.

We are now ready to reformulate the problem we encountered in section 6.1. If we
try to compute a measurable quantity in terms of the unmeasurable bare quantities as
a perturbative expansion in the coupling constant we generally encounter divergences.
That is, if we compute

S(eq, my, Yo, Ag) = So(eq, Mo, Yo, Ao) + €5 Si(eo, mo, 1o, Ao) + O(ed) (6.7)

then we may find that S)(eg, mo, 10, Ao) = co. In particular, this is true for two special
physical quantities, namely the mass and the charge of the electron,

m = mg+ e% ma (eo, ™o, Yo, Ao) + 0(63)

e = e+ 63 61(603 my, 1/)07 AO) 0 0(63) (68)

But this is an expression for two measurable quantities in terms of unknown parame-
ters. If the unknowns myg and eq are finite then we would get divergences in m; and e;
and hence in m and e. Since m and e are finite quantities we conclude that the bare
quantities are infinite. This is the root of the problem. UV divergences in our perturba-
tive calculations show up if we try to express our results in terms of the unmeasurable,
unphysical bare parameters, i.e. the parameters of the original Lagrangian.

In order to save the situation, we have to find new parameters such that the result of
any physical quantity expressed in these new parameters — at any order in perturbation
theory — is finite. Is this possible? Generally, the answer is no. However, for some
special theories (and luckily QED is one of them) it is possible. Such theories are called
renormalizable theories. The new parameters are called the renormalized quantities and
are denoted by er, mg and g, Ag. They are related to the bare quantities as follows:

Yo = Z*yr
Ay = Z¥*Ag
mg = Z}me
eo = 77575 eg (6.9)
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This is simply a definition of the renormalization factors Z,, Zs, Z3 and Z,,. Since the
renormalization factors relate finite and divergent quantities, they have to be divergent
themselves. More precisely, they can be written as a perturbative series with divergent
coeflicients.

To summarize, if we express the perturbative series for our physical quantity in terms
of the renormalized quantities

S(ER, Mg, YR, AR) = SO(GR, mg, ¢R,AR) + 63'2 Sl(eR, mRg, ¥R, AR) + 0(6312) (6-10)

there will be no UV-divergences at any order in perturbation theory. Some people refer
to this as ‘hiding the infinities’. What is meant by this statement is that if we have a
small number of input values (mpg,er...) and express all results in terms of these input
values we get finite answers for all measurable quantities. Thus, renormalizing QED
enables us to relate any measurable quantity to a small number of measurable input
values.

It is a highly non-trivial exercise to show that QED is indeed a renormalizable theory.
But once we know that we can find a set of renormalized parameters eg, mg, g, Ag such
that eq. (6.10) has finite coefficients at each order, it is clear that we can find as many
other sets as we like. Indeed, if we chose ef, m’y, 15, AR such that mg and mp (and all
other parameters) are related by a finite series, then

8' (€, Mip, Y, A) = So(€h, Mip, Vi, AR) + (€R)” Si(eg, mig, ¥h, AR) + O((e)") (6.11)

is also finite at each order in perturbation theory. In other words,.the divergent pieces
of the renormalization factors in eq. (6.9) are uniquely determined by requiring that the
divergences cancel. However, we are completely free to fix the finite pieces to whatever
we want. Choosing a particular set of renormalized quantities, that is, giving some pre-
scription on how to fix the finite pieces of the renormalization factors, is called choosing
the renormalization scheme. It is possible in QED that mr = m and eg = e, i.e. the
renormalized coupling is determined by real electron photon scattering. The renormal-
ization scheme that satisfies these constraints is called the on-shell scheme. Alternatively,
the renormalized coupling may be determined by scattering with, for example, a virtual
photon. In this case the value of er will depend on the scale of the scattering, i.e. the
coupling will “run” with the renormalization scale. To be precise let me also mention
that one more constraint is needed to fix the scheme completely. Naively you would
expect that four constraints are needed, since we have four renormalization factors to
fix. However, two of them are related, Z; = Z,. This identity is due to gauge invariance
and is called the Ward identity. As a result, we only need three constraints to fix the
renormalization scheme completely.

> Exercise 6.30
Why is it not possible in QCD to use the on-shell scheme?

Of course, the result of our calculation has to be independent of the renormalization
scheme. This remark is not quite as innocuous as it looks. In fact, it is only true up to
the order to which we decided to compute. If we decide to include the O(e%) but not
the higher order terms in our calculation, we have

S(BR, mpg, ’l»[}Ra AR) - Sl(e,R: m;b %a:, A;{) = 0(61112) (612)
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The numerical result for our prediction will depend on the renormalization scheme! Even
though the difference is formally of higher order it still can be numerically significant, in
particular in QCD.

It’s worth stressing again that this ability to hide UV divergences in the couplings
is not as conspiratorial as it at first seems. In the IR a theory involves long wavelength
modes that are insensitive to UV physics - indeed they (like us!) don’t even know what
the full UV theory of nature is. The incomplete IR theory will break down (generate
infinities) if extended into the UV but since we know (presumably!) that the IR theory
is part of a consistent UV theory there must be a way to hide the infinities. This is
fundamentally why renormalization works.

6.4 Regularization

What we have learned so far is that we have to express the result of our calculation
in terms of renormalized quantities rather than the bare ones. But since the starting
point of any calculation is the Lagrangian, the first step in any calculation is to get the
results in terms of bare quantities. Only then, we replace the bare quantities by the
renormalized quantities, using eq. (6.9) and get a finite result. In intermediate steps we
will have to deal with divergent expressions.

In order to give a mathematical meaning to these intermediate expressions, we will
have to regularize the integrals. That is, we have to change them in a systematic way,
such that they become finite. By doing so, we change the value of the integrals. However,
at the end of our calculation, we are able to undo this change. Since the final result is
finite, this step will not introduce a singularity.

There are — at least in principle — many different possibilities for regularizing the
integrals. To illustrate the idea of regularization I will discuss first the method of intro-
ducing a cutoff, even though in practice this method is not really used. Consider again
the vertex correction in eq. (6.5). As we saw, we got the UV singularity from the region
k — 0o. To regularize this expression, we introduce a cutoff A

A dik kk
2m)* B2((ps + £)* — m*)((pa — k)* — m?)

V — Vieg ~ (6.13)
Of course, by doing so we changed the value of the integral. At the end of our calculation
we will have to let A — oo. Introducing this cutoff, however, gives us the possibility to
deal with such intermediate expressions.

Let me illustrate the interplay between renormalization and regularization with an
oversimplified example. Assume that with the cutoff regularization we get as a result of
our calculation of some physical quantity, say a cross section

A
S=epA+ el (B In— + FS) + O(ed) (6.14)

m
where A, B and Fs are some finite terms. The originally divergent expression for S
has been rendered finite by regularization. At this point we cannot let A — oo since

we would get & — oo. However, we learned that we have to express our results in
terms of er and not ep (For simplicity, I ignore the mass renormalization). This step is
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renormalization (not regularization). Computing the relation between ey and eg, using
the same regularization, we would find

er = eg — €5 (0 ln% + Fc> + O(e}) (6.15)

and reversing this
A
ey = 6R+6:13{ (CIHE—FFE) +0(6%) (616)

where C' and F, are also finite. Plugging in eq. (6.16) into eq. (6.14) we get
A
S=echAt el ((B +44C)In 2+ Fs+ 4AFE> + O (6.17)

and we would find (B 4+ 4AC) = 0. Since QED is a renormalizable theory this ‘miracle’
would happen for any measurable quantity. Finally, in the expression

S = eh A+ % (Fs + 4AF,) + O(e}) (6.18)

we can let A — 0o and ‘undo’ the regularization.

To summarize, regularization enables us to work with divergent intermediate expres-
sions. In the example above, instead of writing co we write log A and have in mind
A — 0o0. Renormalization, on the other hand removes the (would be) singularities, i.e.
it removes the log A terms. Therefore, after renormalization we can (and have to) undo
the regularization.

Note that we could have defined a different renormalized coupling

A
En = o — & (c =t Ge) +O() (6.19)
and this would have lead to

S = eRA+ 4(Fs + 4AG,) + O(&}, (6.20)

and we would have a different expression in terms of a different coupling - both equally
valid, and identical up to the O(&%) corrections.

As mentioned above, the method of introducing a cutoff for regularization is hardly
ever used in actual calculations. The by far most popular method is to use dimensional
regularization. The basic idea is to do the calculation not in 4 space-time dimensions
but rather in D dimensions. Why does this help?

Consider once more our initial example of the vertex correction in eq. (6.5), which
has an UV singularity in D = 4 space-time dimensions (see eq. (6.6)). For arbitrary D,
using dPk ~ kP~ 'dk we get

dPk 1 dk s
v [ e~ (6.21)

and the integral is UV-finite for say D < 3. Thus changing the dimension can regulate
integrals. It is important to note that this is only a technicality. There is no Physics
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associated with D # 4 and at the end of the calculation we have to let D — 4. If we did
renormalize our theory properly this last step will not lead to UV divergences.

The reason why dimensional regularization is so popular is that it preserves gauge
invariance and is technically relatively simple. Another very important issue is that this
regularization not only regulates UV singularities, but also IR singularities. As men-
tioned in section 6.2, theories like QED or QCD are very often plagued by IR singulari-
ties. It is therefore very convenient if we do not have to introduce another regularization
for IR singularities. Only after all UV and IR singularities have been removed, we can
let D — 4 and finally obtain a finite result.

7 QED as a Field Theory
7.1 Quantizing the Dirac Field

In this section we return to the Dirac equation and use it as the basis for a a field theory,
which allows the creation and annihilation of particles naturally. Quantizing a field (or
second quantization) basically means that the wave function becomes an operator. The
space in which this operator acts is called the Fock space. The Fock space contains states
with an arbitrary number of particles and therefore we will be able to describe processes
where the number of states changes.

Dirac field theory is defined to be the theory whose field equations correspond to
the Dirac equation. We regard the two Dirac fields (z) and () as being dynamically
independent fields and postulate the Dirac Lagrangian density:

L = P()(in" 8, — m)p(z). (7.1)
Then the Euler-Lagrange equation

o oL ac

2 56 9% " (72)

leads to the Dirac equation. The canonical momentum is

oL
RN )
and the Hamiltonian density is
H=mp— L= w%‘tf. (7.4)

Now we want to regard ¢ as a quantum field rather than as a wave function. In order
to quantize this field, naively we would try to impose the usual equal time commutation
relations, i.e.

[Va(Z, 1), ma(F,1)] = i0apd’(Z — ),
[’lpa(f’ t), 1/%(377 t)] = 0,
[71'(1(.’,;7', t)a Wﬁ(ga t)] = 07 (75)
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where o and # label the spinor components of ¢ and m. Without proving it for the
moment we note that this would lead to a disaster. In particular, the Hamiltonian is
unbounded from below - there is no ground state. The only way to cure the problem
is to impose anti-commutation relations (we will soon see that this leads to the desired
properties for spin-1/2):

{¥a(Z, 1), (Y, 1)} = i5aﬁ53(f - 7).
{va(Z,8), ¥s(#,1)} = O,
{Wa (fa 1), g (371 t)} = 0. (7-6)

There is a very nice discussion in Peskin & Schroeder on this (Chapter 3). In particular,
they show how anti-commutation relations really are the only solution.
The Heisenberg equations of motion for the field operators have the solution

bty = [LF 1 > b Dtals, o™ + d(s, Bva(s, He®?]  (7.7)
83 b] (2 )3 2F b2 @ b) ] [e3 y N

= m.n - daff 1 1 N PIa oI N = m —ik-x

Yo (Z,t) = —_— Z [ (s, k)lia(s, k)e™™ + d(s, k)a(s, k)e ] (7.8)

(2m)3 2B S

Since 1 is now an operator, so are the expansion coefficients b', dt, b and d. They are in-
terpreted as creation and annihilation operators for electrons and positrons respectively.
The anti-commutation relations for the fields, eq. (7.6), imply that

{60, k), b (s,K)} = (@r)2B8(K - B)6.,
{d(r, k), d(s,E)} = (2n)*2E 6%k — k)6,
{60r,B),b(s, K0} = {61(r, ), b1(s, B} = 0
{d(r k) d(s, B} = {d'(r, k), dl(s,B)} =0 (7.9)

> Exercise 7.31
Show that the anticommutation relations above lead to the correct anticommutation
relations for the fields 1,(%,t) and 74(Z,t). You will need the spinor sum relations in
eq. (5.5).
The total Hamiltonian is

H:/ffﬂt (7.10)

The symbols : : denote normal ordering of the operator inside, i.e. we put all creation
operators to the left of all annihilation operators so that H |0) = 0 by definition, and is
the way we remove the ambiguity associated with the order of operators. Note that if
we move an anti-commuting (fermion) operator through another such operator then we
pick up a minus sign. Using eq. (7.4) after some algebra we get

= [ Goisan® S W6 Dbe B v o BB
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> Exercise 7.32 :
Verify the above form of the Hamiltonian. Can you see from the derivation why com-
mutation relations for ¢ and # and therefore for b and d would have led to a disaster?

The formula in eq. (7.11) has a very nice interpretation. The operator btb is nothing
but the number operator for electrons and did that for positrons. Thus, to get the
total Hamlltonlan we have to count all electrons and positrons for all spin states s and
momenta & and multiply this number by the corresponding energy E.

If we had tried to impose commutation relations, the dtd term would have entered
with a minus sign in front, which would signal that something has gone wrong. In par-
ticular, it would mean that d' creates particles of negative energy. This is not supposed
to happen in the quantized field theory. (We could try to fix the problem by simply
re-labeling d <+ d' but it may be shown that this leads to acausal propagation.)

So, in order to quantize the Dirac field we are necessarily led to the introduction of
anti-commutation relations. Remarkably we find that we have automatically taken into
account the Pauli exclusion principle! For example,

{b'(r, k), bt(s,E)} =0
implies that it is not possible to create two quanta in the same state, i.e.
bl (s, k)bt(s, k)|0) = 0.

This intimate connection between spin and statistics is a direct consequence of desiring
our theory to be consistent with the laws of relativity and quantum mechanics.
Finally consider the charge operator

Q=/d3.'i' : Jo(z) - =/d33—;' RV

which, in terms of the creation and annihilation operators, is

@= / (;Sl)cz 21E [bf(s, k)b(s, k) — d' (s, k)d(s, k)] (7.12)

This shows again that b' creates fermions while df creates the associated antifermions of
opposite charge.

7.2 Quantizing the Electromagnetic Field
The Maxwell equations can be derived from the Lagrangian density
L= —&F‘“’Fu,, — JjuA¥ (7.13)
where the field strength tensor is
va = ap,Au - 6|/Ap.; (714)

and j, is a source for the field. Maxwell’s equations do not change under the gauge
transformation

Au(z) = Au(x) + DA (x) (7.15)
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where A(z) is some scalar field. This shows that there is some redundancy, and the
4 components of A,(x) are more than is required to describe the electromagnetic field
(there are two transverse polarizations of e.m. radiation). This leads to a problem in
quantization. To see this note that the canonically conjugate field to A, is
.
IT _—8(80AH) F (7.16)

and from this it follows that I = 0. This means there is no possibility of imposing a
non-zero commutation relation between II° and A°, which we would need if we are to
quantize the field.

To get around this problem we recognize that gauge invariance allows us to impose
an extra condition, which we use to fiz the gauge invariance, and effectively lower the
degrees of freedom. For exaiple, we can impose the Lorentz gauge condition, i.e.

B A =0, (7.17)

Note that, even after fixing the Lorentz gauge, we can perform another gauge transfor-
mation on A, i.e. A,(z) — A.(x) + 9,x(z) where x(z) must satisfy the wave equation,
0,0"*x = 0, i.e. we have two unphysical degrees of freedom and the two physical fields.

We impose the constraint by noting that since 9,A* = 0, there is no harm in adding
it to the Lagrangian density as

_ Llow _ (o A
L= 4F i, — Ot 2‘5(8 WOk (7.18)
Indeed what we are doing here is following the Lagrange multiplier method of imposing
constraints (1/2¢ being the Lagrange multiplier), and recognizing that we should find
the stationary points of S = [ d*zL subject to the constraint [ d*r(9,A*)% = 0, i.e. this
comes from the “equation of motion” 8£/9(1/2¢) = 0.
Using the gauge-fixed Lagrangian, the equations of motion are now

1
& Fuy = Ju + 508" 4,) = 0.

If we require that these equations are satisfied and then also §,A* = 0, we have the
original equations of motion but in a fixed gauge.

In the Feynman gauge £ = 1, the Lagrangian is particularly simple (after some
integration by parts under [ d*z):

1 .
s= EBﬂA,,a”A — juA*R,
and quantization can now proceed: II* = JyA* and thus
[A*(Z,1), 00 A" (§, )] = —ig"6*(Z — 7) (7.19)

with all other commutators vanishing. The Heisenberg operator corresponding to the
photon field is

d3k

Ay(x) = iE i [eu(X Ba(X, E)e™™ + e,(\, E)aT (A, B)e™ 7] (7.20)
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where g,(), E) are a set of four linearly independent basis 4-vectors for polarization
(A =0,1,2,3). For example, if k = (ko, k), we might choose £#(0) = (1,0,0 ,0), e4(3) =
(0,K)/ko, (1) = (0,71) and e*(2) = (0,7y), where k = k%, 7t -k = 0, i - k = 0 and
iy -7ig = 0. e#(1) and £#(2) are therefore polarization vectors for transverse polarizations
whilst €#(0) is referred to as the timelike polarization vector and e*(3) is referred to as
the longitudinal polarization vector. For example, if & = (ko, 0,0, ko), e“(0) = (1,0,0,0),
e*(3) = (0,0,0,1), £(1) = (0, 1,0,0) and £*(2) = (0,0, 1,0).
The commutation relation (7.19) implies that

—

[a(\, k), at (N, B)| = —gav 2B (2m)°8% (k — R). (7.21)

At a glance this looks fine, i.e. we interpret a'(), E) as an operator that creates quanta
of the electromagnetic field (photons) with polarization A and momentum k. However,
for A = 0 we have a problem since the sign on the RHS of (7.21) is opposite to that of
the other 3 polarizations. This shows up in the fact that these timelike photons make a
negative contribution to the energy:

-
(gw’; %E (—af(o, Hol0.B) + 3 aerIEE k)) . (7.22)
Fortunately, although we might not realize it yet, we have already solved the problem.
Recall that we still have to impose 9,A* = 0. It turns out that it is impossible to do
this at the operator level, but we can do it for all physical expectation values, i.e. we
can impose the correct physics. It then turns out that contributions from the timelike
and longitudinal photons always cancel. More explicitly, by demanding for any state |x)
that

(x18,44x) = 0 (7.29)

it follows that . . B .
(x|a'(3, k)a(3, k) — al(0, k)a(0, k) |x) = 0. (7.24)

and therefore (x|H|x) > 0. This is nice because it is in accord with our knowledge that
free photons are transversely polarized.

> Exercise 7.33
Show that eq. (7.24) follows from eq. (7.23).
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Pre School Problems

Rotations, Angular Momentum and the Pauli Matrices

Show that a 3-dimensional rotation can be represented by a 3 x 3 orthogonal matrix R
with determinant +1 (Start with ' = Rz, and impose &’ - # = Z - #). Such rotations
form the special orthogonal group, SO(3).

For an infinitesimal rotation, write R = 1+ 1A where 1 is the identity matrix and
A is a matrix with infinitesimal entries. Show that A is antisymmetric (the 7 is there to
make A hermitian).

Parameterise A as

0 —ia3 z'a2

3
A= iag 0 —'7:(1.1 = Z aiLi
~—ia2 ial 0 =1

where the a; are infinitesimal and verify that the L; satisfy the angular momentum
commutation relations

[Li1 L]] S iEijkLk:
Note that the Einstein summation convention is used here. Compute L2 = L? + 3+ L3.

What is the interpretation of L2 ?
The Pauli matrices o; are,

0 1 0 —i 1 0
"1:(1 0)’ "2=<i 0)’ "3:<0 —1)'

Verify that %ai satisfy the same commutation relations as ;.

Four Vectors

A Lorentz transformation on the coordinates z# = (ct, ) can be represented by a4 x4
matrix A as follows:
" = A*, ¥

For a boost along the z-axis to velocity v, show that

v =By 00

- 0 0
= g ! g 1 0 (:25)
0 0 01
where 8 =v/c and v = (1 — 82)~1/2 35 usual.
By imposing the condition
g’“}xmx/u = gw-’E”x" (26)

where

Guv =

oo O =
o
I
—
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show that
9NN s =g, Or ATgA =g

This is the analogue of the orthogonality relation for rotations. Check that it works for
the A given by equation (.25) above.
Now introduce
Ty = G’

and show, by reconsidering equation (.26) using z*z,, or otherwise, that
T, = x,(A71)",

Vectors A* and B, that transform like z# and z, are sometimes called contravariant
and covariant respectively. A simpler pair of names is vector and covector. A particularly
important covector is obtained by letting 9/9z* act on a scalar ¢:

5]
9 = b,

ozr M

Show that 0, does transform like z,, and not z#.

Probability Density and Current Density

Starting from the Schrddinger equation for the wave function (Z,t), show that the
probability density p = 1*1) satisfies the continuity equation
dp

E—FVJ:O

where N
J = %[TP*(VW — (VY )y]

What is the interpretation of J? Verify that the continuity equation can be written in
manifestly covariant form.
OJ" =0

—

where J* = (cp, J).
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Introduction

An important feature of the Standard Model (SM) is that “it works”: it is consistent with,
or verified by, all available data, with no compelling evidence for physics beyond.> Secondly,
it is a unified description, in terms of “gauge theories” of all the interactions of known
particles (except gravity). A gauge theory is one that possesses invariance under a set of

“local transformations”, i.e. transformations whose parameters are space-time dependent.

Electromagnetism is a well-known example of a gauge theory. In this case the gauge trans-
formations are local complex phase transformations of the fields of charged particles, and
gauge invariance necessitates the introduction of a massless vector (spin-1) particle, called
the photon, whose exchange mediates the electromagnetic interactions.

In the 1950’s Yang and Mills considered (as a purely mathematical exercise) extending gauge
invariance to include local non-abelian (i.e. non-commuting) transformations such as SU(2).
In this case one needs a set of massless vector fields (three in the case of SU(2)), which were
formally called “Yang-Mills” fields, but are now known as “gauge fields”.

In order to apply such a gauge theory to weak interactions, one considers particles which
transform into each other under the weak interaction, such as a u-quark and a d-quark, or
an electron and a neutrino, to be arranged in doublets of weak isospin. The three gauge
bosons are interpreted as the W* and Z bosons, that mediate weak interactions in the same
way that the photon mediates electromagnetic interactions.

The difficulty in the case of weak interactions was that they are known to be short range, me-
diated by very massive vector bosons, whereas Yang-Mills fields are required to be massless
in order to preserve gauge invariance. The apparent paradox was solved by the applica-
tion of the “Higgs mechanism”. This is a prescription for breaking the gauge symmetry
spontaneously. In this scenario one starts with a theory that possesses the required gauge
invariance, but where the ground state of the theory is not invariant under the gauge transfor-
mations. The breaking of the invariance arises in the quantization of the theory, whereas the
Lagrangian only contains terms which are invariant. One of the consequences of this is that
the gauge bosons acquire a mass and the theory can thus be applied to weak interactions.

Spontaneous symmetry breaking and the Higgs mechanism have another extremely impor-
tant consequence. It leads to a renormalizable theory with massive vector bosons. This
means that one can carry out a programme of renormalization in which the infinities that

n saying so we have taken the liberty to allow for neutrino masses (see chapter 7) and discarded some
deviations in electroweak precision measurements which are far from conclusive; however, note that there is
a 3.40 deviation between measurement and SM prediction of g —2 of the muon, see the remarks in chapter 8.
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arise in higher-order calculations can be reabsorbed into the parameters of the Lagrangian
(as in the case of QED). Had one simply broken the gauge invariance explicitly by adding
mass terms for the gauge bosons, the resulting theory would not have been renormalizable
and therefore could not have been used to carry out perturbative calculations. A consequence
of the Higgs mechanism is the existence of a scalar (spin-0) particle, the Higgs boson.

The remaining step was to apply the ideas of gauge theories to the strong interaction. The
gauge theory of the strong interaction is called “Quantum Chromo Dynamics” (QCD). In this
theory the quarks possess an internal property called “colour” and the gauge transformations
are local transformations between quarks of different colours. The gauge bosons of QCD are
called “gluons” and they mediate the strong interaction.

The union of QCD and the electroweak gauge theory, which describes the weak and elec-
tromagnetic interactions, is known as the Standard Model. It has a very simple structure
and the different forces of nature are treated in the same fashion, i.e. as gauge theories.
It has eighteen fundamental parameters, most of which are associated with the masses of
the gauge bosons, the quarks and leptons, and the Higgs. Nevertheless these are not all
independent and, for example, the ratio of the W and Z boson masses are (correctly) pre-
dicted by the model. Since the theory is renormalizable, perturbative calculations can be
performed at higher order that predict cross sections and decay rates for both strongly and
weakly interacting processes. These predictions, when confronted with experimental data,
have been confirmed very successfully. As both predictions and data are becoming more and
more precise, the tests of the Standard Model are becoming increasingly stringent.
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1 QED as an Abelian Gauge Theory

The aim of this lecture is to start from a symmetry of the fermion Lagrangian and show
that “gauging” this symmetry (= making it well behaved) implies classical electromagnetism

with its gauge invariance, the eév interaction, and that the photon must be massless.

1.1 Preliminaries

In the Field Theory lectures at this school, the quantum theory of an interacting scalar
field was introduced, and the voyage from the Lagrangian to the Feynman rules was made.
Fermions can be quantised in a similar way, and the propagators one obtains are the Green
functions for the Dirac wave equation (the inverse of the Dirac operator) of the QED/QCD
course. In this course, I will start from the Lagrangian (as opposed to the wave equation) of
a free Dirac fermion, and add interactions, to construct the Standard Model Lagrangian in
classical field theory. That is, the fields are treated as functions, and I will not discuss creation
and annihiliation operators. However, to extract Feynman rules from the Lagrangian, [ will
implicitly rely on the rules developed for scalar fields in the Field Theory course.

1.2 Gauge Transformations

Consider the Lagrangian density for a free Dirac field 1):
L= (y"9, —m)y (1.1)

This Lagrangian density is invariant under a phase transformation of the fermion field
1/) - eiwa) /‘1_5 - eiQwE’ (12)

where @ is the charge operator (Qv = +1b, Qi = —1), w is a real constant (i.e. independent
of z) and 1 is the conjugate field.

The set of all numbers e™™ form a group?. This particular group is “abelian” which is to
say that any two elements of the group commute. This just means that

e MWeT = gTMWR2eTII (1.3)

2A group is a mathematical term for a set, where multiplication of elements is defined and results in

another element of the set. Furthermore, there has to be a 1 element (s.t. 1 X @ = a) and an inverse (s.t.

-1

a X a~! = 1) for each element a of the set.
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This particular group is called U(1) which means.the group of all unitary 1 x 1 matrices. A
unitary matrix satisfies UT = U~! with Ut being the adjoint matrix.

We can now state the invariance of the Lagrangian eq. (1.1) under phase transformations in a
more fancy way by saying that the Lagrangian is invariant under global U(1) transformations.
By global we mean that w does not depend on z.

For the purposes of these lectures it will usually be sufficient to consider infinitesimal group
transformations, i.e. we assume that the parameter w is sufficiently small that we can expand
in w and neglect all but the linear term. Thus we write

e =1 —iw + OW?. (1.4)
Under such infinitesimal phase transformations the field 1 changes according to

Y=Y+ oY =9+ 1Qw, (1.5)
and the conjugate field 1) by
YoP+0) =Y+ iQuip =1 — iw, (1.6)
such that the Lagrangian density remains unchanged (to order w).

At this point we should note that global transformations are not very attractive from a
theoretical point of view. The reason is that making the same transformation at every
space-time point requires that all these points 'know’ about the transformation. But if I
were to make a certain transformation at the top of Mont Blanc, how can a point somewhere
in England know about it? It would take some time for a signal to travel from the Alps to
England.

Thus, we have two options at this point. Either, we simply note the invariance of eq. (1.1)
under global U(1) transformations and put this aside as a curiosity, or we insist that in-
variance under gauge transformations is a fundamental property of nature. If we take the
latter option we have to require invariance under local transformations, Local means that
the parameter of the transformation, w, now depends on the space-time point z. Such local
(i.e. space-time dependent) transformations are called “gauge transformations”.

If the parameter w depends on the space-time point then the field 1) transforms as follows

under infinitesimal transformations

0(z) = iw(z)d(z);  0P(z) = —iw(z)P(z). (1.7)

Note that the Lagrangian density eq. (1.1) now is no longer invariant under these trans-
formations, because of the partial derivative between v and 1. This derivative will act on
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the space-time dependent parameter w(x) such that the Lagrangian density changes by an
amount 6L, where

0L = —1p(z) v* [0,.Quw(z)] ¥ (z). (1.8)
The square brackets in [0,Qw(x)] are introduced to indicate that the derivative 9, acts only
inside the brackets. It turns out that we can restore gauge invariance if we assume that the
fermion field interacts with a vector field A4, called a “gauge field”, with an interaction term

—ep Y AQY (1.9)
added to the Lagrangian density which now becomes
L= (in" (O +ieQA,) —m)y. (1.10)

In order for this to work we must also assume that apart from the fermion field transform-
ing under a gauge transformation according to eq. (1.7) the gauge field, A,, also changes
according to

—eQA, — —eQ(A, +6A,(x)) =—eQ A, + QO w(z). (1.11)
So 0A,(z) = —Q0, w(z)/e.

Exercise 1.1
Using egs. (1.7) and (1.11) show that under a gauge transformation

S(—ep " An) = —p(z)*[0,Quw(x)] Y(z).

This change exactly cancels with eq. (1.8), so that once this interaction term has been added
the gauge invariance is restored. We recognize eq. (1.10) as being the fermionic part of the
Lagrangian density for QED, where e is the electric charge of the fermion and A, is the
photon field.

In order to have a proper quantum field theory, in which we can expand the photon field A,
in terms of creation and annihilation operators for. photons, we need a kinetic term for the
photon, i.e. a term which is quadratic in the derivative of the field A4,. Without such a term,
the Euler-Lagrange equation for the gauge field would be an algebraic equation and we could
use it to eliminate the gauge field altogether from the Lagrangian. We need to ensure that
in introducing a kinetic term we do not spoil the invariance under gauge transformations.
This is achieved by defining the field strength tensor, £, as

F = 8,A, - 8,A,, (1.12)

where the derivative is understood to act on the A-field only.? It is easy to see that under
the gauge transformation eq. (1.11) each of the two terms on the right hand side of eq. (1.12)

3Strictly speaking we should therefore write F,,, = [8,A4,] — [0, A,]; you will find that the brackets are
often omitted.
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change, but the changes cancel out. Thus we may add to the Lagrangian any term which
depends on F},, (and which is Lorentz invariant, thus, with all Lorentz indices contracted).
Such a term is aF),, F*. This gives the desired term which is quadratic in the derivative of
the field A,. If we choose the constant a to be —1/4 then the Lagrange equations of motion

match exactly (the relativistic formulation of) Maxwell’s equations.*

We have thus arrived at the Lagrangian density for QED, but from the viewpoint of de-
manding invariance under U(1) gauge transformations rather than starting with Maxwell’s

equations and formulating the equivalent quantum field theory.

The Lagrangian density for QED is:

- : _iFN"FW + (1" (O +ieQAL) —m) . (1.13)

Exercise 1.2
Starting with the Lagrangian density for QED write down the Euler-Lagrange
equations for the gauge field A, and show that this results in Maxwell’s equa-

tions.

In the Field Theory lectures, we have seen that a term A¢* in the Lagrangian gave 4!\ as
the coupling of four ¢s in perturbation theory. Neglecting the combinatoric factors, it is
plausible that eq. (1.13) gives the yée Feynman Rule used in the QED course, —iey*, for
negatively charged particles.

Note that we are not allowed to add a mass term for the photon. A term such as M?A4,A*
added to the Lagrangian density is not invariant under gauge transformations as it would

lead to
2M?

e
Thus the masslessness of the photon can be understood in terms of the requirement that the

0L = AP(z)O,w(z) # 0, (1.14)

Lagrangian be gauge invariant.

1.3 Covariant Derivatives

Before leaving the abelian case, it is useful to introduce the concept of a “covariant deriva-
tive”. This is not essential for abelian gauge theories, but will be an invaluable tool when
we extend these ideas to non-abelian gauge theories.

4The determination of this constant a is the only place that a match to QED has been used. The rest
of the Lagrangian density is obtained purely from the requirement of local U(1) invariance. A different
constant would simply mean a different normalization of the photon field.
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The covariant derivative D, is defined to be
D,=0,+1ieA,. (1.15)

It has the property that given the transformations of the fermion field eq. (1.7) and the gauge
field eq. (1.11) the quantity D, transforms in the same way under gauge transformations

as .

Exercise 1.3
Show that under an infinitesimal gauge transformation D, transforms as

Dyab — Dyt + 6(Dyyip) with 6(Dyp) = —iw(z) D b,

We may thus rewrite the QED Lagrangian density as
1 s
L = ~ZFWF‘”’ + 1 (iv* D, —m) . (1.16)

Furthermore the field strength F,, can be expressed in terms of the commutator of two

covariant derivatives, i.e.

i % -
Fuo = s [Dlu DV] = _'6_[8#’ al/] + [(9,“/1,,] + [Am 81/] +e [A“,Ay]
= 0,A, — (9,,A'u, (1.17)

where in the last line we have adopted the conventional notation again and left out the
square brackets. Notice that when using eq. (1.17) the derivatives act only on the A-field.

