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ABSTRACT

The comma representation of interacting string field theory is
further elucidated. The proof, that the Witten’s vertex solves
the comma overlap equations, is established. In this represen-
tation associativity of the star algebra is seen to hold. The
relationship of the symmetry K in the standard formulation
of Witten’s string field theory (WSFT) to that in the comma

theory is discussed.
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1 Introduction

It has been first suggested by Witten [1] that it is may be possible to for-
mulate string field theory as an infinite dimensional local matrix algebra.
This suggestion lead to the formulation of string field theory as more or
less a generalization of Yang-Mills theory of an extended object, known
as the “comma” [2]. In [3,4] a Fock space realization (operator construc-
tion) of the comma theory was obtained by writing down the overlap
equations that follow from the formulation of the theory in the comma
language. In the language of matrices, vertices were written as traces and
the explicit form of the Witten’s vertex was regained after integrating out
the midpoint degrees of freedom. However, the ambiguity related to the
midpoint? was not settled. One was not sure how to view the midpoint,
x(7/2) ( p(7/2)), since it was common to both formulations of the string
field theory (i.e., the Witten’s theory and the comma theory). Because of
this problem, one was not able to show directly that the Witten’s vertex
is indeed a solution of the comma overlaps and therefore one was not
clear about the precise nature of the relationship between the two theo-
ries. Investigation of other problems ( such as midpoint ghost insertions)
required for the K and the BRST symmetries in the original theory, were
made cumbersome by the need to use the full string formulation at some
stages of the investigation. To overcome these problems and to give a
direct proof that the Witten’s vertex is indeed a solution of the comma
overlaps we need to modify the comma definition employed in [3,4] (more
in the line of reference [1]). The modified comma coordinates are defined

2 Another approach in which the midpoeint plays a central role has been discussed in
ref. [5], although in a different context from refs. [3,4].



through the relations

X(o) ,ifr=1,
X(0)=4 X(n—0) ,ifr=2, (1.1)
ocel0,%).

Note that the only difference between this new definition of the comma
and that in ref. [3,4] is the exclusion of the midpoint x(m/2). Theses
coordinates are subjected to the constraint,

lim x*(0) = lim x*(0). (1.2)
o5 o—%

This is in the spirit of the WSFT developed in ref. [1]. X (o) are the full
string coordinates at fixed time 7 = 0 (space-time indices will be sup-
pressed throughout the paper). In this modified approach to the comma,
the midpoint is excluded from the degrees of freedom and is used to con-
strain the emerging system (i.e., the comma degrees of freedom). The
Fourier expansion at 7 = 0 of the full string coordinate X (o) is given by

X(o) =Xo + ﬁi X, cosno, o€ [0,n].
n=1
If one expands the comma coordinates (1.1) in a Fourier series then they
can be related to the full string coordinates. The comma boundary con-
ditions are dictated by the boundary conditions of the full string and the
comma definition. Choosing an even extension to the interval (7 /2, «],
only the even modes in the Fourier expansions of the comma coordinates

survive. Hence,

x"(0) = xo + \/iz X3, COS2n0, o € [0,7/2), (1.3)

n=1

where

i = Xo+(-r225 Oy,

n—l

Xon = Xon+2(-) Z Banom-1Xom-1, (1.4)

n=1



and r = 1,2 refers to the left (L) and right (R) parts of the string?
respectively. The change of representation matrix (B) is given by

Bmz(_)"mH( 1 1 ) (1.5)

™ n+m n—m
Equation (1.4) can be solved for X,, (n > 0) with the help of the identities

> 1
> Banosk-1Bomam-1 = Z5km ;
n=1
> 2m 1
E EE‘:‘—IB2n2k—1B2k—12m = _Zénm . (1-6)

k=1

Hence

X2n =

l\DIi—‘

2
Z ,n>0,

3. 2m
Xon1 = Z( )yt 2 Byn_12mXom sn2>1. (1.7)

m—l -1

However, in the second relation of equation (1.7) there are redundant
degrees of freedom. Now, the constraint on the comma modes (1.2) can
be explicitly solved and what results are the modes with no subsidiary
condition. Hence one gets

\/"

™

X2n—1 -

Xo + Z( )4 Z Bym 2n-1X3m »n > 1, (1.8)

r—l r=1 m=1

for the second equation in (1.7). The comma modes (x3},) have been
treated so far as classical objects. There are many ways to quantize a

3Throughout the paper we will refer to the left and right parts of the string by 1
and 2 respectively; however to make things more transparent and to avoid confusion,
sometimes we may refer to the left and right parts of the string by the letters L and R
respectively. When dealing with more than one string the indices may become confusing;
therefore indices referring to the parts of the string will always be written as superscripts
while those labeling the string will be written as subscripts whenever possible.
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system (of course all of them are equivalent). A standard method is
to interpret the oscillator modes x5, as ¢ — operators and define their

conjugate momenta, g}, = —-i% , satisfying
[Xan» 03m] = 16" 6nm - (1.9)

These operators are easily related to the full string operators ones using
equations (1.7). Thus

r 1 =)< Go)r
P = §P0+\/—2- - 22 Pon—15

fogaard n—1
T 1 r -~
Pin = P+ (-) 3" Bonam-1P2m-1, n > 1. (1.10)
m=1

They satisfy the desired commutation relations as can be verified using

the identities in equation (1.6). The inverse relations are given by

2
P2n = Ep'z'na 77'20,
r=1 .
2\/5 _\yn 2 . 2 oo
P2n—1 = __2( ) 1 D0 +2> (=) > Bamon-10h,, n > 1.
m n- r=1 r=1 m=1

(1.11)

