
RAL-TR-98-005

Subspace-by-Subspace Preconditioners

for Structured Linear Systems

Michel J. Dayd�e1, Jerome P. D�ecamps1 and Nicholas I. M. Gould2;3

ABSTRACT

We consider the iterative solution of symmetric positive-de�nite linear systems whose

coe�cient matrix may be expressed as the outer-product of low-rank terms. We derive

suitable preconditioners for such systems, and demonstrate their e�ectiveness on a number

of test examples. We also consider combining these methods with existing techniques to

cope with the commonly-occuring case where the coe�cient matrix is the linear sum of

elements, some of which are of very low rank.

1 ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse CEDEX, France, EU

Email : dayde@enseeiht.fr and decamps@enseeiht.fr

2 Department for Computation and Information, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, EU

Email : n.gould@rl.ac.uk

3 Current reports available by anonymous ftp from joyous-gard.cc.rl.ac.uk

(internet 130.246.9.91) in the directory \pub/reports".

Department for Computation and Information

Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

January 20, 1998.

1 INTRODUCTION 1

1 Introduction

We consider the solution of n by n real linear systems of equations

Ax = b; (1.1)

where A is symmetric positive-de�nite and has the form

A =
eX

i=1

AiA
T
i ; (1.2)

and where Ai is an n by ni real matrix. Systems of this form arise naturally in a number of ways.

1. Normal equations for least squares (see, for instance, Bj�orck, 1996).

2. The Schur complement following partial elimination in augmented systems (see, for exam-

ple, Du�, 1994).

3. Newton equations for partially separable optimization of unary functions (see Goldfarb and

Wang, 1993).

4. More general partially separable optimization (see Griewank and Toint, 1982).

We shall assume that n is su�ciently large that the structure of the system must be exploited,

but we do not assume that all the Ai are sparse.

We aim to solve (1.1) using an iterative method, and, given the symmetry and de�niteness

of A, the method of preconditioned conjugate gradients (see, Hestenes and Stiefel, 1952, and

Concus, Golub and O'Leary, 1976) is the natural choice.

The purpose of this paper is to describe a new class of preconditioners which reect the

structure (1.2) of A, and which are especially e�cient when the matrices Ai are of low rank,

without necessarily being sparse. An extreme case would be when ai is a dense vector andAi = ai,

which results in a full but rank-one matrix, aia
T
i . In this case, most traditional preconditioners

would prove to be most ine�ective. We do not wish to assemble the whole of A, but prefer to

use the components Ai in isolation. This will enable us to construct preconditioners which are

appropriate for parallel computation.

In Section 2, we introduce our subspace-by-subspace (SBS) preconditioners, which are a

special type of element-by-element (EBE) preconditioner designed to deal with matrices of the

form (1.2) and other low-rank matrices. In the following section, we apply these methods to

least-squares problems, and demonstrate their e�ectiveness.

SBS preconditioners will never be well-suited to all problems, primarily because of their design

aims. In particular, they are unlikely to be appropriate for those problems whose Ai are (close

to) full rank. In Section 4 we consider matrices for which some, but not all, terms are of the form

AiA
T
i . We demonstrate that one of the great advantage of SBS preconditioners is that they can

e�ciently be combined with other Element-by-Element preconditioners to handle substructures

of low rank. This then suggests composite preconditioners that are e�ective on a wide range of

matrices.

2 DEVELOPMENT 2

2 Development

In Section 2.1, we consider the basic ideas behind Element-by-Element preconditioning. This is

followed, in Section 2.2, by a description of our new class of preconditioners.

2.1 Element-by-Element preconditioners

An obvious approach to �nding a suitable preconditioner for (1.2) is to let Ei = AiA
T
i , in which

case (1.2) becomes

A =
eX

i=1

Ei: (2.1)

Notice here that each element Ei is positive semi-de�nite. In this section and the next, we shall

consider the general form (2.1) without necessarily assuming that Ei = AiA
T
i . We shall return

to this particular form in Section 2.3.

A popular class of preconditioners for systems whose coe�cient matrix has the form (2.1)

are the Element-by-Element preconditioners (see, Hughes, Levit and Winget, 1983, and Ortiz,

Pinsky and Taylor, 1983). These have been seen to be e�ective for systems arising from partial

di�erential equations (Hughes, Ferencz and Hallquits, 1987, and Erhel, Traynard and Vidrascu,

1991) and optimization (Dayd�e, D�ecamps, L'Excellent and Gould, 1997a)

There are four fundamental ingredients involved in the construction of such a preconditioner.

We rearrange (2.1) to give

A =
eX

i=1

Di +
eX

i=1

(Ei �Di) =D +
eX

i=1

(Ei �Di); (2.2)

where Di = �(Ei), D =
Pe

i=1Di = �(A) and �(M) denotes the diagonal matrix comprising

the diagonal of the matrixM . Then

A =D
1

2

In +

eX
i=1

D�
1

2 (Ei �Di)D
�

1

2

!
D

1

2 =D
1

2

In +

eX
i=1

Si

!
D

1

2 ; (2.3)

where In is the n by n identity matrix and we have de�ned Si =D
�

1

2 (Ei �Di)D
�

1

2 .

The �rst critical step is to make the approximation

In +
eX

i=1

Si �
eY

i=1

(In + Si): (2.4)

The error in this approximation may be expressed in terms of second and higher order products

of the components, and thus the approximation will be good if either individual Si are small or

zero (this is likely to be true if Ei is very diagonal dominant), or the product of the overlapping

components Si and Sj is small or zero.

As Ei is positive semi-de�nite, it directly follows that In + Si is positive de�nite (see eg,

Theorem 5.3 in Chapter 5 of L'Excellent, 1995) and thus has a Cholesky factorization

W i
def
= In + Si = LiL

T
i : (2.5)

2 DEVELOPMENT 3

The matrix W i is known as the Winget decomposition of Ei (see Hughes et al., 1983). Notice

that if Ei has nonzeros in ei rows and columns, the Cholesky factor of its Winget decomposition

will di�er from the identity matrix only in these rows. This symmetric decomposition of W i is

the second critical step. Combining (2.3), (2.4) and (2.5), we have

A �D 1

2

eY

i=1

LiL
T
i

!
D

1

2 : (2.6)

Unfortunately, (2.6) is not symmetric, and thus is not a satisfactory preconditioner. The third

crucial step is to make the further symmetrizing approximation

eY
i=1

LiL
T
i �

eY

i=1

Li

!
1Y

i=e

LT
i

!
: (2.7)

This approximation is, as before, exact if there is no overlap between the blocks and will be good

under exactly the same circumstances as its predecessor. We thus obtain the �nal approximation

A � PEBE =D
1

2

eY

i=1

Li

!
1Y

i=e

LT
i

!
D

1

2 (2.8)

which may be used as a preconditioner for A. Such a matrix is known as the EBE preconditioner.

In order to solve the system of equations PEBEx = y e�ciently, we exploit the decomposition

(2.8).

We are free to order the elements in any way we choose and may thus encourage parallelism

by ordering non-overlapping elements consecutively so that we can perform groups of forward and

backsolves in parallel. Clearly, the e�ciency of the EBE preconditioner depends on the partition-

ing of the initial matrix and on the size of the o�-diagonal elements of the elementary matrices.

With this in mind, the �nal critical ingredient is to preprocess the problem to amalgamate ele-

ments into super-elements with the aim of reducing the overlap between these super-elements.

Dayd�e, L'Excellent and Gould (1997b) demonstrate that this is necessary in order to make the

preconditioner e�ective in practice. It has the additional bene�t that vectorization is more e�ec-

tive with the larger super-elements.

2.2 Subspace-by-Subspace preconditioners

The derivation in the previous section is appropriate whether or notEi is rank de�cient. However,

this is not true of an e�cient implementation as we shall now see.

