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Abstract. The SABRE (Software for the Analysis of Binary Recurrent Events) program has
been extended to run on parallel architectures. A web service interface has been provided
using the GROWL (Grid Resources on Workstation Library) toolkit to securely access SABRE
functionality deployed on the grid. This interface has been incorporated into an R package
(sabreR) so that users can configure and analyse SABRE models and results from within R.
The package allows for multiple SABRE models employing both serial and parallel SABRE
implementations to be used simultaneously.

Sabre

Overview

Sabre (1, 2) (Software for the Analysis of Binary Recurrent Events), is a program specifically
designed for the analysis of binary, ordinal, count recurrent events. Such data are common in
many surveys either with recurrent information collected over time or with a clustered sampling
scheme. As such, Sabre is particularly appropriate for the analysis of work and life histories,
and has been used intensively on many longitudinal datasets.

Sabre can be considerably faster than conventional statistical modelling software. For example,
with a data set of 11341 observations of 26 variates Sabre ran 435 times faster than an equivalent
analysis made within Stata (3) using gllamm (4). Sabre’s favourable performance is a result of
several factors, for example analytical rather than numeric calculation of the derivatives.

Some of the random effects statistical models estimated by social scientists are computationally
demanding on large data sets. In addition for substantive reasons, social scientists need the de-
sirable features of random covariate parameters (i.e. acknowledging more stochastic complexity)
and multiprocess capability (i.e. acknowledging the interdependencies between different aspects
of behaviour). Even with the reduced analysis time obtained by using Sabre, these models may



take many days to estimate. To mitigate these prolonged analysis times, Sabre version 4.01 has
been developed with support for parallel computers. This provides an almost linear speed-up
in terms of number of processes. Executing Sabre on a parallel system where many hundreds
of processes may be available makes the analysis of complex models a possibility.

Performance and Timings

Tables I II and III contain results showing the analysis time of various data and models for Stata,
gllamm and Sabre employing 1, 2, 4, 8 and in one case 16 processors. All of the computations
were performed on Lancaster University’s High Performance Computing Facility which, at the
time the analyses were undertaken, consists of an array of 64 bit Sun-Blade workstations2. Each
workstation has 1 gigabyte of memory and communications between each system run at 100
megabits per second.

Data Obs Vars Kb Stata gllamm Sabre(1) Sabre(2) Sabre(4) Sabre(8)

hsb (16) 7185 15 1172 01” 20’ 51” 06” 04” 03” 02”

thaieduc1 (15) 8582 4 378 11” 4’ 52” 01” 01” 01” 01”
thaieduc2 (15)

teacher1 (14) (13) 661 3 22 n/a⋆ 1’ 14” 00” 00” 01” 01”
teacher2 (14) (13)

racd(dvisits) (13) 5190 21 1090 52” 18’ 24” 03” 02” 01” 02”

racd(prescribe) (13) 5190 21 1090 42” 15’ 11” 03” 02” 01” 02”

visit-prescribe (13) 10380 26 2717 n/a⋆⋆ 45hr 15’ 2’ 21” 1’ 11” 36” 20”

Table I: Timing Comparisons for Cross Sectional Data (2).

Data Obs Vars Kb Stata gllamm Sabre(1) Sabre(2) Sabre(4) Sabre(8)

pefr (17) 34 4 2 00” 29” 00” 00” 01” 01”

nls(wage) (18) 18995 20 3859 03” 2hr 12’ 27” 15” 08” 05”

growth (19) 153 8 14 00” 1’ 00” 00” 00” 01” 01”

nls(union) (18) 18995 20 3859 2’ 02” 30’ 04” 05” 03” 02” 02”

schiz (20) (21) 1603 8 140 n/a⋆ 2’ 24” 00” 00” 01” 01”
(22) (23)

dvisits (23) (24) 2227 10 242 39” 9’ 07’ 02” 02” 01” 01”

filled (25) 390432 94 367556 59hr 52” > 3mnth 34’ 38” 18’ 51” 11’ 03” 7’ 01”

lapsed (25) 390432 94 367556 67hr 31” > 3mnth 29’ 414” 16’ 20” 9’ 45” 6’ 21”

filled-lapsed (25) 780864 261 2134413 n/a⋆⋆

> 3years 54hr 29’ 32hr 5’ 18’ 49” 11’ 58”

union-wage (18) 37990 25 9683 n/a⋆⋆ n/a⋆ ⋆ ⋆ 18hr 21’ 9’ 13” 4’ 41” 2’ 26”

Table II: Timing Comparisons for Longitudinal Data (2).