We will focus our attention on the orbital part, the treatment for the
ghost part follows the same line. Now the Fock space of the comma
theory (where the degrees of freedom for left and right sectors of the
string live in different Fock spaces) is easily constructed. One introduces
the operators b, and bﬂ(r =1,2,n > 1) satisfying

n)¥m

[b’ b T] = 66 - (1.12)

It is possible to introduce such operators in the usual way by taking
the appropriate combinations of the position and momentum operators,

namely,

r . r i T T . (T r J r
et ) oGl ) 0



The creation operators (b:lJr ,n > 0) are given by the same expressions
with (¢ = —1). It can be checked that these operators satisfy the required
commutation relations. Introducing the comma vacua |0 >7 (r = 1,2),
satisfying

b710>'=0 ,7r=1,2 andn > 1,

one obtains the Fock space* corresponding to each comma (half string)
by repeated application of the comma creation operators on the comma
vacua. The annihilation and creation operators in the comma theory
(or, b:lT) when related to the conventional annihilation and creation op-

erators (a,,an) give

L Cr &y
by = —4—(34() - ag) + o E (2n — 1) [(4 4+ (2n —1))azny

n=1
~(4—(2n -1l ],
1 _\yr+1l o© 2m_11/2
n ﬁa&n + ( }5 on [A2m—1 n@m—1 — Sam—1 ZnGImq] ’
m=1
(1.14)

where
AZm—l 2n
= B2m—1 2n F B2n 2m—1 3
SZm—l 2n

f

and baT , b;T are given by the same expressions with a, = an. Now it
is important to make sure that these relations are consistent with the
constraint in the definition of the commas. Rewriting the constraint, eq.
(1.2), in the comma annihilation-creation basis we have

2 oo n 2
SEraeg-sh=—25 Cl s yne —et),  qas)

r=1 n=1 n o=
which can be easily verified to hold in the annihilation-creation basis of
the full string using the following identity

o -vw =5 (- 1)

o \y+tn z+n

“The complete space on which the comma states reside is given by the tensor product

(completion), H1 @ H2.



and the fact that ¥(3 —n) = ¥(1 +n) for n integer. The inverse relations
of (1.14) are given by
2 2
3. 1, 1 &,
ay = Z(Zbo"‘zboT), aznZEEbn yn=>1,

r=1

et = 72 2 (S s [(@n — 1)+ 98— (20 - 1) - 5]
-3 (

2n—1
oy 2m

1/2
) [AZn—IZmb:n, + S2n—12mb:,j]> ) (1.16)

|

with an given by the same expressions with ] = b;’[ It is not hard to
see, using the properties of the matrix B and the commutation relations
for the comma operators defined earlier, that the standard commutation
relations for the annihilation-creation operators (a and aT) are indeed
satisfied.

2 Comma Vertices

In the comma formulation of string field theory the elements of the theory

are defined by é-function type overlaps. The N interaction vertex is given
by

N =/2
VX5, X5y oo Xivr ©7] = €27 T T 6(xH(0)—x2_1(0))8(p} (o) 21 (a)) -

i=1o0=0

The index ¢ refers to the ith string (it is understood that i = 0 and
N are identified). The ghost é-function have the same structure as the
coordinates ones and Q¥ is the ghost number insertion. In the oscillator
Hilbert space of the comma theory, the § functions, for the coordinates®,

translate into operator overlap equations, namely
[XF(o) = xF1(0)] [V >= 10,0 € [0,7/2), (2.1)

and ¢ = 1,2,.., N. In addition, conservation of momentum requires

5The ghost degrees of freedom, in the bosonized representation, have the same struc-
ture apart from some mid-point insertions which will be addressed later.



[£7(o) + o1 (0)] Vi >=0. (2.2)

These are now the overlaps defining equations for the comma vertices.
Now we are in position to construct the explicit form of the comma ver-
tices. We will start with the case |V} >, since it is the identity vertex
|I > with respect to the * in Witten’s string field theory. For N = 1, we

have
[X'(o) - x*@)] 1> = o,
[#'(0) + (@) II> = o,

where the superscripts 1 and 2 refer to the left and right parts of the
string respectively. In terms of the oscillator modes the above overlaps

result in

S =)y — s> = o,

r=1

2
L +binr> = o
r=1
It is trivial to solve the above equations, assuming that |I > has the form
I >= e—%(bT]Ile)IO 1 o >2
then it is clear that
1-;3 — (6r+ls + 63+1r)6nm

solves the above overlaps. The cases N > 2 are simplified if one rewrites
the overlaps in terms of complex coordinates. Following Gross and Jevicki

(6] we define

w(o) = \/—EXI(U)e v r=1,2,

and similar ones for the momenta. The corresponding creation and an-
nihilation operators are defined similarly and (for N > 3) satisfy the

commutation relations

[B:,—B-;_m] — 51'56""” [B'r Ba ] —



The advantage of this new set of variables is that it leads to the separation
of degrees of freedom in the overlap equations. For the case N = 2 the

overlaps now are simply

Qf(a) = —Q{Z(U) ,0‘€[0,7l'/2),v
Q;(0) = Qf(0) ,0 €[0,7/2) (2.3)

These two equations are the same as the overlaps for the identity vertex

(apart from a “ —” sign in the first one). Hence,the form of the vertex

follows immediately from the form of the identity vertex. It is simply

_1 TIB.‘. 1 TI T 2 1
Vs >= e~ 3B TBED+HEIZIED TT |0 >! [0 >2

=1

or in the original creation operators (b'I)
-y vl prl B L R
|V'2 >=e i=1" in° i-1 H '0 >i IO >i .
i=1