We suppose that Ei has nonzeros in ei rows and columns | Ei might even be dense, i.e.

ei = n. As we have already observed, the Cholesky factors of its Winget decomposition will then

di�er from the identity matrix only in these elemental rows and columns. Denoting the nonzero

rows and columns of Ei by E
Ei
i , and making similar de�nitions for W i, Di and D, we obtain

W Ei
i = Iei + (DEi)�

1

2 (EEi
i �DEi

i)(D
Ei)�

1

2 =�Ei
i + (DEi)�

1

2EEi
i (D

Ei)�
1

2 ; (2.9)

where �Ei
i = Iei � (DEi)�1DEi

i � 0. We suppose, for now, that �Ei
i > 0, but will shortly return

to the singular case.

2 DEVELOPMENT 4

Now suppose thatEi is of rank ri. Then we see immediately thatW
Ei
i is a rank-ri modi�cation

of the positive de�nite diagonal matrix �Ei
i . Thus, if ri < ei it would seem to be preferable to

update the Cholesky factors of W Ei
i following a sequence of rank-ri modi�cations rather than

assembling and factoring W Ei
i directly (see, for example Gill, Golub, Murray and Saunders,

1974). More importantly, if ri � ei, an alternative to the Cholesky factorization more suited to

the nature of Ei is clearly desirable.

Let BEi
i = (�Ei

i)
�

1

2 (DEi)�
1

2EEi
i (D

Ei)�
1

2 (�Ei
i)

�
1

2 be a rescaling of EEi
i . Then we may write

(2.9) as

W Ei
i = (�Ei

i)
1

2

�
Iei +B

Ei
i

�
(�Ei

i)
1

2 : (2.10)

We now aim to decompose Iei +B
Ei
i into the symmetric product of easily invertible parts. We

suppose we may �nd a decomposition of BEi
i of the form

BEi
i = QIi

i

BIi

i 0

0 0

!
(QIi

i)
T = (Y Ii

i ZIi
i)

BIi

i 0

0 0

!
(Y Ii

i)
T

(ZIi
i)

T

!
= Y Ii

i B
Ii
i (Y

Ii
i)

T ;

(2.11)

where QIi
i is orthogonal and de�nes a transformation from the elemental to an internal repre-

sentation of BEi
i , and this representation, BIi

i , is an ri by ri symmetric positive de�nite matrix

(for instance, but not restricted to, tridiagonal, see Parlett, 1980, Chapter 7). Furthermore, let

LIii be the Cholesky factor of Iei +B
Ii
i . Then

Iei +B
Ei
i = QIi

i

Iri +B

Ii
i 0

0 Iei�ri

!
(QIi

i)
T

= QIi
i

LIii (L

Ii
i)

T 0

0 Iei�ri

!
(QIi

i)
T

= QIi
i

LIii 0

0 Iei�ri

!
(QIi

i)
TQIi

i

(LIii)

T 0

0 Iei�ri

!
(QIi

i)
T

= MIi
i (M

Ii
i)

T ;

(2.12)

where

MIi
i

def
= QIi

i

L
Ii
i 0

0 Iei�ri

!
(QIi

i)
T : (2.13)

Hence we have obtained a factorization of the Winget decomposition of the form

W Ei
i = (�Ei

i)
1

2MIi
i (M

Ii
i)

T (�Ei
i)

1

2 : (2.14)

We may now use this as the basis of an EBE-like method. In particular, the resulting precondi-

tioner is of the form

A � P SBS =D
1

2

eY

i=1

(�i)
1

2M i

!
1Y

i=e

(M i)
T (�i)

1

2

!
D

1

2 ; (2.15)

where �i andM i are simply�
Ei
i andMIi

i appropriately embedded (in their elemental row and

column positions) within In. We refer to this as a subspace-by-subspace (SBS) preconditioner

because of the dependence of MIi
i on the subspaces de�ned by the matrices Y Ii

i and ZIi
i .

2 DEVELOPMENT 5

At a �rst glance, we do not appeared to have gained anything by this. In particular, the

forward and back substitutions required when using (2.15) appear to be at least as expensive as

using (2.8). However, more careful consideration reveals that this may not be so. Consider, for

instance, the single step (�Ei
i)

1

2MIi
i x

Ii = yIi . Using the orthogonality and partitioning of QIi
i

and (2.13), we have that

xIi = QIi
i

(LIii)

�1 0

0 Iei�ri

!
(QIi

i)
T (�Ei

i)
�

1

2yIi

=
�
Y
Ii
i (L

Ii
i)

�1(Y Ii
i)

T +ZIi
i (Z

Ii
i)

T
�
(�Ei

i)
�

1

2yIi

=
�
Iei + Y

Ii
i

�
(LIii)

�1 � Iri
�
(Y Ii

i)
T
�
(�Ei

i)
�

1

2yIi :

(2.16)

The matrix QIi
i is not required, merely its �rst ri columns Y

Ii
i . Thus we see that the principal

costs are two matrix vector products with matrices of dimensions ri by ei and ei by ri respectively,

and a single triangular solve with a matrix of order ri. The comparative cost of a forward

substitution in (2.8) is for a triangular solve with a matrix of order ei. Neglecting lower-order

terms, this indicates that the SBS approach is seen to be more e�cient whenever 2riei+ 1

2
r2i � 1

2
e2i ,

that is whenever

ri � (
p
5� 2)ei � 0:236ei: (2.17)

The other relevant step (MIi
i)

T (�Ei
i)

1

2xIi = yIi is very similar. For in this case, we have that

xIi = (�Ei
i)

�
1

2QIi
i

(LIii)

�T 0

0 Iei�ri

!
(QIi

i)
TyIi

= (�Ei
i)

�
1

2

�
Y Ii

i (L
Ii
i)

�T (Y Ii
i)

T +ZIi
i (Z

Ii
i)

T
�
yIi

= (�Ei
i)

�
1

2

�
Iei + Y

Ii
i

�
(LIii)

�T � Iri
�
(Y Ii

i)
T
�
yIi ;

(2.18)

and the principal costs are identical to the previous case.

We now consider how to cope with the possibility that �Ei
i may be singular. Notice that

�Ei
i will actually be positive de�nite if and only if each elemental variable occurs in at least one

other element. Any variable which occurs in a single element is said to be exposed. An exposed

variable may be directly eliminated within its element (this is known as static condensation in

�nite element terminology); the resulting smaller element, formed from the Schur complement

following this elimination, will itself be positive semi-de�nite. At �rst sight, it might then appear

that it su�ces to directly eliminate all exposed variables. However this is not so, as these

eliminations may expose more variables in the reduced problem. For example, suppose element i

involves variables 1; 2; 3; 4 and EEi
i is of the form0BBBBB@

1 1 1 1

1 1 1 1

1 1 2 2

1 1 2 3

1CCCCCA ; (2.19)

and that variable 1 occurs in no other elements, while variable 2 appears in precisely one other

2 DEVELOPMENT 6

element, element j. If we eliminate variable 1 within element i, we obtain the Schur complement0BB@
1 1 1

1 2 2

1 2 3

1CCA�

0BB@
1 1 1

1 1 1

1 1 1

1CCA =

0BB@
0 0 0

0 1 1

0 1 2

1CCA :

But now variable 2 does not occur in the reduced EEi
i ,

1 1

1 2

!

and only occurs in element j. Thus, in the reduced problem variable 2 is exposed. This has

happened simply because the original element EEi
i was singular, but not all singular elements

will automatically expose new variables when current exposes are eliminated.

Fortunately, a simple scheme for removing all exposed variables is obvious. At each stage,

eliminate all currently exposed variables. Now check if extra variables have been exposed. If so,

start the next stage. If not, the reduced problem has no exposed variables, and thus the resulting

�
Ei
i are all positive de�nite. Notice that, as all eliminations take place within elements, no

communication is required during the elimination. At the end of each stage, the list of elements

containing each variable may be simply revised, and newly exposed variables detected.