⋆ Stata 9 cannot estimate random effects ordered response models using quadrature.
⋆⋆ Stata 9 cannot estimate bivariate random effects models using quadrature.

⋆ ⋆ ⋆ Unexpected failure.

Boldface entries in the Stata column of tables I and II indicate that the Stata xtreg command
was employed to estimate a random effects linear model using Maximum Likelihood Estima-
tion (MLE) which, for normal distributed random effects, has a closed form for the likelihood
integration. The remainder of the results employ quadrature: the number of quadrature points
used varying in each example according to the needs of accuracy3.

Clearly Sabre out-performs gllamm on all data sets and Stata only out performs Sabre when
MLE is employed. Sabre out performs both gllamm and Stata when quadrature is employed. A

1 For the remainder of this work, Sabre is used to refer to Sabre version 4.0 unless otherwise stated.
2 The Lancaster University High Performance Computing Facility is being replaced with higher specification systems

in April 2006.
3 The adaptive quadrature algorithm in glamm was not employed.



useful illustration of relative performance for such a case is provided by the lapsed and filled-
lapsed data sets in table II. These data are from a study providing the first estimates of the
determinants of employer search in the United Kingdom using duration modelling techniques
and involve modelling a job vacancy duration until it is either successfully filled or withdrawn
from the market. For full details of this analysis see (25).

Data Obs Vars Size Stata gllamm Sabre(1) Sabre(2) Sabre(4) Sabre(8) Sabre(16)

aus 3665704 53 2Gb 10183’ > 6months 62’ 32’ 16’ 9’ 5’

Table III: Timing Comparisons for Large Data Set Demonstrating Ap-
proximately Linear Speed-Up (2).

Table III concerns the analysis of a large data set (3665704 observations with 53 variables). The
results highlight the approximately linear improvement in performance of Sabre as the number
of processors employed increases. That Sabre running on 16 processors is >2000 times faster
than Stata provides persuasive evidence of the benefits of employing parallel Sabre for this kind
of analysis.

For more information regarding the above comparisons and detailed theory of the models em-
ployed by Sabre see (2) and (1)

Integrating Sabre functionality into statistical environments

Serial Sabre provides a text based Graphical User Interface (GUI) which allows the user to
configure and run Sabre models and examine the results obtained from an analysis. Both the
serial and parallel versions allow a Sabre script (the text of a GUI session) to be processed from
the command line and produce results to an output file. However, it is desirable, for a number
of reasons, to provide access to Sabre functionality from within a statistical environment such
as R (5) or Stata. Doing so allows the user to prepare the model data, configure models and
analyse results using the native data structures and extensive functionality of the packages and
eliminates the need for a user to learn the syntax of the Sabre environment.

Most common statistical packages offer facilities and tools that allow a programmer to add
functionality to their environments. To use the features of existing software in such a way, it
is usually necessary to have available the source code or a pre-compiled library containing the
required functionality. However, neither the serial or parallel versions of the Sabre code were
developed with reference to integration into third party applications and the Sabre methods
are not available directly from a library. In addition, the benefits of parallel Sabre are only
available when it is executed on a remote High Performance Computer (HPC). This makes
integrating Sabre into a statistical package challenging. However, such issues are not unique
to Sabre, and particularly in the context of grid computing, legacy application functionality is
often required to be accessed from within other software components. For this reason, GROWL
(Grid Resources on a Workstation Library) (6, 7, 8) was developed.

Grid Resources on a Workstation Library

Overview

Amongst other components, GROWL provides a client server system in which the server can
host arbitrary services that provide a SOAP (9) interface. Client access to these services is over



a secure (PKI/SSL) connection to a single port on the host system. Clients are authenticated
to the server using their distinguished name extracted from a certificate provided by a trusted
certificate authority, such as the National Grid Service. Client access to particular services can
then be granted/denied based upon client status.