1.4 (Gauge Fixing

The guiding principle of this chapter has been to hold onto the U(1) symmetry. This forced
us to introduce a new massless field A, ‘which we could interpret as the photon. In this
subseetion we will try to quantise the photon field (e.g. calculate its propagator) by naively
following the prescription used for scalars and fermions, which will not work. This should not
be surprising, because A, has four real components, introduced to maintain gauge symmetry.
However the physical photon has two polarisation states. This difficulty can be resolved by
“fixing the gauge” (breaking our precious gauge symmetry) in the Lagrangian in such a way
as to maintain the gauge symmetry in observables.®

5The gauge symmetry is also preserved in the Path Integral, which is a sum over all field configurations
weighted by exp{i [ Ld%z}. In path integral quantisation, which is an alternative to the canonical approach
used in the Field Theory lectures, Green functions are calculated from the path integral and it is unimportant
that the gauge symmetry seems broken in the Lagrangian.
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In general, if the part of the action that is quadratic in some field ¢(z) is given in terms of
the Fourier transform </§(p) by

Ss = [ dpd(-p)Om)(m), (1.18)

then the propagator for the field ¢ may be written as
i 07 (p). (1.19)

In the case of QED the part of the Lagrangian that is quadratic in the photon field is given
by —1/4 F¥F,, = —1/2 A*(—g,,0°0, + 0,0,) A”, where we have used partial integration
to obtain the second expression. In momentum space, the quadratic part of the action is
then given by

14 Av
Sa = / d'p 5 A4(~p) (=g 1 + pubv) A* (). (1.20)
Unfortunately the operator (—g,, p? + p,p,) does not have an inverse. This can be most
easily seen by noting (—g,, p*> + pupv) p* = 0. This means that the operator (—g,, p* + pup,)
has an eigenvector (p”) with eigenvalue 0 and is therefore not invertible. Thus it seems we

are not able to write down the propagator of the photon. We solve this problem by adding
to the Lagrangian density a gauge fixing term

1 2
e (8, AH)?, (1.21)
With this term included (again in momentum space), S4 becomes
4 1 AL 2 5 AV
Sa = /d Py A (=p) (9w " — ez A" (p), (1.22)
and, noting the relation
vo _ DPP
(gwp2 + me) (g P — & ) = p’g}, (1.23)
1-¢ p
we see that the propagator for the photon may now be written as
. Pupy | 1
—q (g”,, —£ pe ) ? (1.24)

The special choice £ = 0 is known as the Feynman gauge. In this gauge the propagator
eq. (1.24) is particularly simple and we will use it most of the time.

This procedure of gauge fixing seems strange: first we worked hard to get a gauge invariant
Lagrangian, and then we spoil gauge invariance by introducing a gauge fixing term.

The point is that we have to fix the gauge in order to be able to perform a calculation.
Once we have computed a physical quantity, the dependence on the gauge cancels. In other
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words, it does not matter how we fix the gauge, and in particular, what value for ¢ we take.
The choice £ = 0 is simply a matter of convenience. A more careful procedure would be to
leave & arbitrary and check that all {-dependence in the final result cancels. This gives us
a strong check on the calculation, however, at the price of making the computation much

more tedious.

The procedure of fixing the gauge in order to be able to perform & calculation, even though
the final result does not depend on how we have fixed the gauge, can be understood by
the following analogy. Assume we wanted to calculate some scalar quantity (say the time
it takes for a point mass to get from one point to another) in our ordinary 3-dimensional
Euclidean space. To do so, we choose a coordinate system, perform the calculation and
get our final result. Of course, the result does not depend on how we choose the coordinate
system, but in order to be able to perform the calculation we have to fix it somehow. Picking
a coordinate system corresponds to fixing a gauge, and the independence of the result on the
coordinate system chosen corresponds to the gauge invariance of physical quantities. To take
this one step further we remark that not all quantities are independent of the coordinate
system. For example, the z-coordinate of the position of the point mass at a certain time
depends on our choice. Similarly, there are important quantities that are gauge dependent.
One example is the gauge boson propagator given in eq. (1.24). However, all measurable
quantities (observables) are gauge invariant. This is where our analogy breaks down: in
our Euclidean example there are measurable quantities that do depend on the choice of the
coordinate system.

Finally we should mention that eq. (1.21) is by far not the only way to fix the gauge but
it will be sufficient for these lectures to consider gauges defined through eq. (1.21). These
gauges are called covariant gauges.

1.5 Summary

e It is possible for the Lagrangian for a (complex) Dirac field to be invariant under
local U(1) transformations (phase rotations), in which the phase parameter depends
on space-time. In order to accomplish this we include an interaction with a vector
gauge boson which transforms under the local (gauge) transformation according to
eq. (1.11).

e This interaction is encoded by replacing the derivative J, by the covariant derivative
D, defined by eq. (1.15). D, transforms under gauge transformations as e™* D, .

o The kinetic term for the gauge boson is —%FH,,F‘“’, where F),, is proportional to the
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commutator [D,, D,] and is invariant under gauge transformations.

e The gauge boson must be massless, since a term proportional to A,A* is not invariant
under gauge transformations and hence not included in the Lagrangian.

e The resulting Lagrangian is identical to that of QED.

e In order to define the propagator we have to specify a certain gauge; the resulting
gauge dependence cancels in physical observables.
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2 Non-Abelian Gauge Theories

In this lecture, the “gauge” concept will be constructed so that the gauge bosons have self-
interactions — as are observed among the gluons of QCD, and the W*, Z and v of the
electroweak sector. However, the gauge bosons will still be massless. (We will see how to
give the W* and Z their observed masses in the Higgs chapter.)

2.1 Global Non-Abelian Transformations
We apply the ideas of the previous lecture to the case where the transformations do not
commute with each other, i.e. the group is “non-abelian”.

Consider n free fermion fields {#;}, arranged in a multiplet 1):

(&
(>
Y= . (2.1)
Yn
for which the Lagrangian density is
L = 1)_[) (Z’Y“au - m) ,lzba
= ' (7"6, —m) (2.2)

where the index 4 is summed from 1 to n. Eq. (2.2) is therefore a shorthand for
L= (00 —mpi+P" (Y0u—m)pa+.... (2.3)

The Lagangian density (2.2) is invariant under (space-time independent) complex rotations
in 1; space:
Y — Uy, % — U, (2.4)

where U is an n X n matrix such that
UuUf =1, det[U] = 1. (2.5)

The transformation (2.4) is called an internal symmetry, which rotates the fields (e.g. quarks
of different colour) among themselves.

The group of matrices satisfying the conditions (2.5) is called SU(n). This is the group
of special, unitary n x n matrices. Special in this context means that the determinant is
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equal to 1. In order to specify an SU(n) matrix completely we need n? — 1 real parameters.
Indeed, we need 2n? real parameters to determine an arbitrary complex n x n matrix. But
there are n? constraints due to the unitary requirements and one additional constraint due
to the requirement det = 1.

An arbitrary SU(n) matrix can be written as
. n2_1 a .
U=¢idim ¥ = T (2.6)

where we again have adopted Einstein’s summation convention. The w?, a € {1...n% —1},
are real parameters, and the T® are called the generators of the group.

Exercise 2.1
Show that the unitarity of the SU(n) matrices entails hermiticity of the gen-
erators and that the requirement of det = 1 means that the generators have

to be traceless.

In the case of U(1) there was just one generator. Here we have n?> — 1 generators T?.
There is still some freedom left of how to normalize the generators. We will adopt the usual

normalization convention
1

tr(TT?) = 5 Oab- (2.7)
The reason we can always enforce eq. (2.7) is that tr(T%T?) is a real matrix symmetric in
a <> b. Thus it can be diagonalized. If you have problems getting on friendly terms with the
concept of generators, for the moment you can think of them as traceless, hermitian n x n
matrices. (This is, however, not the complete picture.)

The crucial new feature of the group SU(n) is that two elements of SU(n) generally do not
commute, i.e.

_ssema _ o bbb _aeabd s ame
e iwd T e iwy T 756 twy T e w T (28)

(compare to eq. (1.3)). To put this in a different way, the group algebra is not trivial. For
the commutator of two generators we have

[T, T = i f®°Te £ 0 (2.9)

where we defined the structure constants of the group, f2*¢, and used the summation conven-
tion again. The structure constants are totally antisymmetric. This can be seen as follows:
from eq. (2.9) it is obvious that fo%¢ = —f%°, To convince us of the antisymmetry in the
other indices as well, we note that multiplying eq. (2.9) by T¢ and taking the trace, using
eq. (2.7), we get 1/24f% = tr(T*T*T9) — tr(T°TT?) = tr(T*T*T?) — tr(TT4T?).
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2.2 Non-Abelian Gauge Fields

Now suppose we allow the transformation U to depend on space-time. Then the Lagrangian

density changes by 6L under this “non-abelian gauge transformation”, where
§L =9 Uly*(5,U) 9. (2.10)

The local gauge symmetry can be restored by introducing a covariant derivative D, giving

interactions with gauge bosons, such that
D, U(e)(x) = U«)D,y(z). (2.1
This is like the electromagnetic case, except that D,, is now a matrix,
iD,, =il0, — gA, (2.12)

where A, = T®A%. It contains n® — 1 vector (spin one) gauge bosons, Af,, one for each
generator of SU(n). Under a gauge transformation U, A, should transform as

A, — UA,U' + é (8,U) U, (2.13)
This ensures that the Lagrangian density
£ = § Dy —m)y (2.14)

is invariant under local SU(n) gauge transformations. It can be checked that eq. (2.13)
reduces to the gauge transformation of electromagnetism in the abelian limit.

Exercise 2.2

(For algebraically ambitious people): perform an infinitesimal gauge transfor-
mation on 1, and D, using (2.6), and show that to linear order in the w,,
1/})/MD“¢ is invariant.

Exercise 2.3
Show that in the SU(2) case, the covariant derivative is

i, Bt g —iwp)
a —4(WE+iW2) 0, + ’

and find the usual charged current interactions for the lepton doublet

(1)

by defining W* = (W' xiW?)/y/2.
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Exercise 2.4
Include the U(1) hypercharge interaction in the previous question; show that

the covariant derivative acting on the lepton doublet (of hypercharge ¥ =
—1/2) is

) — i0, — W2 - gYB, —4W}—iW?) |
# —$(WE+iW2) b, + W3 - gYB,

Zy, \ [ cosOw —sinfy w3
g N sin By cos Oy 57

and write the diagonal (neutral) interactions in terms of Z, and A,. Extract
sin @y in terms of g and ¢’. (Recall that the photon does not interact with the
neutrino.)

Define

The kinetic term for the gauge bosons is again constructed from the field strengths F};, which

are defined from the commutator of two covariant derivatives,

F, = —ﬁ D,,D,], (2.15)
where the matrix F,, is given by
Fo. =T, (2.16)
with
F, = 0,A% —0,A% — g [ ALAS, (2.17)

Notice that F,, is gauge variant, unlike the U(1) case. We know the transformation of D
from (2.13), so

[D,,D,] — U[D,,D,] U (2.18)
The gauge invariant kinetic term for the gauge bosons is therefore
1 uv 1 a 1rapy
*ETI. F,,F" = _ZF‘“’F , (2.19)

where the trace is in SU(n) space, and summation over the index a is implied.

In sharp contrast with the abelian case, this term does not only contain terms which are

quadratic in the derivatives of the gauge boson fields, but also the terms

7Vl Tl Tl VA

gfabc(aﬂA,‘i)AZAﬁ . ingabcfadeAbAcAdAe (220)

This means that there is a very important difference between abelian and non-abelian gauge
theories. For non-abelian gauge theories the gauge bosons interact with each other via both
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three-point and four-point interaction terms. The three point interaction term contains
a derivative, which means that the Feynman rule for the three-point vertex involves the
momenta of the particles going into the vertex. We shall write down the Feynman rules in
detail later.

Once again, a mass term for the gauge bosons is forbidden, since a term proportional to
A} A*# is not invariant under gauge transformations.

2.3 Gauge Fixing

As in the case of QED, we need to add a gauge-fixing term in order to be able to derive a
propagator for the gauge bosons. In Feynman gauge this means adding the term —%(6“142)2
to the Lagrangian density, and the propagator (in momentum space) becomes

G
-

—1 6ab
There is one unfortunate complication, which is mentioned briefly here for the sake of com-
pleteness, although one only needs to know about it for the purpose of performing higher
loop calculations with non-abelian gauge theories:

If one goes through the formalism of gauge-fixing carefully, it turns out that at higher
orders extra loop diagrams emerge. These diagrams involve additional particles that are
mathematically equivalent to interacting scalar particles and are known as a “Faddeev-Popov
ghosts”. For each gauge field there is such a ghost field. These are not to be interpreted
as physical scalar particles which could in principle be observed experimentally, but merely
.as part of the gauge-fixing programme. For this reason they are referred to as “ghosts”.
Furthermore they have two peculiarities:

1. They only occur inside loops. This is because they are not really particles and cannot
occur in initial or final states, but are introduced to clean up a difficulty that arises in
the gange-fixing mechanism.

2. They behave like fermions even though they are scalars (spin zero). This means that
we need to count a minus sign for each loop of Faddeev-Popov ghosts in any Feynman
diagram.

We shall display the Feynman rules for these ghosts later.

Thus, for example, the Feynman diagrams which contribute to the one-loop corrections to
the gauge boson propagator are
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(a) (b) (c)

(d)

Diagram (a) involves the three-point interaction between the gauge bosons, diagram (b)
involves the four-point interaction between the gauge bosons, diagram (¢) involves a loop of
fermions, and diagram (d) is the extra diagram involving the Faddeev-Popov ghosts. Note
that both diagrams (c) and (d) have a minus sign in front of them because both fermions
and Faddeev-Popov ghosts obey Fermi statistics.

2.4 The Lagrangian for a General Non-Abelian Gauge Theory

Let us summarize what we have found so far: Consider a gauge group G of “dimension”
N (for SU(n) : N = n? — 1), whose N generators, T?, obey the commutation relations
[Ta, Tb] = 1facT¢, where fu. are called the “structure constants” of the group.

The Lagrangian density for a gauge theory with this group, with a fermion multiplet 1;, is
given (in Feynman gauge) by

1 - 1 .
L = —ZF:,,F““ + 1) (Y*D, — mI) 1 — -2-(63“,4#)2 + Lpp (2.21)
where
Fe, = 8,A}—-8,A% —g fabCAgAs, (2.22)
D, = §,I+igT*A; (2.23)
and
Lep = —£20"0n" + g fab®AL(0"n"). (2.24)

Under an infinitesimal gauge transformation the N gauge bosons Af, change by an amount
that contains a term which is not linear in AL

a aoc C 1 Q
5Aﬂ(x) =—f b AZ(:L‘)LU (z) + Eauw (2), (2.25)
whereas the field strengths Fy, transform by a change

0F,, (r) = — fobe Fﬁ,, (z) we. (2.26)
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In other words, they transform as the “adjoint” representation of the group (which has as
many components as there are generators). This means that the quantity F o I (summa-

tion over a, s, v implied) is invariant under gauge transformations.

2.5 Feynman Rules

The Feynman rules for such a gauge theory can be read off directly from the Lagrangian. As
mentioned previously, the propagators are obtained by taking all terms bilinear in the field
and inverting the corresponding operator (and multiplying by 7). The rules for the vertices
are obtained by simply taking (¢ times) the factor which multiplies the corresponding term
in the Lagrangian. The explicit rules are given in the following.

Vertices:

(Note that all momenta are defined as flowing into the vertex!)

—g fabc (glﬂ/ (pl — p2)p “+ [ (p2 = p3)ﬂ -+ Gou (p3 - pl)l/)

—1 ngeabfeai (gupguo - gy.crgup)
—1 ngeaCfEbd (g/wgpo - g;wgvp)
— g2feadfebc (gy,ugpa _ gupgua)

—igyH (Ta)ij.

g fabc 9
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Propagators:

ZI(U‘O%;—O—O\ g Gluon: —idg g“,,/p2
Fermion: i6;;(v*p, +m)/(p? — m?)

a__P b Faddeev-Popov ghost: i dg/p?

2.6 An Example

As an example of the application of these Feynnian rules, we consider the process of Compton
scattering, but this time for the scattering of non-abelian gauge bosons and fermions, rather
than photons. We need to calculate the amplitude for a gauge boson of momentum p, and
gauge label a to scatter off a fermion of momentum p; and gauge label 7 producing a fermion
of momentum p3 and gauge label 7 and a gauge boson of momentum ps; and gauge label
b. Note that ¢,7 € {1...n} whereas a,b € {1...n* — 1}. In addition to the two Feynman
diagrams one gets in the QED case there is a third diagram involving the self-interaction of
the gauge bosons.

Pe_a b pa
P2 Pe D2 P4
a b
Bﬁ%g by N
. (p1 j" P2) S
P k jbs P1 g k j D3
(a) (b)

We will assume that the fermions are massless (i.e. that we are at sufficiently high energies
so that we may neglect their masses), and work in terms of the Mandelstam variables

s = (; +p2)2 = (ps +P4)27
t = (p—p3)? = (p2 — pa)?,
u = (p—ps)* = (p2—ps)°

The polarizations are accounted for by contracting the amplitude obtained for the above
diagrams with the polarization vectors e*(\;) and €’()4). Each diagram consists of two
vertices and a propagator and so their contributions can be read off from the Feynman rules.
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For diagram (a) we get

ex(A2)es (M)W (ps) (=i 9v"(T*)F) (a M) (=ig7"(T)E) wilpr)

= —i %eu(xz)ey(w () (77 - (1 + P2)7") (T°T%) u(py).

For diagram (b) we get

0 ) o) (=i (2) (i TP ) (g () o

U

= i L6, 006 (AT (R) (7 (1 — pa)") (T°T7) u(p).

Note that here the order of the T matrices is the other way around compared to diagram
(a).

Diagram (c) involves the three-point gauge-boson self-coupling. Since the Feynman rule for
this vertex is given with incoming momenta, it is useful to replace the outgoing gauge-boson
momentum p; by —p, and understand this to be an incoming momentum. Note that the
internal gauge-boson line carries momentum ps — p; coming into the vertex. The three
incoming momenta that are to be substituted into the Feynman rule for the vertex are
therefore ps, —py, ps — pa. The vertex thus becomes

—g fave (Gu (P2 + 1) + 9o (P2 — 2D4) y + Gup(Pa — 2p2))

and the diagram gives

e (Aa)e” (A (ps) (i gva(i‘”)ﬁ) ui(ps) (—"g—?)

X (=9 fabe) (Guv(P2 + Pa)p + 9o (P2 — 204) . + 9up(Pa — 2p2).)

= —ig;f” (A2)e” (M) (ps) [T, T*) vu(p1) (9 (P2 + Pa), = 2(Pa)uGp — 2(P2)u ) »

where in the last step we have used the commutation relation eq. (2.9) and the fact that the
polarization vectors are transverse so that ps - €(A2) = 0 and py - €(A4) = 0.

Exercise 2.4
Draw all the Feynman diagrams for the tree level amplitude for two gauge
bosons with momenta p; and ps to scatter into two gauge bosons with momenta

¢1 and go. Label the momenta of the external gauge boson lines.
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2.7

Summary

A non-abelian gauge theory is one in which the Lagrangian is invariant under local
transformations of a non-abelian group.

This invariance is achieved by introducing a gauge boson for each generator of the
group. The partial derivative in the Lagrangian for the fermion field is replaced by a
covariant derivative as defined in eq. (2.23).

The gauge bosons transform under infinitesimal gauge transformations in a non-linear
way given by eq. (2.25).

The field strengths, F,, are obtained from the commutator of two covariant derivatives
and are given by eq. (2.22). They transform as the adjoint representation under gauge
transformations such that the quantity F2, F'** is invariant.

FJ, F*" contains terms which are cubic and quartic in the gauge bosons, indicating
that these gauge bosons interact with each other.

The gauge-fixing mechanism leads to the introduction of Faddeev-Popov ghosts which
are scalar particles that occur only inside loops and obey Fermi statistics.
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3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong interaction. It is nothing but
a non-abelian gauge theory with the group SU(3). Thus, the quarks are described by a
field 1; where 4 runs from 1 to 3. The quantum number associated with the label i is called
colour. The eight gauge bosons which have to be introduced in order to preserve local gauge
invariance are the eight ‘gluons’. These are taken to be the carriers which mediate the strong
interaction in the same way that photons are the carriers which mediate the electromagnetic

interactions.

The Feynman rules for QCD are therefore simply the Feynman rules listed in the previous
lecture, with the gauge coupling constant, g, taken to be the strong coupling, g,, (more
about this later), the generators T? taken to be the eight generators of SU(3) in the triplet
representation, and f%°, a, b, ¢, = 1...8 are the structure constants of SU (3) (you can look
them up in a book but normally you will not need their explicit form).

Thus we now have a quantum field theory which can be used to describe the strong interac-

tion.

3.1 Running Coupling

The coupling for the strong interaction is the QCD gauge coupling, g,. We usually work in

terms of «a, defined as

2

g
y B B, 3.1
a; = (3.1)

Since the interactions are strong, we would expect oy to be too large to perform reliable
calculations in perturbation theory. On the other hand the Feynman rules are only useful
within the context of perturbation theory.

This difficulty is resolved when we understand that ‘coupling constants’ are not constant
at all. The electromagnetic fine structure constant, o, has the value 1/137 only at energies
which are not large compared to the electron mass. At higher energies it is larger than this.
For example, at LEP energies it takes a value close to 1/129. In contrast to QED, it turns
out that in the non-abelian gauge theories of the Standard Model the weak and the strong
coupling decrease as the energy increases.

To see how this works within the context of QCD we note that when we perform higher
order perturbative calculations there are loop diagrams which have the effect of ‘dressing’
the couplings. For example, the one-loop diagrams which dress the coupling between a quark
and a gluon are:
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where
’UUFO‘OTG“ :wm@wW‘Fﬂné;g_uv- ’UUD’O’GUU‘ THTY rOTe

[ 4

are the diagrams needed to calculate the one-loop corrections to the gluon propagator.

These diagrams contain UV divergences and need to be renormalized, e.g. by subtracting at
some renormalization scale p. This scale then appears inside a logarithm for the renormalized
quantities. This means that if the squared momenta of all the external particles coming into
the vertex are of order Q?, where Q >> u, then the above diagrams give rise to a correction
which contains a logarithm of the ratio Q?/u?:

—a o In (Q*/1?) . (3.2)

This correction is interpreted as the correction to the effective QCD coupling, «a,(Q?), at
momentum scale Q, i.e.

ao(@) = as(1?) — (W) fo In (Q*/1?) + ... (3.3)
The coefficient [y is calculated to be

11N, — 2ny
127 ’

where N, is the number of colours (=3), ns is the number of active flavours, i.e. the number

Bo = (3.4)

of flavours whose mass threshold is below the momentum scale (. Note that [y is positive,
which means that the coefficient in front of the logarithm in eq. (3.3) is negative, so that the
effective coupling decreases as the momentum scale is increased.

A more precise analysis shows that the effective coupling obeys the differential equation

8 e (Q?
aj“n—gg% = B (a(@), (3.5)

where (8 has the perturbative expansion
Blas) = —foal —fral+0(a}) +.... (3.6)
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Figure 3.1: The running of «,(Q@?) with 3 taken to two loops.

In order to solve this differential equation we need a boundary value. Nowadays this is usually
taken to be the measured value of the coupling at scale of the Z boson mass, M; = 91.19
GeV, which is measured to be

a,(M2%) = 0.118 +0.002. (3.7)

This is one of the free parameters of the Standard Model.®

The running of a,(Q?) is shown in figure 3.1. We can see that for momentum scales above
about 2 GeV the coupling is less than 0.3 so that one can hope to carry out reliable pertur-
bative calculations for QCD processes with energy scales larger than this.

Gauge invariance requires that the gauge coupling for the interaction between gluons must
be exactly the same as the gauge coupling for the interaction between quarks and gluons.
The f-function could therefore have been calculated from the higher order corrections to the
three-gluon (or four-gluon) vertex and must yield the same result, despite the fact that it is
calculated from a completely different set of diagrams.

8Previously the solution to eq. (3.5) (to leading order) was written as a,(Q?) = 4m/6 In(Q?/A%p) and
the scale Aqcp was used as the standard parameter which sets the scale for the magnitude of the strong
coupling. This turns out to be rather inconvenient since it needs to be adjusted every time higher order
corrections are taken into consideration and the number of active flavours has to be specified. The detour
via Aqcp also introduces additional truncation errors and can complicate the error analysis.
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Exercise 3.1

Draw the Feynman diagrams needed for the calculation of the one-loop cor-
rection to the triple gluon coupling (don’t forget the Faddeev-Popov ghost
loops).

Exercise 3.2
Solve equation (3.5) using  to leading order only, and calculate the value of
@, at a momentum scale of 10 GeV. Use the value at Mz given by eq. (3.7).

Calculate also the error in a; at 10 GeV.

3.2 Quark (and Gluon) Confinement

This argument can be inverted to provide an answer to the question of why we have never seen
quarks or gluons in a laboratory. Asymptotic Freedom tells us that the effective coupling be-
tween quarks becomes weaker at shorter distances (equivalent to higher energies/momentum
scales). Conversely it implies that the effective coupling grows as we go to larger distances.
Therefore, the complicated system of gluon exchanges which leads to the binding of quarks
(and antiquarks) inside hadrons leads to a stronger and stronger binding as we attempt to
pull the quarks apart. This means that we can never isolate a quark (or a gluon) at large
distances since we require more and more energy to overcome the binding as the distance
between the quarks grows. Instead, when the ehergy contained in the ‘string’ of bound glu-
ons and quarks becomes large enough, the colour-string breaks and more quarks are created,
leaving more colourless hadrons, but no isolated, coloured quarks.

The upshot of this is that the only free particles which can be observed at macroscopic
distances from each other are colour singlets. This mechanism is known as “quark confine-
ment”. The details of how it works are not fully understood. Nevertheless the argument
presented here is suggestive of such confinement and at the level of non-perturbative field
theory, lattice calculations have confirmed that for non-abelian gauge theories the binding
energy does indeed grow as the distance between quarks increases.”

Thus we have two different pictures of the world of strong interactions: On one hand, at suf-
ficiently short distances, which can be probed at sufficiently large energies, we can consider
quarks and gluons (partons) interacting with each other. In this regime we can perform
calculations of the scattering cross sections between quarks and gluons (called the “par-
tonic hard cross section”) in perturbation theory because the running coupling is sufficiently

"Lattice QCD simulations have also succeeded in calculating the spectrum of many observed hadrons and
also hadronic matrix elements for certain processes from ‘first principles’, i.e. without using perturbative
expansions or phenomenological models.
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small. On the other hand, before we can make a direct comparison with what is observed
in accelerator experiments, we need to take into account the fact that the quarks and glu-
ons bind (hadronize) into colour singlet hadrons, and it is only these colour singlet states
that are observed directly. The mechanism for this hadronization is beyond the scope of
perturbation theory and not understood in detail. Nevertheless Monte Carlo programs have
been developed which simulate the hadronization in such a way that the results of the short-
distance perturbative calculations at the level of quarks and gluons can be confronted with

experiments measuring hadrons in a successful way.

Thus, for example, if we wish to calculate the cross section for an electron-positron annihila-
tion into three jets (at high energies), we first calculate, in perturbation theory, the process
for electron plus positron to annihilate into a virtual photon (or Z boson) which then de-
cays into a quark and antiquark, and an emitted gluon. At leading order the two Feynman

diagrams for this process are:®

q q
+ * Al *
€ 0 g = Y
g
e q e” q

However, before we can compare the results of this perturbative calculation with experi-
mental data on three jets of observed hadrons, we need to perform a convolution of this
calculated cross section with a Monte Carlo simulation that accounts for the way in which
the final state partons (quarks and gluons) bind with other quarks and gluons to produce
observed hadrons. It is only after such a convolution has been performed that one can get
a reliable comparison of the calculated observables (like cross sections or event shapes) with
data.

Likewise, if we want to calculate scattering processes including initial state hadrons we reed
to account for the probability of finding a particular quark or gluon inside an initial hadron
with a given fraction of the initial hadron’s momentum (these are called “parton distribution
functions”).

Exercise 3.3

Draw the (tree level) Feynman diagrams for the process ete™ — 4jets. Con-
sider only one photon exchange plus the QCD contributions (do not include Z
boson exchange or WW production).

8The contraction of the one loop diagram (where a gluon connects the quark and antiquark) with the
ete”™ — 7 amplitude is of the same order a, and has to be taken into account to get an infra~red finite
result. However, it does not lead to a three-jet event (on the partonic level).
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3.3 0-Parameter of QCD
There is one more gauge invariant term that can be written down in the QCD Lagrangian:

2
gS Voo a a
Lo = 60 Fe . (3.8)

Here ¢#77 is the totally antisymmetric tensor (in four dimensions). Since we should work
with the most general gauge invariant Lagrangian there is no reason to omit this term.
However, adding this term to the Lagrangian leads to a problem, called the “strong C'P
problem”.

To understand the nature of the problem, we first convince ourselves that this term violates
CP. In QED we would have
P FwFp = E-B, (3.9)

and for QCD we have a similar expression except that E* and B® carry a colour index —
they are known as the chromoelectric and chromomagnetic fields. Under charge conjugation
both the electric and magnetic field change sign. But under parity the electric field, which
is a proper vector, changes sign, whereas the magnetic field, which is a polar vector, does
not change sign. Thus we see that the term E - B is odd under CP.

For this reason, the parameter 0 in front of this term must be exceedingly small in order not
to give rise to strong interaction contributions to C'P violating quantities such as the electric
dipole moment of the neutron. The current experimental limits on this dipole moment tell
us that § < 107°. Thus we are tempted to think that @ is zero. Nevertheless, strictly
speaking @ is a free parameter of QCD, and is sometimes considered to be the nineteenth
free parameter of the Standard Model.

Of course we simply could set 6 to zero (or a very small number) and be happy with it.?
However, whenever a free parameter is zero or extremely small, we would like to understand

the reason. The fact that we do not know why this term is absent (or so small) is the strong
CP problem.

There are several possible solutions to the strong C'P problem that offer explanations as
to why this term is absent (or small). One possible solution is through imposing an ad-
ditional symmetry, leading to the postulation of a new, hypothetical, weakly interacting
particle, called the “(Peccei-Quinn) axion”. Unfortunately none of these solutions have been
confirmed yet and the problem is still unresolved.

Another question is why is this not a problem in QED? In fact a term like eq. (3.8) can also

®To be precise, setting § — 0 in the Lagrangian would not be enough, as 6 # 0 can also be generated
through higher order electroweak radiative corrections, requiring a fine-tuning beyond 9 — 0.
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be written down in QED. A thorough discussion of this point is beyond the scope of this
lecture. Suffice to say that this term can be written (in QED and QCD) as a total divergence,
so it seems that it can be eliminated from the Lagrangian altogether. However, in QCD (but
not in QED) there are non-perturbative effects from the non-trivial topological structure of
the vacuum (somewhat related to so called “instantons” you probably have heard about)
which prevent us from neglecting the 6-term.

3.4 Summary

e Quarks transform as a triplet representation of colour SU(3) (each quark can have one
of three colours).

e The eight gauge bosons of QCD are the gluons which are the carriers that mediate the
strong interaction.

e The coupling of quarks to gluons (and gluons to each other) decreases as the energy
scale increases. Therefore, at high energies one can perform reliable perturbative cal-
culations for strongly interacting processes.

o As the distance between quarks increases the binding increases, such that it is impos-
sible to isolate individual quarks or gluons. The only observable particles are colour
singlet hadrons. Perturbative calculations performed at the quark and gluon level must
be supplemented by accounting for the recombination of final state quarks and gluons
into observed hadrons as well as the probability of finding these quarks and gluons
inside the initial state hadrons (if applicable).

o QCD admits a gauge invariant strong C'P violating term with a coefficient #. This
parameter is known to be very small from limits on C'P violating phenomena such as
the electric dipole moment of the neutron.
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4 Spontaneous Symmetry Breaking

We have seen that in an unbroken gauge theory the gauge bosons must be massless. This is
exactly what we want for QED (massless photon) and QCD (massless gluons). However, if we
wish to extend the ideas of describing interactions by a gauge theory to the weak interactions,
the symmetry must somehow be broken since the carriers of the weak interactions (W and
Z bosons) are massive (weak interactions are very short range). We could simply break the
symmetry by hand by adding a mass term for the gauge bosons, which we know violates the
gauge symmetry. However, this would destroy renormalizability of our theory.

Renormalizable theories are preferred because they are more predictive. As discussed in
the Field Theory and QED lectures, there are divergent results (infinities) in QED and
QCD, and these are said to be renormalizable theories. So what could be worse about
a non-renormalizable theory? The critical issue is the number of divergences: few in a
renormalizable theory, and infinite in the non-renormalizable case. Associated to every
divergence is a parameter that must be extracted from data, so renormalizable theories can
make testable predictions once a few parameters are measured. For instance, in QCD, the
coupling g, has a divergence. But once «; is measured in one process, the theory can be

tested in other processes.!’

In this chapter we will discuss a way to give masses to the W and Z, called “spontaneous
symmetry breaking”, which maintains the renormalizability of the theory. In this scenario
the Lagrangian maintains its symmetry under a set of local gauge transformations. On the
other hand, the lowest energy state, which we interpret as the vacuum (or ground state),
is not a singlet of the gauge symmetry. There is an infinite number of states each with the

same ground-state energy and nature chooses one of these states as the ‘true’ vacuum.

4.1 Massive (Gauge Bosons and Renormalizability

In this subsection we will convince ourselves that simply adding by hand a mass term for
the gauge bosons will destroy the renormalizability of the theory. It will not be a rigorous
argument, but will illustrate the difference between introducing mass terms for the gauge
bosons in a brute force way and introducing them via spontaneous symmetry breaking.

Higher order (loop) corrections generate ultraviolet divergences. In a renormalizable theory,

107t should be noted that effective field theories, though formally not renormalizable, can nevertheless be
very valuable as thiey often allow for a simplified description of a more ‘complete’ or fundamental theory in
a resticted energy range. Popular examples are Chiral Perturbation Theory, Heavy Quark Effective Theory
and Non-Relativistic QCD.
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these divergences can be absorbed into the parameters of the theory we started with, and
in this way can be ‘hidden’. As we go to higher orders we need to absorb more and more
terms into these parameters, but there are only as many divergent quantities as there are
parameters. So, for instance, in QED the Lagrangian we start with contains the fermion
field, the gauge boson field, and interactions whose strength is controlled by e and m. Being
a renormalizable theory, all divergences of diagrams can be absorbed into these quantities
(irrespective of the number of loops or legs), and once ¢ and m are measured, all other

observables (cross sections, g — 2, etc.) can be predicted.