2.3 Subspace-by-Subspace preconditioners for structured problems

We now return to our original problem, that is the case for which Ei = AiA
T
i . In this case, it is

straightforward to compute the required matrices QIi
i (or Y Ii

i) and B
Ii
i in (2.11). Suppose that

Ai has nonzeros in ei rows. Denoting these rows by A
Ei
i , we obtain that

BEi
i = CEi

i (C
Ei
i)

T ; (2.20)

where CEi
i = (�Ei

i)
�

1

2 (DEi)�
1

2AEi
i . Now, let

CEi
i = QIi

i

RIi

i 0

0 0

!
V Ii

i ; (2.21)

where QIi
i and V Ii

i are orthogonal and RIi
i is triangular and of rank ri, be a complete orthogonal

decomposition of CEi
i (see, for instance, Bj�orck, 1996). Then clearly, BIi

i = R
Ii
i (R

Ii
i)

T , and we

have the ingredients of (2.11). The decomposition (2.21) may be determined by a QR factorization

with column pivoting, while the actual form we require, involving only the �rst ri columns Y
Ii
i or

QIi
i , may be obtained using the modi�ed Gram-Schmidt process (again with column pivoting).

We should caution the reader that under exceptional circumstances these methods may incorrectly

estimate the rank ofCEi
i , and a singular-value decomposition may be preferred. Again, see, Bj�orck

(1996) for details.

A potential di�culty occurs when �Ei
i is singular. As we have already mentioned, this can

only happen if one or more elemental variables are restricted to this single element. We mentioned

that in this case, we may directly eliminate these exposed variables, and the resulting smaller

2 DEVELOPMENT 7

element is still positive semi-de�nite. However, unless we are careful, it may not inherit the

structure (2.20). We now show that, in fact, we can still arrange the computation so that the

smaller element is of the form (2.20).

To see this, suppose, without loss of generality, that the �rst k elemental variables only occur

in EEi
i . We may then �nd an orthogonal matrix UEi

i so that

(DEi)�
1

2AEi
i U

Ei
i =

REi

i 0bAEi
i AEi

i

!
; (2.22)

where REi
i is k by k, non singular and upper triangular | the matrix UEi

i may, for instance be

formed as a product of plane rotations. We may then write (2.9) as

W Ei
i =

0 0

0 �Ei
i

!
+

REi

i 0bAEi
i AEi

i

!
(REi

i)
T (bAEi

i)
T

0 (AEi
i)

T

!

=

REi

i (R
Ei
i)

T REi
i (
bAEi
i)

TbAEi
i (R

Ei
i)

T �
Ei
i + bAEi

i (
bAEi
i)

T +AEi
i (A

Ei
i)

T

!
:

(2.23)

Eliminating the �rst k elemental variables then leaves the Schur complement �Ei
i +AEi

i (A
Ei
i)

T ,

which is of the form (2.9), but now with �Ei
i non singular. Notice, the matrix UEi

i need not be

stored.

Unfortunately, this does not completely remove the problem because, although the Schur

complement is of the correct form, it may happen that one or more of the rows of the reduced

matrix AEi
i contains only zeros. Thus the variable associated with this row is no longer involved

in the i-th reduced element, and this may expose the variable within another element. As in the

more general case considered at the end of Section 2.2, a number of stages may be required, each

eliminating exposed variables and marking any further exposed variables for elimination at the

next stage.

3 LEAST SQUARES PROBLEMS 8

3 Least squares problems

3.1 Development

A rich source of systems of the form (1.1){(1.2) are least-squares problems,

minimize

x2<n

kAx� bk2; (3.1)

where A is a m by n rectangular matrix with m > n. A solution to (3.1) satis�es the normal

equations

ATAx = ATb: (3.2)

If we group rows of A so that

A =

0BB@
A1

� � �
Ae

1CCA ; (3.3)

then (3.2) is simply
eX

i=1

AT
i Aix = ATb (3.4)

which is of the form (1.1){(1.2). Clearly there is considerable freedom in the partitioning of A

into (3.3). Extreme examples are Ai = a
T
i and e = m, where aTi is the i-th row of A, or A1 = A

and e = 1. We wish to solve (3.2) using a suitably preconditioned variant of conjugate gradients

appropriate for least-squares problems (see, Bj�orck, 1996, Sections 7.4 and 7.5). We also wish to

use the exibility of the form (3.4) to construct suitable subspace-by-subspace preconditioners.

The SBS(1) preconditioner simply chooses Ai = aTi and e = m and follows the construction

in Sections 2.2 and 2.3. It is, moreover, easy to detect and eliminate exposed variables before

constructing the preconditioner. To do this, we �rst initialize an empty list of rows R and

variables C to be directly eliminated. We now scan the rows and columns of A not in R and C,
respectively, for a column singleton. If one is found, we add its index to C, add the row to R and

repeat the search. If none are found, all remaining columns have two or more nonzero entries (or

are null which implies that A is rank de�cient). If we suppose that A is of full-rank, this implies

that we can permute the rows and columns of A so that

PAQ =

R Ae

0 Ar

!
;

where P and Q are permutation matrices and each column of Ar has at least 2 nonzero entries.

Substituting in (3.4) and simplifying reveals that if we solve

AT
rArxr = AT

r br and (3.5)

Rxe = be �Aexr (3.6)

then

x = Q

xe

xr

!
; where

be

br

!
= Pb:

3 LEAST SQUARES PROBLEMS 9

Of course, (3.5) are the normal equations for the reduced least-squares problem

minimize

xr2<
nr

kArxr � brk2:

The advantage is that each column of this problem has at least two nonzeros and hence choosing

Ai = a
T
i for this problem reveals no exposed variables.

A second possibility is to merge groups of rows of A to form the Ai. We can then use the

amalgamation algorithm described in Figure 3.1 to merge rank-one terms. It basically regroups

rank-one terms to ensure that no variable belongs to a single element.

Let a1 : : :am be given vectors.

Compute Occ(i), i = 1; : : : ; n, the number of aj containing variable i.

Let Sl denote the current set of the vectors to be merged, and let

Occs(i), i = 1; : : : ; n, be the number of occurrences of variable i within Sl

Set l = 1, Sl = ;, Occs(i) = 0, i = 1; : : : ; n

For k = 1; : : : ;m

Sl = Sl + fakg
Update Occs

If 9i such that Occs(i) = Occ(i), reset

Sl = Sl - fakg
l = l + 1, Sl = ;, Occs(i) = 0, i = 1; : : : ; n

End If

End For

Figure 3.1. Construction of the sets of rank-one terms to be amalgamated.

We also impose a threshold, kmax, on the maximum number of rows allowed in an amalgamated

element (i.e. the maximum size of the set Sl). In practice, in view of (2.17), kmax should be no

larger than (
p
5� 2)� n.

We recognize that the algorithm described in Figure 3.1 is quite naive. However, it has proved

e�ective in practice, and attempts to design more sophisticated algorithms|for instance, to try

to group terms which have a large overlap together|have not proved signi�cantly better.

3.2 Numerical experiments

We have tested the SBS preconditioner on a number of rectangular matrices from the Harwell-

Boeing collection (see Du�, Grimes and Lewis, 1992), and on a number of Jacobian matrices from

problems arising from the CUTE collection (see Bongartz, Conn, Gould and Toint, 1995). The

characteristics of these problems are summarized in Table 3.1. We include details of how many

exposed variables can be trivially removed, and the resulting problem sizes.