Next we consider the case N=3. In the complex coordinates the overlap

conditions xf (o) = xf* 1 (o) for the three string vertex read

Qo) = e™Q%(0) ,0 €[0,7/2),
(o) = Qf(0) ,o€0,7/2),

where Q"(c) = Qi(o) = (Qj(0)). For the complex momenta the overlap

conditions pf (o) = —pf (o) translate into
Pio) = —em/*PR(0) ,0 € [0,7/2),
Pi(o) = —P5(o) ,0 €[0,7/2),

where P"(0) = Pi(c) = (P;(c)). The vertex Vp,(b{T,b'éT, bgT), therefore,
separates into a product of two pieces depending on B';r and on BT =

B{J‘ ) Bt = B’;r respectively. The first factor is identical to that in |I >.
Thus one has

—_— 3
Vi >= eap (—5B]1z18]) - (BT#BT)) [T10 >} 0 >2,

i=1



where T is the same as that for |/ > and H is an infinite dimensional
matrix to be determined. In order to determine H we first note that the
overlap conditions on Q"(¢) and P"(o) imply that their Fourier compo-
nents satisfy

[QF, —e™*Qf ] IVa> = 0,020
[’Pan + ezm'/zpzli] V3> = 0,n>0 (2.4)

As well as their complex conjugates. Applying these equations to the
three vertex yields

(His — E€"PHE) + (678 — P66 = 0 ,n>0,r=1,2,,
(Him + @™ PHE) — (678 + "B ™), = 0,n>0,r=1,2,
(2.5)

and their complex conjugates. These equations are easily solved for the

matrix elements of H. Thus one has,

2xi

H:;:n — e (r—c)(6r+la + 65+11‘)6nm

(with HT = H). We have therefore the explicit form of the 3-interaction
vertex which is of central importance in the theory, expressed in the
complex creation-annihilation comma operator basis. Combining the two
pieces of the vertex (i.e., Z and H ) and rewriting everything in the

original creation operators (i.e., b;T) we obtain

3
IV:; >—=e" 2?:1 bL;I.anj-—1u H !0 >iL |0 >f! .

i=1

At this point it is worth comparing this expression to that of the full
string given in [6,7,8,9,10]. Our vertex is extremely simple, it basically
says that one must sew the left half of the string ¢ to the right half of the
string 7 — 1. In the case of the full string operator formulation given in
the above mentioned references this is not obvious from the form of the
vertex. Also our expression can easily be generalized to higher vertices
while in the case of the full string operator formulation, the calculation is

quite cumbersome for a general value of N (see [11] for the construction

10



of the general N-vertex), in fact the general expression in the comma

formulation is simply,

-r bL.T bRT =~ L R
|[Vy >= e~ 2= """ n JT |0 >F [0 > ], (2.6)
i=1

which can be put in a more formal form as

ot sty
[V >=e 2 HEDTT [0 >F 0 >F
i=1
where
Hiim= (%61 + 6176 1:)6nm -

Now the interesting question to ask is “are these two theories equiva-
lent?”. In other words do the vertices in the full string creation-annihilation
operator basis solve the overlap equations for the comma theory? And
do the two theories have the same symmetries? We would like to address

these two questions in the next section.

3 Full String Vertices and the Comma Overlaps

The fact that the Witten’s vertex solves the comma overlaps only prove
that the Witten’s vertex is a solution of the comma overlaps and not nec-
essarily the only solution®. If this turn to be the case it will be interesting
to see what other solutions are admitted by the comma formulation; cer-
tainly one of them will be the comma vertex itself if one can show that
it is different from the Witten’s vertex (i.e., possesses different properties

from the Witten'’s vertex.), these questions will be addressed later in the
paper.

The proof that the operator form of the Witten’s vertex solves the
comma overlaps is not a trivial one, since it involves double infinite sums

(the second coming from integrating o over the range [0, 7/2) in formulat-

ing the comma theory). Here the double infinite sums may not converge

5This statement is true, since no one has yet proven that Witten’s interaction fixes
the form of the vertex uniquely.

11



absolutely and the convergence may depend on the order of the sums (so
the expressions may be ambiguous!) The case of the full string [6,7,8,9,10]
is different, the expression for the vertices involve absolutely convergent
sums. This ambiguity is not an accident, we have seen in [3,4] that Wit-
ten’s theory can be viewed as an infinite dimensional local matrix algebra
where the star product “ *” becomes matrix multiplication over infinite
dimensional matrices that does not conserve associativity. The proof of
the cases NV = 1, 2 is trivial due to the simple form of the overlap matrices
in the full string formulation. However for the cases N = 3 and higher,
the form of the overlap matrices are quite complicated. Although we can
show that the Witten’s 3-Vertex satisfies the comma overlaps directly [12]
it is simpler to use the Witten’s 4-vertex, |V, >, since

V¥ >=<IF V¥ >, (3.1)

where |I}¥ > is just the identity vertex corresponding to the 4th string.
To establish that the Witten’s 4 — Vertex solves the comma §-function
overlaps we recall that the comma interaction requires that xf (o) =
xj-1(0) for o € [0,7/2) and j = 1,..,4 (with j — 1 =0 = 4). In complex
coordinates the overlap equations take the form

Qo) = iQ%¥o) ,0€[0,7/2),
Ql(e) = (-Y7Qf(0), j=2,4; oc€[0,7/2),
where Q"(0) = Qj(0) = (Qj(c)) and similarly another set for the com-

plex momenta Pj(c). In the Fourier space of the comma, the overlaps
for Q(o) read

fn = ngn , n20,
Qon = (_)j/zgﬁn b J = 214 »n Z 0? (32)

and similar ones for P(0)7. Now recall that the form of the full string

"The comma 4-vertex described by the above overlaps is |Vy >= ezp
(-181z8] + 38178} - BIKBY) T1L, (0 >1 [0 >7 where K73, = e <C=0/o3s,.