Since the server is provided as a stand-alone web service, client access to a specific service
becomes virtually transparent. Furthermore, significant advantages are gained in having the
server as a stand-alone service. Firstly, the server has persistence (traditional web services
typically do not) providing meaningful state for managing clients and services. Secondly, it
eliminates any administrative dependency on services such as HTTP(S) allowing many of the
difficulties associated with institutional firewalls to be overcome.

In the context of the grid, the architecture allows a developer to create client-side interfaces to
grid facilities hosted as web services. This is significant since the need for grid middleware knowl-
edge is restricted to developers providing the grid service. In addition, administration/security
issues are devolved from the grid developer to the server administrator. This “architecture en-
forced demarcation” categorises the development associated with providing grid services into
classes very much in keeping with those identified in Foster and Kesselman (10).

GROWL Server Architecture

The GROWL client/server has a three tier architecture (figure 1) comprising a client, server
and services tier.

Figure 1. GROWL Client - Server Architecture



The first tier consists of the client interfaces, specialised to specific client application require-
ments, and integrated into the client server architecture using modules created from service in-
terface definitions published using the Web Services Definition Language (WSDL). The WSDL
are generated and published by the developers of the services represented in the third tier of
the architecture.

The second tier consists of the GROWL server. The main functions of the server are threefold:

1. Authentication of clients.

2. Hosting services by acting as a proxy for the service interface.

3. Mapping of client requests to specific service instances.

The third tier consists of the services themselves. A service is defined by its interface which
is published using the WSDL. Importantly, an individual service may be implemented in a
number of different ways, the particular implementation varying according to the requirements
of the system(s) hosting and the client(s) accessing it. It may, of course, also vary in time as
the requirements of a service implementation change. Services are created by service developers
and the interface definitions for a service can be created automatically from existing code using
GROWL utilities.

The key advantages of this three tier client/server architecture are:

• Clients, server and services may be upgraded or replaced independently.

• A single interface may correspond to many service implementations.

• All services are accessed via a single port.

• Services have persistence.

• Developers of client applications can program against an interface in a language and platform
independent manner and need no understanding of the service logic.

• Developers of services need not be aware of the client application logic and do not require
an understanding of web services.

Migrating Legacy Systems into the GROWL Client-Server Model

There are five actors associated with developing, deploying, and securing services hosted by the
GROWL client/server. They are:

• The client.

• The client application developer(s).

• The service developer(s).

• The server administrator.

• The certificate authorities used to enable authentication and realise secure communication.



Figure 2. Development, deployment and security of components. Demarcation of actors.



Of particular interest is the demarcation of these roles in the process of hosting and accessing
services using the GROWL client/server architecture. The involvement of each actor in the
process of developing, deploying and making secure a service is demonstrated in figure 2.

The development of the a service and client applications that employ it are undertaken by
the server and client developers respectively. The server developer typically has an existing
library/application which provides the service logic. Using the definition of the service interface
and implementation in conjunction with the GROWL developer compiler a server library is
generated. A client developer can take the same service interface definition and uses the growl
compiler to generate a client side library and header files. These are then used to develop a
client application using the same interface as employed if the service were hosted on the client
system.

The server administrator is responsible for deploying the server, adding and removing services
and administrating client access. Each service corresponds to a service library provided by the
service developer and is mapped to a service name from within an XML based configurations
file maintained by the administrator. A list of authorised clients for each service along with
information regarding each active client session (generated by the server) is also present within
this file.

Client identification and client/server authentication is via the use of certificates. Certificates
are issued by a certificate authority in the normal manner and employed within the client/server
architecture for secure SSL/PKI communication.

Sabre R interface

Overview

The Sabre extension to R was developed using GROWL components and R scripts combined
into an R package (sabreR). In addition, parallel Sabre is hosted on the grid using a GROWL
server. The main advantages of adopting this approach are

• The Sabre wrapper interface developed using GROWL is identical for both serial and parallel
Sabre

• The GROWL server provides secure/authenticated access to parallel Sabre on the grid by
employing the wrapper interface

• The GROWL server exposes Sabre functionality as a web service, thus eliminating many of
the problems commonly associated with institutional firewalls and account management.