3 LEAST SQUARES PROBLEMS 10

Name Set. m n nz ne ns �

econ1 HWB1 277 207 2909 49 158 7:4� 105

econ2 260 207 2942 35 172 1:8� 1016

econ3 260 207 2948 27 180 7:0� 1015

abb313 HWB2 313 176 1557 0 176 1:6� 101

ash219 219 85 438 0 85 7:8� 100

ash331 331 104 662 0 104 5:2� 100

ash608 608 188 1216 0 188 6:3� 100

ash958 958 292 1916 0 292 6:9� 100

wl1033 1033 320 4732 12 308 1:7� 102

wl1850 1850 712 8758 7 705 1:1� 102

il1033 1033 320 4732 12 308 1:9� 104

il1850 1850 712 8758 7 705 1:4� 103

af1252 1252 320 5170 12 308 3:6� 101

af1641 1641 320 5948 9 311 4:2� 100

abb313b HWB3 313 176 1557 0 176 1:7� 107

ash219b 219 85 438 0 85 7:1� 106

ash331b 331 104 662 0 104 5:4� 106

ash608b 608 188 1216 0 188 6:4� 106

ash958b 958 292 1916 0 292 6:9� 106

wl1033b 1033 320 4732 12 308 1:1� 108

wl1850b 1850 712 8758 7 705 2:0� 107

il1033b 1033 320 4732 12 308 3:1� 109

il1850b 1850 712 8758 7 705 1:3� 109

af1252b 1252 320 5170 12 308 2:7� 107

af1641b 1641 320 5948 9 311 2:4� 106

BRATU1D SIF1 4007 3004 6007 1 3003 6:5� 105

BROYDN3D 1000 1000 2998 0 1000 8:0� 1015

HAGER1 2001 1000 3000 0 1000 5:8� 102

SPMSQRT 1664 1000 2996 0 1000 2:1� 101

TRIDIA 2000 1000 2998 1 999 7:1� 103

BROWNBS SIF2 3997 2997 6993 0 2997 1:4� 106

DQDRTIC 3994 2994 5988 0 2994 5:6� 109

DQRTIC 2000 1000 1999 1 999 5:6� 109

EDENSCH 3998 2998 6994 1 2997 1:8� 103

EXPFITC 1009 502 2755 0 502 7:3� 102

FLETCHBV 4001 3001 7001 0 3001 3:0� 106

GENHS28 1000 998 2994 0 998 3:7� 100

HYDCAR20 99 99 734 0 99 1:0� 106

MAXLIKA 243 235 2003 0 235 4:2� 101

NONDQUAR 2000 1000 3998 0 1000 3:2� 101

ORTHREGA SIF3 517 256 1792 0 256 2:8� 102

ORTHREGC 1005 500 3500 0 500 2:0� 102

ORTHREGD 1003 500 2498 0 500 5:3� 101

ORTHREGF 680 225 1770 0 225 5:0� 102

QUARTC 2000 1000 1999 1 999 5:6� 109

SEMICON1 1002 1000 3000 0 1000 1:1� 101

TFI1 2005 1001 5004 0 1001 5:3� 101

TFI2 2005 1001 5003 0 1001 2:7� 101

TFI3 2005 1001 5003 0 1001 2:7� 101

Table 3.1: Characteristics of the test matrices. For each matrix, m gives the number of rows,

n the number of columns, and nz the number of non zeros. The number of variables directly

eliminated is ne, while ns gives the resulting number of columns in the Schur complement. The

column � gives the condition number of each matrix.

3 LEAST SQUARES PROBLEMS 11

The set HWB1 is made up from Harwell-Boeing matrices. The econ problems arise in eco-

nomic analysis. The SIF1 problems are chosen arbitrarily from the CUTE collection, while the

sets SIF2 and SIF3 have been chosen from the same collection to exhibit interesting behav-

ior when using the SBS preconditioners. The HWB2 and HWB3 problems were derived from

Harwell-Boeing matrices by Matstoms (1994), and subsequently used in tests by Bj�orck (1996).

The matrices in the HWB3 set are the same as those in HBW2 except that the rows n � 1 to

m are multiplied by a scaling factor 2�20. This gives matrices with large condition numbers

for the HWB3 set. The abb and ash matrices have random numbers uniformly distributed in

[�1; 1]. The matrices af1252 and af1641 are arti�cial, constructed, respectively, using wl1033

and ash219, and wl1033 and ash608 as

A =

A1

A2

!

with A1 = wlxxx and A2 =
�
0 ashyyy

�
.

3.2.1 Experiments with zero residual problems

For our �rst set of experiments, we consider the least-squares solution of overdetermined, consis-

tent sets of equations. The zero-residual problems min kAx � bk2 are de�ned by requiring the

exact solution to be x� = (1; : : : ; 1)T , and setting b = Ax�. The origin is taken as the initial

estimate of the solution.

In Tables 3.2{3.5, we compare the conjugate gradient (CG) solution of the normal equations

without preconditioning, to the same method preconditioned either by a band approximation|in

our case band(1), a tridiagonal matrix whose nonzeros are those from ATA|or by an SBS(kmax)

preconditioner, whose elements are composed of at most kmax rank-one terms using the algorithm

described in Figure 3.1. We use the variant of the CG method for least-squares problems described

by Bj�orck (1996, Section 7.4.1). Convergence is recorded as soon as

kAT (A�x� b)k2 � 10�15kbk2: (3.7)

We report #it, the number of iterations needed for convergence, tcon, the construction time (in

CPU seconds) for the preconditioner, tcg, the convergence time for the CG method neglecting

the construction time, and err, the relative error kx� � �xk2=kx�k2 in the computed solution �x.

A star indicates that the method reached a maximum number of iterations without satisfying

(3.7)|in our experiments, a maximum of 10n iterations were permitted. The entries marked in

bold correspond to the method(s) which performed best in terms of total time required. All of

the experiments reported in this paper were performed on a SUN workstation with a 125 MhZ

HyperSPARC processor.

For the 49 problems tested, the unpreconditioned method is best (in terms of total compu-

tational time) in 14 cases, band in 15 cases, and SBS in 17 cases. For 4 problems (problems

wl1033b, il1033b, il1850b and af1252b), all the preconditioners fail to converge within the

permitted number of iterations. On one problem (ash331), no preconditioning and the band

preconditioner give the same computational time.

3 LEAST SQUARES PROBLEMS 12

In most cases, the SBS preconditioner converges in fewer iterations than its competitors.

However, this e�ciency in number of iterations is not systematically reected in the computational

time as one SBS iteration is typically more costly than one band iteration. For two problems

(HAGER1 and TRIDIA), the band preconditioner requires signi�cantly fewer iterations than the

SBS preconditioner. However, this is not surprising since these matrices are tridiagonal, and the

CG method acts as a direct method with the band preconditioner. The problem af1641b is the

only one for which no preconditioning requires fewer iterations than with the SBS preconditioner

(with kmax = 1). In general, the relative error is smaller when a SBS preconditioner is used. It

is also evident that SBS usually (but not always) performs better than its competitors when the

problem is ill-conditioned. For the well-conditioned examples, the cost of forming and applying

the preconditioner does not, in general, pay o�.

The impact of increasing kmax depends on the structure of the problems. There is little e�ect

on problems econ1, econ2 and econ3 for example, while the number of iterations settles down

to 2 as kmax increases from 1 to 5 (and beyond) on the ORTHREG set of problems. In some cases,

increasing kmax increases the number of iterations, as we see for HYDCAR20 or less signi�cantly

for wl1033 and wl1830. A small value of kmax, say kmax = 5 or 10, seems to be a good choice in

our tests.

In summary, the SBS preconditioner appears to be an attractive alternative to less sophisti-

cated possibilities when using the CG method to solve least-squares problems, particularly when

the problem is ill-conditioned.