12



vertex ( Witten’s 4-vertex) in oscillator basis (see ref. [6]) is given by

J— 4
V¥ >= eap (~5(aliclal) + Saliciad) - afiviah) IT1o >,

i=1

(3.3)

where Cprm = (—)"6nm and V., is an infinite dimensional matrix [6] con-
-1/2

n

structed from the binomial coefficients To verify that the

Witten’s 4 — vertex solves the Comma overlaps, (3.2); we first note that
the second equation is the same as the overlap equation for the identity
vertex and therefore the proof follows from the form of the vertex. Hence
we are only left with the first one to verify. With the help of the change
of representation formulas, equation (1.14), we are able to show that the
comma, overlaps are satisfied by the full string vertices. To do this we need
to express the comma overlaps, (3.2), in terms of the full string Fourier
coeflicients and show that they are satisfied by the Witten’s 4 — Vertez,

i.e., we have to show that

[(1 —90- 2201 +9)3

w n=1

=)
2n—1

QZn—l] |V4W> = 0,

[(1 )0 —2144) 3 anzm_lgz,n_l] V¥> =0 (34)

m=1
hold. Similar equations for the complex momenta P,, are easily estab-
lished. The proof of the two equations is very similar; so we only need
to consider one of them®; we do the harder one (the second equation).
Commuting the annihilation operators in (3.4) through the creation op-

erators in |V}Y > yields a sum of creation operators acting on |V,¥ >,

hence e
i
——— 5 [ NN ASS
2\/57'12:0[ ] ml 4

where the expression in the squared bracket is given by

1 . "\ = 1
\72-—;(1 — ) Vnan+8man) —2(1+1) Y \/—2’6—7_—13% 2k-1(Vim2k—1 + 0mak—1) -

= (3.5)

8We have checked that indeed both of them are satisfied for the Witten's Vertex.

13



Since the states AL|V;W > are linearly independent, the expression in
(3.5) must vanish for all values of m. Now there are three cases to consider
m =0, 2l, 2l — 1 (I > 1). For m = 0, equation (3.5) reduces to

1 .
[E(I—Z)%zn 2(1+z)z \/—anu -1Voz2i— 1] . (3.6)

Using the expression for V,,,, in ref. [6], eq. (3.6) becomes

. -1/2 _ —1/2
Up=2k = ( n/2 ) and Vp—gp—1 = ( (n _ 1)/2 ) (3-7)

are the Fourier coefficients in the expansion of

1+ zef 1/2
(1—id) ’ (3:8)

(for more details see ref. [6]). The sum in the above equation when

where

carried out gives

—1/2)

g oo k-1 1

V2k1 U2n

Bon ok~ = =2 3.9
kz::l n2-log —1 2_: MALTR-1  22n (3:9)

where we have used the fact that (see the Appendix A)

(=)* [ -1/2\ _ T(1/2)(a)
Zk+a( n )_F(a+1/2)'

This proves that equation (3.5) is identically zero for m = 0 . The next
case to consider is m = 2l. Now eq. (3.5) becomes

1 } " — 1
E(l — ) (Vaizn + 61n) — 2(1 +4) D ﬁan 2k—1(Varak—1 + Sa12-1)
k=1 -
(3.10)
where
_ (21)'/3(2n)'/2 UgiU2n
Varon = T ol om  Yai¥en — (1- Voo)m ,
_ (2DM*(2k —1)/? . UnVak-1
Voisk—1 = — 2l — 2k + 1 ugivak-1 +1(1 — %0)(21)1/2(2k _ 1)1/2

14



To evaluate the sums we make use of the identity®

i( 1 _ 1 ) Vok+1 _r =)r u +(_)"_
Z\2n+2k+1 2n—2k—1/20-2k—1 22n+20 " 2n wuy,

Thus

Varar_1
B,, =
Z 2n 2k— 1(2k 1)1/2

(2l 1/2 1 U U2y
2 (2 g At (2n)1/26"1+(1—%0)(21)1/2(217.) '

Substituting in eq. (3.10) we get zero. The last case to consider is
m = 2l — 1 > 1. In this case eq. (3.5) reduces to

1 :
[E(l —1)Varm12n — 2(1 +7) Z \/Q—E-—anzk 1(Vai—1 261 + 51k)]

where
‘/nm = (_)n+men
and
20 — 1)Y/2(2k — 1)*/? e
R ) ~(1~Voo) i 7k

(20— 1) + (2k — 1) ~#-1¥2k-t 1)72(2k — 1)1/2

Now it is clear that the expression in the square bracket vanish if one
uses the following identity,

Vai—12k-1 1 1 Uzn Bon iy
B,, = —(21-1)?
Z 2=k — I/Z _ ( Vv ST o (20 — Vv,
1 -
_ _(1 _ %0) Uznl21-1

2 (20 — 1)Y/2(2n)’

which is derived in Appendix A.

This shows that the comma overlaps (3.2) are satisfied by the Wit-
ten’s 4 — vertex. Exactly the same procedure is followed to prove the
P—overlaps. They are seen to hold too. All the sums needed to carry
out the proofs can be obtained using the results in Appendix A. To com-
plete the proof we have to see if the ghost part of the Witten’s 4 — verter

9This identity can be easily derived using the results in Appendix A.
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satisfies (violates) the comma overlaps in exactly the same way as in the
standard formulation. The ghost part of the Witten’s 4-vertex is given
by
VP >= ¥is/D|yp0 5

where |V;”° >> has the same form as the orbital part of the vertex. The
ghost factor e¥#(™/2) corresponding to ghost number 3 is the right ghost
number, since one must require |V;’ >=< I?|V >. Expanding the phase
factor and commuting the annihilation operator through the creation part
of the vertex results in doubling the creation part of the insertion. Thus
one has

n
Al v
‘V;lﬁ >= 63 Z:‘;l 2n A4 2n|V4¢ D> .