In order to ensure that this programme can be carried out there have to be restrictions on
the allowed interaction terms. Furthermore all the propagators have to decrease like 1/p?
as the momentum p — co. Note that this is how the massless gauge-boson propagator
eq. (1.24) behaves. If these conditions are not fulfilled, then the theory generates more and
more divergent terms as one calculates to higher orders, and it is not possible to absorb
these divergences into the parameters of the theory. Such theories are said to be “non-
renormalizable” .

Now we can convince ourselves that simply adding a mass term M? A, A* to the Lagrangian
given in eq. (2.21) will lead to a non-renormalizable theory. To start with we note that
such a term will modify the propagator. Collecting all terms bilinear in the gauge fields in
momentum space we get (in Feynman gauge)

1 v
SAu (=g (0 — M%) + pp") A, (4.1)
We have to invert this operator to get the propagator which now takes the form

1 y . 'Y
s (- + 55,

Note that this propagator, eq. (4.2), has a much worse ultraviolet behavior in that it goes
to a constant for p — co. Thus, it is clear that the ultraviolet properties of a theory with
a propagator as given in eq. (4.2) are worse than for a theory with a propagator as given
in eq. (1.24). According to our discussion at the beginning of this subsection we conclude
that without the explicit mass term M? A, A* the theory is renormalizable, whereas with
this term it is not. In fact, it is precisely the gauge symmetry that ensures renormalizability.
Breaking this symmetry results in the loss of renormalizability.

The aim of spontaneous symmetry breaking is to break the gauge symmetry in a more subtle
way, such that we can still give the gauge bosons a mass but retain renormalizability.
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4.2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking is a phenomenon that is by far not restricted to gauge
symmetries. It is a subtle way to break a symmetry by still requiring that the Lagrangian
remains invariant under the symmetry transformation. However, the ground state of the

symmetry is not invariant, i.e. not a singlet under a symmetry transformation.

In order to illustrate the idea of spontaneous symmetry breaking, consider a pen that is
completely symmetric with respect to rotations around its axis. If we balance this pen on
its tip on a table, and start to press on it with a force precisely along the axis we have a
perfectly symmetric situation. This corresponds to a Lagrangian which is symmetric (under
rotations around the axis of the pen in this case). However, if we increase the force, at some
point the pen will bend (and eventually break). The question then is in which direction will
it bend. Of course we do not know, since all directions are equal. But the pen will pick
one and by doing so it will break the rotational symmetry. This is spontaneous symmetry
breaking.

A better example can be given by looking at a point mass in a potential
V(F) = p?f 7+ M7 72 - (4.3)

This potential is symmetric under rotations and we assume A > 0 (otherwise there would
be no stable ground state). For u? > 0 the potential has a minimum at # = 0, thus the
point mass will simply fall to this point. The situation is more interesting if y? < 0. For
two dimensions the potential is shown in Fig. 4.1. If the point mass sits at ¥ = 0 the
system is not in the ground state but the situation is completely symmetric. In order to
reach the ground state, the symmetry has to be broken, i.e. if the point mass wants to roll
down, it has to decide in which direction. Any direction is equally good, but one has to be
picked. This is exactly what spontaneous symmetry breaking means. The Lagrangian (here
the potential) is symmetric (here under rotations around the z-axis), but the ground state
(here the position of the point mass once it rolled down) is not. Let us formulate this in
a slightly more mathematical way for gauge symmetries. We denote the ground state by
|0). A spontaneously broken gauge theory is a theory whose Lagrangian is invariant under
gauge transformations, which is exactly what we have done in chapters 1 and 2. The new
feature in a spontaneously broken theory is that the ground state is not invariant under
gauge transformations. This means

e |0) # [0) (4.4)

which entails
T?|0) # 0 for some a. (4.5)
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Figure 4.1: A potential that leads to spontaneous symmetry breaking.

Eq. (4.5) follows from eq. (4.4) upon expansion in w®. Thus, the theory is spontaneously
broken if there exists at least one generator that does not annihilate the vacuum.

In the next section we will explore the concept of spontaneous symmetry breaking in the
context of gauge symmetries in more detail, and we will see that, indeed, this way of breaking
the gauge symmetry has all the desired features.

4.3 The Abelian Higgs Model

For simplicity, we will start by spontaneously breaking the U(1) gauge symmetry in a theory
of one complex scalar field. In the Standard Model, it will be a non-abelian gauge theory
that is spontaneously broken, but all the important ideas can simply be translated from the
U(1) case considered here.

The Lagrangian density for a gauged complex scalar field, with a mass term and a quartic

self-interaction, may be written as

1

£ = (D,®) D*® — 2 Fu ™ — V(@), (4.6)
where the potential V' (®), is given by
V(®) = p2d*d+ 1|00, (4.7)
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and the covariant derivative D, and the field-strength tensor F), are given in egs. (1.15) and
(1.12) respectively. This Lagrangian is invariant under U(1) gauge transformations

P — W@, (4.8)

Provided u? is positive this potential has a minimum at ® = 0. We call the ® = 0 state

the vacuum and expand @ in terms of creation and annihilation operators that populate the

higher energy states. In terms of a quantum field theory, where ® is an operator, the precise
statement is that the operator ® has zero vacuum expectation value, i.e. (0{®|0) = 0.

Now suppose we reverse the sign of u?, so that the potential becomes
V(@) = —p2d*® + )\ |9*D|?, (4.9)

with 4? > 0. We see that this potential no longer has a minimum at ® = 0, but a (local)
mazimum. The minimum occurs at )

2

D =i ;‘—/\ = ew—\%, (4.10)
where 6 can take any value from 0 to 2w. There is an infinite number of states each with
the same lowest energy, i.e. we have a degenerate vacuum. The symmetry breaking occurs
in the choice made for the value of # which represents the true vacuum. For convenience we
shall choose § = 0 to be our vacuum. Such a choice constitutes a spontaneous breaking of
the U(1) invariance, since a U(1) transformation takes us to a different lowest energy state.
In other words the vacuum breaks U(1) invariance. In quantum field theory we say that the
field ® has a non-zero vacuum expectation value

(® = = (4.11)

But this means that there are ‘excitations’ with zero energy, that take us from the vacuum to
one of the other states with the same energy. The only particles which can have zero energy
are massless particles (with zero momentum). We therefore expect a massless particle in
such a theory.

To see that we do indeed get a massless particle, let us expand ® around its vacuum expec-

o = %(%+H)z%(%+l‘[+i¢). (4.12)

The fields H and ¢ have zero vacuum expectation values and it is these fields that are

tation value,

expanded in terms of creation and annihilation operators of the particles that populate the
excited states. Of course, it is the H-field that corresponds to the Higgs field.
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We now want to write the Lagrangian in terms of the H and ¢ fields. In order to get the
potential we insert eq. (4.12) into eq. (4.9) and find

b 1
V':,EHQ+MVK(H3+¢%ﬂ-+Z(H4+¢4+2H%ﬁ)+§§. (4.13)

Note that in eq. (4.13) there is a mass term for the H-field, u?H? = My /2H?, where we
have defined!
MI;I = \/Q-IJ‘ (4,14)

However, there is no mass term for the field ¢. Thus ¢ is a field for a massless particle called
the “Goldstone boson”. We will look at this issue in a more general way in section 4.4. Next
let us consider the kinetic term. We plug eq. (4.12) into (D,®)*D*® and get

1 il 1 1
(Q@ﬁﬂ@::§@Hmﬂ+§@w%+§f&@mw5f@mﬂ#+&)
~ gA,(p0,H — HO,9) + guvA,0"¢ + g*vA,A*H. (4.15)

There are several important features in eq. (4.15). Firstly, the gauge boson has acquired a
mass term 1/2g*v? A, A* = 1/2M3% A, A*, where we have defined

My = gu. (4.16)
Secondly, there is a coupling of the gauge field to the H-field,

FPvALAPH = gMa A, AMH. (4.17)

It is important to remember that this coupling is proportional to the mass of the gauge
boson. Finally, there is also the bilinear term gv A*8,¢, which after integrating by parts
(for the action S) may be written as — M4 ¢ 8,A#. This mixes the Goldstone boson, ¢, with
the longitudinal component of the gauge boson, with strength M, (when the gauge-boson
field A, is separated into its transverse and longitudinal components, 4, = A{; + A;-’;,
where B“AE = 0). Later on, we will use the gauge freedom to get rid of this mixing term.

4.4 Goldstone Bosons

In the previous subsection we have seen that there is a massless boson, called the Goldstone
boson, associated with the flat direction in the potential. Goldstone’s theorem describes the
appearance of massless bosons when a global (not gauge) symmetry is spontaneously broken.

"Note that for a real field ¢ representing a particle of mass m the mass term is 1m?2¢?, whereas for a

complex field the mass term is m2¢te.
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Suppose we have a theory whose Lagrangian is invariant under a symmetry group G with
N generators T and the symmetry group of the vacuum forms a subgroup H of G, with
m generators. This means that the vacuum state is still invariant under transformations
generated by the m generators of H, but not the remaining N —m generators of the original
symmetry group G. Thus we have

TM0) = 0 a=1...m,
TY0) # 0 a=m+1...N. (4.18)

Goldstone’s theorem states that there will be N —m massless particles (one for each broken
generator of the group). The case considered in this section is special in that there is only
one generator of the symmetry group (i.e. N = 1) which is broken by the vacuum. Thus,
there is no generator that leaves the vacuum invariant (i.e. m = 0) and we get N —m = 1
Goldstone boson.

Like all good general theorems, Goldstone’s theorem has a loophole, which arises when one
considers a gauge theory, i.e. when one allows the original symmetry transformations to
be local. In a spontaneously broken gauge theory, the choice of which vacuum is the true
vacuum is equivalent to choosing a gauge, which is necessary in order to be able to quantize
the theory. What this means is that the Goldstone bosons, which can, in principle, transform
the vacuum into any of the states degenerate with the vacuum, now affect transitions into
states which are not consistent with the original gauge choice. This means that the Goldstone
bosons are “anphysical” and are often called “Goldstone ghosts”.

On the other hand the quantum degrees of freedom associated with the Goldstone bosons
are certainly there ab initio (before a choice of gauge is made). What happens to them? A
massless vector boson has only two degrees of freedom (the two directions of polarization
of a photon), whereas a massive vector (spin-one) particle has three possible values for
the helicity of the particle. In a spontaneously broken gauge theory, the Goldstone boson
associated with each broken generator provides the third degree of freedom for the gauge
bosons. This means that the gauge bosons become massive. The Goldstone boson is said to
be “eaten” by the gauge boson. This is related to the mixing term between A% and ¢ of the
previous subsection. Thus, in our abelian model, the two degrees of freedom of the complex
field ¢ turn out to be the Higgs field and the longitudinal component of the (now massive)
gauge boson. There is no physical, massless particle associated with the degree of freedom
¢ present in @.
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4.5 The Unitary Gauge

As mentioned above, we want to use the gauge freedom to choose a gauge such that there are
no mixing terms between the longitudinal component of the gauge field and the Goldstone
boson. Recall

@z%(v—l—H)ei"’/”:%(%%—H-l—iqﬂ—...), (4.19)

where the dots stand for nonlinear terms in ¢. Next we make a gauge transformation (see

eq. (1.2))
®— @ =W, (4.20)

In other words, we fix the gauge such that the imaginary part of ® vanishes. Under the
gauge transformation eq. (4.20) the gauge field transforms according to (see eq. (1.11))

1
A= K= At [0,9] (4.21)

It is in fact the superposition of A, and ¢ which make up the physical field. Note that
the change from A, to A) made in eq. (4.21) affects only the longitudinal component. If
we now express the Lagrangian in terms of ® and A/, there will be no mixing term. Even
better, the ¢ field vanishes altogether! This can easily be seen by noting that under a gauge
transformation the covariant derivative D, ® transforms in the same way as ®, thus

. o 1
D@ — (D,®) = ¢ /"D, & — e_w/”ﬁ (8,H +ig Ay (v + H)), (4.22)

and (D,®)™(D*®)" is independent of ¢. Performing the algebra (and dropping the ’ for the
A-field) we get the Lagrangian in the unitary gauge

1 M? 1 M?
= 5 B A bL_—p e _ TH 2
L 26ﬂH8 H+ 5 ALA 1T 5 H
92 2 A A 3
+ gMsA AH + 5 AAPH® — ZH - EMHH , (4.23)

with M4 and My as defined in egs. (4.16) and (4.14), respectively. All the terms quadratic
in A, may be written (in momentum space) as

Au(=p) (—9™ P* + P'p" + 9" M3) A (p). (4.24)

The gauge boson propagator is the inverse of the coefficient of A,(—p)A, (p), which is

i _ Puby 1
’ (g“” M3 ) 7 — M3 (4.25)

This is the usual expression for the propagator of a massive spin-one particle, eq. (4.2).

The only other remaining particle is the scalar, H, with mass my = v/2p, which is the
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Higgs boson. This is a physical particle, which interacts with the gauge boson and also has
cubic and quartic self-interactions. The Lagrangian given in eq. (4.23) leads to the following
vertices and Feynman rules:

w ’
// . 2
2ie“gu,
N
AN
124 N
n
- 2ieMagu
v
AN rd
N 7/
ha 67\
Ie \
/7 N
AY
AY
\>___ 67:7774—[\/2)\

The advantage of the unitary gauge is that no unphysical particles appear, i.e. the ¢-field
has completely disappeared. The disadvantage is that the propagator of the gauge field,
eq. (4.25), behaves as p® for p — co. As discussed in section 4.1 this seems to indicate
that the theory is non-renormalizable. It seems that we have not gained anything at all
by breaking the theory spontaneously rather than by simply adding a mass term by hand.
Fortunately this is not true. In order to see that the theory is still renormalizable, in spite
of eq. (4.25), it is very useful to consider a different type of gauges, namely the R¢ gauges
discussed in the next subsection.

4.6 R; Gauges (Feynman Gauge)

The class of R gauges is a more conventional way to fix the gauge. Recall that in QED we
fixed the gauge by adding a term, eq. (1.21), in the Lagrangian. This is exactly what we do
here. The gauge fixing term we are adding to the Lagrangian density eq. (4.6) is

1
ﬁR = —m (8“14# - (1 - g)MA¢)2
1 1-
= —Z(T?)auA“aVA" + Ma¢d, A" — TéMﬁqb?. (4.26)
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Again, the special value £ = 0 corresponds to the Feynman gauge. The second term in
eq. (4.26) cancels precisely the mixing term in eq. (4.15). Thus, we have achieved our goal.
Note however, that in this case, contrary to the unitary gauge, the unphysical ¢-field does
not disappear. The first term in eq. (4.26) is bilinear in the gauge field, thus it contributes
to the gauge-boson propagator. The terms bilinear in the A-field are

1 14
—54%(=p) (—s}w(p2 — M3) + pupy — f b E) A (p) (4.27)

which leads to the gauge boson propagator

4
(»* — M3) <g”" p?—(1-§M}

In the Feynman gauge, the propagator becomes particularly simple. The crucial feature of

~ N > . (4.28)

eq. (4.28), however, is that this propagator behaves as p~2 for p — oco. Thus, this class
of gauges is manifestly renormalizable. There is, however, a price to pay: The Goldstone
boson is still present. It has acquired a mass, M4, from the gauge fixing term, and it has
interactions with the gauge boson, with the Higgs scalar and with itself. Furthermore, for the
purposes of higher order corrections in non-Abelain theories, we need to introduce Faddeev-
Popov ghosts which interact with the gauge bosons, the Higgs scalar and the Goldstone
bosons.

Let us stress that there is no contradiction at all between the apparent non-renormalizability
of the theory in the unitary gauge and the manifest renormalizability in the R¢ gauge. Since
physical quantities are gauge invariant, any physical quantity can be calculated in a gauge
where renormalizability is manifest. As mentioned above, the price we pay for this is that
there are more particles and many more interactions, leading to a plethora of Feynman
diagrams. We therefore only work in such gauges if we want to compute higher order
corrections. For the rest of these lectures we shall confine ourselves to tree-level calculations
and work solely in the unitary gauge.

Nevertheless, one cannot over-stress the fact that it is only when the gauge bosons ac-
quire masses through the Higgs mechanism that we have a renormalizable theory. It is this
mechanism that makes it possible to write down a consistent Quantum Field Theory which
describes the weak interactions.

4.7 Summary

e In the case of a gauge theory the Goldstone bosons provide the longitudinal component
of the gauge bosons, which therefore acquire a mass. The mass is proportional to the
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magnitude of the vacuum expectation value and the gauge coupling constant. The
Goldstone bosons themselves are unphysical.

It is possible to work in the unitary gauge where the Goldstone boson fields are set to
Z€ro.

When gauge bosons acquire masses by this (Higgs) mechanism, renormalizability is
maintained. This can be seen explicitly if one works in a R, gauge, in which the gauge
boson propagator decreases like 1/p* as p — co. This is a necessary condition for
renormalizability. If one does work in such a gauge, however, one needs to work with
Goldstone boson fields, even though the Goldstone bosons are unphysical. The number
of interactions and the number of Feynman graphs required for the calculation of some
processes is then greatly increased.
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5 The Standard Model with one Family

To write down the Lagrangian of a theory, one first needs to choose the symmetries (gauge
and global) and the particle content, and then write down every allowed renormalizable
interaction. In this section we shall use this recipe to construct the Standard Model with
one family. The Lagrangian should contain pieces

AC(SM,I) . Lgauge bosons 1 Lfermion masses T EfermionKT + »CHiggs- (51)

The terms are written out in egns. (5.15), (5.29), (5.30) and (5.55).

5.1 Left- and Right- Handed Fermions

The weak interactions are known to violate parity. Parity non-invariant interactions for
fermions can be constructed by giving different interactions to the “left-handed” and “right-
handed” components defined in eq. (5.4). Thus, in writing down the Standard Model, we
will treat the left-handed and right-handed parts separately.

A Dirac field, 1, representing a fermion, can be expressed as the sum of a left-handed part,
11, and a right-handed part, g,

Y = YL + Yr, (5.2)

where
v = Py with p= U208 (5.3)
Yr = Prpiy with PR=(—1J;—75). (5.4)

Pr, and Pg are projection operators, i.e.
PLPL = PL; PRPR = PR and PLPR =0 —_-PRPL. (55)

They project out the left-handed (negative) and right-handed (positive) chirality states of
the fermion, respectively. This is the definition of chirality, which is a property of fermion
fields, but not a physical observable.

The kinetic term of the Dirac Lagrangian and the interaction term of a fermion with a vector
field can also be written as a sum of two terms, each involving only one chirality

%’)/Map."p = %’Yﬂaﬁtd}L +%7M8u">sz (56)
J’Y,‘Au"p = —"/Z'YI‘AM#L +"I};’Y#Au¢R- (57)
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On the other hand, a mass term mixes the two chiralities:

mpp = mipr g +mPrir.

Exercise 5.1

—yH~® to verify eq. (5.7).

Use (75)® = 1 to verify eq. (5.5) and 9 = 9T9%, v°1 = 4° as well as y5y* =

(5.8)

In the limit where the fermions are massless (or sufficiently relativistic), chirality becomes

helicity, which is the projection of the spin on the direction of motion and which is a physical
observable. Thus, if the fermions are massless, we can treat the left-handed and right-handed
chiralities as separate particles of conserved helicity. We can understand this physically from
the following simple consideration. If a fermion is massive and is moving in the positive z

direction, along which its spin is having a positive component so that the helicity is positive

in this frame, one can always boost into a frame in which the fermion is moving in the

negative z direction, but with this spin component unchanged. In the new frame the helicity
will hence be negative. On the other hand, if the particle is massless and travels with the
speed of light, no such boost is possible, and in that case helicity/chirality is a good quantum

number.

Exercise 5.2
For a massless spinor

up) = o= %
P VE\eax )

where x is a two-component spinor, show that

(1£++°)u(p)

are eigenstates of ¢ - p/E with eigenvalues 41, respectively. Take

01
5 _

and in 4 x 4 matrix notation & - g means

G- 0
0 &-¢)
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5.2 Symmetries and Particle Content

We have made all the preparations to write down a gauge invariant Lagrangian. We now
only have to pick the gauge group and the matter content of the theory. It should be noticed
that there are no theoretical reasons to pick a certain group or certain matter content. To
match experimental observations we pick the gauge group for the Standard Model to be

U(l)y x SU(2) x SU(3). (5.9)

To indicate that the abelian U(1) group is not the gauge group of QED but of hypercharge
a subscript Y has been added. The corresponding coupling and gauge boson is denoted by
g’ and B* respectively.

The SU(2) group has three generators (T, = 0,/2), the coupling is denoted by ¢ and the
three gauge bosons are denoted by W, W2, W32. None of these gauge bosons (and neither
B,) are physical particles. As we will see, linear combinations of these gauge bosons will
make up the photon as well as the W* and the Z bosons.

Finally, the SU(3) is the group of the strong interaction. The corresponding eight gauge
bosons are the gluons. In this section we will concentrate on the other two groups, with
one generation of fermions. The strong interaction is dealt with in section 3, and extra
generations are introduced in the next chapter.

As matter content for the first family, we have

n 14
qr = ( L ) ; up; dr;y £ = ( r ) ; er; {vrll}. (5.10)
d[, €r,

Note that a right-handed neutrino vy has appeared. It is a gauge singlet (no strong interac-
tion, no weak interactions, no electric charge), so is unneccessary in a model with massless
neutrinos. However, neutrinos are now known to have small masses, which can be described
by adding the right-handed field vr. Neutrino masses will be discussed further in chapter 7.

Note also that the left- and right-handed fermion components have been given different weak
interactions. The Standard Model is constructed this way, because the weak interactions are
known to violate parity. The left-handed components form doublets under SU (2) whereas the
right-handed components are singlets. This means that under SU(2) gauge transformations
we have

er — € =epg, (5.11)
EL i ‘eIL = e—iw“T“eL' (512)
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Thus, the SU(2) singlets eg, vg, ug and dg are invariant under SU(2) transformations and
do not couple to the corresponding gauge bosons W, W2, W3.

Since this separation of the electron into its left- and right-handed helicity only makes sense
for a massless electron we also need to assume that the electron #s massless in the exact
SU(2) limit and that the mass for the electron arises as a result of spontaneous symmetry
breaking in a similar way as the masses for the gauge bosons arise. We will come back to
this later.

Under U(1)y gauge transformations the matter fields transform as
P — 1 = e @YWy (5.13)

where Y is the hypercharge of the particle under consideration. It is chosen to give the
observed electric charge of the particles. The explicit values for the hypercharges of the
particles listed in eq. (5.10) are as follows:

1 1 2 1
Y(¢) = 3 Y(er) =—1, Y(vg) =0, Y(qr) = 6’ Y(ug) = 3 Y(dg) = —3 (5.14)
Under SU(3) the lepton fields 41, er, vg are singlets, i.e. they do not transform at all. This
means that they do not couple to the gluons. The quarks on the other hand form triplets
under SU(3). The strong interaction does not distinguish between left- and right-handed

particles.

We have now listed all fermions that belong to the first family, together with their transfor-
mation properties under the various gauge transformations. However, since we ultimately
want massive weak gauge bosons, we will have to break the U(1)y x SU(2) gauge group
spontaneously, by introducing some type of Higgs scalar. The transformation properties of
this scalar will be deduced in the discussion of fermion masses.

5.3 Kinetic Terms for the Gauge Bosons

The gauge kinetic terms for abelian and non-abelian theories were presented in the first two
lectures. From the general expression of eq. (2.21), we extract for the SM gauge bosons:

1 1 1
L= —;BuB" - 1P — ZmFA W 4 Leaugefixing + LFP ghosts- (5.15)
Here B,, = 0,B, — 0,B,, is the hypercharge field strength, the second term contains the
SU(2) field strength, so a runs from one to three (over the three vector bosons of SU(2)),
and the third term is the gluon kinetic term, so A =1...8. To do an explicit perturbative
calculation, additional gauge fixing terms, and Fadeev-Popov ghosts, must be included. The

form of these terms depends on the choice of gauge.
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5.4 Fermion Masses and Yukawa Couplings

We cannot have an explicit mass term for the quarks or electrons, since a mass term mixes
left-handed and right-handed fermions and we have assigned these to different multiplets of
weak SU(2). However, if an SU(2) doublet Higgs is introduced, there is a gauge invariant
interaction that will look like a mass when the Higgs gets a vacuum expectation value (“vev”).
Such an interaction is called a ‘Yukawa interaction’ and is written as

»CYukawa. e _lfe l_L—i(DieR + h.C., (516)

where h.c. means ‘hermitian conjugate’. Note that the Higgs doublet must have Y = 1/2 to
ensure that this term has zero weak hypercharge.

Recalling eq. (5.19) we introduce a scalar “Higgs” field, which is a doublet under SU(2),
singlet under SU(3) (no colour), and has a scalar potential as given in eq. (4.9), i.e.

V(@) = —p?@*d + X\ |0"3)7. (5.17)

This potential has a minimum at ®*® = % p2 /A, so some component of the Higgs doublet
should get a vev. In the unitary gauge, this vev can be written as

(@) = % ( X ) (5.18)

with v = p/V/\.

Recall from the previous chapter that ® can be written as its “radial” degree of freedom
times an exponential containing the broken generators of the gauge symmetry:

ei(waT“—wsY) 0
*= \v+n ) (5.19)

The unitary gauge choice consists of absorbing this exponential with a gauge transformation,
so that in the unitary gauge eq. (5.16) is

Y, 0
Lyiaws =——=( UL eT + h... 5.20
Yuka ﬁ(VL BL)(U_I_H)eR Y ( )
The part proportional to the vev is simply
Y. v Y.v
— == (egep+Brey) = —=¢te, 5.21
7 (erer+2Rer) 7 (5.21)
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and we see that the electron has acquired a mass which is proportional to the vev of the
scalar fleld. This immediately gives us a relation for the Yukawa coupling in terms of the
electron mass, m., and the W mass, My :

m,
Y, = gt 5.22
9 75 M (5.22)

Thus, as for the gauge bosons, the strength of the coupling of the Higgs to fermions is
proportional to the mass of the fermions.

The quarks also acquire a mass through the spontaneous symmetry breaking mechanism,
via their Yukawa coupling with the scalars. The interaction term

~Y; @' ®;dg + hec. (5.23)

gives a mass to the d quark when we replace ®; by its vev. This mass mq is given by

Y, Y; My
= M, B _ 5.24
=Rt 2 g e

Since the vev is in the lower component of the Higgs doublet, we must do a little more work

to obtain a mass for the upper element u of the quark doublet. In the case of SU(2) there

is a second way in which we can construct an invariant for the Yukawa interaction:
~Y, ¢, @ ' ®up+ he. (G, = 1,2), (5.25)

where ¢;; is the two-dimensional antisymmetric tensor. Note that

. 1\ [ &
P° = 6,07 = ( _01 . ) ( o ) (5.26)
0

has Y = —1/2, as required by the U(1) symmetry. This term does indeed give a mass m,,
to the u quark, where

}fu Yu MW
mu = — 1 = ‘\/5 " 5-27
V2 g (5:27)
So the SM Higgs scalar couples to both the u and d quark, with interaction terms
My __ mgqg -
—g——uHu — Hd. 2
Iy uHu g2j\4wd d (5.28)

The terms in the Lagrangian that give masses to the first generation quarks and charged
leptons are

/Cfermion masses — }/e E’L (I)ieR - }[d ijl (I’z dR - Yu €ij q—Ll (I)*jUR + h.e.. (529)
We could also have included a Yukawa mass term for the neutrinos: —Y, ¢;; —Gi ®*Iyp+ h.c.

However, neutrino masses do not neccessarily arise from a Yukawa interaction (this will be
discussed in chapter 7).
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5.5 Kinetic Terms for Fermions

The fermionic kinetic terms should be familiar from chapter 2:

£fermionKT . 'LET ’Y”Du ZL =+ 25157“Du eér + 7‘—7/_15/7#6/1. VR
HGE V*Duqr +idp7*D, dr + i TR Y40, ur (5.30)

where the covariant derivatives include the hypercharge, SU(2) and SU(3) gauge bosons as
required. For instance:

D, = 8,+igT*W*+igY(¢,)B,  for by, (5.31)
D, = 08,+1i¢'Y(er)B, for eg, (5.32)
D, = 0,+19,T"G}, + ig'Y (dr)B, for dg, (5.33)

where the strong coupling (g,), the eight generators of SU(3) (Ts*) and the corresponding
gluon fields (G7,) have been introduced, and Y (f) is the hypercharge of fermion f.

This gives the following interaction terms between the leptons and the gauge bosons:

&

g [ 7L " WE \/iWI: vy, . .
—= — tan Gy B — ig tanfy egy'B,er,
2 (q) 7 ((ﬂWj —W AP, A WSS Sk

(5.34)

where we have used
Z, = cosfw ij —sinfw B, (5.35)
A, = cosbw B, +sin BWW;f (5.36)

to replace B, and Wﬁ by the physical particles Z, and A,. (In the exercises of chapter 2
these definitions followed from requiring that the photon does not interact with the neutrino.
In section 5.6 we will see that the photon is also massless).

Writing out the projection operators for left- and tight-handed fermions, egs. (5.3) and (5.4),
we obtain the following interactions:

1. A coupling of the charged vector bosons W which mediate transitions between neu-
trinos and electrons {or u and d quarks) with an interaction term

—5!——&5 7% (1 - 75) eW, — %ﬁy” (1 - 75) aw, + h.c. (5.37)

(h.c. means ‘hermitian conjugate’ and gives the interaction involving an emitted Wlf
where the incoming particle is a neutrino (or u) and the outgoing particle is an electron
(or d).)

- 160 -



2. The usual coupling of the photon with the charged fermions is (using, for instance, the
relation eq. (5.54)):

2 1 .
gsinfyeyteA, — 39 sinfw Ty u A, + 39 sinfw dy* d A, . (5.38)

Note that the left- and right-handed fermions have exactly the same coupling to the
photon so that the electromagnetic coupling turns out to be purely vector (i.e. no v°
term).

3. The coupling of neutrinos to the neutral weak gauge boson Z,:

9

——2 k(1 AP
4COSHWV7 (1 fy) vZ,. (5.39)

4. The coupling of both the left- and right-handed electron to the Z:

g

ToosT ® (v (1= 7°) — 4sin® wy*) e Z,. (5.40)

5. The coupling of the quarks to the Z can be written in the general form

g

 2cos by % (Tla v (1 N 75) — 2Q; sin’ ew’Y“) & Zy (5.41)

where quark 7 has the third component of weak isospin T2 and electric charge Q;.

From these terms in the Lagrangian we can directly read off the Feynman rules for the three-
point vertices with two fermions and one weak gauge boson. Then we can use these vertices
to calculate weak interactions of the quarks and leptons. This allows us, for example, to
calculate the total decay width of the Z or W boson, by calculating the decay width into
all possible quarks and leptons. However, quarks are not free particles, so for exclusive
processes, in which we trigger on known initial or final state hadrons, information is needed
about the probability to find a quark with given properties inside an initial hadron or the
probability that a quark with given properties will decay (“fragment”) into a final state
hadron.
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Exercise 5.3
The decay rate for the Z into a fermion-antifermion pair, Z — ff, is

1

. 1 LIPS 20 —
= 2Mz/d M = 6472 M,

[aaimp,

where d"S stands for the Lorentz invariant phase space measure for the two
final-state fermions, and [ dS2 is the integral over the solid angle (of one final-
state particle).

Write the general interaction term for the coupling of the Z boson to a fermion
as

9 i 5
e —a )
ZCOSGny <vf ffy)
Show that the squared matrix element, summed over the spins of the (outgoing)
fermions and averaged over the spin of the (incoming) Z boson is

1

M = — g (0% + (@p)?) Te (47 - kay"y - ),

9
cos? Oy

where k; and k; are the momenta of the outgoing fermions and the gauge

polarization sum is

M ) = _ Qp 9v
€ €& = —Guwt o
o i

(¢ = k1 + k2 is the initial momentum of the Z boson). Hence show that

1

g
F'= ——
48 1 cos? Oy

(('Uf)2 + (af)z) ]\42

Neglect the masses of the fermions in comparison to the Z mass.

Exercise 5.4

The Z boson can decay leptonically into a pair of neutrinos or charged leptons
of all three generations and hadronically into u quarks, d quarks, ¢ quarks, s
quarks, or b quarks (¢ quarks couple like u quarks, whereas s quarks and b
quarks couple like d quarks). Deduce the values of vf and a; for each of these
cases and consequently estimate the decay width of the Z boson. (The current
experimental value is 2.4952 £ 0.0023 GeV.)

[Take Mz = 91.19 GeV, sin® 6y = 0.23, and the fine-structure constant o =
1/129 (why this value?)].
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5.6 The Higgs Part and Gauge Boson Masses

The Higgs doublet Lagrangian should contain a “spontaneous symmetry breaking” potential
which will give the Higgs a vev and self-interactions, and kinetic terms which will generate
the gauge boson masses and interactions between the Higgs and the gauge bosons. We first
consider the potential:

V(@) = —pP0dt + ) (2191) . (5.42)

This potential has a minimum at ®; ®; = 24?/X. Writing @ in the form of eq. (5.19) and
replacing this in the potential eq. (5.42), we find that we get a mass term for the real Higgs
field H, with value mg = v/2u. As expected, the w, do not appear in the potential. In an
ungauged theory, they would be the massless goldstone bosons. In a gauge theory like the
Standard Model, they will reappear as the longitudinal degrees of freedom of the massive

gauge bosons.