3 LEAST SQUARES PROBLEMS 13

name no band(1) SBS(kmax), kmax =

1 5 10 20 30 40 50

econ1 #it 194 111 48 47 47 49 49 49 49

tcon 0.00 0.00 0.02 0.00 0.03 0.05 0.05 0.07 0.07

tcg 0.18 0.13 0.32 0.18 0.20 0.22 0.27 0.27 0.28

err 0.1E-10 0.5E-11 0.3E-13 0.1E-11 0.3E-11 0.4E-12 0.5E-12 0.9E-12 0.9E-12

econ2 #it 262 109 46 49 52 52 57 52 51

tcon 0.00 0.02 0.02 0.02 0.02 0.05 0.05 0.10 0.10

tcg 0.25 0.12 0.30 0.22 0.23 0.25 0.32 0.35 0.35

err 0.8E-13 0.2E-13 0.2E-13 0.8E-14 0.2E-13 0.1E-13 0.1E-13 0.1E-13 0.2E-13

econ3 #it 297 109 45 48 49 49 52 48 49

tcon 0.00 0.00 0.02 0.03 0.03 0.05 0.07 0.12 0.12

tcg 0.32 0.13 0.30 0.20 0.22 0.27 0.32 0.33 0.37

err 0.3E-13 0.8E-14 0.6E-14 0.5E-14 0.1E-13 0.6E-14 0.8E-14 0.8E-14 0.5E-14

abb313 #it 123 76 36 36 35 35 35 35 35

tcon 0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02

tcg 0.12 0.07 0.27 0.15 0.15 0.15 0.13 0.12 0.15

err 0.4E-14 0.2E-14 0.1E-14 0.1E-14 0.2E-14 0.2E-14 0.2E-14 0.2E-14 0.2E-14

ash219 #it 70 35 18 18 18 16 16 16 16

tcon 0.00 0.00 0.00 0.02 0.02 0.00 0.02 0.03 0.02

tcg 0.05 0.03 0.08 0.03 0.03 0.05 0.03 0.03 0.03

err 0.1E-14 0.6E-15 0.1E-14 0.1E-14 0.5E-15 0.2E-14 0.2E-14 0.2E-14 0.2E-14

ash331 #it 58 35 17 17 16 17 17 17 17

tcon 0.00 0.00 0.02 0.02 0.02 0.03 0.03 0.05 0.03

tcg 0.03 0.03 0.12 0.05 0.05 0.07 0.05 0.05 0.07

err 0.2E-14 0.1E-14 0.1E-14 0.5E-15 0.7E-15 0.3E-15 0.4E-15 0.4E-15 0.4E-15

ash608 #it 73 38 18 18 18 17 17 17 18

tcon 0.02 0.00 0.02 0.02 0.05 0.05 0.08 0.10 0.10

tcg 0.05 0.03 0.22 0.10 0.10 0.10 0.12 0.13 0.13

err 0.2E-14 0.2E-14 0.4E-15 0.4E-15 0.1E-14 0.2E-14 0.5E-15 0.1E-14 0.3E-15

ash958 #it 80 39 18 18 17 16 16 16 16

tcon 0.00 0.00 0.05 0.03 0.07 0.08 0.12 0.17 0.18

tcg 0.12 0.07 0.35 0.17 0.13 0.15 0.18 0.22 0.25

err 0.3E-14 0.1E-14 0.1E-14 0.1E-14 0.8E-15 0.7E-15 0.4E-15 0.5E-15 0.6E-15

wl1033 #it 222 222 123 117 117 118 111 114 114

tcon 0.00 0.00 0.05 0.05 0.07 0.13 0.18 0.23 0.30

tcg 0.47 0.53 2.78 1.30 1.30 1.62 1.87 2.30 2.47

err 0.1E-13 0.5E-14 0.3E-13 0.2E-13 0.3E-13 0.8E-14 0.4E-13 0.1E-13 0.1E-13

wl1850 #it 525 521 216 209 197 201 197 197 196

tcon 0.00 0.02 0.17 0.15 0.18 0.22 0.33 0.40 0.45

tcg 2.00 2.32 9.37 4.87 4.77 5.57 6.07 7.05 7.68

err 0.1E-13 0.2E-13 0.1E-13 0.7E-14 0.1E-13 0.1E-13 0.1E-13 0.8E-14 0.1E-13

il1033 #it 3080* 3080* 1835 1827 1736 1739 1698 1711 1640

tcon 0.00 0.00 0.07 0.05 0.07 0.13 0.17 0.22 0.32

tcg 6.70 7.37 41.25 20.30 19.03 23.72 28.42 33.73 35.23

err 0.2E-02 0.2E-02 0.3E-10 0.4E-10 0.3E-09 0.3E-09 0.1E-09 0.4E-10 0.2E-10

il1850 #it 2474 2499 868 837 820 768 791 761 748

tcon 0.02 0.02 0.17 0.17 0.17 0.23 0.28 0.40 0.58

tcg 9.45 11.40 37.88 19.28 19.90 21.25 24.42 26.47 30.22

err 0.2E-11 0.2E-12 0.6E-12 0.4E-12 0.1E-12 0.7E-11 0.3E-11 0.1E-11 0.4E-11

Table 3.2: Results with no, band(1) and SBS(kmax) preconditioners.