The quadratic part of the vertex, IVf’O >, satisfies the comma overlaps
since it has the same structure as the orbital part which solves the comma
overlaps as we have seen. However, when one includes the ghost insertion
this is no longer the case. To see this one first observes that the comma

overlaps for V; are blind to the phase factor'® (insertion) apart from

L _ R
42n — Q42n ,n2>0,
L _ R

Pisw = —Piaa ,m20.

In fact the first of these equations is also blind to the insertion factor,
since it contains only odd modes in the annihilation-creation operators
A4 which clearly commute with the even modes in the phase factor. On
the other hand, the second equation contains even modes of the operator
A4 and therefore is not satisfied by the vertex due to the insertion. To
see this notice that
=) n o0 (_\n _\n

Py 2n€TP (3ﬂz=:1 %—E%AI 2n) = exp (3 n.z::l (\/2)_nAI Zn)_ {_g%—;—; + Py 2n] ,

where r = 1, 2 refers to the left and right parts of the string respectively.

Thus commuting the overlaps through the insertion factor and collecting

terms we obtain

ezp (:a"i;1 (J;_;AI 2,,) [—3(\;2_); +PL,, = —szn] .

10The reason for this is that the other overlaps describe different strings in the complex

coordinates as we have seen before.
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Now it is clear that the overlaps in the square bracket are not satisfied
by the quadratic part of the ghost vertex because of the presence of a
¢ — number. This is the same violation seen in the operator formulation
of Witten’s string field theory (see ref. [6]). Therefore the comma. overlaps
are satisfied (violated) by the Witten’s 4 — vertexr in exactly the same
way as in the case of the standard formulation (7,8,6,9,10]. It follows
from (3.1) that the Witten’s 3 — vertez also solves the comma overlaps,
since the [I"Y > and the |V}Y > vertices solve the comma overlaps. This
completes the demonstration that the Witten’s vertex is a solution to
the comma overlaps. In the next section we will address the remaining
questions raised earlier. At this stage one can not help to look at the
relationship between the dual model vertex of Caneschi, Schwimmer and
Veneziano (CSV) and the comma vertex. The CSV vertex [13,14] is
given by
< VOSY| =< 0,0, 0[e3 o Mamain

where n > 1 and m > 0 refer to the modes while the i(j) index refers to
the ith (jth) string and take the values 1,2,3. The CSV coefficients are
given by

= a2 = 2=k ()
n m

and all other M’s vanish. It is not hard to see, by direct substitution
in (2.4), that the CSV vertex does not satisfy the comma overlaps and
therefore is not a solution to the comma theory. To see this in another
way note that the CSV vertex is related to the Witten’s vertex by <
VY| =< V¥ |01, where O is the conformal operator derived in [15,16].
Now it is not hard to see from the explicit form of the conformal operator
O that it fails to commute with the comma overlaps. It follows that the
CSV vertex is not a solution to the comma theory, since the Witten’s
vertex is. However, it is worth noticing that there is no self coupling
in either of the comma 3 — Vertex or the CSV vertex; therefore it is
reasonable to investigate a theory in which the string is made up of two
pieces coupled together at two end points and strings are allowed to
interact whenever their endpoints touch or they overlap as in Witten’s
theory. Then one should study the theory for different values of the
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coupling and see if one can get a consistent string theory. It is possible
that Witten’s theory and the dual model emerge as special cases of this

theory. However, it remains to give a meaning to these formal statements.

4 Symmetries and Other Problems

The role of ghosts becomes significant when one considers the properties
of the theory. The ghost vertices in the bosonized version are of the same
form as the coordinate ones apart from some midpoint ghost insertions.
First we would like to consider invariance under reparametrizations gen-
erated by

K,=L,-(-)"L_,.

It was established in [1] in the bosonic representation and proved more
rigorously using the fermionic operator representation of the ghosts in [18]
that K symmetry requires specific ghost insertions at the midpoint. Now
we have established that the full string vertices are in fact solutions to
the comma overlaps. Therefore it is important to see if the X symmetry
in the comma representation requires the same insertions in the comma
vertices and if in fact K continue to be a symmetry of the comma theory.
For the identity vertex, | >, the K, invariance of the integration requires
that
0= /KnA =< AIK,|I >,

where K, = KX*%, |I >= |** > and |I¥ >= e '3*C/I|[¢ > (with
|[I§ > having the same form as |[IX >). In fact the action KX on |IX >
gives ——-?—%(—)"/ 26,c2z. The effect of the ghost will be to cancel this
anomaly when considering KX*¢. In the comma representation the phase
factor reads

oo

cop (28(x/2) = eap (3 >t - #h)

n=0r=1

where "
r_y 3 (=) 1o
)‘_}\n_z————,r—l,2,n20.



Commuting the annihilation operator through the quadratic form in
|I§ > we have

ezp ( 2 Z Z ,\Tb”f) (4.1)

n=0r=1
Now we are ready to compute the effect of commuting K¢ through the
phase factor in (4.1). It is not hard to see that for n = odd, K, commutes
with the phase factor. Only K¢_, .. contributes to the anomaly. The
Virasoro generators L¥ for the ghost in the comma theory are given in
Appendix B; here we only recall the pieces that contribute to the anomaly.
Thus (using Appendix B) for the phase factor we have:

lbf J@M —2N)2N)(— f)z Z b,

1‘8_

— zl Nzl V(@M — 2N)2N)AY Ny = (M —1)(—)™.