The remaining term of the ® Lagrangian is the kinetic term (D,®)"(D*®). Looking at this
term more carefully will help us to understand where the “physical” gauge bosons (i.e. the
W#, Z and photon) come from, and how they are related to the W, W2, W3, B,. To see the
effect of the Higgs vev on the gauge boson masses, it is most simple to work in the unitary
gauge, that is, we absorb the exponential of eq. (5.19) with a gauge transformation. In this
gauge, the covariant derivative acting on the Higgs doublet is

| g [ W V2w: Y 0
D,® = — (9, +i2 " . B 5.43
. \/ﬁ(”HZ(\/EW,j -3 )+z2 I\v+ 1) (5:43)

so that

,02

D, 3 = 23 H)2+——92”2 WHAW, +
. A 4 T8

( W3_ IB )2 B H
gW, —gB,) + interaction terms, (5.44)

where the ‘interaction terms’ are terms involving three fields (two gauge fields and the H-
field). Eq. (5.44) tells us that the W} and B, fields mix (as do W} and W2) and the physical
gauge bosons must be superpositions of these fields, such that there are no mixing terms.
Thus we define

Z, = cosby Wj’ —sinfw B, (5.45)
A, = cosby B, +sinOy W2, (5.46)

with the weak mixing angle 6y (“Weinberg angle”) defined hy

@ [«
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With this eq. (5.44) is rewritten as
' v2g?

D, &> = 1(a H)2+g—23’—2W+W—“+
K an B 4 H 8 cos? Oy

Z, 7" +0A4,A". (5.48)
Here we see how SU(2) and U(1) are unified (or at least ‘entangled’) in the sense that
the neutral gauge boson that acquires a mass through the Higgs mechanism is the linear

superposition of a gauge boson from the SU(2) and the U(1)y gauge boson.

From eq. (5.48) we can read off the masses of the gauge bosons. The last term tells us that
the linear combination eq. (5.46) remains massless. This field is identified with the photon.
For the other fields we have ]

1 1 gv
My = = My = — :
w=3g9Y Z 2 cos Oy

(5.49)

The Z boson mediates the neutral current weak interactions. These were not observed until
after the development of the theory. From the magnitude of amplitudes involving weak
neutral currents (exchange of a Z boson), one can infer the (tree level) magnitude of the
weak mixing angle, 6. The ratio of the masses of the Z and W bosons is a prediction of
the Standard Model. More precisely, we define a quantity known as the p-parameter by

M, = p M3 cos® Oy . (5.50)

In the Standard Model p = 1 at tree level. In higher orders there is a small correction,
which depends on the definition used for sin 6y, (that is, which loop corrections are included
in sinfy ). Note that the p-parameter would be very different from one if the symmetry
breaking were due to a scalar multiplet which was not a doublet of weak isospin. Accurate
measurements of the p-parameter and other so-called electro-weak precision observables,
together with their prediction at higher order within the SM, serve as very powerful tests of
the SM. The Higgs enters in virtual loops, allowing for an indirect determination of its mass
through fits of the predictions to the data (see the homepage of the Electroweak Working
Group, http://lepewwg.web.cern. ch/LEPEWWG for more information).

The spontaneous symmetry breaking mechanism breaks SU(2) x U(1)y down to U(1). It is
this surviving U(1) that is identified as the U(1) of electromagnetism. It is not the U(1)y
of the original gauge group but a set of transformations generated by a particular linear
combination of the original U(1) and rotations about the third axis of weak isospin. To see
this we note that the explicit representation of the generator Y as a 2 x 2 matrix, which can
be combined with the explicit representation of T, T? and T?, is given by

110
Y=—2-(0 1), (5.51)
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The factor 1/2 ensures the normalization'? condition eq. (2.7). Using eq. (5.51) it can easily
be seen that the symmetry associated with the generator

_ s (10
Q=Y +T _(0 0) (5.52)

is not broken, i.e. Q[0) = 0 (see eq. (4.5)). Thus, starting with four generators, we get
only three Goldstone bosons. These will become the longitudinal components of three gauge
bosons, thereby giving them a mass, whereas the fourth is left massless.

The coupling of any particle to the photon is always proportional to
gsinfy (Y + T3) = gsinfy Q. (5.53)

Thus we can identify g sinfy with one unit of electric charge, and we have the relationship
between the weak coupling g and the electron charge e,

e = gsinfy . (5.54)

We end this subsection by giving the remaining pieces of the SM Lagrangian from eqs. (5.44)
and (5.42),
Crige = |Du 8 — 20700 + A (2707’
1 g%0? 0%
= O HP?+pi’ > +Z—Whrrw:- +-—2 7 ¢
2(“ ) 4 W”+800820W nZ
+ interaction terms. (5.55)

5.7 Classifying the Free Parameters
The free parameters in the Standard Model for one generation are:
e The two gauge couplings for the SU(2) and U(1) gauge groups, g and ¢'.

e The two parameters 1 and X in the scalar potential V (®).

e The Yukawa coupling constants Y,, Y, Y, and V,,.

It is convenient to replace these parameters by others, which are more directly measurable in

experiments, namely e, sin fy, m. and my, and mg, m,, mg and m,. (Note that the gauge

12We warn the reader that in the literature sometimes a different normalization is used such that eq. (5.52)
reads Q@ =Y/2 + T3.
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sector is well measured, but the quark masses are not directly observable; we have yet to
find the Higgs, and although we see neutrino mass differences, measuring the absolute mass
scale is difficult — and the neutrino masses might not be directly proportional to Yukawa
couplings anyway.) The relation between these physical parameters and the parameters of
the initial Lagrangian are

tan by = %, (5.56)
e = gsinfy, (5.57)

g
My = 22 5.59
me = Yobe. (5.60)

Vv

Note that when we add more generations of fermions, we will acquire more parameters:
additional masses (or yukawa couplings, i.e. 4 parameters per generation), and also mixing
angles, as we will see in the next chapter.

In terms of these measured quantities, the Z mass, Mz, and the Fermi-coupling, G, are pre-
dictions of the SM (although historically G was known for many years before the discovery
of the W boson, and its value was used to predict the W mass).

5.8 Summary

e Weak interactions are mediated by the SU(2) gauge bosons, which act only on the
left-handed components of fermions.

e The (left-handed) neutrino and left-handed component of the electron form an SU(2)
doublet, whereas the right-handed components of the electron and neutino are SU(2)
singlets. Similarly for the quarks.

e There is also a weak hypercharge U(1)y gauge symmetry. Both left- and right-handed
quarks transform under this U(1)y with a hypercharge which is related to the elec-
tric charge by the relation eq. (5.54). The left-handed leptons and the ep also carry
hypercharge, but the vz has no SM gauge interactions.

o In the symmetry limit (before spontaneous symmetry breaking) the fermions with
SU(2) gauge interactions are massless.'> The spontaneous symmetry breaking mech-
anism which gives a vev to the scalar field also generates the fermion masses.

137This does not apply to vg, which can have an explicit mass term
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e The scalar multiplet that is responsible for the spontaneous symmetry breaking also
carries weak hypercharge. As a result, one neutral gauge boson (the Z) acquires a
mass, whereas its orthogonal superposition is the massless photon. The magnitude of
the electron charge, ¢, is then given by e = g sin 0.

o The weak interactions proceed via the exchange of massive charged or neutral gauge
bosons. The old four-fermi weak Hamiltonian is an effective Hamiltonian which is valid
for low energy processes in which all momenta are small compared with the W mass.
The Fermi coupling is obtained in terms of e, My and sin Oy by eq. (6.16).

For completeness, a full set of Feynman rules for the case of a single family of leptons is
given as an appendix to this lecture.
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Feynman Rules in the Unitary Gauge (for one Lepton Generation)

Propagators:
(All propagators carry momentum p.)

w . 2 2 2
EaVAVAVAVES ~ 1 (gu — Pu P/ Miy) [ (p* — Mg;)
Z . 2 2 2
LANNAN, V —t (g — Pupu/M3z)/(p* — M3)
A o,
VAVAVAVE ST )
€ i 2 2
— i (v p+me)/(p* —me)
17
iy p/p”
H
______ i/ (p* — m)
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Three-point gauge-boson couplings:
(All momenta are defined as incoming.)

A,
Ps
i - igsinfw (P~ D2)p G + (P2 — D3)uGup + (P3 — P1)v Gpu)
W, Wt
ZP
D3
n D2 ig cosOw ((p1 —P2), G + (p2 —*P3)u Gup + (ps — p1)w Gpus)
%% W
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Four-point gauge-boson couplings:

w, L

ﬁ.‘: 9% (290 Gvo — Guw Yoo — Guo Gup)
Wy [
Z, Vs

E i 92 0052 6W (2guv gpa - gup Jue — gua gl/p)
W, Wk
A, A,

E ig2 Sin2 HW (2g,uu Goo — Gup Qv — Guo gup)
Wy wf
7 A,

E i 92 Cos 0W sin 0W (29111/ 9po — GupGve — Guo gup)
wo W
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Three-point couplings with Higgs scalars:
|
I
I
|
A —Sigmy/Mw

——;—igme/MW

i (g/ cos? Ow) My g

H

I

|

I

I

i
H

I

|

:

I

’_JJJJY’LLL ngW G
W, Wk

H

I

:

1

I
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Four-point couplings with Higgs scalars:

H H
\ 7
AN 7/
AN v
\ 7/ .
X - 34g% (m} /M)
/ AN
Ve AN
H “CH
H H
AN Ve
AN Ve
N Ve
N .
rjafj:ﬂLl?#l %3929uv
W, wt
H H
AN /
N 7/
N v

FH\YXLL% %i B
Z Z,
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Fermion interactions with gauge bosons:

Wi
}\ ~i (9/2v2) 3 (1 -7
e v
Ay
X 1 g sin Oy 7y,
e e
Zy
A Yi (g/ cosbw) v, (1 — 4 sin? 0y — 75)
e e
Zy
}\ — 1% (9/cosbw) vu (1 —7°)
v v
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6 Additional Generations

In the previous section, the Lagrangian of the Standard Model with one family was given.
Here we include additional “families” (or “generations”) and briefly outline the phenomeno-
logical consequences in the quark sector. Family-changing processes among the leptons will
be discussed in the neutrino chapter.

6.1 A Second Quark Generation

The second generation of quarks consists of a ¢ (“charm”) quark, which has electric charge
+% and an s (“strange”) quark, with electric charge —%. We can just add a copy of the left-
handed isodoublet and copies of the right-handed singlets in order to include this generation.

The only difference would be in the Yukawa interaction terms where the coupling constants
are chosen to reproduce the correct masses for the new quarks. But in this case there is
a further complication. It is possible to write down Yukawa terms which mix quarks of
different generations, e.g. the Yukawa couplings of the previous section become matrices in

flavour space,

— [Yalij@z; ® drj — [Yulijqr; $°um; + h.c. (6.1)

where i, are generation indices. The off-diagonal element [Yj]i2 seems to gives rise to a

mass mixing between d and s quarks.

The Yukawa matrices are ny x ny matrices, where ny is the number of flavours, and can
be diagonalised by independant unitary transformations on the left and right (because YY1
and Y'Y are hermitian). The physical particles are those that diagonalize the mass matrix.
So it is convenient to rotate to the eigenbasis of the mass matrix, where there is no Yukawa
mixing between quarks of different generations.

Notice that when we add a second generation, it has the same gauge interactions as the first.
So if we make a unitary transformation in generation space, the fermion kinetic terms remain
unchanged. Taking advantage of this freedom, we can rotate ugr, dg and ¢, respectively to
the mass eigenstate bases of the ug, dg and uy,.

This means, however, that the quark doublets which couple to the gauge bosons are, in
general, superpositions of physical quarks, because we have written the dy; in the uy; mass

(5.

eigenstate basis:
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and

( Z ) , (6.3)

where d and § are related to the physical d and s quarks by

(1))

where V¢ is a unitary 2 X 2 matrix.

Terms which are diagonal in the quarks are unaffected by this unitary transformation of the
quarks. Thus the coupling to photons or Z bosons is the same whether written in terms of
cZ, 3 or simply s, d. We will return to this later.

On the other hand the coupling to the charged gauge bosons is
= BN g g _ B\ ~1g7—
—FU’Y“(l—’)’ )dVVM —m(}’)’“(l—’)’ )SWF’ +hC (65)

which we may write as
g (u N 5 -
- 1—-y)V W, 4+ hec.. 6.6
2\/2- ( z ) Y ( Y ) C ( B ) m ( )
The most general 2 x 2 unitary matrix may be written as ~

e cosfo sinfg e
. , 6.7
( 1 ) ( —sinlz cos o ) ( e ) (67)

where we have set one of the phases to 1 since we can always absorb an overall phase by
adjusting the remaining phases, a, 8 and 7.

g
2

The phases, «, 8, v can be absorbed by performing a global phase transformation on the d,
s and u quarks respectively. This again has no effect on the neutral terms. Thus the most
general observable unitary matrix is given by

Vg = ( cos B¢ sm00>‘ (6.8)

—sinfc cosfc
where 0¢ is the Cabibbo angle.
In terms of the physical quarks, the charged gauge boson interaction terms are
g _ 5 . _ 5
— ——= (cosOcTuy*(1 — d 4+ sinfcuvy*(1 —-~°)s
2\/5( cTY(1-7") oY1 -7°)

+ cosfoey* (1 —4°) s — sinfeTy*(1 —4°) d) W, +he.. (6.9)

- 175 -



This means that the u quark can undergo weak interactions in which it is converted into
an s quark, with an amplitude that is proportional to sinfc. It is this that gives rise to
strangeness violating weak interaction processes, such as the leptonic decay of K~ into a

muon and antineutrino. The Feynman diagram for this process is

6.2 Flavour Changing Neutral Currents

Although there are charged weak interactions that violate strangeness conservation, there
are no known neutral weak interactions that violate strangeness. For example, the K° does
not decay into a muon pair or two neutrinos (branching ratio < 107°). This means that
the Z boson only interacts with quarks of the same flavour. We can see this by noting that
the Z boson interaction terms are unaffected by a unitary transformation. This absence of
flavour changing neutral currents (FCNC) in experimental data, is rather important. As we
will see, in the Standard Model there are no FCNC at tree level, and the absence of FCNC
is an important constraint for many extensions of the Standard Model.

The Z boson interactions with d and s quarks are proportional to

y (6.10)

W

dd+
(we have suppressed the y-matrices which act between the fermion fields). Writing this out

in terms of the physical quarks we get

cos?0cdd + sinfc cosfosd + cosfc sinbods + sin®f:35s

+ cos?0c5s — sinfg cosbods — cos Oc sinfs3d + sin’6odd. (6.11)
We see that the cross terms cancel out and we are left with simply
dd + 3s. (6.12)

This cancellation is the reason for the absence of FCNC and is simply a consequence of the
unitarity of the mixing matrix eq. (6.7). This effect is also known as the “GIM” (Glashow-
lliopoulous-Maiani) mechanism. It was used to predict the existence of the ¢ quark.
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There can be a small contribution to strangeness changing neutral processes from higher
order corrections in which we do not exchange a Z boson, but two charged W bosons. The
Feynman diagrams for such a contribution to the leptonic decay of a K° (which consists of
a d quark and an s antiquark) are:

W= w-

M d o
—d*—’\/’\/\/\—*— —(\\N\N——
U] tv + c 4
VYV A A A e

These diagrams differ in the flavour of the internal quark which is exchanged, being a u
quark in the first diagram and a ¢ quark in the second. Both of these diagrams are allowed
because of the Cabibbo mixing. The first of these diagrams gives a contribution proportional
to

+sin ¢ cosfc,

which arises from the product of the two couplings involving the emission of the W bosons.

The second diagram gives a term proportional to
—cosbc sinfe .

If the ¢ and u quarks had identical masses then these two contributions would cancel precisely.
However, because the ¢ quark is much more massive than the u quark, there is some residual
contribution. This was used to limit the mass of the ¢ quark to < 5 GeV, before it was
discovered.

6.3 Adding Another Lepton Generation

We first neglect the vz and neutrino masses. In this approximation, there will be no gen-
eration mixing in the lepton sector, so we can include other lepton families, the muon and
its neutrino, and the tau-lepton with its neutrino, simply as copies of what we have for the
electron and its neutrino. For each family we have a weak isodoublet of left-handed leptons
and a right-handed isosinglet for the charged lepton.

Thus, the mechanism which determines the decay of the muon (i) is one in which the muon
converts into its neutrino and emits a charged W, which then decays into an electron and
(electron-) antineutrino. The Feynman diagram is
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The amplitude for this process is given by the product of the vertex rules for the emission (or
absorption) of a W~ with a propagator for the W boson between them. Up to corrections of
order mi /MZ,, we may neglect the effect of the term g*q” /M3, in the W-boson propagator,
so that we have

( 2fl/w( 75)u> (q—;—_%) (—12—\7—67"(1—75) ve), (6.13)

where ¢ is the momentum transferred from the muon to its neutrino. Since this is negligible
in comparison with My we may neglect it and the expression for the amplitude simplifies to
g9 5 5
i (L= ) eyp(l—77)ve. (6.14)
8 My,
Before the development of this model, weak interactions were described by the “four-fermi

model” with a weak interaction Hamiltonian given by
GF Py 5 " 5
Hiw = 5 i (1 =) vl =)0 (6.15)

We now recognize this as an effective low-energy Hamiltonian which may be used when the
energy scales involved in the weak process are negligible compared with the mass.of the W
boson. The Fermi coupling constant, G, is related to the electric charge, e, the W mass
and the weak mixing angle by

e2

Gr = .
T 4B M, sin® Oy

(6.16)

This gives us a value for Gg |
Gr =1.12x107° GeV ™2, (6.17)

which is very close to the value of 1.17 x 10~% GeV ™2 as measured from the lifetime of the
muon.

We see that the weak interactions are ‘weak’, not because the coupling is particularly small
(the SU(2) gauge coupling is about twice as large as the electromagnetic coupling), but
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because the exchanged boson is very massive, so that the Fermi coupling constant of the
four-fermi theory is very small. The large mass of the W boson is also responsible for the
fact that the weak interactions are short range (of order 10718 m).

In the Standard Model, however, we also have neutral weak currents. Thus, for example, we
can have elastic scattering of muon-type neutrinos against electrons via the exchange of the
Z boson. The Feynman diagram for such a process is:

Vi

Exercise 6.1
Let us write the four-fermi interaction for this process as

Gr _
H= & V(1 = P)We BYp(v — a¥)u,
where v and a give us the vector and axial-vector coupling of the muon to the
Z boson (the muon couples in an identical way to the electron). Determine v

and a in terms of Gy .

6.4 Adding a Third Generation (of Quarks)

Adding a third generation is achieved in a similar way. In this case the three weak isodoublets

(d) () (Z) (6.18)

where d, § and b are related to the physical d, s and b quarks by

of left-handed fermions are

d
= Vexm | s |- (6.19)

S W R,

The 3 x 3 unitary matrix V gk is called Cabibbo-Kobayashi-Maskawa (CKM) matrix. Once
again it only affects the charged weak processes in which a W boson is exchanged. For this
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reason the elements are written as

Vud Vus Vub
Ve Vis Vi |. (6.20)
Viu Vis Vi

A 3 x 3 unitary matrix can have nine independent parameters (counting the real and imag-
inary parts of a complex element as two parameters). In this case there are six possible
fermions involved in the charged weak processes and so we can have five relative phase
transformations, thereby absorbing five of the nine parameters.

This means that whereas the Cabibbo matrix only has one parameter (the Cabibbo angle,
8c), the CKM matrix has four independent parameters. If the CKM matrix were real it
would only have three independent parameters. This means that in the case of the CKM
matrix some of the elements may be complex. The four independent parameters can be
thought of as three mixing angles between the three pairs of generations and a complex
phase.

The requirement of unitarity puts various constraints on the elements of the CKM matrix,
For example we have

Vua Vi + Vea Vg + VigVip = 0.

This can be represented as a triangle in the complex plane known as the “unitarity triangle”:

Vud ;b

i’

Vc:Vc?

The angles of the triangle are related to ratios of elements of the CKM matrix

R e acrg{ Via V;.g } ’ (621)
vﬂd ub

B = —arg {M} ; (6.22)
V:'»"l ch
V;ad VJ

v = —arg {‘—/;—{} i (6.23)

A popular representation of the CKM matrix is the Wolfenstein parameterisation which uses
the parameters A, which is assumed to be of order unity, a complex number (p + in) and
a small number A, which is approximately equal to sin §¢. In terms of these parameters the
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CKM matrix is written as

1—-)2/2. A AN (p—in)
Vekm = - 1-22/2 AN? + O0Y). (6.24)
A1 —-p—in) —-AN 1

We see that whereas the W bosons can mediate a transition between a u quark and a b
quark (V) or between a ¢ quark and a d quark (V;4), the amplitude for such transitions are
suppressed by the cube of the small quantity which determines the amplitude for transitions
between the first and second generations, A. The O()\*) corrections are needed to ensure the
unitarity of the CKM matrix and these corrections have several matrix elements which are
complex.

6.5 CP Violation

The possibility that some of the elements of the CKM matrix may be complex provides a
mechanism for the violation of C'P conservation. Violation of C'P conservation has been
observed in the K° — K* system, and is currently being investigated for B mesons.

Higher-order corrections to the masses of B® and BP give rise to mixing between the two
states. Thus the mass matrix can be written as

( (ﬁj‘f)* @Z ) (6.25)

The mass eigenstates are therefore

|Bz) = p|B°) + q[B), (6.26)
whose mass is M — ZAm, and

|Bu) = p|B%) — q|B"), (627)

whose mass is M + %Am, where we have introduced the mass difference between the two

mass eigenstates, Am = 2\/AM(AM)*.

If AM were real then we would have p = ¢ = 1/ V2 and these mass eigenstates would be

CP eigenstates, using the fact that
CP|B%) = —|BY.

However, the non-zero phases in the CKM matrix give rise to a complex phase for AM,
so that the ratio of p and ¢ is a complex phase, indicating that B; and By are not CP
eigenstates.
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A typical weak interaction contribution to the mass-mixing term, AM, is given by the
Feynman diagram

qi | q;

Note that on the left we have a B°, consisting of a b quark and a d antiquark, whereas on the
right we have a B consisting of a d quark and a b antiquark. The internal quarks marked
g; and g; can each be u, ¢ or ¢ quarks, and each of the vertices carries some element of the
CKM matrix. The total contribution, therefore, may be written as
Y. 2 VaViaViViaay.
i=u,c,t j=u,ct

Once again, if all the masses of the quarks were equal then the amplitudes a;; would all be
equal, and the sum would vanish by the unitarity constraints imposed on the elements Vi.
Since the quarks do not all have the same mass, there is some residual contribution. Indeed,
the above diagram is dominated by the term in which a ¢ quark is exchanged on both sides,
since this quark is much more massive than the rest.

Restricting ourselves to the ¢ quark exchange contribution, we can read off the phase of this
contribution, without calculating the diagram itself. It is given by the phase of the products
of the CKM matrix elements entering in the diagram, namely

( t; th)z-

The phase of this quantity is the square of the ratio of p and g, so we have
P _ VaVe
q Via Vi

Now suppose that at time ¢t = 0 we prepare a state which is purely B°. Accounting for the
fact that the B® meson has a decay rate I', we can use eqgs. (6.26, 6.27) to write the state at
time ¢ as

B() = =Mt o2 (cos (A—Z’"’-t) 1B + isin (-AQ—mt) |§°>>. (6.28)

Now suppose that the amplitude for a state |B°) to decay into some CP eigenstate |f) is
Ay, whereas the amplitude for a state IFO) to decay into the state |f) is A;. Once again, if
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CP were conserved, we would have
Ay = A,

but the CP violating phases give rise to a more general complex phase for the ratio of these
two amplitudes.

This means that the amplitude to find the state | f) after time ¢ is given by

<f‘Hwk|B(t)) — o iMt ,~Tt/2 (COS (ATmt) Ay + i% sin (ATmt) Zf) . (6.29)
Similarly, if we had prepared a B at t =0 the amplitude to find the state |f) would be
FIHwlB(D) = eiMt e Tu2 (cos (AT’"’Q 7 i%’ sin (921”4) A,) | (6.30)
Taking the moduli squared for the decay rates we derive the result
I'(B(t) — f) —T(BE) — f) . (qu)
— = — gin(Amt)Sm{=-—]. 6.31
DB = /) 7 1B = ) (A Sm (3%, =

For example, if the state | f) is the C'P even two-pion state |° 7%), the Feynman diagram at
the quark level for Ay, is

To fully calculate the decay amplitudes we would need to know the wave functions for the
mesons in terms of the constituent quark-antiquark pairs, but for the ratio Ay, /Ay, we just
need the ratios of the CKM matrix elements occurring in this diagram, namely

2211' — Vub qud

Ao Vi Vaa’

so that (using eq. (6.21))

q Aoy Via Vig Vun Vi .
Sm|-— ) = —2—% = —sin(2a). 6.32
(P A27r) ViV Vi Vaa (22) (6.32)

As a further example we consider the so-called “golden channel” where |f) is the state
|J/¢ Kg). In this case the quark level Feynman diagram is
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Here there is a further complication since the outgoing state (sd) is actually a K’ (and
likewise for the B° decay it would be a K°). As in the BY system, the mass eigenstates are

given by

|Ks) = pr|K® +qx|E),
|KL) = pklK®) —qx|K"). (6.33)

Once again, if C'P were conserved we would have px = qx = 1/4/2, and these mass eigen-
states would be eigenstates of C'P. The phases in the CKM matrix introduce a phase in the
ratio of px and g, calculated from diagrams similar to the ones for the B? system (but with
the b quark replaced by an s quark). In this case it is the diagram with an internal ¢ quark
exchange that dominates (although the mass of the ¢ is much smaller than the ¢ quark mass,
the CKM matrix elements are much larger for ¢ quark exchange than for ¢ quark exchange

and this effect dominates), so we have a factor

4K _ Vi Ves
rr VeaVZ

which enters in the ratio of the decay amplitudes, giving

Asp ks _ VaVaVaVe = VaV3

Aspp s ViV VaVE Vi Ve

(2 minus occurs because the J/v Kg state is CP odd), so that (using eq. (6.22))

1Ay ks ) Via Vit Vs Vi :
%m —— = ————0—— = Sln 2 N 634
(P Aspprs Vi Vs Vi Vea (26) (6.34)

6.6 Summary

e Additional generations may be added, with gauge interactions copied from the first,
but in this case one can have mass-mixing between quarks of different generations.
In terms of the mass eigenstates,- the charged W bosons mediate transitions between
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aT? = +% quark (u, ¢ or t) and a superposition of T3 = —% quarks (d, s and b).
In two generations, this mechanism allows weak interactions that violate strangeness
conservation, and the mixing matrix has only one independent parameter, the Cabibbo
angle.

The unitarity of the mixing matrix guarantees that there are no strangeness changing
neutral processes. Weak interactions involving the exchange of a Z boson do not change
flavour. There is a small violation of this in higher orders owing to the mass splitting
between the quarks.

Including a third generation, the mixing matrix for the 7% = —1/2 quarks (d, s and
b) is the CKM matrix. This matrix has four independent parameters, so that some of
the matrix elements may be complex.

The possibility that some of the elements of the CKM matrix may be complex leads to
a weak interaction contribution to the mass mixing of B® and B° which can be complex.
This gives rise to C'P violation, since the eigenstates of the B° mass matrix are then
no longer eigenstates of CP. The CKM matrix also introduces phases in the ratios of
the decay amplitudes for B and B’ toa given CP eigenstate. Products of the phase
of the mass mixing and the ratio of the decay amplitudes can be observed directly in
tagged B meson experiments, and the angles o and 3 of the unitarity triangle can be
directly measured.
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7 Neutrinos

In its original formulation, the Standard Model had massless neutrinos — neutrino masses
were not measured at the time. We now know that neutrinos have a (very small) mass,
which can be accommodated in the SM in a straightforward way. We will discuss this in the
second part of this chapter. There are two possible types of neutrino mass terms, “Dirac”
and “Majorana”, because the neutrino has zero electric charge. This makes neutrino mass
terms a bit different from those of the other fermions and may explain why neutrinos are
much lighter than SM fermions.

In the first part of this chapter we focus on the currently observed consequence of small

neutrino masses, neutrino oscillations.

7.1 Neutrino Oscillations

Recall that in the quark sector, there were flavour changing charged current processes, that
is, the W could interact with an up-type quark of one generation, and a down-type quark
of another. If the neutrinos have mass, we should get exactly the same effect in the lepton
sector, except that the mixing matrix Uy, is called the PMNS matrix (for Pontecorvo, Maki,
Nakagawa and Sakata), rather than CKM. The index order “flavour-mass” in Uy, indicates
that U rotates a vector from the neutrino mass basis to the neutrino “favour” basis, which
is the charged lepton mass basis.

The physical consequences of mixing angles are quite different between the lepton sector and
the quarks. This is because neutrinos are very light and have only weak interactions. In the
quark sector one can differentiate D — Kpv from D — 7fiv, because the m and K have
strong and electromagnetic interactions, which allows us to track them in the detector, and
they have sufficiently different masses that the tracks are distinguishable. This is not the

case in trying to distinguish p — evsis from p — evspy.

The small masses and weak interactions of neutrinos imply that the wave packets corre-
sponding to different neutrino mass eigenstates remain superposed over long distances. The
effects of flavour mixing can therefore be seen via oscillations.

For simplicity we will consider the case of two generations which in the charged lepton sector
we will take to be the electron and muon.'* We label the neutrino mass eigenstates as v,

140f course, in the Standard Model we have three famnilies, but the important concepts can be understood
in the simpler case.
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and v,. They are related by an equation very similar to eq. (6.4),

( U, ) _ ( c0§0 sin 0 ) ( 1 ) . (7.1)
Yy —ginf cosf Vo

Now we would like to compute the amplitude for an oscillation process. Suppose that we have
an initial beam of muons which decays to relativisitic neutrinos of energy F and momentum
k. The neutrinos travel a distance L = 7 to a detector where they produce an ¢ or a yu by
charged current (CC) scattering. The amplitude will be

A ~ 3 Ups % e "Bkl 5 U (7.2)
J

where the three pieces arise from production, propagation and detection. (From your field
theory notes, you can check that the Feynman propagator in position space, G(0, (r, L)), is
the exponential, where the momentum integral in the propagator was taken care of in the
production process of the neutrinos with 4-momentum (E, k).)

First, suppose that we can neglect the neutrino masses, so (F;, k;) = (Ey,, k,) for any j,n.
The propagation exponential can then be factored out, and (7.2) is the unitarity condition
for U,

U#jU;j = Opa - (7.3)

Recall that for quarks, with three generations, this relation gives the unitarity triangle.

Now we allow the neutrinos to have small masses, m <« E, k, so that L ~ 7 remains. Then
the exponent can be written as

. , B2 2 m?
_"L(EjT—kjL) = —’I,(Ej—kj)L = —Z—ﬁL At -—’1,'2—57'[1, (74)

such that

*
o

Puo = Mual® = | 3 Upye 5mHEOUL 2. (7.5)
J

Using the explicit form of U given in eq. (7.1) one obtains the muon survival probability
5 (m3 —mi)L
4B '

In reality, there are three generations of leptons in the SM, so the MNS matrix U is 3 x 3,
.and there are three mass eigenstates in the sum of eq. (7.5). As in the case of CKM, MNS

Py = 1—sin®260sin (7.6)

can be written in terms of three angles and one phase:

—ié

C13Ci2 C13812 S13¢€
A i6 8
U = —C3812 — 823513C12€"°  Cp3C12 — S23513512€" 893C13 (7.7)
1) 1)
$93812 — C23513C12€" —823C12 — C23813512€" C23C13
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C12 812 s13e7%

= —312/\/2. 012/\/§ 1/\/2~ ) (7.8)
512/\/§ —012/\/5 1/\/5

where the “solar” angle 015 ~ 7/6, and we have used the approximate measured value of the
atmospheric angle 53 ~ /4. s13 = sinf3 < 0.2 is known from experimental bounds and
13 is significantly smaller than the other two angles. Note that, unlike the quark sector,
some mixing angles are large. Combined with the small neutrino masses, this is puzzling
and provoking to theorists, who expend much effort into building models of this.

It is often said that MNS has three phases, so let us recall the phase choices that allow us
to write eq. (7.7), so as to understand where the other two phases could be:

e A 3 x 3 complex matrix has 18 real parameters.

o The unitarity condition UUT = 1 reduces this to 9, which can be taken as 3 angles and
6 phases.

e Iive of those phases are relative phases between the fields e, u, 7, vy, 15 and vs,

e ... so if we are free to choose the phases of all the left-handed fermions, we are left
with one phase in the mixing matrix. This was the case with the quarks, where any
potential phase in the quark masses could be absorbed by the right-handed fermion
fields.

e If the right-handed fields do not appear in our physical process (which means the masses
appear as mm*), then we are free to make the above phase choice, and our process
is independant of any possible phase of the masses. This is the case for neutrino
oscillations.

e We will see in a later section that the v, can have so-called “Majorana” masses, between
themselves and their antiparticle. This means that it is the left-handed neutrino field
which must absorb the phase of the Majorana mass. So in physical processes where the
Majorana mass appears linearly (and not as mm*; this is the case e.g. in neutrinoless
double-beta decay), one can choose the phase such that the mass is real — in which
case one can remove one less phase from MNS, or one can keep MNS with one phase,
and allow complex masses.

e It is always possible to remove the phase from one majorana mass by using the global
overall phase of all the leptons. (This overall phase corresponds to the global symmetry
of lepton number conservation in a theory without majorana masses and is the sixth
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phase of e, u, 7, v;, v, and v3, which we could not use to remove phases from the
lepton number conserving MNS matrix.) So, in three generations, there are possibly
two complex majorana neutrino masses, so two “Majorana” phases in addition to the
“Dirac” phase § of MNS.

Although there are three generations, it is well known that for the oscillation probabilities
we observe, with the mixing angles that are measured, two neutrino probabilities are a very
good approximation. Why is this?

Let us return to the oscillation amplitude A,z(L), and imagine it as the sum of three vectors
in the complex plane. If oo = (3, the unitarity condition at L = 0 says they should sum to a
vector of length one. If o s (3, then they should sum to zero and this is the unitarity triangle.
At non-zero L, two of the vectors rotate in the complex plane, with frequencies (m2 —m?)/2E

— 80 neutrino oscillations correspond, in some sense, to time-dependent non-unitarity.