3 LEAST SQUARES PROBLEMS 14

name no band(1) SBS(kmax), kmax =

1 5 10 20 30 40 50

af1252 #it 140 99 47 47 46 44 44 44 44

tcon 0.00 0.02 0.07 0.08 0.08 0.17 0.23 0.33 0.38

tcg 0.38 0.27 1.33 0.63 0.63 0.78 0.92 1.23 1.22

err 0.2E-14 0.1E-14 0.2E-14 0.2E-14 0.2E-14 0.2E-14 0.1E-14 0.2E-14 0.7E-15

af1641 #it 60 39 18 18 19 18 18 19 19

tcon 0.00 0.00 0.08 0.08 0.12 0.20 0.32 0.43 0.57

tcg 0.17 0.12 0.63 0.33 0.40 0.48 0.58 0.72 0.73

err 0.2E-14 0.1E-14 0.1E-14 0.1E-14 0.4E-15 0.2E-14 0.1E-14 0.4E-15 0.4E-15

abb313b #it 1457 1523 34 34 34 34 34 34 34

tcon 0.00 0.00 0.02 0.00 0.02 0.02 0.02 0.02 0.03

tcg 1.27 1.60 0.25 0.15 0.15 0.15 0.13 0.13 0.13

err 0.7E-02 0.1E-04 0.1E-08 0.8E-10 0.3E-08 0.3E-08 0.3E-08 0.3E-08 0.3E-08

ash219b #it 559 330 18 19 14 14 14 14 14

tcon 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00

tcg 0.27 0.17 0.08 0.05 0.03 0.03 0.03 0.03 0.05

err 0.3E-02 0.1E-04 0.1E-11 0.5E-13 0.2E-09 0.8E-10 0.1E-10 0.1E-10 0.1E-10

ash331b #it 448 254 16 16 15 14 14 14 14

tcon 0.00 0.02 0.00 0.02 0.03 0.02 0.03 0.03 0.03

tcg 0.23 0.17 0.10 0.07 0.03 0.03 0.05 0.05 0.05

err 0.1E-02 0.1E-04 0.2E-09 0.6E-09 0.4E-10 0.5E-09 0.2E-08 0.2E-08 0.2E-08

ash608b #it 776 470 17 18 17 15 15 15 16

tcon 0.00 0.00 0.02 0.05 0.05 0.07 0.07 0.12 0.10

tcg 0.68 0.50 0.20 0.10 0.08 0.10 0.10 0.10 0.13

err 0.3E-02 0.7E-05 0.2E-10 0.7E-12 0.4E-10 0.1E-09 0.2E-09 0.9E-09 0.2E-09

ash958b #it 946 510 20 20 17 18 18 19 19

tcon 0.00 0.02 0.05 0.05 0.07 0.08 0.13 0.15 0.20

tcg 1.27 0.83 0.37 0.17 0.15 0.18 0.20 0.27 0.27

err 0.8E-03 0.6E-05 0.7E-13 0.2E-09 0.8E-10 0.3E-13 0.2E-11 0.9E-13 0.9E-13

wl1033b #it 3080* 3080* 3080* 3080* 3080* 3080* 3080* 3080* 3080*

tcon 0.00 0.00 0.07 0.07 0.05 0.12 0.18 0.25 0.32

tcg 6.67 8.45 70.42 34.43 33.83 42.75 52.60 63.48 66.48

err 0.3E00 0.6E00 0.1E00 0.1E00 0.4E00 0.4E-01 0.2E00 0.3E00 0.2E01

wl1850b #it 7050* 7050* 3316 3850 7050* 7050* 7050* 7050* 7050*

tcon 0.00 0.02 0.20 0.15 0.18 0.25 0.32 0.38 0.48

tcg 27.03 31.45 144.40 90.47 170.45 194.95 217.50 247.70 294.02

err 0.5E-01 0.1E01 0.2E-02 0.1E-02 0.1E-01 0.3E00 0.6E00 0.6E00 0.6E00

il1033b #it 3080* 3080* 3080* 3080* 3080* 3080* 3080* 3080* 3080*

tcon 0.00 0.02 0.07 0.07 0.08 0.13 0.17 0.23 0.32

tcg 6.38 7.45 69.50 34.13 33.78 42.33 51.92 62.53 67.27

err 0.4E00 0.2E01 0.7E01 0.8E02 0.9E02 0.3E03 0.7E02 0.3E02 0.1E04

il1850b #it 7050* 7050* 7050* 7050* 7050* 7050* 7050* 7050* 7050*

tcon 0.00 0.02 0.18 0.15 0.18 0.27 0.30 0.40 0.50

tcg 30.35 36.12 326.92 175.68 189.50 205.83 221.12 249.97 285.65

err 0.7E-01 0.2E02 0.4E01 0.5E01 0.1E03 0.1E04 0.1E04 0.1E04 0.1E04

af1252b #it 3080* 3080* 3080* 3080* 3080* 3080* 3080* 3080* 3080*

tcon 0.00 0.00 0.08 0.05 0.07 0.13 0.23 0.30 0.37

tcg 7.67 8.43 87.83 44.00 44.75 57.80 68.73 79.80 88.75

err 0.3E00 0.3E00 0.1E00 0.1E00 0.3E-01 0.2E-01 0.6E-01 0.4E00 0.8E-01

Table 3.3: Results with no, band(1) and SBS(kmax) preconditioners.

3 LEAST SQUARES PROBLEMS 15

name no band(1) SBS(kmax), kmax =

1 5 10 20 30 40 50

af1641b #it 2386 3110* 2605 3110* 3110* 3110* 3110* 3110* 3110*

tcon 0.00 0.02 0.08 0.10 0.12 0.18 0.30 0.45 0.55

tcg 6.42 9.25 91.20 55.12 54.63 68.58 85.48 102.93 117.37

err 0.2E-03 0.6E-01 0.6E-04 0.1E-03 0.2E00 0.1E-01 0.8E00 0.2E01 0.1E01

BRATU1D #it 25210* 1561 16 10 9 9 9 9 9

tcon 0.00 0.02 0.98 0.68 0.73 1.02 1.37 1.78 2.20

tcg 146.27 14.02 1.30 0.45 0.42 0.65 0.82 0.95 1.25

err 0.5E00 0.4E-10 0.7E-15 0.1E-11 0.7E-12 0.5E-13 0.4E-13 0.3E-13 0.3E-13

BROYDN3D #it 98 573 36 27 27 27 27 27 27

tcon 0.00 0.02 0.13 0.10 0.08 0.10 0.10 0.08 0.10

tcg 0.20 1.67 0.75 0.37 0.38 0.38 0.38 0.42 0.38

err 0.8E-02 0.6E-01 0.5E-02 0.1E-02 0.1E-02 0.1E-02 0.1E-02 0.1E-02 0.1E-02

HAGER1 #it 758 2 416 192 126 76 56 41 34

tcon 0.00 0.00 0.23 0.17 0.20 0.32 0.43 0.62 0.82

tcg 1.77 0.02 16.52 3.48 2.60 2.10 1.98 1.88 1.82

err 0.2E-12 0.1E-14 0.9E-14 0.2E-13 0.7E-14 0.2E-13 0.5E-13 0.7E-13 0.5E-14

SPMSQRT #it 251 219 65 58 50 50 50 50 50

tcon 0.00 0.00 0.18 0.18 0.18 0.18 0.18 0.17 0.18

tcg 0.88 0.93 2.42 1.22 0.93 0.97 1.08 0.98 0.98

err 0.2E-13 0.1E-13 0.6E-14 0.7E-14 0.1E-13 0.1E-13 0.1E-13 0.1E-13 0.1E-13

TRIDIA #it 1810 1 10 8 6 6 5 5 5

tcon 0.00 0.00 0.23 0.17 0.20 0.30 0.47 0.58 0.80

tcg 4.43 0.00 0.38 0.17 0.13 0.17 0.18 0.23 0.27

err 0.2E-14 0.2E-15 0.1E-15 0.4E-15 0.3E-13 0.1E-15 0.1E-15 0.1E-15 0.1E-15

BROWNBS #it 10 10 14 7 5 3 3 3 3

tcon 0.02 0.02 1.25 0.98 1.05 1.22 1.70 2.28 2.90

tcg 0.08 0.12 1.32 0.37 0.32 0.30 0.38 0.48 0.58

err 0.5E-03 0.1E-03 0.5E-09 0.1E-08 0.5E-10 0.9E-09 0.3E-10 0.4E-10 0.2E-10

DQDRTIC #it 11 5 1 1 1 1 1 1 1

tcon 0.00 0.00 1.27 0.92 1.00 1.20 1.57 2.08 2.63

tcg 0.10 0.08 0.12 0.08 0.12 0.12 0.15 0.20 0.25

err 0.6E-15 0.2E-13 0.4E-13 0.4E-13 0.4E-13 0.4E-13 0.4E-13 0.4E-13 0.4E-13

DQRTIC #it 9990* 2834 2 2 2 2 2 2 2

tcon 0.00 0.02 0.22 0.18 0.20 0.28 0.47 0.62 0.78

tcg 21.47 9.02 0.08 0.05 0.05 0.08 0.08 0.12 0.15

err 0.2E00 0.6E-01 0.2E-10 0.2E-10 0.2E-10 0.2E-10 0.2E-10 0.2E-10 0.2E-10

EDENSCH #it 106 42 13 7 5 3 3 3 3

tcon 0.00 0.02 1.27 0.87 0.95 1.22 1.58 2.05 2.70

tcg 0.68 0.42 1.12 0.37 0.28 0.28 0.33 0.45 0.57

err 0.4E-12 0.5E-13 0.2E-13 0.2E-14 0.1E-14 0.2E-14 0.2E-14 0.2E-14 0.2E-14

EXPFITC #it 843 243 26 2 2 2 2 2 2

tcon 0.00 0.03 0.07 0.07 0.07 0.17 0.28 0.43 0.58

tcg 1.25 0.48 0.52 0.03 0.03 0.05 0.05 0.07 0.10

err 0.3E-10 0.2E-10 0.6E-12 0.6E-14 0.1E-13 0.1E-13 0.3E-13 0.1E-13 0.1E-13

FLETCHBV #it 4466 24 3 2 2 2 2 2 2

tcon 0.00 0.02 1.18 0.95 1.00 1.25 1.78 2.68 4.00

tcg 35.18 0.27 0.28 0.12 0.17 0.22 0.25 0.32 0.53

err 0.2E-11 0.2E-11 0.2E-11 0.2E-11 0.2E-11 0.1E-11 0.1E-11 0.1E-11 0.2E-11

Table 3.4: Results with no, band(1) and SBS(kmax) preconditioners.