• The user does not require an account on the system hosting parallel Sabre

• A user can start a grid hosted Sabre session and then terminate the R session without
cancelling the Sabre analysis. They can then recover the session for later use, even on a
different client system.

Features

Being able to access Sabre functionality from within R has a number of advantages. In particu-
lar, the R user can undertake an Sabre analysis using native R data structures and commands



with which they are familiar. This allows the preparation and analysis of Sabre input and out-
put to be integrated into existing methods and work flows that might be already undertaken
within the R environment. In addition to this, use of the GROWL API and server allows a
user to have multiple concurrent Sabre models within a single R session. Because the GROWL
facilities are multi-threaded, control is returned to the user after each Sabre command, even if
the command is still being processed. These features allow a user to easily study the effects of
modifications in model parameters and/or data by comparing estimates from multiple models
within the same R session. The latter two features were not in the original project specification
but are a natural outcome of employing GROWL.

Interface

The sabreR commands are designed to be similar, in terms of case, naming convention and
argument handling, to the native R commands and to those found in R packages. In addition,
all data used in conjunction with a Sabre model is organised using native R data structures.
The following demonstrates a typical sabreR session

> library(sabreR) # load the sabreR library

> sabre0<-sabre.session(); # create a new sabre model

> trade.union<-read.table(‘‘./TradeUnion.table’’) # read the data into a data frame

> names(trade.union) # show the variates

[1] "CASE" "YEAR" "AGE" "EVNO" "SUPR" "HRS" "NOEM" "SEX1" "TU" "PROM"

[11] "SC80"

> sabre.data(sabre0,trade.union)

> sabre.display.variates()

Name Levels Type

________________________________

cons 1 X

case 1 X

year 1 X

age 1 X

evno 1 X

supr 1 X

hrs 1 X

noem 1 X

sex1 1 X

tu 1 YVAR

prom 1 X

sc80 1 X

fnoem 5 X

fsc80 6 X

> plot(trade.union) # plot the data

> sabre.y.variate(sabre0,’’tu’’)

> sabre.factor(sabre0,’’noem’’,’’fnoem’’)

> sabre.factor(sabre0,’’sc80’’,’’fsc80’’)

> sabre.display.model()

X-vars Y-var

______________________________

year tu

age

fnoem

fsc80

Univariate model



Standard logit

Number of observations = 1633

X-var df = 12

Log likelihood = -1073.0110 on 1621 residual degrees of freedom

> sabre.lfit(sabre0,’’year’’,’’age’’,’’fnoem’’,’’fsc80’’) # linear fit

Iteration Log. lik. Difference

__________________________________________

1 -1131.9093

2 -1073.2798 58.63

3 -1073.0111 .2687

4 -1073.0110 0.1204E-03

5 -1073.0110 0.4700E-09

> sabre.display.estimates(sabre0)

Parameter Estimate Std. Err.

___________________________________________________

year -0.16136E-01 0.54224E-02

age 0.32899E-01 0.69741E-02

fnoem ( 1) -1.3945 .80939

fnoem ( 2) -.78157 .47819

fnoem ( 3) -0.35445E-01 .47920

fnoem ( 4) .14679 .46976

fnoem ( 5) 0.48744E-01 .46787

fsc80 ( 1) .00000 ALIASED [I]

fsc80 ( 2) .39780 .29480

fsc80 ( 3) -.17355 .30840

fsc80 ( 4) .60508 .28237

fsc80 ( 5) .49547 .29331

fsc80 ( 6) .51569 .32419

> sabre.case(sabre0,’’case’’)

> sabre.fit(sabre0,’’year’’,’’age’’,’’fnoem’’,’’fsc80’’)

> # NB returns control to user immediately even though analysis still running

> sabre.display.estimates(sabre0)

*** Sabre analysis still in progress ***

> # ... some time later ...