Consider the oscillation probabilities P,,, measured for atmospheric neutrinos, on length

scales corresponding to m3 — m?. The solar mass difference can be neglected, because

m3—mi < m}—m?, so there is only one relevant mass difference, and the survival probability
behaves as for two generations. This is easy to visualise in the complex plane, where only
the vector U,sUj; rotates with L. The stationary sum U,U, + U, U, can be treated as
a single vector, so this looks like a two generation system. So “atmospheric” oscillations
can be approximated as two-neutrino oscillations because the atmospheric mass difference

is very large compared to the solar one.

In the case of the solar mass difference, measured for instance at KamLAND, the two neutrino
approximation is good because 65 is small. The observed survival probability is P,. and
since Ugg < Ugj, j = 1,2, the last term can be dropped in

Ace =3 Uge AmH Oz, (7.9)
J

7.2 Oscillations in Quantum Mechanics (in Vaccum and Matter)

This subsection reviews a more conventional derivation of neutrino oscillations in two gener-
ations, and includes neutrino oscillations in matter. Electron neutrinos acquire an effective
mass term from their interactions with dense matter — this is the MSW effect — which can
have significant effects in the sun and in supernovae, and over long baselines in the earth.

In the mass eigenbasis we have the Schrédinger equation

d
Y= H. T 1
i | (7.10)
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with a diagonal Hamiltonian

E 0
(5 2) -

This Schrodinger equation can easily be solved. Defining our initial states at £ = 0 as
[1) = [1(t = 0)), |2) = |2(t = 0)) we get the time dependent states

11(t) = e,

12(t)) = e FH2). (7.12)

Il

Let us repeat the last few steps in the interaction eigenbasis. Multiplying eq. (7.10) by V
from the left we get the corresponding Schridinger equation as

d- - -
LE -0 .
AR (7.13)
with
ﬁEV-H-V“1=(a+b ¢ ) (7.14)
c a—>b
where
1
0 = 3B+ B, (7.15)
b = %(El—Eg)cos(QG), (7.16)
¢ = —%(El—Ez)sin(%). (7.17)

The crucial feature of the new Hamiltonian is that it is no longer diagonal. As a result,
if we start at time ¢ = 0 with an interaction eigenstate |a), then at a later time we get
a superposition of |a) and |3) interaction eigenstates. Indeed, using eq. (7.1) for the time
dependent states we get

la(t)) = e *Fitcosd|1) + e 2'sin6|2), (7.18)
1B(t)) = —eErtsinf|1) + e "F2 cos b |2). (7.19)

Let us now use this relation to compute the oscillation probability P,_.s(t). What we mean
by this is the following: assume that at ¢ = 0 we know that our state is a pure interaction
eigenstate |a). To be concrete we can assume this is an electron neutrino v, created in the
sun. P,_p(t) then gives us the probability that at a later time ¢ this state has evolved into
an interaction eigenstate |3). Of course, this probability is simply the absolute value of the
amplitude squared

Possl(t) = 1{Blad))®
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- ‘— sin @ cos (e"Elt — e*iEﬁ) ‘2
1
=5 sin®(26) (1 — cos(Ey — Fy)t)

E,—E
= sin?(26)sin® (2—2—1 t) . (7.20)
In the first step we have used eq. (7.18) and the orthogonality of the mass eigenstates

(il7) = 6y. The expression for P,_4(t) can be brought into a more useful form by noting

that
2

E; = \/p® + m? =p+7;—;+... (7.21)

and, therefore,

1 mi —m? Am?
—(Fy — ~ 2 L= .
3 (B2 — i) AE 4FE (1.22)

where E is the energy of the beam.'® Furthermore, since the neutrinos travel at the speed
of light, we have L = vt = ¢t = t, where L is the distance travelled by the neutrino. Thus,
we arrive at the final expression for the oscillation probability,

A 2

Pos(t) = sin?(20) sin? ( [ =) . (7.23)
4F

Eq. (7.23) has the expected properties in that the probability vanishes for I, — 0, § — 0

and most notably for Am? — 0. This last limit tells us that there is no mixing if the two

neutrino species have the same mass and, in particular, if they are massless.

So far we have considered oscillations in vacuum, i.e. we have assumed that ‘the neutrinos
were travelling through the vacuum. While this is true most of the time, the neutrinos
produced in the sun first have to travel through the sun before they can reach us. The
matter surrounding the neutrinos can have a crucial effect on the oscillation probability for

the neutrinos. This effect is called the matter effect or the Mikheyev-Smirnov-Wolfenstein
(MSW) effect.

The question at the heart of the problem is: how does the Hamiltonian H, eq. (7.14),
change through interactions of the neutrinos with surrounding matter? There are basically
neutral and charged current interactions. As we have learnt, neutral current interactions are
mediated by the exchange of a Z boson. Taking into account that the surrounding matter
is basically made of protons, neutrons and electrons, a typical Feynman diagram is:

15This argument can be made more rigorously using wave packets.
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The important point is that these interactions are independent of the flavour z of the neu-
trino. Thus they affect the two diagonal entries of the Hamiltonian in the same way. This
means they change @, eq. (7.15), i.e. the Hamiltonian is modified by a — @. As we will see
later, this change is irrelevant.

The charged current interactions are mediated by a W*. A typical Feynman diagram is:

Ve e

These interactions take place only for electron neutrinos since there are no u’s (or 77s) in
the surrounding matter. In our convention where we identify the |a) state with an electron
neutrino, this means that only the top-left entry of the Hamiltonian, eq. (7.14), is modified.
Thus, including the matter effects we arrive at the following Hamiltonian,

~ a+b+w c

Hysw = ( _ ) ; (7.24)
c a—b

where w comes from the charged current interactions. The explicit form of w is not important

for us. What we want to know is how the w-term modifies the mixing angle. To find the

modified mixing angle Oysw we have to diagonalize Husw, i.e. we have to find

cosf sin @
Vmsw = ( S = ) (7.25)
— Sin 0MSW CO8 0Msw
such that
Husw = Vigaw - Husw - Visw (7.26)
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is diagonal. If we plug the explicit forms for Viysw, eq. (7.25), and Hysw, eq. (7.24), into
eq. (7.26) we find the off-diagonal terms of Hygw to be

2b+ w

ccos(20ysw) + sin(20ysw) - (7.27)

This vanishes for

2c —Am? sin(26)
tan(20usw) = —5r 0 T THw — Am2 cos(26) (7.28)

where we have used egs. (7.16) and (7.17).

We note that fmsw does not depend on a, thus as mentioned above, the change a — @ induced
by the neutral current interactions does not matter at all. The important point is that
for 4Fw ~ Am?cos(20) there can be a dramatic effect and the oscillation probability can
increase substantially. In fact, this effect is very important in the explanation of experimental
results.

7.3 The See-Saw Mechanism

In this section we are concerned with neutrino masses and offer a possible explanation as to
why they might be so small compared to other fermion masses. We will restrict ourselves to
the case of one family.

As mentioned previously, introducing a right-handed neutrino allows us to write down the
same kind of Yukawa coupling as for the u-type quarks, eq. (5.25). This will result in a
‘usual’ Dirac mass term for the neutrinos of the form

mpvy = mD(ULVR + VRVL) (729)

(compare to eq. (5.27)). There is no doubt that such a term can be introduced in the
Lagrangian, but it leads immediately to the question of why the v mass is so much smaller
than the other fermion masses. In fact, we would expect that the Yukawa couplings of all
fermions are roughly of the same order. This would lead to neutrino masses roughly of the
same size as the masses of the other leptons, obviously in sharp contrast to observations.

However, the very special properties of the right-handed neutrinos allow us to write down
yet another term in the Lagrangian. Recall that we want to write down the most general
gauge invariant Lagrangian, given the gauge group and the matter content. In fact, since vg

is a singlet under all gauge transformations, we can (or even have to) add a term like

Mvgrr + he.. (7.30)
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Note that for this term to be gauge invariant it is mandatory that Y (vg) = 0 and that v
neither couples to SU(2) nor SU(3) gauge bosons. ‘

This is a Majorana mass term, but its fermion index contraction is perhaps unclear, so let

us consider this with some care:

o The Dirac mass for a four-component spinor is of the form

mpp = mpTy(P} + PR)Y = mp(Pryr +Pribr) . (7.31)

So to get a Lorentz scalar, a left-handed two-component fermion must be contracted
with a rigth-handed two-component fermion.

* Recall that the antiparticle of a chiral fermion has opposite chirality from the particle:
1) The negative energy solutions of momentum § became the positive energy solutions
of —p. .

2) For a massless (= chiral) particle, helicity = chirality, and helicity is §- 7, so the
antiparticle has opposite chirality from the particle.

In analogy with the Dirac mass term, one could try to write a mass term between the chiral
¥y, and its antiparticle as

m({WL)° ¥, + hec.. (7.32)

One should take care with such expressions in the literature, because the operations - C
and Py, do not commute, and different authors perform them in different order. Eq. (7.32) is
a Lorentz scalar and can also be expressed as milioypy, and is often written as mLr,
with the index contraction understood. This is the notation of eq. (7.30).

Whereas mp is expected to be of the same size as charged-lepton masses, the most natural
value for M is much larger. Ultimately we expect that at a high energy scale (maybe the
GUT scale M ~ 10 GeV) there is a theory that explains all of the fermion masses. Then,
the natural value for the fermion masses is of the order M. However, all fermion masses
except for the vp are ‘protected’ by chiral symmetry. This explains why mp < M. To
understand the consequences of M > m, consider the neutrino mass matrix

_ 0 mp VL
(o ) [mD Iy J ( ) ) (7.33)

In order to get the masses of the physical particles, i.e. the eigenstates of the mass matrix,

we have to diagonalize this matrix. The eigenvalues are approximately given by

2
mp

ﬂ— and M, (734)
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where we used mp <« M. Thus we can sce that the physical neutrinos are a (nearly)
left-handed neutrino with mass m% /M and a (nearly) right-handed neutrino with mass M.
Taking mp ~ m, and M ~ 10* GeV, we get m ~ 0.03 eV, which is not too far from the
measured atmospheric mass difference. This may serve as an explanation as to why the mass
of the left-handed neutrino is so much smaller than the mass of the other leptons.

If this explanation is correct, then there should also be very heavy (nearly sterile) right-
handed neutrinos. If they have GUT-scale masses, they may not be interesting for collider
experiments, but they can be relevant in cosmology. If the vy are produced in the universe
after inflation, they could produce a lepton asymmetry in their decay. The Standard Model
has non-perturbative B4-L violating interactions, which are rapid at temperatures T > myy,
which would partially transform this lepton asymmetry into a baryon asymmetry. This
scenario, called leptogenesis, appears to work (it may require CP violation beyond the SM)
and adds to the attraction of the seesaw model.

7.4 Summary

e When neutrino masses are included in the Lagrangian, mixing angles appear at the
charged current vertex, as in the quark case.

e The experimental signature of (small) neutrino masses is oscillations: a neutrino pro-
duced from one flavour of charged lepton, can be detected by the appearance of a
different charged lepton. Thus, an electron neutrino produced in the sun can arrive as
a neutrino of a different flavour on earth.

e If the neutrinos travel through matter rather than the vacuum the oscillation pattern
can change dramatically.

e The see-saw mechanism provides us with an explanation of why the neutrino masses
are so much smaller than the other lepton masses.

- 195 -



8 Supersymmetry

This is the only section truly beyond the Standard Model. However, supersymmetry (SUSY)
plays an important role in particle physics phenomenology, so in this section we will outline
the basic ideas of this new symmetry, why so many theorists like it and sketch how to
‘supersymmetrise’ the Standard Model.

Supersymmetry is a big topic, and this is a short lecture. There are books and review
articles for readers of all tastes. In preparing this lecture, I have used, among others, a
phenomenological introduction by S. Martin, hep~ph/9709356 (~ 100 pages) — which uses
the space-time metric (—, +,+, +), and also a review of physics beyond the Standard Model
(BSM) by M. Peskin, hep-ph/9705479.

8.1 Why Supersymmetry?

We have learned from LEP and other experiments that loop calculations work. This is a
shining success for the Standard Model: we calculate, as a function of a few input parameters,
quantum corrections to many (precision) observables, and what is measured agrees very well
with the calculations. Nevertheless, there are several arguments as to why the Standard
Model is probably not valid for energies up to the GUT scale.

First of all, the Standard Model requires a ‘light’ Higgs boson of mass ~ 100 GeV. However, if
one calculates loop corrections to the Higgs boson mass, they are “quadratically divergent”,
that is proportional to A% p where Ay p is the scale of New (BSM) Physics. There are various
conclusions that one can draw: there is new physics close to the electroweak scale that does
not contribute visibly in the precision observables of LEP, or the loop contributions cancel
against each other, or the Higgs mass in the Lagrangian has just the right value to cancel the
quadratic divergences (this is called “fine tuning”, and unpopular not only among theorists).
We will see that supersymmetry is a combination of the first and the second solution.

Secondly, the running of the gauge couplings indicates that, at a very high energy scale, the
strong, electromagnetic and weak interactions may combine into one unified force, with one
unique coupling strength. Within the SM, this GUT scenario does not quite work, but it can
be achieved within supersymmetric extensions due to the additional particle content which
contributes to the running of the couplings.

Thirdly, even though the SM works amazingly well in the sector of electroweak precision
observables, one of the most precise tests of all fails by about 3.4 0. The measurement of the
anomalous magnetic moment of the muon, g—2, from BNL, is larger than the SM prediction.
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This discrepancy could well be solved within supersymmetry, but less easily (or not at all)
in other extensions of the SM.

In addition to the above arguments, SUSY could also supply a much sought after dark matter
candidate, e.g. with the neutralino as the lightest stable neutral SUSY particle.

In the following we will give a brief introduction into the formalism and consequences of
SUSY.

Supersymmetry is a transformation which turns bosons into fermions, and fermions into
bosons. If it is a symmetry of the Lagrangian, then every fermion must have a bosonic
partner and vice versa, and the interactions are restricted by the symmetry. When we
supersymmetrise (exactly) the Standard Model, we will therefore (more than) double the
number of particles — but the number of coupling constants stays (almost) the same.

Exercise 8.1

Consider the interaction Lagrangian

2
L = yH(Ttn + Z;tL)+%SH2(T1T;+T2T;)

where I, ¢g are chiral fermions (the top?), H is a real scalar and 7} and T}
are complex scalars.

¢ Draw the Feynman diagrams for the one-loop contributions to the Higgs
mass from t, 77 and T5.

o Using Feynam rules from the lectures, calculate the leading (= most diver-
gent) part of the diagrams at zero external momentum.

e Find a desirable relation between y; and yg, such that the divergences can-
cel.

e Now include soft scalar masses

take the supersymmetric relation that you have found between ys and y,, and

estimate the same one-loop diagrams.

8.2 A New Symmetry: Boson < Fermion
Recall that a symmetry, be it local gauge, or global like Poincaré, is defined by operators

which generate the transformations under which the Lagrangian transforms to itself, plus a
total divergence. These operators are called generators.
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We are looking for an operator @), acting on bosons |b) and fermions |f) such that

QY =1f), QI =1b). (8.1)

Bosons have even spin and mass dimension (where I am counting the mass dimension of
a field in four dimensions), fermions have odd spin and mass dimension, so we conclude
that the operator @) should have spin 1/2 and mass dimension 1/2. And since it transforms
bosons into fermions, and fermions into bosons, our supersymmetric Lagrangian should have
exactly the same number of fermionic and bosonic degrees of freedom. So there is a complex
scalar for every chiral fermion, a chiral fermion for each massless vector, and fundamental
real scalars are not allowed.

Since @ is a fermion, it should have a spinor index. By statistics and dimensional analysis,
we can imagine it acting on fields (operators) as

[Qaa ¢] = T/)a )

8.2
Q% 0} ~ O+ M+ g, ... A, (82)

It is clear that Q* changes spin, so mixes into the Poincaré group of translations and
rotations. It can be shown that there is one way, and only one way, of extending the
commutation relations of the Poincaré group (Haag-Lopuszanski-Sohnius extension of the
Coleman-Mandula theorem). And this extension is supersymmetry, with the properties we
were looking for above. More precisely, one may introduce fermionic generators Q,, in ad-
dition to the bosonic symmetry generators (P, for translations and M, for proper Lorentz
transformations), which satisfy the following algebra:

{Qa, Qp} = 20%,P,, (8.3)
{Qa;Qs} = {Q.,Qg} = 0, (8.4)
Qa,P,] = 0, (8.5)
[Qo, M| = (o) Qp. (8.6)

The labels o and 3 are spinor indices taking the values 1 and 2, the bar denotes conjugation
and the algebra involves anticommutators and commutators. Another important point to
note is that in eqs. (8.3), (8.5) and (8.6) the new generators mix with the other Poincaré
generators.

A theory is supersymmetric if it is invariant under the group of transformations generated
by P,, M, and Q,.

In such a theory, for every bosonic state there is a fermionic state with the same energy, and
vice-versa. This follows directly from the fact that the Hamiltonian (Pg) commutes with Q.
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Another interesting feature is that the cosmological constant vanishes: the Hamiltonian is
bounded from below and the ground state has zero energy (if SUSY is not spontaneously
broken). To understand this we simply have to note that since ¢° is equal to the unit matrix
and Py is the Hamiltonian, eq. (8.3) entails

{Qq, Qp} = 2645H . (8.7)
From this we conclude for an arbitrary state ’|¢)
(YH[y) = #1QQY) = [Qy)[| = 0. (8.8)
At the same time we see that
(WH[y)=0 & Qy)=0, . (8.9)

which is precisely the condition for SUSY not to be spontaneously broken (see eq. (4.18)).

8.3 The Supersymmetric Harmonic Oscillator
In this subsection we will consider the simplest supersymmetric model and convince ourselves
that this model indeed has all the nice properties we expect.

Let us start with the usual (bosonic) harmonic oscillator. The Hamiltonian is given by

1

Hp =3 (p* +wha?) . (8.10)
If we define creation and annihilation operators
(b= isz), = i (pt i) 5.1
a= — WRT), ot = iwgx) , .
Yon p B Gy p B
then the canonical commutation relation [p,z] = —i entails the usual commutation relations
for the creation and annihilation operators
la,a*]=1, Ja,a] = [a*,a*] = 0. (8.12)

If we write the Hamiltonian eq. (8.10) in terms of the creation and annihilation operators,

we get
_ YB o4 +) — 1
Hg = 5 ( a+a,a) = wB(NB+2>, (8.13)
where we have defined the counting operator Ng = a*a. The energy spectrum of this

Hamiltonian (i.e. its eigenvalues) is given by

1
En, = wp (nB n 5) with np=0,1,2,3,.... (8.14)
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A point to note is that the ground state energy Fy is 1/2 and not 0. In a quantum field
theory this leads to the problem with infinite ground state energy. This problem is solved
by normal ordering.

Let us now repeat these steps for a fermionic harmonic oscillator. We introduce fermionic
creation and annihilation operators b and bt. They satisfy

(6,67} = 1, {65} = {b*,6"} = 0. (8.15)

These relations correspond to eq. (8.12). However, since we are dealing with fermionic
operators now, the commutators are replaced by anticommutators. In analogy to eq. (8.13)
we write the Hamiltonian of the fermionic harmonic oscillator as

_ YF hhr ) 1
Hr = 25 (5" b—bb") —wF(N 2)1 (8.16)

where we have introduced another counting operator, Np = b b. Note that there is a relative
minus sign between the b* b and bb* term. This sign is due to the fermionic nature of the
creation and annihilation operators.

The energy spectrum of this Hamiltonian is given by
1 .
E,, =wp (np — 5) with np=0,1. (8.17)

Note that contrary to eq. (8.14), ng can only take the values 0 or 1. This is a reflection of
Pauli’s exclusion principle in that there cannot be two fermions in the same state.

If we wish we can find an explicit representation of the creation and annihilation operators

b o 10 (0 O)
s 1= 2 = H
10

in terms of Pauli matrices,

01
b+ = + ] = I 818
o1 + 109 ( 3 ) ( )
In this representation the Hamiltonian eq. (8.16) is given by
[99) 2 1 0
Hp = = g = 8.19
F 5 03 ( 0 —1 ) ' ( )

and we see that the eigenvalues of Hj are indeed +wp/2 as given in eq. (8.17).

Now we are ready to combine the fermionic and the bosonic harmonic oscillator. If we just
add the two, we do not increase the symmetry of the theory. In order to do this we also have
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to require wp = wr = w. Only in this case do we end up with a supersymmetric model. The
Hamiltonian then is

H = Hy+ Hp = 8(cL'+CL+aCL+—}—b+b—blfr) = w(a+a+b+b). (8.20)

WR=Wp=Ww 2

First of all we naively see that H has an additional symmetry a < b. A state is now
determined by two quantum numbers ng and ng, and the energy spectrum is

ETLBMF = w(nB—I-np) with nge :0,1,2,3,..., nrg :0,1 (821)

Note that the ground state energy is Eypo = 0. Thus as advertised above, the ground state
has zero energy. This is simply because the bosonic ground state emergy +1/2 and the
fermionic ground state energy —1/2 cancel.

The other feature mentioned before, namely that the states appear in pairs (a fermionic
and a bosonic state) with the same energy can be seen from eq. (8.21). Indeed, the states
|ng,nr = 0) and |[ng — 1,nF = 1) have the same energy. Furthermore [ng,nr = 0) is a

bosonic state (integer spin), whereas |ng —1,np = 1) is a fermionic state (half-integer spin). -

8.4 Supercharges

In this subsection we want to look at the symmetry found in subsection 8.2 in a somewhat

more formal way.

Through the Noether theorem, a symmetry is related to a conserved current and a conserved
charge. Thus, in a supersymmetric theory there is a conserved supercurrent and a conserved
supercharge. It is the latter that generates the transformations and we denote it by Q. Since
it is conserved it has to commute with the Hamiltonian.

For the supersymmetric harmonic oscillator the supercharge is given by
Q: = ﬁ(a+b+ab+), Q: = ivw(atb—ab), (8.22)

where, as mentioned after eq. (8.3), Q has a spinor index. We now show that the supercharges
as defined in eq. (8.22) have the desired properties. Using the (anti-) commutation rules for
the creation and annihilation operators, egs. (8.12) and (8.15), we can compute

{Q1,Q} = w{atb+abt,atb+abt}
= wiatbab’} +w{ab", at b}
. 2w(a,+a(1—b+b)+(1+a+a)b+b)
= 2w(a"a+b"b) = 2H. (8.23)
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In a similar way we can compute the remaining anticommutators of Q; and Q-, and we get

{Q1,Qi} = {Q3,Q,} = 2H, {Q1,Q2} = 0. (8.24)

Note that this is in agreement with eq. (8.7). Now we can see that, as promised, the
supercharge is conserved:

Qi H] = [Ql,(Q1)2] = 0, (8.25)
[Q:,H = [Q,(Q)? = 0. (8.26)

Egs. (8.25) and (8.26) allow us to see that the states in this theory come in pairs. In fact,
let |¥) be an eigenstate of H, i.e. H[¥) = Ey|¥). Then Q;|¥) is an eigenstate of H with
the same energy,

HQ,|¥) = QiH|Y) = QiEy|¥) = ByQ|T). (8.27)
If [¥) is a bosonic state containing np bosons and no fermions, then
Qi) = Qulnp,0) = v (a"b+ab*)|ng,0) = |np—1,1) (8.28)

is a fermionic state with the same energy. Similarly, if |¥) = |ng, 1) is a fermionic state,
then Qu|¥) = |np + 1,0) is a bosonic state with the same energy. Thus the states come
indeed in pairs with the same energy, one fermionic and one bosonic.

Of course, the same argument could have been made with Q, rather than with Q:. However,
Q- acting on a state |¥) produces the same state as Q acting on a state |¥). Thus, there
are not four but only two states with the same energy.

What we have seen is that if we start with the usual bosonic harmonic oscillator and want to
make this theory supersymmetric, then we are led to introduce for every bosonic (fermionic)
state a fermionic (bosonic) state with the same energy. This is exactly what happens if we
want to make the Standard Model supersymmetric: For each boson (fermion) we have to
introduce a fermionic (bosonic) partner, thereby doubling the particle spectrum.

8.5 Superfields

The superfield is a very convenient piece of SUSY notation, which rests on the abstract
idea of supersymmetrising space-time. Suppose that for the four (bosonic) dimensions we
know, that is z,y,2z and t, we add a pair of fermionic dimensions n and 7. The SUSY
transformations @ and @ are translations in the fermionic directions of this “superspace”.
Being 7 and 7] fermions, they anticommute with themselves, so the Taylor expansion in these

fermionic dimensions ends quickly!
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The superfield associated with, say, the Higgs, is a function of superspace:

H(z",m) = H(z")+nh(z") +nnF(z"). (8.29)

H is an example of a (left-handed) “chiral superfield”, a simple sort of superfield that is
independent of 7, suitable for decribing a matter multiplet made of a left-handed fermion
and complex scalar. By a standard abuse of notation, the superfield has the same symbol as
its scalar component. So on the RHS of the equality, H is the scalar Higgs, h is the higgsino,
and F' is a bosonic field of mass dimension two, which therefore cannot have kinetic terms
and can be removed from the Lagrangian by using its equations of motion (something like
a Lagrange multiplier). We make no more mention of F, other than to note that it is the
origin of calling part of the SUSY Lagrangian “F-terms”.

The reason that superfields are convenient, is that one can compactly write all the SM
Yukawa interactions, and their supersymmetric relatives (of which there are very many), as
the “superpotential”:

W = Y. H,LE‘+Y,H,LN°+ Y;H,LD® + Y, H,LU®. (8.30)

For simplicity, let us consider only one generation. Y} is the Yukawa coupling for fermion
f, and the right-handed fermions (e.g. €gr) have been written as left-handed anti-particles
(e°). Notice that there are two physically distinct Higgs doublets H,, and H,, where in the
SM we have used one doublet and its charge conjugate. We will return later to the reason
for this extra field.

To obtain supersymmetric interactions of component fields, in ordinary four-dimensional
space, one should extract the F-term of W. That is, expand each field as in eq. (8.29) and
pick out all the terms oc 7%, It is clear that this will include the SM Yukawsa couplings,
because each fermion comes with an 7. It also gives scalar four point interactions. The full

expression is

. W oW ,
ESSM = kinetic terms + ; ml/)ﬂ/b - ; l 8<I>Z |
= ...+ Y, Hyle"+ ... — |}/e]2(HdL)(HdL)* -, (831)

where 1, 7, k run over all the superfields in W, and on the second line are the parts coming
from derivatives with respect to F¢. The fermion index contraction is in the same shorthand
as eq. (7.30). The kinetic terms and gauge interactions come from another function of the
superfields.

It is possible to draw diagrams and do calculations in superspace; this can be useful for
obtaining exact supersymmetric cancellations.
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8.6 The MSSM Particle Content (Partially)

The Lagrangian for the Minimal Supersymmetric SM (MSSM) can be motivated as follows:

1. Add a boson for all SM fermions, and a fermion for all SM bosons.
2. “Supersymmetrise” the SM Feynman diagrams.

3. Observe that step 2 gave superpartners with the same masses as their SM relatives.
As we have not observed any superpartners, add “SUSY breaking” mass terms to
make them heavier than current experimental sensitivities. (These masses are called
“soft” because the quadratic divergences still cancel — as you have discovered in the
problem.)

This heuristic recipe will give a Lagrangian with ~ 125 free parameters, compared to 19 in
the SM. The vast majority of the additional parameters come in the SUSY breaking sector
and make the theory unwieldy to study. It is therefore common to work within simplified
SUSY breaking scenarios with fewer parameters, like e.g. mSUGRA, the minimal version
of supergravity grand unmification. In this model universality of the soft SUSY breaking
parameters is assumed (there are only four additional new parameters plus one sign), leading

to a suppression of flavour changing neutral currents.

In this subsection we restrict outselves to the first step outlined above, describing the particle
content of the MSSM. Feynman rules can be found elsewhere.

Superpartners are often written as capitalised, or “tilded” SM particles. The partners of
one generation of SM leptons are a slepton doublet, a singlet selectron and a “right-handed”

(3 < (3) = oo (5)
= I 4 (8.32)

eC
(VR)C - (Vﬁ) or Nc’

sneutrino:

and sometimes, abusively, the ¢ is dropped from the singlets, although they remain “left-
handed”. Similarly, one introduces squark partners, of all colours and flavours, for the
quarks.

The spartners of the SM bosons are the “-inos”, who can be names according to whether

they are added before (Bino and three Winos) or after (Photino, Zino and two Winos)
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spontaneous symmetry breaking:

Y -~ 7,
Z — Z or z,
W — wF or wt, (8.33)

+ . 5t
H= il — h, = }f“ .
H, hd

In supersymmetry, we need a second Higgs doublet. One can see this from the formal
structure of the theory, or from considerations of anomaly cancellation, or by counting
fermionic degrees of freedom. Let us do the last: Suppose we break the electroweak gauge
symmetry in an exactly supersymmetric SM. The spartners must therefore have the same
masses as the SM particles, and notice in the SM after spontaneous symmetry breaking,
there are no massless charged bosons. However, among the inos in eq. (8.33), there are three
chiral charged fermions, and it takes two chiral fermions to make a massive charged “Dirac”

fermion (a Majorana mass would break charge conservation). The solution to this problem

Hd=(f;) — ﬁd=(£§) (8.34)

which gives mass to the d quarks and charged leptons.

is to add a second Higgs,

Recall that we must add soft masses for all these new fermions, to ensure that they should
not have been discovered yet, so the physical mass eigenstates will be four neutralinos and
two (four component fermion) charginos, respectively linear combinations of 4, 2, b, and hg,
and w¥, h} hy.

Pt T 2]

8.7 Summary

e Supersymmetry transforms bosons «» fermions. It is an (the only possible) extension
of the Poincaré algebra.

e Since fermion loops come with a relative minus sign, the Higgs mass would have no
quadratic divergence in an exactly supersymmetric theory.

e To supersymmetrise the SM, one has to add a boson (sfermion) for every fermion, and
a fermion (~ino) for every boson. Then one adds a second Higgs doublet and its SUSY
partners.

o No spartners have been observed so far, so one gives them masses in excess of current
experimental bounds. This breaks the supersymmetry, and allows finite corrections to
the Higgs mass.
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o At the time of writing this sentence, supersymmetry has not been found.
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° Introductory remarks
e LHC: QCD processes rule

e The pattern of QCD radiation

e Basics for dealing with QCD jets
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introduction QCD processes QCD radiation

Chasing the energy frontier

View of the 1990's . ..

10,000 ———1— T L N [

1000 [ Hadron Colliders

=
[
S
p
& 100 MSLC, LEP -
e 7 TRISTAN
= o *PETRA, PEP
8 ,4CESR
= L - e VEPP IV |
5 10 LSSPEAR )
s pé SPEAR, DORIS
g » ADONE |
3 # ete~ Colliders ‘
£ 1k  PRIN-STAN, VEFP II, ACO
5 m ¢ Completed
B & Under Construction |
S © In Planning Stages |
o

1960 1970 1880 1980 2000
BMTASED Year of First Physics |

»
o
-
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Introduction QCD processes QCD radiation

Phenomenology at colliders

The past up to LEP and Tevatron

|
@ 1950's: The particle zoo !
Discovery of hadrons, but no order criterion ]‘

i

|

@ 1960’'s: Strong interactions before QCD
Symmetry: Chaos to order

@ 1970's: The making of the Standard Model:

Gauge symmetries, renormalizability, asymptotic freedom
Also: November revolution and third generation

|
|
9 1980's: Finding the gauge bosons |
Non-Abelian gauge theories are real! [

1

@ 1990's: The triumph of the Standard Model at LEP and Tevatron
Precision tests for precision physics

— S M — N ——— L ———
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Introduction QCD processes QCD radiation Jets

Phenomenology at colliders

The present: LHC

@ Historical trend: Hadron colliders for discovery physics
Lepton colliders for precision physics.

@ Historical trend: Shape your searches - know what you're looking for. |
This has never been truer. 1

@ In last decades: Theory triggers, experiment executes. !
Also true for the LHC?

F. Krauss
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Introduction QCD processes QCD radistion

Setting the scene

Reminder: The Standard Model

@ 3 generations of matter fields:
left-handed doublets, right-handed singlets

[ Quarks [ Leptons |
Ol e SR e (0
4 Jr s JL b J e/ b/ T /L
ug R tr
dr SR br eR KR TR

o (Broken) gauge group: SU(3) x SU(2) x U(1) — SU(3) x U(1):
8 gluons, 3 (massive) weak gauge bosons, 1 photon

o Electroweak symmetry breaking (EWSB) by introducing a complex
scalar doublet (Higgs doublet) with a vacuum expectation value
(vev) == 1 physical Higgs scalar
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Setting the scene: How we know what we know

Generations . EW precision data
=
=
.E; v Measurement Fit cllr)""“—o"hrd"‘“
=]
bg 30 F ALEPH | m,|GEV] 911875 :0.0021 @1.1675 I.
| T DL I,iGeY] 24952300023 24956
DELPHI Gis;nbl 4154020037 41,478 s
A, 7E70.025  20.743
L3 A 0017 00095 0.01644
()PAIJ I Al il = ¥ 131 :
F | s 2 - 21552 pm—
20 5 021628 = 9,00066 0.21552
A | R, 01721 20,0030 0.1722 .
{ average measurements, /| | AP 00092 29,0016 0,1038 i
error bars increased /| | ALY 7 0.0742 m—t i
by factor 10 y A, 0935 i
A A, 0.668 |
10 ABLD)  01518£00021 01491
F ny(GEV|  BO3SS 0005  0a7e heem
| i (G Y098 = 0.0 2
| i, 1GaV 24
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Setting the scene

Open questions (private preference)
@ True mechanism of EWSB: Higgs mechanism in its minimal or an
extended version or something different?
@ Generations: Three or more?
@ More symmetry: Is there low-scale Supersymmetry?