3 LEAST SQUARES PROBLEMS 16

name no band(1) SBS(kmax), kmax =

1 5 10 20 30 40 50

GENHS28 #it 52 635 19 16 16 16 16 16 16

tcon 0.00 0.02 0.10 0.20 0.10 0.10 0.10 0.12 0.10

tcg 0.10 1.88 0.40 0.22 0.23 0.22 0.27 0.22 0.23

err 0.4E-14 0.7E-14 0.1E-14 0.1E-14 0.1E-14 0.1E-14 0.1E-14 0.1E-14 0.1E-14

HYDCAR20 #it 990* 990* 716 414 308 285 326 326 326

tcon 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.03 0.03

tcg 0.45 0.53 1.77 0.65 0.60 0.70 0.87 0.83 0.83

err 0.5E00 0.8E01 0.5E-11 0.5E-10 0.1E-10 0.6E-11 0.3E-10 0.3E-10 0.3E-10

MAXLIKA #it 30 327 24 13 2 2 2 2 2

tcon 0.00 0.02 0.00 0.02 0.00 0.03 0.03 0.08 0.08

tcg 0.03 0.35 0.17 0.05 0.02 0.02 0.02 0.02 0.02

err 0.3E-13 0.1E-12 0.2E-13 0.8E-14 0.2E-14 0.2E-14 0.2E-14 0.2E-14 0.2E-14

NONDQUAR #it 32 419 18 17 16 16 16 16 18

tcon 0.02 0.05 0.22 0.18 0.22 0.32 0.58 0.60 0.83

tcg 0.08 1.58 0.72 0.33 0.35 0.45 0.88 0.75 1.03

err 0.4E-12 0.5E-12 0.3E-12 0.1E-12 0.2E-12 0.2E-12 0.2E-12 0.2E-12 0.2E-13

ORTHREGA #it 97 589 78 2 2 2 2 2 2

tcon 0.00 0.03 0.03 0.03 0.03 0.05 0.08 0.10 0.12

tcg 0.08 0.72 0.80 0.02 0.02 0.02 0.02 0.00 0.03

err 0.9E-11 0.4E-11 0.6E-12 0.2E-14 0.1E-14 0.1E-14 0.1E-14 0.2E-14 0.2E-14

ORTHREGC #it 290 654 77 2 2 2 2 2 2

tcon 0.00 0.05 0.07 0.05 0.07 0.08 0.13 0.20 0.27

tcg 0.45 1.35 1.58 0.02 0.03 0.02 0.03 0.02 0.05

err 0.1E-11 0.7E-12 0.3E-12 0.2E-14 0.3E-14 0.2E-14 0.1E-14 0.2E-14 0.2E-14

ORTHREGD #it 108 155 16 3 3 3 3 3 3

tcon 0.00 0.05 0.07 0.05 0.08 0.10 0.15 0.18 0.25

tcg 0.15 0.30 0.32 0.03 0.02 0.03 0.05 0.05 0.07

err 0.4E-12 0.2E-12 0.2E-12 0.7E-15 0.4E-15 0.4E-15 0.4E-15 0.4E-15 0.4E-15

ORTHREGF #it 191 492 31 15 15 15 15 15 15

tcon 0.00 0.02 0.02 0.03 0.03 0.05 0.08 0.10 0.13

tcg 0.20 0.62 0.42 0.10 0.07 0.08 0.08 0.10 0.13

err 0.2E-11 0.1E-11 0.1E-11 0.1E-12 0.1E-12 0.1E-12 0.1E-12 0.1E-12 0.1E-12

QUARTC #it 9990* 2834 2 2 2 2 2 2 2

tcon 0.00 0.02 0.22 0.18 0.22 0.28 0.43 0.60 0.78

tcg 21.22 8.70 0.10 0.03 0.05 0.07 0.08 0.10 0.12

err 0.2E00 0.6E-01 0.2E-10 0.2E-10 0.2E-10 0.2E-10 0.2E-10 0.2E-10 0.2E-10

SEMICON1 #it 189 212 63 50 50 50 50 50 50

tcon 0.00 0.00 0.12 0.10 0.10 0.08 0.08 0.10 0.10

tcg 0.38 0.62 1.33 0.68 0.72 0.70 0.72 0.68 0.68

err 0.5E-15 0.7E-15 0.4E-15 0.4E-15 0.4E-15 0.4E-15 0.4E-15 0.4E-15 0.4E-15

TFI1 #it 33 1205 22 2 2 2 2 2 2

tcon 0.00 0.15 0.22 0.18 0.23 0.42 0.67 1.00 1.43

tcg 0.10 5.23 0.87 0.07 0.07 0.10 0.15 0.22 0.27

err 0.1E-11 0.8E-12 0.4E-13 0.1E-13 0.3E-14 0.1E-13 0.1E-13 0.1E-13 0.6E-14

TFI2 #it 4 293 24 2 2 2 2 2 2

tcon 0.00 0.15 0.22 0.20 0.25 0.40 0.67 1.00 1.43

tcg 0.02 1.22 0.95 0.05 0.08 0.12 0.15 0.20 0.23

err 0.7E-14 0.7E-12 0.2E-13 0.4E-14 0.5E-14 0.1E-14 0.2E-14 0.7E-15 0.9E-15

TFI3 #it 4 293 24 2 2 2 2 2 2

tcon 0.00 0.15 0.22 0.18 0.25 0.38 0.65 1.00 1.42

tcg 0.02 1.15 0.97 0.07 0.07 0.10 0.15 0.22 0.23

err 0.7E-14 0.7E-12 0.2E-13 0.4E-14 0.5E-14 0.1E-14 0.2E-14 0.7E-15 0.9E-15

Table 3.5: Results with no, band(1) and SBS(kmax) preconditioners.

3 LEAST SQUARES PROBLEMS 17

3.2.2 Experiments with nonzero residual problems

In addition to the consistent sets of equations we considered in the last section, we also performed

tests on least-squares problems with nonzero residuals. The problems are constructed as follows.

We build a random vector b0 in the interval [-1,1], and solve the least-squares problem minkAx�
b0k2 using the LAPACK library. The residual r0 corresponding to this solution is almost surely

nonzero and satis�es ATr0 = 0. This then ensures that the solution x� = (1 : : : 1)T we seek

solves the least-squares problem minkAx� bk2, where b = r0 +Ax�.
We report on experiments using seven nonzero residual problems in Table 3.6. These results

are similar to those obtained with zero residual problems. Again the relative error in the solution

is seen to be much smaller using SBS on, for example, problems BRATU1D and BROWNBS. The

SBS preconditioner is the fastest preconditioner for problems BRATU1D, HYDCAR20, QUARTC and

EXPFITC.

name no band(1) SBS(kmax), kmax =

1 20 50

BRATU1D #it 25210* 1559 16 9 9

tcon 0.00 0.00 0.90 0.95 2.22

� = 6:5� 105 tcg 137.66 14.4 1.90 0.63 1.27

err 0.4 3.7D-11 2.1D-11 2.0D-11 2.0D-11

DQDRTIC #it 11 5 1 1 1

tcon 0.00 0.00 0.22 0.33 0.80

� = 5:6� 109 tcg 0.10 0.08 0.20 0.13 0.26

err 3.3D-14 2.2D-14 3.5D-14 3.5D-14 3.5D-14

HYDCAR20 #it 990* 990* 716 285 326

tcon 0.00 0.00 0.00 0.02 0.03

� = 1:0� 106 tcg 0.22 0.35 2.50 0.60 0.75

err 0.6 7.7 5.0D-12 6.0D-12 2.9D-11

QUARTC #it 9990* 2885 2 2 2

tcon 0.00 0.02 0.22 0.30 0.80

� = 5:6� 109 tcg 17.20 7.55 0.18 0.08 0.13

err 0.2 5.9D-2 2.4D-11 2.4D-11 2.4D-11

FLETCHBV #it 4593 24 3 2 2

tcon 0.00 0.02 1.20 1.18 3.88

� = 3:0� 106 tcg 35.80 0.28 0.47 0.20 0.53

err 3.0D-12 2.2D-12 1.8D-12 1.5D-12 1.1D-12

EXPFITC #it 901 273 22 2 2

tcon 0.00 0.02 0.07 0.15 0.62

� = 7:3� 102 tcg 1.33 0.48 0.68 0.07 0.10

err 7.6D-11 6.3D-11 6.2D-11 6.2D-11 6.2D-11

BROWNBS #it 10 10 14 3 3

tcon 0.00 0.00 1.18 1.18 2.63

� = 1:4� 106 tcg 0.08 0.17 1.77 0.30 0.53

err 5.0D-04 1.3D-04 5.1D-10 9.0D-10 9.0D-11

Table 3.6: Results with no, band(1) and SBS(kmax) preconditioners on nonzero residual problems.