The linear term in L¥ is:
2
— 9
V2M (3 ph — 3M)—= Zb’ (1 +2M)(-)M.
r=1 \/— 8=1 2
It remains to compute the action of L? on |I§ >. This is the same as
the action of LX on |IX >. But since we have not done the orbital part

here let us do this one. Now the linear term does not contribute to this

anomaly since |I§ > is quadratic in the creation operators. Therefore

only
%NXQ V(M — 2N)(2N)( \/_) T;b by
and
M-1 M-—-N+1
% Py V(M — (2N —1))(2N — 1) frgl( )'*‘(f (2M(—)2N++1)3/2

~—

((2M — 2N + 1) + 4)b] — (2M — 2N + 1) — 4)5'2:] +

= (2M - (2N —1
2 ( (2k )) [AzM-(ZN—l) 20} + Sam—(2n-1) 2kb'1])

k=1

X

J5m iy @V = )+ % — (e = 1) - 4w ]
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o0 2N _ 1 1/2
+ Z ( 51 ) [A2N~—1 by + San—1 2lbr;r])
=1

contribute to the anomaly. The first equation when acting on |[I{ > gives

L
The action of the second equation gives a finite piece plus a divergent
piece, however the divergent piece cancels against another divergent piece
coming from the same term in L¥,,f, which is given by the second equa-
tion with 4" = b’]t, making the difference of the two terms finite. Thus

one gets

M
”7(")M‘5M€22—1 )

where we have used the identity (see appendix A)

oo

1
> T (an—1 2k Bak 2m—(2n—1) + B2m—(2n-1) 26 B2k 2n-—1)
k=1

= ZL?_]- 6’m2n—1
_ { ( s (777 — 1) (4.2)

- 2?2 m(=)m+! .
;) (Zn—1)2(2m—(2n—-1))2 ifm#2n—1.

Putting everything together
9 9 M 26
Ky — S(M = 1)(=)¥ + 5 (2M = 1)(=) = T (=)™ = ZM(-).

Clearly, this cancels the orbital anomaly thus proving the symmetry K.
This shows that the midpoint insertions are the same in both theories for
the identity. Therefore integration means the same thing in both theories
at this level of rigor!!. The 2-vertex is anomaly free in both theories. Both
the orbital and ghost parts of the string are invariant under the symmetry
K separately. For the 2 —vertez in the comma formulation this is true for
the following reason. The Virasoro generators contain terms which are
either linear or quadratic in the creation-annihilation operators, the linear
term does not give rise to a ¢ — number when it is commuted through the
quadratic piece. The quadratic term in the Virasoro generators is of the

(15
1

form blb?; the fact that the same string index appears in both “b's”

11!

110pe still needs to check the BRST invariance as well.
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means that, the action of the  —th operator on the exponential will bring
down a creation operator with index different from i (since, in the comma
theory there is no self coupling in the 2-vertex creation operators) which
commute with the second operator giving rise to no ¢ — number anomaly.
This is precisely the reason why one does not need any midpoint insertion
in the case of the two vertex and therefore the K — symmetry is present
not only in D = 26 but in any space time dimension (the same remark is
true in the case of the full string 2 —vertez). In fact in the comma theory
the K symmetry does not require any midpoint ghost insertions for all
vertices apart from the the identity vertex (i.e., |I >) as can be easily
seen from the form of the NV — vertez in the comma theory. However,
the case for higher vertices is different in the full string theory [6]. At
this point it is worth looking at how the midpoint insertions are seen by
the comma theory for higher vertices? To see this we recall that, in the
comma theory, the ghost N — Vertez is given by

[V >= e Rstr/|yed >

For |V5¥ > the phase factor (insertion) is

3 3 2 o

3z i
exp(Etb(”r/z)) = Z (§¢(7r/2)) = Z Z E A;n(b; " b; nT) , (43)
=1 j=lr=1n=0
where A7, = —21A, for all r, j and n. Commuting this phase factor

through the creation operators in |V;° > doubles the factor of the cre-

ation operator in the phase factor. Hence
Vs >= Fo| V" >,

where

J=1r=1n=0

3 2 oo
Fy = —exp (ZZE,\;nb;,,T) :

Thus for the phase factor we have

M1 3 2
% 3 VeM - 2N)(2N)(\/i§)2z > b m_nbi N

N=1 j=1rs=1
3 2 M-1 3 o
— 3 V@M = 2N)@N)X; 33 0y = 5(M - 1)(=)™.
j=1lr,s=1 N=1
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For the linear term in LY we have

\/—Z(ZPJO 3M)\/—Z

i=1 r=1 s=1

T‘/_ ,2,;14'\ f\/_(zM)ZA, M= —(—)M —IM(—)™.

Hence

M-y,

3 15 135
ZKszfa_’_?M(_)M - M(— )M 2.32

j=1 3
which is precisely what one gets in the standard formulation [6,18] of
WSFT. The same procedure can be repeated for the comma 4-vertex
giving

4
D Kfam 7"4—-*-—M( M = M( (=26 -1).
j=1

" Which is again the standard result. Although the comma theory treats
the midpoint insertions in the same way as the standard theory it does
not require them for consistency (for N > 2)! The same thing happens
when considering the BRST symmetry. The BRST symmetry requires
the same midpoint insertions in the comma theory for the identity vertex
as in the case of the full string identity vertex [18]. For higher vertices
(N > 3) the BRST symmetry in the comma theory does not require any
midpoint insertions for consistency (for details see ref. [17]) unlike the
case of the standard theory [18]. This seems to suggest that both theories
are different in some way not yet obvious to us in spite of the fact that all
vertices are solution to the comma overlaps. Now it will be interesting to
see what sort of operator (if exists) interpolate between these solutions
[17]. Before concluding this paper; it will be useful to explore some other
features of the full string theory within the frame work of the comma
theory. Let us recall that in ref. [19] translations were shown to be
inner derivations. To prove that the authors of {19] had to show that the
properties

P{ + P = py, (4.4)
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(where P} and PJ are the integrals of the space-time momentum density
over the intervals ¢ = 0 — 7 /2 and n/2 — = respectively and p is the
total centre of mass momentum) and

(PORA]_) * A2 + A]_ * (POLAQ) = 0, (4.5)

(where A is a string field) hold. The star product of two states is given
by Gross and Jevicki,

|A1 * Ay >=< A1’ < Az”% >.