@ Space-time: How many dimensions? Four or more?

e ——————

@ Cosmology: Any candidates for dark matter?
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LHC - The energy frontier

Design defines difficulty s

@ Design paradigm for LHC: _
Q Build a hadron collider '
Q Build it in the existing LEP tunnel :._
& Build it as competitor to the 40 TeV SSC !

o Consequence:

Q@ LHC is a pp collider
@ LHC operates at 10-14 TeV c.m.-energy
Q@ LHC is a high-luminosity collider: 100 fb™!/y

Trade energy vs. lumi, thus pp

@ Physics:

& Check the EWSB scenario & search for more _i
@ Fight with overwhelming backgrounds, QCD always a stake-holder
@ Consider niceties such as pile-up, underlying event etc..

1
————cr
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LHC - The energy frontier

Some example cross sections

Or: Yesterdays signals = todays backgrounds

Process Evts/sec.
Jet, E| > 100 GeV 10°
Jet, E, >1TeV | 15-1072

bb 5-10°
tt 1
7 — 00 2
W — v 20
WW — fuly 6103

Rates at “low" luminosity, £ = 1033/cm2s = lo_lfb—l/y
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Cross sections at hadron colliders

Master formula

Production cross section for final state ® in AB collisions:

1
TAB—b4X = ZfdxldXQ Fora(x, ) o8 (00, 1E) Gap— o (8, 1, p2)
ab O

where
@ X1, are momentum fractions w.r.t. the hadron, s = x;xs;
@ G.p—.0(5, 117, u%) is the parton-level cross section,
@ and where f,,4(x, Q?) is the parton distribution function (PDF).

F. Krauss
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Intreduction QCD processes QCD radiation

PDFs and factorization

Parton picture
@ Parton picture: Hadrons made from partons.

@ Distribution(s) of partons in hadrons:
not from first principles, only from measurements.

@ First idea: probability to find parton a in hadron h only dependent
on Bjorken-x (x = E,/E} or similar) — "“Bjorken-scaling”
P(alh) = fI(x) (LO interpretation of PDF).
o But QCD: Partons in partons in partons
— scaling behavior of PDFs: f = f(x, Q2).

@ Still: PDFs must be measured, but scaling in Q2 from theory
(DGLAP, resums large logs of Q?)
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PDFs and factorization

Space-time picture of hard interactions

{1_ r£F——N
o — \‘__'__J |
Partons “collinear” with hadron: k| <« l/Rhad- -,I'— . L |
v
Lifetime of partons 7 ~ 1/x, r ~ 1/Q.
Hard interaction at scales Qy .4 > 1/ Rhad- |

Hard interaction at scale Q>>1/Rhad,
breaks recombination of partons
==2> hadron break up (loss of coherence)

@ Too “fast” for color field - only one parton takes part.
@ Other partons feel absence only when trying to recombine. &

@ Universality (process-independence) of PDFs.

@ Collinear factorization.

F. Krauss
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PDFs and factorization

Determination of PDFs: Strategy in a nutshell |

@ Ansatz g(x) for PDFs at some fixed value of Q3 = Q% ~ 1GeV?.
For example, MRST/MSTW (personal Durham bias):

xay = Agx(L = x)"2(1 4+ ey VX + yux)
xdy = Agx2(1 — x)T4 (1 4 eg/x + vgx)
xs = Asx_’\s(l — x)1S(1 4+ egv/X + vgx)
xg = Agx—Ag (1 — )81+ egv/X + vgx)

@ Collect data at various x, @2, use DGLAP equation to evolve down
to Q2 and fit parameters (including as).

@ Ensure sum rules (Gottfried, momentum, ...).
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PDFs and factorization

Determination of PDFs: Data input
Example: MSTW parameterization and their effect:

New data included. Iy |
- ) sk |
HuTeV and Chorss data on £ 70 ) and £ x, 03 replacing CCTR g
fiuTeV and ? dimuon dala included directly. Leads to a direct constraint on ?:I!I 1=
Gowr= gt and on Loy — 3 % Affects ather partons <
e [
COFEl lepton asymmetry data in two different £ bins — 2303\ « £,  3atieV and X [ e FilTevalonasa HERA Rl dad
PR 5e Y T D e JRGeYL -
——— Fitonly Tevaton @t dam
[ f e T in DISY. e
HERA inclusive jet data (in DIS} 107 o T
New CLFil high-£; jet data. L ——— Fil pseudogluon and Ay (- WRSTZ004)
Direct high-. data on Fy (1. ¢/%}. i i whhout any 1 data
Update to in¢lude all recent charm structure function data, 10t — il e \ X
. ) 10°* 10" 1
Look at dependence of fit on 1, — defined as pole mass. x

F. Krauss
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Introduction QCD processes QCD radiation

PDFs and factorization

Uncertainties of global PDFs: CTEQ6E vs. MRST2006 NNLO

xu(x, Q2 = 10000GeV2) xb(x, @2 = 10000GeV2) xg(x, Q% = 10000GeV?)
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PDFs and factorization

MSTW vs. Alekhin (NNLO) | Kinematical coverage

LHA parston Kinematics
, = TR TV dh fe) 1
— Lt ]
MO | L !
30 TeN
. !
| i
z . ¢ A
s ’ H
P 'r = e LLETNY | {
“ :
I I
f !
s ] - L L1
) .t (s 7 i
. | RS U rd |I
'.".f,_« i / |
" S
%, ‘ P ( |
i \‘hh | - |
1 { 5w i l i L |
i 3
!

F. Krauss

Phenomenology at collider experiments [Fart 1 Gf

Introduction QCD processes QCD radiation

Higher-order corrections

Specifying higher-order corrections: 4* — hadrons

LO:J"—bqﬁ
NLO: +4q @ In general: N"LO < O(af)

NNLO:+48 - o Byt: only for inclusive quantities

(e.g.: total xsecs like v* —shadrons).

Counter-example: thrust distribution

NLO ("m) 210 (cls /(ﬂ—]

@ In general, distributions are HO.

9 Distinguish real & virtual emissions: Jl
Real emissions — mainly distributions, 5
virtual emissions — mainly normalization. |
)

ms— P ——— — . . T —
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Higher-order corrections

Anatomy of HO calculations: Virtual and real corrections

LO"\,\,<§>V\
L NLO corrections: O(a)
MO ]~<':I Q"*‘Z' %l *  Virtual corrections = extra loops

,f Real corrections = extra legs
|r\<+ r\—é{ >~ +’>"
—1el

Renl

@ But also: IR-divergences in real & virtual contributions
Must cancel each other, non-trivial to see:

|
@ UV-divergences in virtual graphs — renormalization I
i

N vs. N + 1 particle FS, divergence in PS vs. loop |

F. Krauss
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Higher-order corrections

Cancelling the IR divergences; Subtraction method
@ Total NLO xsec: onLo = 0Bom + [ dPkIM3 4 [d*k

M
@ IR div. in real piece — regularize: [d*k|M|% — [dPkIM|%
o Construct subtraction term with same IR structure;

[ a2k (1M — IMR) = [ d*KMf3 = finite

Possible: [ dPk|M|% = oo [ dPk|S|?, universal |S|2.
o [dPkIM3 + oBom |/ delﬁF = finite (analytical)

@ Has been automated in various programs. :
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Cross sections © hadron colliders

Availability of exact calculations

m loops

- done

k for some processes

first solutions 5

F. Krauss
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Intraduction QCD processes QCD radiatich

Cross sections © hadron colliders

Tree-level tools

Models 2 —n Ampl, Integ. public? lang.
Alpgen SM n=28 rec. Multi yes Fortran
Amegic SM,MSSM,ADD n==6 hel. Multi yes C++
CompHep SM,MSSM n=4 trace 1Channel yes C
HELAC SM n=38 rec. Multi yes Fortran
MadEvent SM,MSSM,UED n==6 hel. Multi yes Fortran
O'Mega SM,MSSM,LH n=238 rec. Multi yes O’Caml
Sl ==~ = —— ————— _________J
Loop-level tools (one loop)
Processes public? lang.
MCFM SM, 3-particle FS yes Fortran
NLOJET++ up to 3 light jets yes CH++
Prospino MSSM pair production yes Fortran
e T -
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To take home

LHC, the QCD machine
@ There are no LHC events without QCDI!! |

@ Perturbative expansion in as sufficiently well understood, |:
but: hard to calculate beyond (N)LO.

@ Important input to xsec calculations: PDFs
Must be taken from data, only scaling from QCD

@ Order of an calculation is observable-dependent
make sure you know what you're talking about. ;

F. Krauss
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From parton to hadron level

Limitations of parton level calculations

@ Fixed order parton level (LO, NLO, ...) implies fixed multiplicity
= no clean way toward exclusive final states.

@ No control over potentially large logs
(appear when two partons come close to each other).

@ Parton level is parton level
experimental definition of observables relies on hadrons.

Therefore: Need hadron level!
Must dress partons with radiation!
(will also enable universal hadronization)

T . — R S—— e ————
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Origin of radiation

Accelerated charges radiate |
@ Well-known: Accelerated charges radiate

@ QED: Electrons (charged) emit photons ,'
Photons split into electron-positron pairs .‘

QCD: Quarks (colored) emit gluons
Gluons split into quark pairs

©

|
Difference: Gluons are colored (photons are not charged) |
Hence: Gluons emit gluons! :

1

@ Cascade of emissions: Parton shower

F. Krauss
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Pattern of radiation

Leading logs: e"e™ — jets
@ Differential cross section:

dO'ee_>3j Cras X]? +X§

(1 —x )1~ x2)

Singular for x; 2 — 1.

@ Rewrite with opening angle 6,
and gluon energy fraction x3 = 2E,/E;

= Oee—2j 23

daee—>3j Cras 2 141 — X3)2
d cos 8ggdx3 ki

sin2 Oqg x3

Singular for x3 — 0 (“soft”), sin 4, — 0 (“collinear").
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Pattern of radiation

Leading logs: Collinear singularities

9o Use
2d cos 8qg _ dcos fqg - d cos 8qg - »dcoséqg P d cos 054 - d9(2,g dQ%g
sin2 6qg 1 — cos 6gg 1+ cos6gg 1 — cos fqg 1 — cosOgg O%g G%g '
@ Independent evolution of two jets (g and g): “
2
dJee—>3j N Oee—2j E o _gTP(Z) ) ]
j€{q,q} e ‘
[
I

where P(z) = I—’L(lzi (DGLAP splitting function)

F. Krauss
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Pattern of radiation

Leading logs: Parton resolution |

@ What is a parton?
Collinear pair/soft parton recombine!

@ Introduce resolution criterion k; > Q.

@ Combine virtual contributions with unresolvable emissions:
Cancels infrared divergences = Finite at O(a)

(Kinoshita-Lee-Nauenberg, Blach-Nordsieck theorems)

@ Unitarity: Probabilities add up to one
P(resolved) + P(unresolved) = 1.

] TY LTS
Py A U A
AD O I

+ s 2 A [ — I " — . WA
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troduction QCD processes QCD radiation

Occurrence of large logarithms

Many emissions: Parton parted partons

9 lterate emissions (jets)

Maximal result for t; > to > ... t,;

dt1 dt2 [dt, Q?
do x ogg (£ — o log’ =
i/ 0
0 0
'+ How about Q27 Process—dependentI |

F. Krauss
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Introduction QCD processes QCD radiation

Occurrence of large logarithms

Ordering the emissions : Pattern of parton parted partons

2 {2
2 q2, K‘ D M
q AL D o
s . 2 _
q3 -:r'?"j
q1>q2>q3 a > 9 |
-221 -
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Introduction QCD processes QCD radiation

Inclusion of quantum effects

Running coupling

o Effect of summing up higher orders (loops): o, — as(k*) |

1

!

@ Much faster parton proliferation, especially for small k3 .

@ Must avoid Landau pole: kT > Qf > Ajcp
= Q3 = physical parameter. i

F. Krauss
Phenomenology at collider experiments {i*xc: 1 0

Intreduction QCD processes QCD radiation

Inclusion of quantum effects

-Soft logarithms : Angular ordering
@ In principle, independence on collinear variable:
t (inv.mass), k2, @ all lead to same leading logs
@ But: Soft limit for single emission also universal

@ Problem: Soft gluons come from all over (not collinear!)
Quantum interference? Still independent evolution?

@ Answer: Not quite independent.

@ Assume photon into ete™ at Bee and photon off electron at 6 e~

@ Transverse momentum and wavelength of photon: k’}_ ~ zp0, Al ~ l/kl =1/(zp8). * L

@ Formation time of photon: At ~ 1/AE, AE ~ Q/AI ~ zp62. S o

Q@ ee-separation: Ab ~ Qeelt ~ Oee/(2p02). SRR =

@  Must be larger than transverse wavelength: Ab > AI = 0Oee > 0 ¢ !

@ Thus: Angular ordering takes care of soft limit.

-222 -
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Introduction QCD processes QCD radiation

Inclusion of quantum effects

Soft logarithms : Angular ordering

$ - -
== }

Gluons at Iarge angle from combmed color charge'

F. Krauss
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Introduction QCD processes QCD radiation

Inclusion of quantum effects

Experimental manifestation of angular ordering
AR of 2nd & 3rd jet in multi-jet events in pp-collisions @ Tevatron

| [y —

af- o }1‘1 RS s © () i
f = HERWG. — sart L1 SR S
iow- .1(‘ | }& . : o,
k) L‘] £ Y hat - i Y
azak b - : * | J %{f 1 '[‘d""" '“1.
o . & ses of 1 .
¢ owmf e, J ‘v‘_a ¥ 3 .a_.‘ A :
E o }_.‘..1“‘3‘&_, Liaanl ,". aj e ,_‘.:\..
H o ll. “ g «) )
4 ¢, " [+ [
Y \ I
T{ 'a"‘b ! \ ("
ot | .“- - b oo .,..?,'J " '
B 8 RO~ S L SO, S 7 AR X ¥ /RS X
R 3 L1 &
1 i) )
- . e R e S B
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ntroduction QCD processes QCD radiation

Parton showers

Simulating parton radiation
@ Catch: Can exponentiate all emissions due to universal log pattern.

@ For parton showers use Sudakov form factor: i

Ng(Q% Q1) = exp /dk2/ as[kz zk2)] 5(2)

2

dk?
= exp —/ P(k?) %exp[ CF——log
Q0

2 02]
Q5

@ Interpretation: No-emission probability between Q2 and Qg.

F. Krauss
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Intioduction QCD processes QCD radiation

Parton showers

Tools
Shower variable A07? lang.

Pythia inv.mass: t approx. | Fortran

Pythia8 transv.mom.: k2 yes(?) | C++

Herwig opening angle yes Fortran

Herwig++ mod.opening angle yes C++

Ariadne dipole transv.mom. yes Fortran

Sherpa 3 showers: t and 2xk? | varying | C++ |
—— = == — = == i /

- 224 -
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‘niroduction QCD processes QCD radiation

What are jets?

Jets = collimated hadronic energy

F. Krauss
Phenomenclogy at collider experiments [Far

Intreduction QCD processes QCD radiation

The need for jets

Linking partons and detector signals ;
Jets occur in decays of heavy objects:  Event rates for 10 fb—!: :
Z, W= bosons, tops, SUSY, ... Process Number |
Example: top-decays tt 10°

QCD Multijets

i 3 9.108

4 7107

: 5 6-10°
5 6 3.10°

7 2. 104

8 2.108

- Pk S
- 225 -
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ntroduction QCD processes QCD radiation Jets

Linking partons and detector signals

But: Jets # partons!

CDF Run I Preliminary (L=1.13 fb")
@  Jets are unavoidable whenever partons scatter. ) 10" - Data corrected 1o the hadron levs!
L -] -
@ Perturbative picture well understood. <% 107} Systematlc wncaralnty
Example: Jet cross sections LS 107, ——— NLOJETw CTEG6.M p=PF'2,A_=13
- i M P
o % 10¢ -: ..._____._ Midpoint: R=0.7, fmr=0,75
@ Partons fragment through multiple parton emissions: o = 10': e . <
@ Soft & collinear divergences dominate B e T ———
" " . 10°F e —— i1 (x10%
Q Large logs overcome “small” coupling . - -
-\ ! e 10°E . I 0.1<Y1<0.7 (x10
@ No quantitative understanding for transition to hadrons e T iy (i
(fate of non-perturbative QCD) 107 T S 07V
Q ; - Lyzge : 10ME T raaviere oy
But: Fragmentation & hadronization dominated by low Py - -
10 ; 1.6<I¥i2.1 {x107) ; i \
o s 1 lonualases M adad
@ Therefore: Partons result in collimated bunches of hadrons 0 100 200 300 400 500 600 700
PIET (GeVc)

e e ———— - e

F. Krauss
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Intreduction 2CD processes QCD radliation

Jet definitions

General considerations _

A jet definition is a set of rules to project large numbers of objects
(dozens of partons, hundred’s of hadrons, thousand’s of calorimeter
towers) onto a small number of parton-like objects with one well-defined
four-momentum each.

For this jet definition to be useful,

@ the rules must be the same, independent of the level of application:
QCD resilience/robustness;

9 the rules must be complete, with no ambiguities;

@ the rules must be experimental feasible and theoretically sensible.
= Infrared safety cruciall

i e e S R Lk | e e —

- 226 -
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Introduction QCD processes QCD radiation

Jet definitions

Robustness
\/ W W b
| jot |
jet 1 jet2  jet1 jet2  jett jet2  jet jet 2

VY

Projectian to jets should be resilient to QCD effects

F. Krauss
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Introduction QCD processes QCD radiation

Jet definitions

Collinear/infrared safety

Collinear Safe Collinear Unsafe

LB 140 1k 140

jet1 jet1 I jet1 i ' jet1 |_I__|
jet2
of X (—=c0) of X (+o0) of X (=0 ) of X (+o0)
Infinities cancel infinities do not cancel

F. Krauss
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ntroduction QCD processes QCD radiation

Jet definitions

Cone jets: Fixed cone, progressive removal

@ Main idea: Define jets geometrically,

remove found jets. p/GeV |
@ Take hardest particle = cone axis. i 1|
@ Draw cone around it. Uy |
@ Convert contents into a “jet” and o
remove them. o
@ Repeat until no particles left.
@ Parameters: Cone-size, pPi® % E : I a g
@ good feature: Simple. 111 1 | i
@ Bad feature: Infrared safe. o L] | I '

F. Krauss
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Introduction QCD processes QCD radi
s X

Jet definitions

Cone jets: Fixed cone, progressive removal |

@ Main idea: Define jets geometrically,
remove found jetS. p/GeV | nardest particle as axis
. . 60 4
@ Take hardest particle = cone axis. _
@ Draw cone around it. 504
@ Convert contents into a “jet” and 40 4 E
remove them. :
30 :
@ Repeat until no particles left. I s
. . 20
@ Parameters: Cone-size, pPin l I! ||
@ good feature: Simple. 7 ‘i !!] !
@ Bad feature: Infrared safe. o} : — ‘EI ——
Yy
L DO S _ _< /
-228 - )
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ntroduction QCD processes QCD radiation

Jet definitions

Cone jets: Fixed cone, progressive removal

@ Main idea: Define jets geometrically, }

remove found jets. pJ/GeV | praw cone i
@ Take hardest particle = cone axis. n
@ Draw cone around it. 2 |
@ Convert contents into a “jet" and 40} , :

remove them. o |
@ Repeat until no particles left. ; [';
@ Parameters: Cone-size, pPin o c _ i l
@ good feature: Simple. B IE l ,f ,
@ Bad feature: Infrared safe. e s i T

F. Krauss
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[ntroducticn QCD processes QCD radiation

Jet definitions

Cone jets: Fixed cone, progressive removal

@ Main idea: Define jets geometrically,

remove found jets. pJGeV | convert into jet
@ Take hardest particle = cone axis. ]
@ Draw cone around it. 504
@ Convert contents into a “jet” and 40|

remove them. -

Repeat until no particles left.
min o

Parameters: Cone-size, pY

o
° Ll

@ good feature: Simple. o ' l Iﬁﬂ :
o 0 Tty

Bad feature: Infrared safe. L

R R

- 229 -
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ntroduction QCD processes QCD radiation

Jet definitions

Cone jets: Fixed cone, progressive removal '.

@ Main idea: Define jets geometrically,

remove found jets. p/GeV | Hardest particle as axis
@ Take hardest particle = cone axis. ® |
@ Draw cone around it. - i
@ Convert contents into a “jet” and ) 1

remove them. = I:
@ Repeat until no particles left. | [
@ Parameters: Cone-size, pfin 2 i i
@ good feature: Simple. ~E |
@ Bad feature: Infrared safe. o LI }

F. Krauss
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Introduction QCD processes

Jet definitions

Cone jets: Fixed cone, progressive removal

@ Main idea: Define jets geometrically,

remove found jets. p/GeV | braw cone

@ Take hardest particle = cone axis. ay

@ Draw cone around it. 50 1

@ Convert contents into a “jet” and 40 5
remove them. }

Repeat until no particles left.

. . 20
Parameters: Cone-size, pi"™

good feature: Simple. S H ﬁL"?
o L= —

Bad feature: Infrared safe.

F. Krauss
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Introduction QCD processes

Jet definitions

QCD radiation

Cone jets: Fixed cone, progressive removal

@ Main idea: Define jets geometrically,
remove found jets.

@ Take hardest particle = cone axis.
@ Draw cone around it.

@ Convert contents into a “jet” and

remove them.
Repeat until no particles left.
min

Parameters: Cone-size, pY

good feature: Simple.

© © © ¢

Bad feature: Infrared safe.

F. Krauss

Phenomenology at collider experiments {Fart 1

Introduction QCD processes

Jet definitions

p/GeV |

Convert into jet
60 4
r
50
40
30 +
1
20" l
o
o i} @IILTED
9 ]
0 I v T
0 1 2 3 4y

QCD radiation

Cone jets: Fixed cone, progressive removal

@ Main idea: Define jets geometrically,
remove found jets.

@ Take hardest particle = cone axis.

@ Draw cone around it.

©

Convert contents into a “jet” and
remove them.

Repeat until no particles left.
Parameters: Cone-size, pi®

good feature: Simple.

¢ © © ©

Bad feature: Infrared safe.

e ————— e e . — e e g R TR R A © T AT g T e
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Intreduction QCD processes QCD radiation

Jet definitions

Cone jets: Fixed cone, progressive removal

@ Main idea: Define jets geometrically,

remove found jets. p/GeV
@ Take hardest particle = cone axis. -
@ Draw cone around it. 22
@ Convert contents into a “jet” and %

remove them.

30 4

@ Repeat until no particles left.
o Parameters: Cone-size, pT®
@ good feature: Simple.

@ Bad feature: Infrared safe. 0

F. Krauss
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20 4

Draw cone

Introducticn QCD radiation

Jet definitions

Cone jets: Fixed cone, progressive removal

@ Main idea: Define jets geometrically,

remove found jets. piGeV | convert into jet
. » 60 o
@ Take hardest particle = cone axis. |
@ Draw cone around it. 501
@ Convert contents into a “jet” and 40
remove them. '
30 +
@ Repeat until no particles left. ;
H min 2
@ Parameters: Cone-size, p'’ )
@ good feature: Simple. lTha
@ Bad feature: Infrared safe. 0l —te—r

F. Krauss
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Iniroduction

QCD processes

Jet definitions

k. jets

F. Krauss

@ Main idea: Sequential recombination

@ Distance between two objects / and j:
dij = min{pl?’L, p_j2,J_}ARij’

R;j = [cosh® Anj; 4 cos? A¢]/D?.

@ “Cone-size” D.
@ Include beams, distance to beam:
dig = P,'2,J_-
@ Combine two objects with smallest
dij, until smallest dj; > dcys.

@ Good feature: Infrared safe.

Phenomenology at collider experiments et 1 08

Introd

QCD processes

Jet definitions

ki jets

F. Krauss

@ Main idea: Sequential recombination

@ Distance between two objects i and j:
dij = min{P;z,p PJ?,L}A‘RUv

R = [cosh? Anj; + cos® Agj]/ D?.

@ “Cone-size” D.
@ Include beams, distance to beam:
dig = p7 | -
@ Combine two objects with smallest
djj, until smallest dij > dcys.

@ Good feature: Infrared safe.

Phenomenology at collider experiments

QCD radiation

p/GeV |
60 4

50
40
30

20 4

]
|

QCD radiation

p/GeV [} dmin is dij = 2.0263

50 4
40
30

20 i

‘WAL |

IPPP



Introduction QCD processes QCD radiation

Jet definitions

ki jets

@ Main idea: Sequential recombination
@ Distance between two objects i and J: p‘/Ge;;:
dij = min{pl?,L, PJ'Z,L}ARF' :
R;j = [cosh® An;; + cos? Agy]/D?. % |
@ “Cone-size” D. 40 1
@ Include beams, distance to beam: 0f | ]
diz = Pf,1. o | -
@ Combine two objects with smallest % | i if ' | !
djj, until smallest dj; > dcys. 10: ‘ [l ! lj “ i i
@ Good feature: Infrared safe. 04 | Bi §1SE . i

F. Krauss
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Introduction CD processe QCD radiation

Jet definitions

ki jets i
@ Main idea: Sequential recombination
o Distance between two objects i and j: p‘/Ge;; Bl
dj = min{p? PJ%L}ARijv
R;j = [cosh? An;; + cos? Agy]/D?. o
@ “Cone-size” D. 40 4
@ Include beams, distance to beam: 30: ;
di = Py o] | |
@ Combine two objects with smallest 1, f
djj, until smallest djj > deys. o1l H“ I“
@ Good feature: Infrared safe. 0 } ii AL L

-234 -
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Iritroduction QCD processes QCD racliation

Jet definitions

kl jets

@ Main idea: Sequential recombination }
@ Distance between two objects i/ and j: p‘/Ge;;: !
dj = min{p; |, p | }ARy, : |
R;j = [cosh® An;; + cos® Agj]/ D?. 2] |
@ “Cone-size” D. 7 |
9 Include beams, distance to beam: 0 i
dig = p,-2’J_. 20 ﬁ E |:
@ Combine two objects with smallest - E E | } Jia

djj, until smallest djj > dcy. 10: 1 [ ' ' ! ]
@ Good feature: Infrared safe. 0 —— Sl l
|

—— g e — T e o s T EEEEEEEEEE—m———————.

F. Krauss
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Introduction QCD processes QCD radiation

Jet definitions

k| jets
@ Main idea: Sequential recombination
@ Distance between two objects i and j: p‘/Ge;;: R
dij = min{p)‘%J_) pj2,_l_}ARiJ" '
R;j = [cosh? An;; + cos? A/ D?. 2
@ “Cone-size”" D. ‘ 40 { :
@ Include beams, distance to beam: 30 |
dig = pf | - . O
@ Combine two objects with smallest 11 | I
djj, until smallest djj > dqy. 10: ! ll‘ I
@ Good feature: Infrared safe. o 4L LA L
i — : — — : — -
- 235 -
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"weroduction QCD pracesses

QCD radiation

Jet definitions

kL jets

@ Main idea: Sequential recombination

9 Distance between two objects i and j:
djy = min{p?’l, p‘J?,L}AR,-J-,
Ry = [cosh® Anj;; + cos? Agy]/D>.

“Cone-size” D.

©

©

Include beams, distance to beam:
dig = p? .

@ Combine two objects with smallest

djj, until smallest dj; > deyt.

@ Good feature: Infrared safe.

F. Krauss
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Introduction QCD processes

Jet definitions

k, jets

@ Main idea: Sequential recombination

@ Distance between two objects / and J:
dj = min{p; , , p? | }ARy,

Rjj = [cosh? An; + cos? Ag;]/D2.
@ “Cone-size” D.
@ Include beams, distance to beam:

dig = P,-Z,L-
@ Combine two objects with smallest
djj, until smallest djj > dcyt.

@ Good feature: Infrared safe.

p/GeV
60

50 4

40 4

30 4

20 4

10 4

T T

R

QCD radiation

p/GeV

50

30 4

20

10 4

dmin is dij = 20.0741

il

3
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Introduction QCD processes QCD radiation Jets

Jet definitions

k| jets
@ Main idea: Sequential recombination :
9 Distance between two objects / and j: p‘/Ge;; }
dii = min{p%l, pﬁl}AR,-j, . { |
R;; = [cosh® Any; + cos® Agy]/ D?. ] T
@ “Cone-size” D. 40 1 ’
@ Include beams, distance to beam: 304 ’
dig = P | - x ] | ; l
@ Combine two objects with smallest l | [ I
djj, until smallest dj; > dyt. 10: i g 1 |
9 Good feature: Infrared safe. S s e oo v r
|

F. Krauss
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Introduction QCD processes QCD radiation

Jet definitions

K| jets
@ Main idea: Sequential recombination
@ Distance between two objects i and j: p‘/Ge;; R
o [ 2 2
dj = min{p; |, p; ) }ARj, 1
R;j = [cosh® An;; + cos? A¢;]/ D2, 2
@ “Cone-size” D. 40 4
@ Include beams, distance to beam: 30
dig = P,'Z,J_- -
@ Combine two objects with smallest
djj, until smallest djj > deyt. 109
@ Good feature: Infrared safe. - 0 veplagabtoatlic 1.
0 1 2 3 4y

F. Krauss
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Introduction QCD processes QCD radiation

Jet definitions

k| jets
@ Main idea: Sequential recombination 5
9 Distance between two objects / and J: p‘/Ge:O'
. 2
Ry = [cosh® An;; + cos? Agy]/D2. &y |
@ “Cone-size” D. 40 1 3 '
@ Include beams, distance to beam: 304 |
ph o A | ] Ig
d,B = pl,_L Sl i | |
@ Combine two objects with smallest ! l I
d;j, until smallest djj > dcyt. ) ' ‘
@ Good feature: Infrared safe. 0% | — 1

F. Krauss
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Introduction QCD processes QCD radiation

Jet definitions

k| jets
@ Main idea: Sequential recombination
@ Distance between two objects i/ and j: p'/Ge;; A i R
dij = min{Piz,p pj2,_L}ARf'v
R;j = [cosh® Anj;; 4 cos? Ag;]/D?. 2
@ “Cone-size”" D. 40 4
@ Include beams, distance to beam: 30:
dig = P,'z,J_- 5
@ Combine two objects with smallest j l
dij, until smallest d;j > deyt. ] l I ]
@ Good feature: Infrared safe. 0 4L, l . %

- 238 -
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Introduction QCD processes QCD radiation

Jet definitions

ki jets
@ Main idea: Sequential recombination r
@ Distance between two objects / and j: p‘/Ge;g: |
dj = min{p; , , p? | }ARy, ! | |
R;j = [cosh® An;; + cos? Ag¢y]/D?. &1 | .'
@ “Cone-size” D. 40 ! | 1
@ Include beams, distance to beam: 30 i g 1 ’
dip = P,'2,_L- ol | f . ,
@ Combine two objects with smallest i E | j !
d;j, until smallest dj;j > dgy. 10: 3 a } 1 ll
@ Good feature: Infrared safe. — - f-%), |
I
]

F. Krauss
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Introduction QCD processes QCD radiation

Jet definitions

k_L jets
@ Main idea: Sequential recombination
@ Distance between two objects i and j: p'/Ge;;: R e
dj = min{p? , p}, }ARy,
R;j = [cosh? An;j + cos? Agy]/ D?. 2
@ "“Cone-size" D. 40 5
@ Include beams, distance to beam: 30:
dig = p} . o
@ Combine two objects with smallest
djj, until smallest djj > dcy. ‘°:
@ Good feature: Infrared safe. 0t e

- 239 -
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troduction QCD processes

Jet definitions

ki_jets

@ Main idea: Sequential recombination

o Distance between two objects i and j:

dij = min{P,'z,J_7 pj?,J_}ARU'

R;j = [cosh® Any; + cos® Ady]/ D?.

9 “Cone-size” D.
9 Include beams, distance to beam:
dig = P,'2,_|_-
@ Combine two objects with smallest
djj, until smallest djj > dyt.

@ Good feature: Infrared safe.

F. Krauss
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Intredection QCD orocesses

Jet definitions

k_]_ jets

@ Main idea: Sequential recombination

@ Distance between two objects i and j:
dj = min{p? , p7  }ARy,

Rij = [cosh® Anj; + cos? Agy]/D2.

@ “Cone-size” D

G

Include beams, distance to beam:
dig = p; | .

@ Combine two objects with smallest

djj, until smallest djj > dcy.

@ Good feature: Infrared safe.

B AR L ——

QCD radiation

p/GeV

60 4

50 +

40 4

30 4

20

10 4

mm—

e e s g n

QCD radiation

p/GeV |

50 4

40

30 4

20

10 4

dmin is diB

= 154.864

3 4y

{from G.oalam)

T et
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introduction QCD processes QCD radiation

Jet definitions

ki jets
9@ Main idea: Sequential recombination i |
9 Distance between two objects / and j: p/GeV J
: 2
dj = min{p; |, p; 1 YAR;, 60 ; |
2 ' [ |
Rjj = [cosh® Anj;; + cos? Agb,-j]/Dz. si -
@ “Cone-size” D. al " | |
9 Include beams, distance to beam: i
ot 2 304 |
digi= Pi 1- i
@ Combine two objects with smallest 21
d;j, until smallest djj > deus. il ﬂ |
@ Good feature: Infrared safe. ‘ }
00 1 i
|

F. Krauss
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Introduction QCD processes QCD radiation

Jet definitions

kJ_ jEtS
@ Main idea: Sequential recombination
@ Distance between two objects i and j: p/GeV | anin is ain b 1007
d,'j = min{pl-z,J_, pjz,_]_}AR,", 60 1
R;j = [cosh® An;; + cos? A/ D?. o
@ “Cone-size” D. y
@ Include beams, distance to beam:
dig = P}, . *]
@ Combine two objects with smallest 20 1
djj, until smallest djj > deyt. o]
@ Good feature: Infrared safe. )

0 1 2 3 4y

{from G.Salam}

- 241 - :
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Introduction QCD processes

QCD racdiz

2tion

Jet definitions

ki jets

9 Main idea: Sequential recombination

9 Distance between two objects i and J:

dy = min{p,-z,L, pﬁl}AR,-j,

R;j = [cosh® Anj; + cos® Ag;]/D?.

9o “Cone-size” D.
@ Include beams, distance to beam:
dig = 7 -
@ Combine two objects with smallest
djj, until smallest djj > d,y.

