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Aims

Sparse Ax = b.
Fast.

Direct methods Factorize matrix A = LU then triangular solves.

I MATLAB backslash easy.
I Black box - works 99.999% of the time
I GPU libraries: few/none

Iterative methods CG and friends.

I Expertise required to pick correct method
I Often requires preconditioning
I Doesn’t work for all matrices
I GPU libraries: many
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Factorization

Factorize as:

A

=

= L D LT

I Sparse

I Symmetric: A = AT

I Non-singular (for simplicity!)
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Modern direct solver design

Four phases

Ordering Find fill-reducing permutation

Analyse Find dense submatrix structure.
Setup data representation.

Factor Perform factorization with pivoting.

Solve Use factorization to solve Ax = b.

GPU Challenges

I Thousands of small dense subproblems (e.g. 8× 1)

I Pivoting on large dense subproblems (e.g. 4000× 2000)

I Substantial sparse scatter/gather

I Complicated kernels (register pressure)
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Previous work

Pre-existing work

I Just offloading large BLAS 3/LAPACK operations.
Very modest speedups on whole problem.

I A few codes go beyond this.
None publicly available?
No pivoting: potentially unstable
Fairly modest speedups: CPU↔GPU bottleneck

Our implementation

I Puts entire factorization and solve phases on GPU

I Open source, including all auxiliary codes

I Delivers over 5× speedup vs 2 CPU sockets on large problems
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Tree parallelism

=

Operations in first two block columns are independent.
Data flow graph called Assembly Tree

3

1 2
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Real world assembly tree: PARSEC/SiNa
Original:

Reordered:
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Node parallelism

For an individual block, in order:

Assemble contributions from children
(sparse gather)

Factor m × k matrix with threshold pivoting
(partial dense LDLT )

Contribution given by Schur complement
(dgemm)

Each task itself can be parallelized (some better than others!)
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First challenge: Exploit both tree and node parallelism

Note: CUBLAS only supports multiple BLAS on same dimensions.
⇒Have to write our own routines.

I CPU populates a data structure of tasks

I Assigns an appropriate number of blocks to each task

I Launches a kernel on
∑

blocks

I Costs several registers to do this (can’t use constant cache)
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Enforcing task ordering

Need to enforce assembly tree ordering

I Ideally would do so via global memory with single kernel

I Want to support Fermi, insufficient registers

I Use level based approach instead

7

3

1 2

6

4 5

level 3

level 2

level 1

Outstanding Issues
Load balance:

I Disparate node sizes

I Freedom of assignment
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Factorization: basics

Basic Algorithm

1. Factor A11 = L11D1L
T
11

2. Divide L21 = A21 L−T
11

3. Form C = L21 D1 LT21

Stability

I All entries in L21 < u−1

I Entries of D1 calculated
in stable fashion

Typically u = 0.01.
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Factorization: parallel pivoting I

Traditional algorithm

I Work column by column

I Bring column up-to-date

I Find maximum element α in column of A21

I Pivot test α/a11 < u−1. Accept/reject pivot

Problems

I Very stop-start (one column at a time)

I All-to-all communication for every column
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Size distributions

m

k

1

16

256

4096

1 16 256 2048

Schenk IBMNA/c-big

m

k

1

16

256

2048

1 16 256 1024

GHS psdef/bmwcra 1

I Wide range of sizes

I Often m� k
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Factorization: parallel pivoting II

Solution

I Try-it-and-see pivoting (a posteriori pivoting)

New algorithm

I Work by blocks of L21

I Every block factorizes copy of A11

I Every block checks max | l21 | < u−1

I All-to-all communication when all blocks are done

I Discard columns that have failed on any block

We use a block size of 32× 8.
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Factorization: parallel pivoting III

Implementation Issues

I Inefficient if lots of rejected pivots

I Still quite stop-start

I High register pressure (especially on Fermi)

Future work

I Implement Subset pivoting or other CA technique
as fall back

I Move to DAG-based implementation (Kepler only)
(Significant performance improvement expected)
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Assembly: Sparse gather/scatter

Can be framed as either sparse gather or sparse scatter.

I Need to enforce ordering: prefer sparse gather

I Launch one kernel per child
(i.e. all first children, then all second, ...)
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Auxiliary codes

Many auxiliary routines are required that are still CPU-based:

I Ordering (Nested Dissection)

I Analyse (Assorted Graph Algorithms)

I Scaling (MC64 or SpMv)

... but only run once for a sequence of problems

Auction-based scaling: alternative to MC64
For some problems, serial MC64 scaling takes > 75% of time

I 95% of the quality

I 10% of the time

I Parallelizable
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Results

Comparison

I C2050 GPU (Fermi) [515GFlops, 238 TDP]

I 2× Xeon E5620 = 8 cores (Westmere-EP) [76.8GFlops, 160W
TDP]

I Flops ratio about 7×

Test Problems

I 4× Optimization (IPM)

I 4× Finite Element

I 4× Finite Difference
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Times(s) and Speedup: Factor+Solve

Problem CPU GPU Speedup

GHS indef/c-72 0.48 0.35 1.37
GHS indef/c-71 2.98 0.64 4.66
GHS indef/ncvxqp3 10.65 2.03 5.25
Schenk IBMNA/c-big 12.37 2.64 4.69

Nasa/nasasrb 0.88 0.17 5.18
DNVS/shipsec1 4.18 0.90 4.64
GHS psdef/bmwcra 1 4.45 0.93 4.78
DNVS/ship 003 9.52 2.16 4.41

McRae/ecology1 1.64 0.94 1.75
AMD/G3 circuit 4.54 2.13 2.13
GHS psdef/apache2 11.50 2.64 4.36
Lin/Lin 17.89 2.97 6.02
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Code hot-spots

c-72 c-big shipsec1 Lin
Speedup 1.37 4.69 2.33 6.02

Contrib 19 780 1607 1568
Assembly 27 446 38 302
Factor 82 481 850 666
Waiting 143 525 405 352

Times are in ms.
Waiting = time not in kernels.
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Factor is poor

Contrib AssemblyFactor
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Conclusions and Future Work
Story so far

I New open source sparse direct solver in CUDA
I Will be released with a little more tidying

I Speedups over host of around 5 on large problems
I Needed to both:

I Handle peculiarities of device
I Use new algorithms for massive parallelism

Near Future

I Multi-GPU

Long-term

I DAG-based factor

I GPU-based scaling

I Auto-generation from stencil?
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Thanks for listening!

Questions?
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A Supplementary slide

Some supplementary text.
(Note numbering of supplementary slides is outside that of normal slides.)
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