Thus to prove (4.5) one only has to show that the integration by parts
law [19] is satisfied

< Al < Azl(PlRﬂ + PzLo)|V3 >=0, (4.6)

where the indices 1 and 2 refers to string one and string two respectively.
Eq. (4.6) is a consequence of

(P + Pyo)|Va >=0. (4.7)

It is a straight forward to see that these properties continue to hold in
the comma theory. Eq. (4.4) is just eq. (1.11) for n = 0 which was
established earlier in the comma formalism. Eq. (4.7) is a consequence
of integrating'? (from o = 0 — 7/2) the overlap equation (2.2) defining
the comma vertex for the particular values j = 2 and N = 3. This can
be easily seen by integrating (2.2) from o = 0 — 7 /2 using the Fourier
expansion of the comma conjugate momenta, p;(a),

2v2 &

2 T o
pi(o) = ;Qio + e Z ;i COS2N0 .

n=1
Thus (4.7) is satisfied by construction in the comma theory. One can
check the above statement directly by explicitly substituting the oscil-
lator form of the comma 3-vertex (derived earlier) into (4.7) and then
integrating over . Doing so one gets

[_Hlﬂoaim +8%61:60m — Hygim + 5L‘62i63m] br,TmIV?; > .

120ne must check the convergence of the implicit sums over oscillators since integrat-
ing over o corresponds to a second sum.
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The expression in the square bracket is zero as can be easily seen using

the explicit values of the matrix H obtained before.

It has been shown in [19] that there is an anomaly in the operator
associativity of WSFT which in turn implies an associativity anomaly in
the star algebra of Witten’s string field theory. This can be seen using
the fact )

[P+ Py Xa(n/2) = Xa(n/2)] = —2|Va >,

(since the zero modes do not commute). However, we have seen in ref.
[19] that
(Pfo + Pfo)lVa >=0

and!?

[(X1(7/2) — X3(m/2)]|Vy >=0

which is a clear violation of the uncertainty principle. These anomalies
have been discussed before [20] and are characterized by the failure of
the Jacobi identity. This anomaly arises because of the coupling between
the first and the third strings in the vertex. Now it is not hard to see
that the Witten’s 4-vertex suffers from the same problem when viewed
by the comma theory. To see this one only needs to notice that the above
two equations are in fact comma equations. For the first equation this
is obvious. For the second equation, recall that from the definition of
the comma coordinates; lim, .z x*(¢) = lim,_z x®(¢) = X (7 /2) (where
L and R refer to the left and right parts of the string respectively).
However, when one is working fully in the comma representation, the
comma vertices do not seem to suffer from this particular problem. This
is due to the fact that in the comma theory, there is no coupling between
the first and third strings or the second and the forth strings in the vertex.
This can is easily be proven to be equivalent to the following statement;
it is not possible to construct an operator that fails to commute with
(PR + Pjy) and at the same time kills the comma 4 — vertex. In fact,

in the comma theory, this is true in general for higher vertices (IV > 3).

13Remember that this equation is the statement that the midpoint is not moved in
the oscillators representation of WSFT which is not the case in the comma theory.
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Hence the above mentioned anomaly disappears in the comma theory and
the associativity of the star algebra is retained !

5 Conclusion

We have shown that the operator form of the Witten’s vertex given in
(7,8,6,9,10] is indeed a solution to the comma theory. The question about
the equivalence of the two theories is discussed. On the level of the one
and the two vertices (i.e., |I > and |V, > ) we have seen that both forms
of the vertex (i.e., the comma vertex and the Witten’s vertex) possess
the same symmetries and in fact can be shown to be equal using the
change of representation formulae derived in the introduction!*. However
for higher vertices (N > 3), while in the full string formulation, the K
and the BRST invariance require some specific ghost insertions at the
midpoint of the string for consistency, it does not seem to be the case
in the comma formulation. In the comma theory both the orbital and
ghost parts of the vertices (for N > 2) are invariant under the K and
the BRST symmetries separately. The associativity anomaly in the star
algebra of the standard formulation disappears in the comma theory.
Now it seems to us that the comma formulation of string field theory is
somehow more general than the standard formulation of string field, since
beside the comma vertices all the Witten’s vertices are solutions to the
comma theory. This seems to suggest that Witten’s interaction does not
lead to a unique solution but to more than one solution. A challenging
task is to understand the relationships between theses solutions. Work in
this direction is in progress and the result will be reported in the future.

Appendix A

In this appendix we give details of the summation formulae. Many

14In fact to do this properly, one also needs to derive the relationship of the full string
vacuum to the comma vacua. See ref. [3,4].
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other useful formulae can be found in refs. [6,?,11] First consider

i TE_T{_L:_‘ ( _1/2 ) — -/0'1 dt t°-1 i(__)ntn ( _:'1/2 )

n=0 n n=0

1 1
= fdtt“’l(l—t)f—l.
0

where we have used the binomial formula (1+¢)* = 3%, ¢ “ ] to sum
n

the series in the integrand. However this equation defines the B(a,1/2).