@ Good feature: Infrared safe.

F. Krauss
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i
Inzroduction QCD processes

Jet definitions

kJ_ jetS

@ Main idea: Sequential recombination

@ Distance between two objects i/ and j:

dj = min{p; PﬁL}ARijv

R;j = [cosh® An;; + cos® Agy]/D?.

“Cone-size” D.

©

©

Include beams, distance to beam:
dig = p7 | -

@ Combine two objects with smallest

d;j, until smallest djj > dy.

@ Good feature: Infrared safe.

F. Krauss
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pJ/GeV | i
60 4 |
|
50 4 | |
| |
40 [ |
|
M s
20 4 i }
L |
10 i |
| 1
0 " . ,
0 1 2 3 4y

QCD radiation

p/GeV |

50

30 4

20

10

dmin is diB =

1619.62

IPPP




ntroduction QCD processes QCD radiation

Jet definitions

k| jets |
9 Main idea: Sequential recombination j [
@ Distance between two objects i and J: p/GeV | F |
dj = min{p? |, pi | }ARy, i | |
(e [cosh2 An; + cos? Aqb,'j]/Dz. o :I |
@ “Cone-size”" D. . : |
9 Include beams, distance to beam: i
dig = P,‘%l- i, |
@ Combine two objects with smallest 20 4 i
djj, until smallest djj > deys. ol '

@ Good feature: Infrared safe. A

F. Krauss
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Introduction QCD processes QCD radiation

Jet definitions

ki jets
@ Main idea: Sequential recombination
@ Distance between two objects / and J: p/GeV | amin 1o aie b 2053.32
dj = min{p? |, p7 | }ARy, &
R;j = [cosh® Anj; + cos? A¢;]/D2. sl
@ “Cone-size” D. 5
9 Include beams, distance to beam:
die = p? . )
@ Combine two objects with smallest 20 1
djj, until smallest dj; > d.ys. o]
9@ Good feature: Infrared safe. q i
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Introducticn QCD processes QCD radiation

Jet definitions

ki jets
9@ Main idea: Sequential recombination
@ Distance between two objects i and J: pJ/GeV | .
dj = min{p?  , pi | }ARy, 1 |
Rjj = [cosh® Any; + cos® Agy]/ D2. " |
9@ “Cone-size” D. X
@ Include beams, distance to beam:
dig = P,'2,J_- 30:
@ Combine two objects with smallest 20 1
djj, until smallest djj > d;uyt. l ,
o Good feature: Infrared safe. Y |
0 1 2 3 4y

F. Krauss
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Introduction QCD processes CD radiation
P

To take home

Parton-parted partons
@ QCD radiation (bremsstrahlung) important

@ Dominated by collinear & soft emissions
@ Universal pattern of QCD bremsstrahlung

@ Fills the phase space between large scales of signal creation and low
scales of hadronization

@ Well understood in leading log approximation, gives rise to a
probabilistic picture: parton showers.

-244 -
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troduction QCD processes QCD racdliation

To take home

A jet is (not) a jet is (not) a jet
@ Jets are direct result of QCD in hard reactions - your primary l
experimental QCD entities. |
@ But: A parton is not a jet - a jet is what it is defined to be

@ Jet definitions must match experimental and theoretical needs f
otherwise meaningless for comparison

@ Infrared safety is a theoretical key requirement i
}

@ Many jet algorithms, presumably the “best” one does not exist

F. Krauss
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nterpretations
nterprerations

Outline

e Introduction: Signal or not?

e Gauge sector of the Standard model

9 Some remarks on flavor

- 246 -
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Interpretations Gauge sector of the Sk

Know your Standard Model

Historical example: Mono-jets at SppS

9 In Phys. Lett. B139 (1984) 115, the UAL collaboration reported

9 5 events with E| niss > 40 GeV+a narrow jet and |

9 2 events with E| miss > 40 GeV+a neutral EM cluster f
They could “not find a Standard Model explanation” for them, '
compared their findings with a calculation of SUSY pair-production
CLENS & Bowalsin Nocl, Titys. 3246 (1584 gy, |

and they deduced a gluino mass larger than around 40 GeV. !
9 In Phys. Lett. B139 (1984) 105, the UA2 collaboration describes

similar events, also after 113 nb—1, without indicating any i
interpretation as strongly as UAL.

@ In Phys. Lett. B158 (1985) 341, S.Ellis, R.Kleiss, and J.Stirling
calculated the backgrounds to that process more carefully, and
showed agreement with the Standard Model. }

F. Krauss
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Interpretations Gauge sector of the SM

Know your Standard Model

Example: PDF uncertainty or new physics

Consider the ADD model of extra dimensions (KK towers of gravitons)
and its effect on the dijet cross section:

(Note: Destructive interference with SM)

g e Me =2 TeV

£ “_‘I‘ = B! g ] i i -
il | . S = 1
Zm in af !
Z A — 5 Ia“l el | l JCemral value 4
i { ool s ; H

P Stambasd bzl i - 1oigi s
5 . Namlazd Mwe! i " ] Stusdund Mene] £ "o lioits '{

! 4 - all? + r A3 limits
, -1 - t
m = 2 w 1 xn 1 ; “'E = ]
| Arey ! i - A0 { ul }
" L_) 1 H T4 exp 1 .y =i 1
T : B P /2 | - ] :
10 e 1 " | el 1 "ok = q
3 1 H ™ H -;}.‘ - l!
i L, I L e = "o — {
. M i 1
s . w= . w or 1
i T 1 Aah i (== 3
Wk J W 4 "oz 1
Goa t | e TRy U (N Tl [y A3 | (o ey X I e N |
wnm\?n:e-mmn:nmumw’um S 1000 309 NG 2400 000 3340 400 (5w A0 S5h9 S8 1000 100 b 2580 N1 1540 4004 4500 S0 S5W)

MiGeV) MGev) M presicrion P1({GeV)
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Interpretations Gauge sector of the SM Flavor

Know your Standard Model

Example: Inclusive SUSY searches | Typical process

ATLAS TDR plot done with pythia |

=* only parton shower for extra jets
B I —

®° o ATIAS TDR 9 !
ME vsPS &0 , 3 ;
§ : §BrH0 3 j
[ "“';_ Stop: Steap ; e
3 F E
1’ H i
3B« 2 . E
Rl o Shape of tt-events
1tk Slop: Gentle -
P i E hiat iuw'ﬂh
b W00 400 il
W
: S PAsum ol all G wy
10° sk @ toar
i 7 i w -
Y - & Welet i |
" . "/;".'/’. I i Zete | ME
v . 7 B oo " PS
S i Sarmren !
! i i B s L
Meff (GeV; 1y 0 I X80 K0 Mo WG T MO Wh T |
ST T ] )
B e et ———— Al iR e —— R— A L= —
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Interpretations Gauge sector of the SM Flavor

Know your Standard Model

To take home

@ It is simple to “find" new physics by misunderstanding,
mismeasuring, or misinterpreting “old” physics, i.e. the SM

@ Therefore: Control of backgrounds paramount to discovery!!!
@ Know your Standard Model and its inputs

@ Don't trust just one Monte Carlo/one theorist /one calculation:
Be sceptical!

€

If possible, infer from well-understood data.

9@ Also: New measurements for im

portant SM parameters (see below).

|

S — S —
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interpretations Gauge sector of the SM

Solution for a technical problem: luminosity measurement

The need for a standard candle

@ For many measurements (total cross sections): Need luminosity
L[fb~1s71] x o[fb] = event rate[s™!].

@ But design luminosity # real luminosity.
@ So, we need a way to measure instantaneous luminosity.

@ Simple idea: Use equation above with a process yielding sufficiently
large event rates (then statistical error small)
— maybe o}o'?

@ Problem: We do not know it well enough. There's some fit
parameterizations, but it is soft QCD physics, so no a priori
theoretical knowledge.

At Tevatron: typically error of O(10%) due to lumi
@ Solution: Use best known process (from theory point of view). |

F. Krauss
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Interpretations Gauge sector of the SM

Luminosity measurement with gauge bosons

Theoretical precision |

@ Drell-Yan type processes best PP - (24X
R e | i |
known processes at hadron ol 10 :.s,%ﬁox 3
colliders. prdigtl ]
—_ sof— 1l “i\ -
. o
@ Results available up to NNLO P
(the 2 — 1 case!). 5T TSN E
Vs = 1.8 TeV X
@ Due to dependence on xp 7 ok 60 < b < 118 Gov N
» . ZEBs - i
only, also differential xsec w.r.t. 8 S ek Jen b i Mwum-
rapidity known up to NNLO. Y

That's great to get the
acceptance correct.

There will be ~ 20 leptonic W /s at LHC, in principle enough for a
sufficiently precise measurement of luminosity.

=
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Interpretations Gauge sector of the SM Fiavor

Luminosity measurement with gauge bosons

Theory vs. Tevatron data

CDF and DO Runll Preliminary

350
: pPp—W+X 5 lv+X
3l ';
—_ - |
=" i
‘: 25— f
o0 C |
- ++
; - !
5 2= i
3 * D0(e) ® Do) |=
o Runll  ACDF(e) W CDF(y)
15} ¥ CDF() I
B Runl  %D0()  ODO() |
C ACDF(e) LICDF(y) i
1 PR TR S T A1 O ST S| AN O A AT AT [ AR B o I A I
1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

Center of Mass Energy (TeV)

L
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lnterpretations Gauge sector of the SM Flavor

Luminosity measurement with gauge bosons

Theoretical precision

pp > (Z7°)+X
— I - r vy

Wi

5k

d%0/dM/dY [pb/GeV)
3
1
|
d%/dM/dY [pb/GeV]

2ot Vs = 14 Tev \ -
M= M, :

M/2 3 pg2M

Vs = 14 TeV
M= My
M/2 s p :Im

Q L 1
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nterpretations

Gauge sector of the SM

Flavor

Luminosity measurement with gauge bosons

Systematic uncertainties

W and Z Cross Sections: Tevatron W and Z Cross Sections; LHC

24
poes 3 MRS panlons MRST900 purtons
TE NXLG Qe CDFic) BE NNLO GO
26 f2s% = l | nk
3 E i
= A = il E . ol - - =
.g 5 S o DXy _g 2] L A
=3 - l = £ P | =
= v a0 L I g
m‘c - ——re—ana - — - ‘ =3 n x
. ~ ¥ o
3 9 glt g gfl w CUF 09 it entgh o0 0
© 22 NNLO e 1wk NNLO
2L yyr 17 F gy
W W
20 = 16
027 22
: CDF(el
0,26 |- ¥ "
: CDFfp) 2
025 =
20 F 5%
024 B4 5% kN W —
< ide S SRS = i
ok a x T 4 EWE n I
2 PNl o ] T
= '] a I . =
Lo f & ¥ . g I A 3
~ T = % 99 git a Tl g7l w o
R = * N gh < LT 2 ]
F 99 a7 o N gfl 00 :;\JLO 5 Nio ]
020 F - [ . 3
Z Z
.19 15 .

Seemingly, main uncertainty from PDFs.
Ratios may be a way to overcome this( at least partially).
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Gauge sector of the SM

Interpretations

W mass measurements

Why: is this important?
@ The EW sector of the SM can be parameterized by 4 parameters.
Example: «, sin’ Ow, v, A

@ But other observables related to them: My, Mz, My, G, ...
This is due to the mechanism of EWSB underlying the SM.

@ Example: At tree-level weak and electromagnetic coupling related by

oy
o 2 a2 ptree
\/EmW sin“ gy

Gr

o Natural question: Is the picture consistent?
This is a precision test of the SM and its underlying dynamics.

@ First tests: SM passed triumphantly, seems okay even at loop-level.

F

B e T L — T E————r————yt
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Interpretations Gauge sector of the SM

W mass measurements

Why is this important? (cont'd)
2
o Naively p = @”gz—ew connects masses with ew mixing angle.
(Weinberg-angle, 6y/)
9 Loop-corrections to it from self-energies etc.. g

o Interesting correction: r

3Grm¥y, [ m? _sin26’w | m% 5 o
8v2r2 | m%,  cos? Oy

A,Os e. — — =
+C. 2

myy, 6
o Relates mw, m:, my.

|
|
|
1
|
|
@ For a long time, m; was most significant uncertainty in this relation;
by now, my has more than caught up. J

F. Krauss
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Interprezations Gauge sector of the SM

W mass measurements

Why is this important? (cont'd)

H’_C‘E 6_ m,., = 154 GeV
T T T T T T T T \ DR ) i
—LEP2 and Tevatron (prel.) _ {i \ AR e
80.5- ~LEP1and SLD & 54 i —B:';;mio.unoﬁs fii
4 il
N ]
5 o -
2_ _ |
14 -
oy Excluded . ?-. Preliminary‘
- 0 RS ¥
150 175 200 30 100 300
m, [GeV] my, [GeV]
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nterpretations Gauge sector of the SM Flavor

W' mass measurements

Some technical aspects

@ But: How to measure the mass?

@ From LEP: Direct measurements.
Hampered by comparably low stats
and jet-energy uncertainties.

9 Tevatron: Measurement in leptonic
mode, but then the v’s escape.

9@ So, how to do it at a hadron collider? é“ : 1

@ Jacobean peak in p{ 3 : i
Even better: transverse mass 5
ME = \/2pﬁ_EJ_(1 — €050 miss) T ’
Their position relates to myy R PTG

o QCD effects controlled by Z g J

F. Krauss
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Interpretations Gauge sector of the SM

W mass measurements at the Tevatron

Anticipated sensitivity

-1 T T T T Ty ll T T T T T 'l' T T 1_
" m D@Runial(e) Single Experiment Sensmwly =
2503 —
E 200 — -
= [ CDF Run 1a {e+y) =
2 - —
‘§1m2_ -
a [ =
g = —
£ 1wl g@Run 1 (e) AM,~25 MeV =
= L CDF Run 1 {e+y1} =
50— =
- CDF Run 2 (e+p) —
i~ 10 MeV syst limit =
pll i M D T | i PR T W | i 1 el
10° 10° 10!

10 integrated Luminosity {/pb) 2 fb'l

Sl m E_ R R e e — e
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Interpretations Gauge sector of the SM Flavor

W' mass measurements

Results . Projection to LHC
Mass of the W Boson : 9 Already now, each modern
Measurement E My [MeV] Run-2 measurement more
CDF-0/1 Tt sesssrs ,- precise than any individual
oo AR LEP-2 measurement.
CDF-ll '—'“'—' 80413t 48
: ¥2/dof=0.5/2 @ Accuracy goal for LHC:
Tevatron Run-0/il  4—e— 80432+ 39 15 MeV. !‘
j o With current theoretical |
LEP-2* —t B0376 33 technology (MCONLO etc.) |
i Workd Av. = 8039 25 this is a close call.
o o e @ Probably need high-precision |
80200 80400 80600 tools, including QED, weak g
|

My [MeV] July 2008 J

corrections mixed with QCD. [

S ——
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Interpretations Gauge sector of the SM Flavor

W mass measurements at the LHC

First serious look into acceptances
0
10 ET T T | T T T I T T I T T 1 | T 71 | =71 %
LHC .
[n°|<2.5, Ef¥*>20 GeV
10~! — -
1078 — —
<ﬁ= F °o 3 :
—— MC@NLO ™, . 3
- ---- NLO °o . '
1073 = e 0O o o 3
F © © o [0+Herwig . °34
10—4 PR |I PIR W S 1 l- TV V" | ! PR T |l llhl i || L4
20 a0 40 50 80 70 80
pr(min) (GeV)
S SnlnnSRENee N e B __ SR — - .
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Interpretations Gauge sector of the SM

W width measurements

Why is this important?

|

r

9 Naively, in the SM (massless fermions): |
Cw—prr = mwﬁaﬂVCKM]z, N. = 1,3 for leptons/quarks |

9 Loop corrections: Another precision test of the SM. |

@ Are there other decay channels? I

Method 1: Indirect :
9 Basic idea: Z properties well-known, relate W and Z.

@ Assume W- and Z-production cross section well-known as well as

Mw—ew.
@ Then measure leptonic W branching ratio through:
Opp—W 8 Tpp— W :BR(VVAFV)
Opp—Z— 28 v Opp—2 BR(Z—*ZE)

@ Can translate BR to width, since partial width well-known.

F. Krauss
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Interpretations Gauge sector of the SM

W width measurements

Method 2: Direct
@ |ldea: While peak of transverse
" . . ; = 10?
mass dlstrlbutpn determined by 3 \T, = 1.6GeV
mw, shape defined by 'y . | T, =27 GeV
) i T, =2.6GeV
9 Therefore: Build MC templates u
for varying 'y, (or even better ' '%\
in mw-Iw plane) and fit. W
1w F
@ Quality control again through | E‘%\ég‘._}k
Z-bosons. ¢ H S| |
i ‘-‘:&
Q NOte Thls iS almOSt 40 6-:1 h:l lrlx; .15[;.]_:“ lf;('rul!:r;'.;m I
model-independent. S
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W width measurements at Tevatron

Results
TeVEWWG
W-BOSOﬂ Wldth [GGV] Warld Average .[HF'P 2002) .-
(el s Mo | g pualia }
TEVATRON —e—+ 2.050 +0.058 AtV e e [
LEP2 —8—— 2,196+ 0.083 [
Average == 2.098 +0.048 e |
Uh LIDSE: 2011
pp indirect B 2141+ 0.057 Fun I&T‘l?ﬁ?ﬁﬂx
COF lafp) ———
LEP1/SLD 2.091+0.003 ' i
LEP1/SLD/m, 2,091 +0.002 [
a N Y | PP i | Lacestioliac an Vi) |.
3 &2 e ] 9.5 10 10.5 1 11.5 12
Iy [GeV] oty z000 Br(W—lv) &2 }
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Interpretations Gauge sector of the SM

Boson pair production

Why is this important?

@ Major background to current measurements (tt etc.) and future
discoveries (H — WW).

@ Interesting in its own right:

o With no Higgs boson or similar: Cross section would explode

or WW-scattering becomes strongly-interacting.
o Maybe the first mode where alternatives to the Higgs scenario show.
@ Structure of interactions entirely dominated by gauge principle,

but: are there non-Standard exotic couplings?

- 256 - Dr <G
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Interpretations

Gauge sector of the SM

Flavor

Boson pair production

H — WW and backgrounds

F. Krauss
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i
| signalxb

do/dA¢yy [fb/deg]
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Interpretations

Boson pair production

100
Ay, [deg]

Gauge sector of the SM

Cross sections in ee-annihilation

20

LEP

02/03/2001

Preliminary

9

| wma RacoonWW/YFSWW 1.14

"™ [pb]

,.5--?-'"‘ 4_._._. .
~ 8 B

PR | i P | i i " i
160 1710 180 190 200
E.m [GeV]
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e +2.0% uncertainty
-- YFSZZ
8 — ZZTO
o
Q
Nb% !
0.5
""""""" | L 1
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Interpretations Gauge sector of the SM Flavor

Boson pair production

Cross sections in hadronic collisions

Tevatron Run [l pp atNs = 1.96 TeV

1000 ey T T [ —
2 Vector boson pair production 8 [# DCDF Preliminary
S ant B CDF Published
o 10°E P ?
E T F : oDO Preliminary
$ B ® D0 Published
) e
% i 2 10°k HTheory
° b (upper curves) - e -
pp (lower curves) ] [&] B B {
W E 2} Tv oe —
F R WZHWZ 107 1 i
by 2z ] E ' [ "
P N NI U I I . ¥ I
~ k)
5 "'*' i
Typically factor of 2 suppression per W — Z. 1 g
1L T % i
In HE limit dominated by sea (pp — pp). - |
Theory consistent with experiment, 10" ] P | | | |

w z W, 2y ww Wz ZZ H-ww |
ME160 Goy l
J
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Interpretations Gauge sector of the SM

Flavor

Boson pair production

Testing anomalous gauge couplings at Tevatron

@ In principle gauge structure and gauge self-interactions defined by
form of gauge-covariant derivative D#* = 9* + (i/g)A* and
Fi¥ = [B*] D*}.
If fields do not commute, terms like [A#, A¥] emerge. They result in
self-interactions with structure constants £2°¢, coming from
Al = ALT? (the T? are generators of the group - matrices), and
with £2PT¢ oc [T, T?].

@ But there are other gauge-invariant options for the gauge
self-interactions.
Example: WW+~ vertex.

Cowy = —ielW], wraY — whwk a¥) iew wy, PRV

At by

HppY o Tty ELV t WHPREV

WL, WHPES + kWi w, F +m2 U L=
w w

(Terms X and & are CP-violating, A — 1 and k violate parity.)

T LT T — —————a —

TS T - - - e ——
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nterpretations Gauge sector of the SM

Flavor

Boson pair production

Testing anomalous gauge couplings in W~ at Tevatron
@ Simple test for anomalous WW+ couplings at Tevatron in W~-FS.
9@ Good observables: pj_ and Q07 with £ from W decay.

@ The latter is result of “radiation zero” due to interference of
diagrams.

©

Various backgrounds: e.g. QCD (with j — « conversion)

©

Need cuts on v: minimal p; etc..

@

Do 07

- Do, o7 fbr? 4 Data Cancidales

02 = —— 8M MC + Backaiound {kel. 7.211)
3 eodze- AS MG + BachGround (it <IL13

T Backgrouna

F Dpo.0.7 0
r
F —+—E1n!.a (tatal uncartainties)

o —— 5 (systematic urositainties)

Events{0.70)
5
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Interpretations Gauge sector of the SM

Gauge sector of the SM

To take home
@ The gauge sector is THE crucial point for the SM.

@ There is an intricate interplay with other parameters, especially m,.
(Remark: Adopt the following point: all matter particles want to
have masses ~ v, so the real question is not why the top is so heavy
but why the electron is so light!)

@ Need to check the consistency: shed light on mechanism of EWSB.
@ Even after Higgs boson will be found: Must match the pattern!

@ Potentially a window to new physics, in particular through VV-pair
production: Unitarity (see lecture 5), anomalous gauge couplings
etc..
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Flavor physics

CKM matrix . Basic properties |
o Inter.-generatlon transitions HI Up to (9()\3): r
dominated by mass spectrum | '
2
Relative size of CKM Matrix . A 1-— A2 AX2
5
(not to scale) ' AN3(1 — p — i) —AX 1

and CKM matrix; - A2 o\ AX3(p —in) )|
Verm = i

f

|

|

. X
——

°® -
- @

@ dominant: t — b, b—c, ...

@ Source of CP-violation in Vi3-elements |
but cosmologically not sufficient;

Q@ unitarity of CKM matrix: triangles
|
(Vie Vs = 85); |

Q@ size of CP-violation in SM given by
area of the triangle.

e
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Interpretations sauge sector of the SM

Flavor physics

“The" unitarity triangle : t

Unitarity: F, bV, +V. V, +V,V, =0

r r ¥

ud” b

-
CP violation

il
I th

(@) p(¢) :
0,0) | 3 1,0
(©.0) iy (,0)
CP violation x J =Jm [VMVCSVM‘;VU:‘,IP_U A’\°n~107°, the Jariskog invariant
_ appe— e = e s g
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Interpretations Gauge sector of the 5M Flavor

Flavor physics

Turning measurements into the CKM framework |

Overconstraining the Unitarity Triangle i
- 1.5 1-:“:-'1-":‘;::‘ --yy\:r...‘||-|'||-| 3
B—\ (7 BUBN 2 ptpl pr T i v ,
i - = 10 = L s
B — mli BB oscillation rate o 2 P ---~--"-"N%5.f-’_‘i‘!‘- :
i Ay B!B? oscillation rate b 47 o b . |
V {V!’ td” 1h Bo —)PO}’ L 53 O ‘l"md“'_: i
1l Loeg = t .
[l=S -_a *__l .- () .-:
i i AN td
WAl Vil ‘°; o o
_ —T 0 9 &
Vi 4t - ok o LB “pgun W s
ps U 3oy (BUBYSI(SS)A S=iicalll o S|
. £ R i - PR ) (VALY [ el HY PO P = 1 80 . i
N B = Diewm SBEEBH) -_—-L('é‘ﬁ'ii!’- § o 05 0.0 05 1.0 15 20
: Ts ' P
i
|
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Interpretations Gauge sector of the SM Flavor

Flavor physics

Relation to new physics

@ There is an amazing consistency of the current flavor-physics
measurements: The CKM-picture seems to be about right.

@ However, many new physics models can have a similar pattern in
their flavor sector (they need to, to survive!).
@ So, important question: where to look for new physics?
o FCNC processes (flavor-changing neutral current).
Forbidden at tree-level in the SM (no Z — bs-vertex etc.).
Come through loops — next transparency. ,
o Rare processes (like B — 77v.) and CP-asymmetries J

S — - R R R R R R TR EREOE..
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Flavor physics

FCNC as window to new physics |

@ In SM: Only charged flavor changes, due to CKM matrix.
@ Therefore: FCNC like b — s or BB-mixing always loop-induced:

b W s,d |
i
|
r
':
|
.’
@ Heavy particles running in loop (W, t): FCNC tests scales similar to
potential new physics scales.

Fi-Krauss {PPP
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Interpretations Gauge sector of the SM Flavor

B-physics: Bs — i

General comments
@ Two contributions (SM): Penguin & Box

- A
@ Both suppressed by ViV .3 < . [::}
(SM)  _ 1n9 Ze N el
o BREM  ~10 \ :

SP— —— ~ e - T ————]

Prospects at LHC

@ Simple: leptonic final state 107 |
@ Minor theoretical uncertainties it
100 AT

@ But: Huge background RIS
@ Mass resolution paramount o o T bl

Exp. ATLAS CMS LHCb [nlegrated Linuninosity (fb-!)

om (MeV) 77 36 18 {from T Nakads, Telic at "Fipvor i the Bracol CHD L 2007)

- — T IEE———————.—. R — e atre——l
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Mixing phenomena: B.Bs-mixing

Theoretical background

9@ Mixing phenomena transmitted by boxes in
SM: o |Vis Vi |? due to GIM.,

@ B,B.-mixing very important for unitarity
triangle (ratio with ByBy cancels hadronic
uncertainties)

@ But: high oscillation frequency in
Bs Bs-mixing — tricky to see!

@ Especially complicated: Tag the flavor - is
it a b or a b decaying.

@ One of Tevatron's strategies: check for a
neighboring K from fragmentation.

F. Krauss IPPP
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Interpretations Gauge sector of the SM Flavor
g

Top-physics: Mass measurements

Why is this important?

@ Strong correlation of top- and W-mass
(self-consistency check of SM) — ==

———
—LEP2 and Tevatron (prel.)
80.54 ~ LEP1 and SLD

@ A change in m; by 2 GeV
shifts SM expectation of my by 15%.

@ Once the Higgs-boson is found:
Do mass and Yukawa-coupling agree?

@ Important input in many (loop) 7 i
calculations. C m, [GeV]
Example: FCNC processes.

- 263 - 5
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Top-mass measurements

Experimental techniques: Upshot

@ Typically, three different channels considered separately:
dileptons (bblf'v'), semi-leptonic (bblDjj), hadronic (bbjjjj). |

@ Three different methods: Template, matrix element, cross section .‘
(see next transparencies). :‘

9@ Depend partly on top-reconstruction. klg;;‘“f}.ﬁ“‘;ﬁ;; )‘\, T
mn;mmf emm‘) {2 v solutions)

@ Main systematics: jet energy scale (JES). “wsgmens -ty g '[
o T . 1 . T R R 1 + o | o g ‘___ﬁ_--—_: M = Moy

Solution: “in situ”-calibration . B —— 38— =

through W — g’ (my known). &3 R |

NS f

S S i

I

|

F. Krauss
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Interpretations Gauge sector of the SM

Top-mass measurements

Template method

@ Basic idea: Run many MC samples for
different values of m; & compare
observables (distributions) with

0.14- CDF Run Il Preliminary

eXperiment. {\0-12?’ E‘i’uscaew:*
. % 0.1 (1185 Gevic®
@ Use observables strongly correlated with 8 oo B
m;: Naive choice Myeco. . Soos. Whzos e
. goos
@ Alternatively, look for observables that are ol
least sensitive to badly controlled inputs D g e
: m* (GeVic')
(like JES). T o
@ Examples: pi, vertex displacement of F

b-decay (see next slide)
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Top—mass measurements

Alternative template method

> Quantities with minimal dependence on jet energy scale

B, it
e
\‘_HLJ

O Rtk
w1 .
F.._l

Ed

A "
Secondary whx &-’///J " %
o bl

i

»

e
“\ i displaced 1118
\) [l -
Primary vix A 9 x 1w ¢!

COF R Pranviiaiy (13 1)
i
s

COF Fln 0 Prvbmvnary (1.9 87

A
) P A7 NN, VI |
’,' #4 0 as 1 LECTR R R B | I T T T TR b I R TR T T )
/ / 124lcie] Top Mo [Gel 147

COF Fum HPresesny (L3R

1 ORRESIAT
5 6 /,-
8 A
& -
i W
L Pt
v - s

“ P

B ,/
o - o

sl /5;;'/1

]| I
Moo [ T T T I T T I T
LepTa(GeV iq] g Mma [Goeh 4 )
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Interpretations Gauge sector of the Sh

Top-mass measurements

Matrix element method Ty TRestlts

@ Per event define a probability for being signal- Messument

CDF-I di-l

or background-like: _ b1

COF-i gid*
Dol i
CDF-l Wi

P(Xséen) X IMab—>X ’2 | <X|Xseen> |2 o

DZ-Il Hjfa”
Dl t+jo"
COF alq

@ Here |(X|Xcen)|? is “transfer function”: cors
Probability to see Xseen when X was produced |
— needs to be taken from MC | e
& checked with control data. s

@ At Tevatron: LO-matrix element M,,_ x for
X = tt+decays.

Mass of the Top Quark (*Preliminary)

M,, [GeVic’)
16741114
168.4+ 128
1712+ 39
1737 = 64
176.1 & 7.3
1801 53
172.4% 21
1705% 29
1730 = 2.2

¥
Hl——e—— ws01115
e 1770 = 41
i
:._.-_.. 1807 £ 16.8
H

xfdol = 69711

1726t 1.4

IPPP

Flavor
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Top-mass measurements

Some remarks on m; from myeco |

@ Need m; in well-defined renormalization scheme: |
at NLO: |mMS(m,) — mo® 2% (m,)| ~ 8 GeV!l! -l
Then: Which top-mass has been measured? ':

9@ Answer: We do not know.
Due to comparison with MC, it is a LO m; with QCD parton
showers (some HO QCD) and modelling of fragmentation,
underlying event, color-reconnection,
My suspicion: It is an “MC"-scheme, close to on-shell.

@ But therefore, need either to understand underlying MC better
or use better observables, independent of reco and MC.

Q Examples for better observables Ot datt/dl\/lht

F. Krauss
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Interpretaticns Gauge sector of the SM
f Z

Top-mass measurements

Top-mass from oz
@ Production cross section depends on m;:
AR : * CebFmnt 'obF"lnl(’ 1y
r o b CDF I I 1 ] run run ik (pre
i0 “[p ] m f_U’l‘ﬁPéiV ] s O a PRI for 110 pb”  for 760 pb’* _':
0 ] 6 .
3] "E 8 _:
. | g ;
2 F NNLO o : 2 4 NNLOgyroy My =171 GV
W T T S P i A ' T I 0 pe boeos aoa l o vos e s ) 0w v oyt ey
° 185 1;0 1;5 180 1800 1850 14900 1950 2000
m, [GeV] Vs [GeV]
Q Maln theoretlcal uncertainties due to HO around 8-10 % |

e e = e R R O A B AN SR S Sl S
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Top-mass measurements

Top-mass from o.z: Results

a lepton+jets/dilepton/lepton+tau ¢combination

S [omg , +
T3 D@ Preliminary, -1 fb” Do Preliminary, -11b \
2 | —— O i 1 g HMoch and Ussr |
3 o T 3 ——— DO Lijetsatopiond Hau ~1 '
1 3 * —— HILO appvoe Moch & Wanrf 5 F —— 66% CL contour
k "\L NLO.NLL Caocras) of 21 312'_ [ET00 wotld aveing 1o quark mass
: 124 of i 2 -
B~
o

1 OTY PP PO R T P o
150 155 160 165 170 175 180 185 160
Top Mass {GeV) top quark mass (GoV)

pole mass [wa =169.6 £ 5.5 GeV with NNLO J +3.2%

approx

!E RFJTEIINRR Top Quack Main b Leplon + 15 fihe Trxation — O filian bchmaenbirger — (CHEP Jisk, midepbin 27 T30

F. Krauss IPPP
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Interpretations Gaugs sector of the Sivl Flavor

Top-mass measurements

Taking the top-mass from do;/dM,;

52 LRI REE Bt R: MESADA) B0\ KA BB MM T T T B
S N do/dmg [pb/Gev] ] 6 dofdmg [pb/Gev] ] 5 da/dmg [pb/Gev]
T, NLO, CTEQeM, LHC ] NLO, CTEGSM, LHC | NLO, CTEQ6M, LHC
m, = 165 GeV = il m, = 170 Ge¥ = Y m, = 176 GeV =

ar= b ey i

2 2 -] F1 —|

' ol — Cenlrel value = —— Centrul value = 1= — Central valus E-
t PDF wncwiuinty PUF uncertainty PDF uncertainky ]
r -- Scale uncerialnites T ~- Scale uncertainties T -- Scale uncertalnbles B

P ) ] DOl LTSl [rUna T e hee by lpp gty oy i A

300 400 500 600 700 800 300 400 600 800 700 800 800 400 500 800 700 800

il invarient mass [GeY] tT invariont mass (GeV] {7 invarienl mass [GeV]

@ Theory uncertainty: 0.256my;/my; at NLO.