> sabre.display.iterations(sabre0)

Initial Homogeneous Fit:

Iteration Log. lik. Difference

__________________________________________

1 -1131.9093

2 -1073.2798 58.63

3 -1073.0111 .2687

4 -1073.0110 0.1204E-03

5 -1073.0110 0.4700E-09

Iteration Log. lik. Step End-points Orthogonality

length 0 1 criterion

________________________________________________________________________

1 -917.86146 1.0000 fixed fixed 6.5174

2 -878.33512 1.0000 fixed fixed 19.983

3 -868.98256 1.0000 fixed fixed 4.6722

4 -867.52529 1.0000 fixed fixed 5.2621

5 -867.20337 1.0000 fixed fixed 11.115

> # ... user can be doing other things within R whilst sabre analysis continues

> sabre.display.estimates(sabre0)



Initial Homogeneous Fit:

Iteration Log. lik. Difference

__________________________________________

1 -1131.9093

2 -1073.2798 58.63

3 -1073.0111 .2687

4 -1073.0110 0.1204E-03

5 -1073.0110 0.4700E-09

Iteration Log. lik. Step End-points Orthogonality

length 0 1 criterion

________________________________________________________________________

1 -917.86146 1.0000 fixed fixed 6.5174

2 -878.33512 1.0000 fixed fixed 19.983

3 -868.98256 1.0000 fixed fixed 4.6722

4 -867.52529 1.0000 fixed fixed 5.2621

5 -867.20337 1.0000 fixed fixed 11.115

6 -867.06558 1.0000 fixed fixed 5.9164

7 -866.93034 1.0000 fixed fixed 6.8780

8 -866.93024 1.0000 fixed fixed 11.479

9 -866.93024 1.0000 fixed fixed

Notice how in the example the first argument to all of the Sabre commands is a Sabre session.
This is how sabreR distinguishes between multiple Sabre models within a single R session.
Furthermore, notice that the first call to sabre.display.estimates resulted in a warning that
the analysis was not yet complete. This demonstrates the multi-threaded nature of the sabreR
package. Finally, use of the sabre.display.iterations allows a user to keep track of each Sabre
analysis that is currently running.

How would the above session differ if a parallel Sabre analysis was being executed on a grid
resource ? The following demonstrates how little additional effort is required:

> nwg<-grid.resource(‘‘~/smith.pem’’,’’~/smith.pem’’,

+ ’’growl.lancs.ac.uk:50000’’,’’~/smith.passwd’’)

> sabre0<-sabre.session(nwg) # this time create a sabre session with a grid resource

> # ..... continue as before

In this example, a grid resource is acquired by passing the grid.resource function the location of
the users certificates, a file containing the users password and the name of the system hosting
the GROWL server. Sabre sessions are created as in the previous example except that the grid
resource is passed to the sabre.session function. Any ensuing Sabre commands are identical
those as used when using a local (serial) session of Sabre.

If a user leaves the R session while a grid Sabre session is active, they can return to it later.
The sabreR package offers two simple functions for retrieving grid Sabre sessions. These are
outlined in the following example.

> library(sabreR)

> nwg<-grid.resource(‘‘~/smith.pem’’,’’~/smith.pem’’,

+ ’’growl.lancs.ac.uk:50000’’,’’~/smith.passwd’’)

sabre.current.sessions(nwg)

started last command

1 02/01/2006 13:01 02/01/2006 14:27



2 02/01/2006 13:07 02/01/2006 13:54

3 02/01/2006 13:08 02/01/2006 13:57

4 02/01/2006 13:11 02/01/2006 14:03

> sabre0<-sabre.recover.session(nwg,3) # recover session 3

Conclusions

Support for parallel processors introduced in version 4.0 of Sabre dramatically reduces the run
times of statistical analysis of multi-process random effect response data. An almost linear im-
provement in analysis speed with number of processors employed makes it particularly suitable
for deployment on a computational grid. However, there are a number of significant benefits
to be had by integrating Sabre functionality into existing statistical environments such as R.
However, doing so in a manner that makes use of the underlying grid resources as transparent
as possible poses a number of technical challenges. These challenges are far from being unique
to Sabre and consequently the GROWL library has been developed to provides the programmer
with an API that generalises the solutions to these challenges. A three tier client/server archi-
tecture is provided by GROWL and this has been employed to host a generic Sabre interface
defined in WSDL and access to this service has been integrated within R. Work is currently
being undertaken to provide access to the Sabre services from within Stata.
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