" ( L2 ) _ Bla,1/2) = NWAT@

Hence

n+a Tla+1/2)°

n=0

Next we consider

) -1/2) _ 0 & (- ~1/2 _
Z(n—k—l/w( n ) - a_fgn——ffl/_z( n )lf=k—

:_B_(P(l/z)r(l/z—f))l _ [ -1/2 -
o¢ r(1-2¢ = w—1\k-1] °

A special case of the above formula is

iﬁi—(_”z) = T(w(1) - $(1/2)

n:0(2n+1)2 n
™ (1+V00)
4 \1—Vg/ "~

Using (A.1) and the explicit expression for the matrix elements B,,, it is

straightforward to see that

> L(=)T(k +1/2) Usk
By on il = —= =—— A2
nzz% 2k t1Von+l = T T(1/2)I(1 + k) 2 (4.2)
It is also easy to see that
- Vont1 1ug,
n === A3
;,Bz“ Hon+1 T 22 (A-3)
The above formulae can be utilized to show that
S B 2mtl oMy Lo 2n un
Lo T On) —@m+1) " T | 2 T 2mug. 2n42k 2 |
(A.4)
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Another useful sum to consider is

iB Yan+1 . 1 Usn 1 Byage
SO F )+ (26+ 1) (26-1)—(2n) 2 20—1 vy,

To arrive at the above result we only need to use the fact I'(1 — n) = oo
for n > 1, equation (A.1) and

_(-1/2) _(=)rr(r+1/2)
m=1 4 )T T2+ D)

Another usefull sum to perform is

o0 1

E — (Bag 2xBak 2y + By 21 B 22) (A.5)
2k

k=1

Using the following identities:

¢m—ww=§(1 - 1),

o \¥yt+tz z+y

PY(1 — z) = Y(2) + wctgrz,

Yz +1) =)+

the sum in (A.5) reduces to
(_)2z+1 2
(2n)? (w_3

for y = ¢ and

T w2 2
- ;Ectg'rr(a: +1)— ;(1 —ctg*m(z + 1))

1 (=)** (wetgn(z+1) wctgn(y+1) z? —y?
(2m)? - + -
T2 y—z x y z?y

for z # y. Setting 2z = 2n — 1 and 2y = 2m — (2n — 1), where n and m
are integers greter than zero, we recover (4.2).
Appendix B
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Here we state the Virasoro Generators for the ghost sector in the
comma annihilation-creation basis. For the even modes, we have:

Ly = Z V(2N +2M)(2N) Z by b}’v+M+ Z V(N —1)(2N +2M — 1)

7‘3—

2. (\/livr (21\5_—)1)3/2 (@Y =1 + 0]

—((2N —1) — 4)b7] — i (2N _ 1>1/2 [AZN—IZIb;T + SZN——IZlb;])

=1 21
1 (_)N+M
(ﬁﬂ (2N + 2M —1)3/? [(

(2N +2M — 1) + )b — (2N +2M — 1) - 4)bs§]

2N +2M — 1\'/? . .
_ Z ( _____) [A2N+2M—12kbk + SzN+2M—12kb I] +

1M

Nz:; \/(2M — 2N)(2N) Z By nbY + 41 Nzijl V(2M — 2N +1)(2N — 1)

r,8=1

V-

Z (yte ( B );"NN:)M (@M =28 + 1) + 45 - (20 = 2V + 1) - )]

2M — 2N + 1\ /2 , r
— Z (_——) [AZM_ZNngb, + Som—an12107;

i
oo _ /
-2 (21\;k 1)1 2

k=1

<\/1§7r (21\;*_) ye72 [((2N —1)+4)b — ((2N — 1) — 4)b81])

1 2 . 2 .
[AzN—ukbi + SZN-—12kbsz]> + —=V2M (Z(b(r) + boT) - 3M) > by

\/5 r=1 s=1
(B.1)
Whereas the odd modes of the Virasoro generators are given by:
1 (—=)V+M
Ly, = Z J@N)@2N +2M — 1)21( )*by (f AN M =T

[((2N +2M — 1) +4)bg — ((2N + 2M — 1) — 4)b; ] Z (_2—]11._3]\4—> 1/2
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r 1 o0
lA2N+2M—12kb; + 52N+2M-12152T]) + 3 > \/(2N - 1)(2N +2M - 2)
N=1

f; ( flw ¢ 1\5 )1)3 - [((2N _n+aut—(@eN-1) - 4)63] -

i ( - )1/2 [A2N~12kbk1. + Son- mbk]) T le @ I G
2 (=)M-N ) .
Z= ( J5r GM N =177 [((2M—2N— 1) + 4)b] — ((2M — 2N — 1) — 4)8; ]

o (2M—2N—- 1)1/2 [

>

Asp—an—_12kb} + SzM—zN-mkaT]) by

% e 2N)(2N—1)T§1 Y, ( ng(yé‘_)l)a,z

00 1\ 1/2
[((ZN —1)+4)65 — (2N - 1) — 4)b3T] _ kgl (21\;k 1)

2M -1 (2 3
[AzN—wka + SzN—mkbifD + (Z(bﬁ + bST) —-3M + 5)

2 r=1

S0 (o ey (M~ 1+ 85— @M — 1) - ]

s=1

2M —1\/?
- Z ( ) [AzM—xzka + SzM—lzkaT]) - (B.2)
k=1

Finally, the zero mode of the Virasoro Generators (i.e., the Hamiltonian
operator) has the form:

1 2 'I' 2 1 1 [eS) 2 T 1 oo 2
=5 | X +ah) -2 -EZ?NbLbM—ZZ
2 r=1 8 2 N=1rs=1 2 N=1rs=1

@N-1)(=)* ( \/1— @ Jé:)NWZ [((2N —1)+ a5t - (@N-1)- 4)b5] —

2N — 1\/?
— Z ( ) [AzN_]_z{brT + SZN—IZIb;])
=1

(\/li,,- (21\5—_)1)3/2 [((2N — 1) +4)b5 — ((2N - 1) - 4)1,5T]
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2 /2N —1\/? '
-> ( ok ) [AzN—mka + SzN—lzkbiT]) . (B.3)
k=1

It is tedious, otherwise straightforward, to show that the desired commu-

tation relation for the comma Virasoro generators are indeed satisfied.
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