———— —— S — e e e e
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Single-top production

Process characteristics . Cross sections at

@ Important: Only direct, model-independent | Tevatron
measurement of Vy,

Tevalron Singte Tap Surnr_n_ary :
\\ / ! ikakhood Fueston COF 20+ gg |
' . , ! )y [
i " ; ::‘J::Iii«-un. CDF+ 274 g:;; :
e U L |
Dectin visscoF— 8 244 98
9 At Tevatron: important background to WH e T t
@ Cross section quite large, ~ 40 % of o,3. dgenoo0 T
5 5 . Bayesian NN 00 B —
9 Tricky signature, huge backgrounds, especially Y © -
top-pairs, W+jets, etc. Be ol bt
9 Involved analysis techniques: matrix elements, |
neural networks, boosted decision trees. J ! o). |

F. Krauss IPPP
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Interpretations Gauge sector of the SM Flavor

Single-top production

A candidate event

Run: 211883 nt: 1811511 ) Et=101.13 GeV !
CEM cnazg§|a=-u.72 f . . i !
MET=41.86. MEPht=-0.63 f : | I
Jeli: El=46.7 Elay 004, Tage1 / |
Jal2: Et=16.6 E1a Tag=0 i ™ 3
QxEta =291 f i \ \ \

\ '..- .: |

\ . 1l

L g

Track Pt>1 GaV
Tower Et >3 GeV
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Single-top production

New physics aspects

@ Sensitive to new physics, different impact in different channels
(t-channel, s-channel and T-W associated)

(Tevatron) (LHC)
singlet singlet
= : e . Z°
s F * - 3
5» ME oA : :
= £k - g T
0 ’?_m b 4 +‘ M
n b 7 o o :
i ] ;L ; #: 4th g
i < + E
o - ] ik : SM with 3¢
- _I ‘I Lissl ‘I‘n’l fasal ] R wly PP IETI ] L Ll .| L
' o, (b S Y e theory uncertainty

T | R e e, . B e = T I ————— R IR A S SR RN

F. Krauss
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Interpretations Gauge sector of the SM

The charge of the top

Basic idea

@ In the SM, Q; = 2/3, so a charge measurement confirms that the
top quark fits the pattern of the isodoublets in the quark sector.
@ There are potentially two ways to determine the charge of the top:
@ Check the strength of the coupling to the photon directly, through
the tty coupling, e.g. by building the ratio o4, /ottg.
This seems feasible at a linear collider, at Tevatron/LHC it is more
difficult due to initial state radiation.
@ Infer the charge from the decay products, i.e. from the W and the b.
This is the method used at Tevatron.

@ The trick is to make pairings of W's, where the charge is known
from the lepton, and the b-jet, such.that mpy =~ m;. The problem
is to check whether the jet originated from a b or a b, leading to

charges 2/3 (SM) or 4/3 (XM), respectively, for a top-quark.

- e ——
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The charge of the top

Jet charge

9 Consider cone jets with R = 0.4
and p; > 20 GeV.

@ Define jet charge by i

]
i
i

yEiii

> QiE-m)"

FRVEUEE
_ i€tracks v e

Q= S : : COF Bun 1 yL=151"
D {pi g Pj}q : %.ﬁ‘nf_

i€tracks &‘,‘1“55_ \

@ 77 = 1/2 has been optimized acsef \ s

1660}

with MC, ot R
@ Label each pair as being SM ' o7t \\,\ /

1680 —

(fy = 1) or XM-like (f;. = 0), JTORTRN el
measure (f} ).

.,

b, S—
!
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Interpretations Gauge sector of the SM Flavor

Top decays

Vi, from top decays

- =1
" D@ Runll 5 1t D@ Run ll L=0.9 fb
gﬁﬂﬂ' ® Data (L=0,9 ") 2
3 g 10-
R — &R=t
~> { R=0.5 9
400 §
1 — tR=0 8
Background |
200 7
— o %L
— 68% C.L.
| — 54— - R
? ' 08 09 1T 12
0 | 22
Niag R

@ Simultaneous fit to o4 and BR(t — Wb)/BR(t — Wq)
@ Underlying assumption: > BR(t — Wq) =1
q

R R, ] N .
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W-helicity in top-quark decays

Why is this important?

Spininformation of the top quark is ':’,,,,, e

preserved in its decay products -

Examining the V-A nature of t3Wh vertex T t

provides stringent test of the SM /2/ w l
spin = 1

ICHEP'0%, Philadelphin,

30- July-0B Andrew lvanov 3

F. Krauss IPPP
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Interpretations Gauge sector of the SM Flavor

W-helicity in top-quark decays

Measurement

@ Measure cos8*
from Zpr = Zgp in W-rest frame.

@ P(cosb*) = fowp + frwy + f_w_

artifrary unfls

with wp = (1 — cos? %)

wy = 3(1 + cos 6*)? :
w_ = 3(1 — cos§*)2. f

@ SM: f; = 0.697 + 0.002, f, = O(10~%),
f=1—fy—fi. R

@ fp =0.66+0.16 & f;, = —0.03 = 0.07
(recent CDF-measurement)

P e — — ey — -
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Charged Higgs bosons in top decays?

Theory considerations . Experimental results
- i DO Aunil Prelimina
@ If myx < m; — my, decay mode is, in 3" e
- = € r{t - Wit
principle, open. ! prifit
: g
@ If decays of H* along CKM picture, | ===
. i [ 3
H* — v and H* — cs dominant: [ '
m,. =100 GeV/e* I [ : 3
o 1” Vipotn 1150 Dijete2isy  dlleplon | telepton
& o - g 10 Dot prteary
é K —H >ecs 2 . * Dma(tatofy
g —H R
g 0.6 —H: S b .‘_- —_— ML«“;.;'::”‘
L — H* - WA° 10%- l 1= 1
0.4_ ‘...‘ Ht — WER? : —
02 Mu, e B(to H) ' o R 1N
e it Vojet |ty hijeETiag dlieplon | THeplon
0 S el
1 10 tanp
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Interpretations Gauge sector of the SM Flavor

The next generation(s)?

Theoretical background g
@ There is no a priori reason to assume 3 generations only.

@ Some models, like, e.g. little Higgs, predict the existence of further
elementary fermions, like t’.

@ Reason agamst 4th genera’uon Only 3 v's with my < mz/2 at LEP.

I~ I EEEEIEEEE—E———————————————
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Flavor sector of the SM

To take home 1

@ There are many interesting questions in the flavor sector: |
o Rare/FCNC decays of b (and of t) i
o Check properties, especially of the top-quark: coupling, CKM |
elements, charge.
@ Miop is an important input, but more (theoretical) work needed to
ensure that meaningful results at sufficient accuracy have been
extracted from data.

@ Top production (single and in pairs) is a relevant background to
nearly all new physics searches at LHC — we need to understand
this as good as possible.

@ LHC is a top-factory! Can go for high precision: ;
not only mass, also V;p,, width, rare decays, ... |

F. Krauss
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Phenomenology
at collider experiments

[Part 3: The Higgs boson]

Frank Krauss

IPPP Durham

HEP Summer School 31.8.-12.9.2008, RAL

F. Krauss

Phenomenology at collider experiments

fore Hizg

Outline

e Reviewing the Higgs mechanism

e Higgs boson searches and its properties in the SM

e Extended Higgs sectors
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Higgs mechanism The SM Higgs MMore Higgs bosons

Reminder: The Higgs mechanism

Masses and gauge invariance

9 SM contains gauge and matter fields: spin-1 bosons and spin-1 ;
fermions '

9@ Massless fields'guarantee good features:
o Gauge invariance under SU(2), ® U(1)y |
o Renormalizability of theory i

@ Could introduce mass terms "“by hand"”:
TLEROT miA“’Au =F m,r(\_URlUL i \DL\UR)
@ Violates gauge invariance, since
o A¥ — AH 4+ 5%8“0, therefore A*A,, yields terms o § after gauge trafo.

o W; and Wg transform differently under SU(2),
(Vg is singlet = neutral), therefore terms o< 6 do not cancel.

@ This is bad: We love the local gauge principle! J'

F. Krauss IPPP
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Higgs mechanism The SM Higgs More Higgs bosons

Reminder: The Higgs mechanism

Generating mass from the vacuum expectation value
@ Add complex doublet under SU(2); (4 d.o.f.),
couple it gauge-invariantly with the vectors: Lo = (D*®)(D,®)

@ Add interaction term with fermions:
Loy = grV PV + h.c.
(need ¢ for down-type fermions and jo®* for up-types)

@ Add potential with non-trivial structure
(infinite number of equivalent minima needed)

@ Pick one minimum and expand around it:

@ One radial and three circular modes
@ Circular modes “gauged away”

— "eaten" by bosons
o vev (energy of minimum) — masses

o o T T T g ¥ T T TR g o e R e e 7w e
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Reminder: The Higgs mechanism

Fixing the parameters

@ From the structure above:

2V2 2V2 r
(DH¢)2 . g4 W, w# — Mg, = S
/\(|¢|2 = V2/2)2 —  AVEH? iy ME’ — 22

@ Fixed relation between mass and coupling to (surviving) Higgs scalar. |
@ Therefore, to verify EWSB:

o find H

check it's a scalar

verify coupling o< mass

measure potential through self-interactions

¢ ¢ ¢

F. Krauss IPPP
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Higgs mechanism The S# Higgs tore Higgs hosons
g 242 es

Reminder: The Higgs mechanism

Restoring unitarity of WW — WW-scattering |

a(W W — WWp) at tree-level
1 ” i 19;?34 W
i . W o
10000 b . " il
1 -
Ly
el
1000 |- : 1 i W

) w
L e
e W o
b 00 |- . 4 v
L
10 e i = ,.""n'H 4

M

wor

1 1 i ’_(LE‘_“

1000 10000 W
Ec,m, [GeV]
I L) 1 !
- ——— — = RN -
276 - ;
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Higgs mechanism The SM Higgs

More Higgs bosons

Reminder: The Higgs mechanism

Restoring unitarity of WW — WW-scattering

(Wi W — WirWp) at tree-level

% W os
™ T - P
N e 1y
SN
QED <E¥
10000 f -t
e e
:E:I |
Ll |
1000 |- H i I
= —y
a W
& 100 | - W
o
~
W ..H.J\’;u
10 i - e "~
1 4 . e L
1000 10000 W
Ec‘m, [GeV]

o=\l
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Mare Higgs bosons

Reminder: The Higgs mechanism

Restoring unitarity of WW — WW-scattering

a(W W — W Wp) at tree-level

10000

SM; no Higgs

1000 |

—_
n
e
© 100 | : il il 4
X W
W el v
10 | 4 p
g W
e
1 1 I _fLH
1000 10000 14
Ec,m, [Ge\/]
e e ==
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Higgs mechanism The SM Higgs

More Higgs bosons

Reminder: The Higgs mechanism

Restoring unitarity of WW — WW-scattering

o(WLWr — W Wp,) at tree-level
: . | I
IR
QED ! ) | ”.u |
10000 | | SM;, no Higgs '; )
i : H i 4 |
1 i
\ | B |
1000 N7/ 1"
. |
o we W |
= j Wl
o 100} I L |
|
1._\ LI(
W |
10} —‘ AN
| i
| = |
WoT
1 : PP { et 51
1000 10000 [ i
Ec,_m, [GEV]

F. Krauss

Phenomenology at collider experiments {#art 2 i

Higgs mechanism The SM Higgs

Reminder: The Higgs mechanism

(Fixing the parameters)’

@ Consider WTW~ — WtWw— - .
o Without H: violates unitarity at ~ 1 TeV. tjéz: M E
@ Therefore: Must add H with guwwr o< my. MM'WW }i L
@ Repeat for WW — ZZ — gzzy x mj. PN |
o Repeat for WW — ff — gz o< my. e Ty
o Test in WW — WWH — gupn o m%/myy. Ay —:j“i
@ Test in WW — HHH — gypun o< :n%/mﬁv. W—“,,, w )
9 Once it is there, the functional dependence (3'___.’:__
of the Higgs boson couplings is fixed N
by the unitarity requirement of the theory. v
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Tayloring search channels

Limits on my ' Basic considerations
@ Unitarity: < 1 TeV. - o Signal rates defined by triggers: i
o EW precision tests: < 250 GeV. you won't measure what you
9@ LEP searches: > 114 GeV. | e See:

o Significance: S/v/B vs. S/B. 1

POul @ Important: Control systematics. |
§ T Wae -
: | Avoid embarassment.
3 | =g ,
5 ™ @ Mass resolution for my and
1% decay products: may help to
BRI - oy suppress backgrounds

@ Any topological help? |

F. Krauss IPPP
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Higgs mechanism The SM Higgs More Higgs bosons

Tayloring search channels

Higgs production processes at hadron colliders

Common feature: Couple to heavy objects (top, W, Z)

Gluon fusion: Higgs-Strahlung:

Quark-associated:

000000
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Vore Higgs bosans

Tayloring search channels

Higgs production cross sections at hadron colliders

T L T
3| o(pp—H+X) [pb]
: il | \ Y5 = 14 Tev
I p——— e —f : t T . .
G(pp—H+X) [ph] 5 \\H M, = 175 GeV
I Vs =2 Tev | w e \ CTEQ4M
M, =175 GeV R
' XY
S |gg—>n CTEQ4M E N “.‘

s
£ - e ;.-\.
s e —— 21 e HW qq quq
RE Ol —-— 0k % qn4 I:: ::[
L S g Sy g -sHW -
U qgoHyq | T . ..'_‘:_
; - e

’ 107 | .
LI S L
A " L_.‘ .| ma. qq +Hit
3 S 10k favoured '
10 F  favoured : 2 § ,,“q_. Hb!- fl‘d er
0 100 a0 T To0 Tio 300 0 200 400 600 100
M,, [GeV] M, [GeV]
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Higzs mechanism The SM Higgs

fvlore Higgs hosons

Tayloring search channels

Higgs decays

@ Individual decay channels:

decay mode width I
3
2~ 2
- 4m 2
H — ff 5;1-:—'\4tt-2m}r\.rc i, 2
872 my,
2 4 2 \ %
H— wtw— Eﬂﬂd.mﬁ 1_4mw_knﬁw . Sy
8mw\2 m?_f my m?_f
2 2 4 243
4, 12 4
H - 72 CEMY e W . 2002 BOE Y (3 3
8mw\/2 2ms m, m, me,
GEMH 2 a2 4 2 N
s gwl\\/l/i my (4«)2 (?.N;Qt) "
2EYH o2 (s, (2
H— gz 87w/2 mH(47r) (3) L0 d
H — w* more complicated, but important for myy 5 2my,

@ my < 2my: Higgs boson quite narrow, 'y = O(MeV).
@ my > 2my: H becomes obese, ['y(my = 1TeV) = 0.5 TeV.
9 At Iarge mH decay into VV domlnant I'H_,WW 7z =~ 2 1

e A e e e e
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Higgs mechanism

The SM Higgs

More Higgs bosons

Tayloring search channels

Higgs decays
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The SM Higgs

tore Higgs bosons

Higzs mechanism

Tayloring search channels

Some typical channels (mostly- @ Tevatron)

@ gg - H—- WrW~ — ¢ + £ : “golden plated”
No mass peak, but background partially killed with Zgp etc..

@ qg — ZH — ££bb: only limits on o
Key ingredient: b-tagging efficiencies, mass resolution for jets to
suppress QCD backgrounds.

o gg — WH — (vbb: like above.

@ g — WH — H, + bb: only limits on o
combination of the two above, with Z — vv

@ qf — WTH — WEWTW~: only limits on o
same sign leptons, other W goes hadronically (xsec!).

P e
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Tayloring search channels

Some typical channels (mostly @ LHC)

0 gg = H— 27 — 4p,2e2u: “Golden plated” for my > 140 GeV,
Key ingredients: Mass peak from excellent mass resolution (leptons). |

@ gg - H—-> WTW~ — 20 + £, : nearly as good as ZZ |
but no mass peak. Background killed with Zy, etc.. ,
Very similar to Tevatron analysis with huge stats. i

@ gg — H — ~v: Good for small my < 120 GeV.
Key ingredient: mass resolution for v's & veto on 7¥'s.
o WBF — H — 77: Popular mode
Key ingredient: QCD-backgrounds killed with rapidity gap
o WBF — H— WW: ditto. |
o WBF — H — bb: in principle ditto
but: Hard to trigger, pure QCD-like objects (jets) |

F. Krauss IPPP
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Higgs mechanism The SM Higgs fore Higgs bosons

Tayloring search channels

Difficult channels (mostly @ LHC)

@ top-associated production and H — bb: xsec okay, but difficult.
Potential show-stopper: backgrounds from tt+jets W+jets, etc.,
many jets to be reconstructed, combinatorics from tt-reco ....

9 top-associated production and H — ~+: xsec small, difficult.

@ top-associated production and H — 77: xsec okay, but difficult.
Potential show-stopper: backgrounds from tt + Z, W, Z+jets, etc.,
many jets to be reconstructed, combinatoric backgrounds from
t-reco, find the 7's (only 1/3 into leptons) ... .

@ Higgs decays into ji: small BR, could be useful for SUSY.

e etk = e m—
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Remarks on resonance production

Simple “rule of the thump” to calculate xsec
@ Consider processes like gg — H — ZZ etc.: resonant production.

4

|

@ If width small: can cut internal resonant propagator. f
_ [(ab|R)? ,i
|

|

|

@ Two-body decay R — ab: T, = —
= : " __ 27|(Rled)|? mgrlRr
@ Resonance production in cd — R: 0. = e e Ay

@ Use peak at s = m% (will yield a § function)
@ Therefore 0ap—r—cd = 32 BR(R — ab)BR(R — cd)
R

l
@ If width not so small: include Breit-Wigner. If
f

@ At hadron colliders: Need to integrate over Bjorken-x.

F. Krauss IPPP
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Search channel: gg — H — WW — /¢'vry @ Tevatron

Short intro

{from 130 Nowe-5757Conf)
@ Consider ee, eu, and up final states, each with 2 neutrinos
@ Use my in steps of 5 GeV, from 115 to 200 GeV.
@ Backgrounds: direct WW, WZ, ZZ, tt, DY, QCD, W+jets

@ Main cuts (acceptance and background suppression):

@ lepton isolation etc., |ne,p < 3, 2.
o prv“ > 15,10 GeV, £ | > 20 GeV (anti-DY)
@ some protection against wrong E

Q@ My > 15 GeV

9 Ady,r < 2...2.5 (channel-dep.):

most background like back-to-back, H likes small.

@ Neural network, trained with O(15) observables (some shown below)

@ Similar analysis for CDF, public page

@ Up-to data analysis: 3 fb~1.

F. Krauss
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Search channel: gg — H — WW — ¢f'vr @ Tevatron

Distributions for signals and backgrounds

F. Krauss
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Higzs meachanism The SM Higgs tdore Higgs bosons

Search channel: qg’ — ZH — ¢/bb @ Tevatron

Distributions for signals and backgrounds
@ Use £ = e, u, major backgrounds: Z+jets, ZZ, WZ, WW, tt.
@ Signal- or background-like? ME method (CDF, 2 fb1).
@ Relevant observable: m,z, need b-tagging to kill jj-pairs and similar

@ Finally bound: ogignal < 15 - opysmy at 95% C.L..
@ Similar analysis with more data and NN (CDF& DO).

e ———
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Combined searches @ Tevatron

Collected results from CDF

CDF Run Il Preliminary, L=1.9-3.0 b

|
1
E T R ||:nr|n..|||i|]|t|:|1<.|-||;|||||.. |
- — WWW191b" Obs o WH4ZH SBBMET 2,1 10 Obin |
g - LEP ----- wwwiren ey 00 eeeas WH+ZH SbbMET 2.1 1o ' Exp - !
= - Excl. ——  Hawz0t’ Obs ———  WH-skbb27 6" Obs |
§ BRIy == Hom2om'Ep 0 eeees WH—Ivbb 2.7 o™ Exp |
-1 —_— ZHodibb 24t Obs ——  H-WW3.01b’ Obs |
_| 2 [FISEERRE N H-libb2am' Exp s 00 eeea-e H-WW 3.0 tb™ Exp i
Combined Obs f
O10 “ L P
o = Combined Exp
o~
[V}
[« ]

10

R L] re f RPI PO L) = MR 35y i | PE LT 1] JATER T fiiop g
100 110 120 130 140 150 160 170 180 190 200
my, (GeV/c?)
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Higzs mechanism The SM Higgs fore Higgs bosons

Combined searches @ Tevatron

Results from Tevatron, 2008

Tevatron Run II Preliminary, L=3 fb™!
i R e P T o e e S 1= T S | oM R s Pl S i L e ) L LT T
e=sss Expected :

= (Observed

10 }

95% CL Limit/SM

Lo EN S N 12
X -"F'J’" =l o vf' i
W T i ig;, et
et <

werntt

1

i L Jly30.PO08
155 160 165 170 175 180 185 190 195 200
H(GeV/c)

B A o S S S U S —— —
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Prospects for Higgs boson searches @ LHC

Search channel: gg — H — v

@ Characteristic: Bump on a oS,
smooth background “ I +'4-‘*+++at j
— side-band subtraction : Y ;

o F T

@ Tricky issue: Mass resolution of A T h‘m_,h
/'yfy ; foaes e el P 5L
(converted ~'s, j('n-o) — -y conversjons, -y direction) : : r?];' ‘:I_

@ dm,, ~ 1.5 GeV. | JrJ'rilrw_lL % H HES

o S/vB(30fb™1) ~ 6 for g P T
my € [120, 140] GeV T anaion) dastbaron S5

F. Krauss \PPP
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Higgs mechanism The SM Higgs More Higgs bosons

Prospects for Higgs boson searches © LHC

Search channel: gg — H — vy

@ Characteristic: Bump on a
smooth background
— side-band subtraction

2

o Higgs Matd Gov (x18)
171 Higgn My=130 GaV (a10)
1 Hipgs M=120 GaV [x10) —
T Higos Ms115 GaV (a10}
[ e Drull Yan

0 rts B, > 50 Ga¥ i
I3 yejatn (1 proepty # 1 fake)|
00 g #jets (2 prompt 1)

33 box
L3 y7 bomn

@ Main obstacles: converted
v's, j(m°) — v conversions,
~ direction

o After hard work: e
5m,7,-y ~ 15 GeV Bo 400" dd07i200 9307 140 ik ‘iean'n:ige;;;éa

o S/v/B(30fb™1) ~ 6 for
my € [120, 140] GeV

R e e o R O SN U

Events/GeV
F
3 2

w
E=3
E=1
TRy T T Trr T
S s O

g

g
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Characteristics |
o At LO: No colour exchange between protons |
Tag-jets tend to be forward, at low p; =~ my/2, |
colour connected with “adjacent” proton remnants |
— hadronic activity mostly forward — l
(between tag jet and proton rump) e E R |

—— no hadronic activity at center |

— rapidity gap for signal n

o Rapidity gap filled by Higgs boson and its decay products ;

@ Typical backgrounds: W, Z+jets, tt, W, Z-pairs, QCD E

all of them typically have colour exchange between protons
— no rapidity gap for background

p S—

F. Krauss IPPP
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Weak boson fusion processes: Behaviour of the tag jets

Example: WBF, H — 77

i -—
g g o

° ©

i 3 [55E) Signal, geH

[ aco awaamjet
1 w0 LRV Rnaiel
3 41 -+ WG
\ Ll W

R [ R R | UL R
LK ] 2 [33 F] Q 00 1000 1500 000 3800 3000 2600 4000

] LI
e 12

SLR) o (o PE ore 20ve-036)

S T T : -
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(=]

Weak boson fusion processes: Rapidity gap

Example: WBF, H — 77
@ Many backgrounds with 3rd jet - typically quite central, ;

i.e. between the hardest two (tag) jets
o Quantify by “Zeppenfeld”-variable: 5 =73 — m:;ﬂ
E

o |

2 E

|

2 (2771 signal, qqH f

4 (] acD 2r+2/3jet {

5 LTV EW 2t+2jet |

= tt - WbWb |

. Wa3/4jet i

I

i

|
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WBF, H — 77 — {(jE |

Results
Cumulanye Cross Section [Ib] (% [rom previous slep)
Selection sigmlsampless qqH. H=ay rr = Ty Backgound samples
Q0D 3r+2155e1 EW it— WDHWD W+3jet (W—pv)
Mu=115 Mi=125 Mu=135 My =145 Tril)et Zr+ajel 27420et (W) [ Wagjel WHljel
production o 4.63% 107 $.30x 107 398 107 370 TF - - - s0x 107 - -
TXBRA=rr—=13) || 375 03.0 | 112900 | B23812.1) | a2 - = = . :
preselection s : = : 5.7 137 2990 : I538. U888, |
L1 BLBT (5200 | 60,70 (53.8) | 46.50(506.3) [ 26307038.1) | 132.6 (28.3) | 411.3 (35.01 | 1FOH(GU0) | 71.39x 1P (83.0) | 2815 (b1.8) | 6371 (043}
LI +HLT 4146 (307 | 31.39(51.7) | 24601529 | 14.19453.8) | 52.5339.6) | 1487 (36.2) | SB.B1AALTY | 5543% 107 (77.6) | 218 (T60) | 4472..70.2)
Lepron [D 0. 38705.%) | D998 (98] | 5.5 (94.9) | 13,40 (94.91 | 49.44 (94.1) | 1380 192.8) | 30.57 (86.2) | Sa.8x 100 (9701 | 2119, (99.1) | 4430, 199.1)
Leplon pr 39.12099.13 | 20.70 (99.21 | 23.16 (99.3) | 13.34499.13 | 49.17 (99.4) | 136.4 198.9) | 49,13 (97.0) | 53.54%10* (99.00 | 2118, (99.9)) | 4425, (99.9)
T-jetiD 12700325 | 10,36 (349 | 8.276 (35,7} | 4.88836.7) [ 1050 (21.6) | 29.04 (213 | 1AV (21.3) 36, 9.9 007y [T
T-et B 9.014 (71.0) | 7.564 (7300 | 6.422(77.6) | 3.858{78.91 | 6.092(57.5} | 18.16 162.5) | 7.360(70.2) 3215, {63.6) - -
valld nmiass BIT5 (078 | SOAZ(00.7) | 4302 (69.3) | 2840 (6.5 | 5.860 (03.3) | 1002 (3831 | 332 (37.0) 48,0 (26.4) 2.0 [k
VBFID 0. Br) 2718 (44.4) | 2092 (4151 | 1.949(43.7) | 1.08T {40.4) | 1.67943.4) | 7.462 (70.3) | 2.944 6.6} 221.9(26.5) (08.3)=* 3, 1)
VBF: Ay, 1ARS 4550 | L2310 (56.00 | LA04 (56.6) | 0388 (344 | LZ0T35 [ 441792 | 1LOIZ054A) [ERRRERT . -
VBE: Agy LITA(TR.4) | 0928 (7540 | 0806 (7340 | 04274725 | 0723 038.7) | 2:481 (56.2) | 0460 (43.5) 9380 (71,61 {16.3) 3041 |
YBE: Mj; 0771 (65.7) | 0634 (684 | 0.545 (67.7) | D283 (6640 | 0.312043.2) | 1.353454.5) | 0391 (R5.0) 2.738029.0 ¢30.8) (63.6)
Mep(,Fan G620 (M0.4) | QA6 (75.1)y | 0.423 (77.6) | 0,207 (73.1) | 0254 {81.3) | T.128 (813 | 0332 (82.4) 0,942 (34.9) 34.3) 30.2)
CIV 0503 (81.2) | 0382 B0y | 0344 (B1.3) | 0.175(84.6) | (L2534 (100, | 2.301 (26.7) | 0.230(T1.4) 0224 (23.8} (R0.D) 217y
Events al 30 [b™ 15.1 1.4 i0a N 16.6 0.9 6.7 1.5 (Wolw)
—— - = —
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WBF, H — 77 — ¢ |

Results: my and significance

- LIL I NN UL D L LT O O L L N L L L
“o sk n [ signal (135GeV/c?) 1 :
> 0 [ EW+QCD Z+jets 1 ._
N ttbar W+jets f
0l - Fit to Signal '
'r; e Fit Z . My 16V 15 | 125 [ 135 | 145 r
s - Fit to ttbar W+jets Ns (3060 1047 [ 7.79 | 7.94 | 3.63 |
® 3 —  Sum of fits i Np (3000 1) 370 | 221 [ 184 [ 142 .
‘Q Sep at 30fb~T (no uncertainty) || 4.04 | 3.71 [ 398 | 2.19
2 I _ Sep at 30fb~! (op = 7.8%) 397 | 367 | 3.94 | 2.18
Z 2 — Scp at 60fb~T (o = 5.0%) 567 [ 526 | 5.64 | 3.19
_ - |
13
1 -
u ] | B |- .{—":..,:.—:'— 'i- L '.’..'__‘_‘.'._ pe= !-..'.-. oLz ;H----\.vv-v-'—.v
0 50 00 150 200 250

M., [GeV/c?]
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Higgs mechanism The SM Higgs

A new idea: Higgs-Strahlung @ LHC

Basic idea

@ ZH and WH production not really considered up to now
@ Obstacle: if produced at low mass

o Good fraction of opr0q OUt Of acceptance
@ Decay products often with too low p

@ Typically: Huge backgrounds (e.g. tt at same scales)

@ So: Why not try to produce at large p, back-to-back?
(pJ_ > 200 GeV, O ZH,boosted ~ 0.05 x UZH,tot)

@ Large boosts: decay products in relatively small cones

9 Kills also backgrounds such as tops:

Impossible to have bb with large boost in one direction and W — v

in other direction without having massive QCD radiation
@ Added benefit: For Z — vv massive ¥ .

IPPP

fWlore Higgs hosons
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A new idea: Higgs-Strahlung @ LHC

Key: Structure of boosted H — bb

9 Boosted H will produce a “fat” jet with two b's in it.
@ Distance of the two b's in LEGO: R ~ ™ L

;zfy/z(l—z)

@ For resolution use k| -like algorithm

@ The last two subjets must have b-tags, and there must not be a too
large mass drop between them (my > pum,) '~

F. Krauss IPPP
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A new idea: Higgs-Strahlung @ LHC

Results: Signal in four regions
ZH — ¢7bb " ZH — vibb
ok —@ 109 (b) i g
3 1 S\)IE=2-‘ r| ——‘\n]ais 2 SAB = 3.1 3
S M 11212860V | S sl in 112-128GeV || b
g lh g b ="
2 1oF -RE ~ 8- i Jhﬂﬂ
2 iy o € \-L['!-HN“P
£ | i I
L3 . 2010 - . ;J—P‘-J}L’V :
o . . e
LR L e Rk s
Mass (GeV) Mass (GeV)
WH — ¢ubb Combination
2 | = Fn T o=
§ nlij\)lﬁszs ~Vsjots §‘W enp .45 ‘;
S gk in 112-120GeV ) =120k in 112128GeV | 'y =
é,,: I gwo— |l =ty
2 2w
£ 15 o %
10 401
5". mh v, o ad
G o T e TR G a0 8 oo 0 4o 0 o
Mass (GeV) Mass (GeV) J]
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SM-Higgs boson searches at LHC: upshot

Sensitivities after 30 fb—!

@
g o PP |
& : B Ho 1y o 2 B o eyt Incha v
] L dt=301" b M c CMS. 30 fb" & EwHHE I
= (no K-factors) LH oz s 3 ’ A o H=Z2'AZ-s (T |
& B N N o — Lo & s H=VIWANWliv Y |
'!3'.“ 102k ATLAS 3 quH S qeww™ o v :E 20 ' H ., . B, B = 1t —+ laplonatjel |
= i qaH - qqer o et NLO - ol T 4 g My _
& quH = qqZZ - vy — : h = et B WWalvll I
= » gqH — @WW o Iy /2] SR T TN, o Rl Kozt !
— A I e A |
—— Total significance o N B = !
2 g b1 /’_ }
— f
R < & b semaemt NN -
=y - Y
™ 2 b
n \ﬁ\
10 i ik N
50 at 30 fo' ,
el 5L s L] o at 30 S
; \ LA
5a Ly -. N7
\ W \a \
| I';‘
\ T
, , | L \ :
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Measuring the properties of the Higgs boson

Reminder: Why do we care?

@ Okay, so we've found plenty of evidence for a “bump” in some
distributions, i.e. a new particle.

@ Is this enough to claim victory and for P.Higgs to book flights?

@ Question: How do we know the bump is the Higgs boson?
Answer: It must be the scalar responsible for mass generation!
Therefore:

@ Is it a scalar, i.e. spin-0 and even CP?
© Is the coupling to the other fields proportional to their mass?
@ s this an accident or the result of the potential /self-interactions?

@ Answers to all three questions may not be available quickly. .
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Test 1: Spin and CP

Measuring the H-spin its decays: H — ZZ

9 Basic idea: polarizations of Z bosons correlated, must be visible.

@ Check differential cross sections/distributions of Z-decay products.

@ For scalar particles, all Z polarizations contribute:
My ~e1 60
(including the longitudinal ones which are dominant for large my).

@ For pseudoscalar particles, only the transverse polarisations
contribute: |

, ey ele o
M~ €pr ki kS e8eS A ki - (€1 x &5) |

9 W|II g|ve rise to dlfferent dlstrlbutlons

1 P r——— s ——— - n—— — =

(f)l
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Test 1: Spin and CP
Measuring the H-spin its decays: H — ZZ

@ Differential cross sections:

=
dar
W ~ AT sin? 01 sin? 0o + B:I:(l + cos? 01)(1 + cos? 07) + CF cos 61 cos 8o
0 8 6
d cos @1d cos 05 g

dr
H A:t

—_— ~

T b + Bi: cos ¢ + Cf cos(2¢) ,

where {A, B, C}¢ a depend on CP state (&) of the Higgs boson and on Zf7 couplings and kinematics.

-— —_ — e wr s -— —pe
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Test 1: Spin and CP

Measuring the H-spin its decays: H — ZZ

0.22 T 7 ]
H = 2Z > if T
My, = 200 GeV

o Difference between M and M _, |
- o persists for the “normality” towers '
—— can rule out 0—, 17, 27 etc.. |

, @ Can rule out odd spins (17): [

L missing Al = 0 (Bose symmetry) }
|

|

i : @ Need other decays for even spins (2)

F. Krauss IPPP
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Test 2: Yukawa couplings

Strategy
@ Yukawa couplings «x masses — light particles (u, d, ...) hopeless
@ Typically: Extract couplings from total cross section measurements

@ As we've seen before, this is often more than challenging:
lumi/PDF uncertaint