� is the condition number of each matrix.

4 MIXING SBS WITH OTHER ELEMENT-BY-ELEMENT PRECONDITIONERS 18

4 Mixing SBS with other Element-by-Element preconditioners

Quite clearly, SBS preconditioners will never be well-suited to all problems, most particularly to

those problems with elements of (close to) full rank. In this section we consider a second pos-

sibility, namely to combine SBS preconditioners with other Element-by-Element preconditioners

so as to handle substructures of low rank. We �rst give two examples.

Suppose we wish to �nd the least-squares solution to a nonlinear set of equations by minimiz-

ing F (x) = 1

2
kf(x)k22, where f(x) = (f1(x) : : : fm(x))

T . Then the coe�cient matrix associated

with the Newton equations rxxF (x)�x = �rxF (x) is of the form

rxxF (x) =
mX
i=1

fi(x)rxxfi(x) +
mX
i=1

rxfi(x)(rxfi(x))
T : (4.1)

The �rst summation in (4.1) is a generic \sum of weighted elements", and would typically be

treated using an EBE method. The second summation is of rank-one terms, and could be treated

using the SBS methods developed in this paper.

A second example relates to the minimization of a nonlinear function f(x) subject to a set of

(nonlinear) constraints ci(x) = 0; i = 1; : : : m, using penalty or augmented Lagrangian methods

(very similar arguments hold for inequality constraints using barrier methods). In this case, a

penalty function of the form

�(x;�; �) = f(x) + �Tc(x) + 1

2
�kc(x)k22 (4.2)

will be (approximately) minimized for a sequence of Lagrange multiplier estimates � and penalty

parameters �. Once again, Newton's method requires the solution of a system of linear equations

whose coe�cient matrix, rxx�(x;�; �) is of the form

rxx�(x;�; �) = rxxf(x) +
mX
i=1

(�i + �ci(x))rxxci(x) + �
mX
i=1

rxci(x)(rxci(x))
T : (4.3)

The �rst summation in (4.3) is again a generic \sum of weighted elements", and can be treated

using an EBE method, while the second summation, being a sum of rank-one terms, can be

handled using an SBS method. Any additional structure within the remaining term rxxf(x),

such as might result if f is partially separable (see Griewank and Toint, 1982), can be treated

using EBE or SBS preconditioners, as appropriate.

In general, Element-by-Element and Subspace-by-Subspace preconditioners can be mixed in

an obvious way. Suppose the generic matrix A is of the form

A =
eeX
i=1

Ee
i +

esX
i=1

Es
i ; (4.4)

where the elements in the �rst sum are of general \�nite element" type, while those in the second

sum are of low rank. Then we can treat the Ee
i exactly as we described in Section 2.1, and the

remaining terms as described in Section 2.2. We compute the preconditioners element-wise (as

described earlier) and obtain the mixed preconditioner

A � Pmix =D
1

2

eeY
i=1

Li

esY
i=1

(�Ei
i)

1

2MIi
i

!0@ 1Y
i=es

(MIi
i)

T (�Ei
i)

1

2

1Y
i=ee

LT
i

1AD 1

2 : (4.5)

4 MIXING SBS WITH OTHER ELEMENT-BY-ELEMENT PRECONDITIONERS 19

The order of the terms in (4.5) is arbitrary, and in practice, the EBE and SBS terms in (4.5) might

be interleaved to encourage parallelism. Preliminary tests do not, in general, reveal signi�cant

di�erences in performance when di�erent orderings are used.

4.1 Tests on an arti�cial problem

We �rst illustrate the e�cacy of such an approach on the arti�cial problem shown in Figure 4.1

A = aaT+

� �

6

?

n

6?vo

6

?

ve

Figure 4.1: The test problem.

This problem is formed by adding ne elements, each having ve variables and overlapping its

neighbours by vo variables, to a single rank-one element aaT involving all the variables. The

ne diagonal blocks are randomly generated to have eigenvalues in the range [�min; �max], while

ai = 0:1i for 1 � i � n. The right hand side is chosen so that the exact solution is (1; : : : ; 1)T .

In Tables 4.7 and 4.8, we compare the following preconditioners on this test problem:

� mixed, the Pmix preconditioner (4.5) where we apply the EBE preconditioner to the ne

\�nite" elements and SBS to the rank-one term,

� the EBE preconditioner applied to the complete set of ne + 1 elements,

� diag, a diagonal preconditioner, and

� band preconditioner with semi-bandwidths of 1 (band(1)) and 5 (band(5)).

In Table 4.7, we study the e�ect of varying the condition number of the matrix when there is a

20 % overlap between the blocks (that is ve = 10 and vo = 2)|we let ne = 100, and thus n = 802.

We report, #it, the number of CG iterations, tcon, the time to construct the preconditioner, tpre,

the time spent applying the preconditioner, tcg, the convergence time for the CG iteration, and

tsol, the total time to solve the linear system.

Firstly, we see that the mixed preconditioner is e�ective. When compared to the other

preconditioners, it requires the smallest number of CG iterations for the three condition numbers

4 MIXING SBS WITH OTHER ELEMENT-BY-ELEMENT PRECONDITIONERS 20

studied. The construction time required by EBE is dramatically larger than that of the mixed

preconditioner, purely because EBE has to factorize the dense matrix arising from the rank-one

element using a (modi�ed) Cholesky algorithm. Moreover, this has a signi�cant e�ect on the

time to apply the preconditioner, and the total computational time.

We now compare mixed with the second best preconditioner for each of the three condition

numbers studied (the diagonal preconditioner for the two �rst condition numbers (10 and 103)

and band(5) for the remaining one (105)). The gain in total computational time due to the use

of a mixed preconditioner is 15:5 for the �rst condition number and 2:7 for the two last condition

numbers. We should note that the number of iterations for the mixed preconditioner increases

as the conditioning worsens, so we cannot claim that the method is perfect.

In the Table 4.8, we compare the e�ect of varying the degree of overlap between the blocks

from 0% to 50%, while keeping the the condition number of the blocks �xed at 105. Once

again, the mixed preconditioner proves to be the best in terms of number of iterations and total

computational time. The mixed preconditioner appears to be consistently about 2:7 times faster

than band(5).

Prec tcon tpre tcg tsol #it

�min = 1, �max = 10

mixed 0.2 0.1 1.3 1.2 13

EBE 16.7 2.9 4.9 21.6 27

diag 0.0 0.1 18.6 18.6 244

band(1) 0.1 1.4 108.7 108.9 1412

band(5) 0.1 1.5 50.7 50.8 730

�min = 1, �max = 103

mixed 0.2 0.5 8.4 8.7 113

EBE 14.9 16.9 29.2 44.1 180

diag 0.0 0.1 23.9 23.9 354

band(1) 0.1 2.3 179.3 179.3 2578

band(5) 0.1 1.7 60.6 60.6 873

�min = 1, �max = 105

mixed 0.2 1.3 22.5 22.7 300

EBE 16.2 41.9 72.0 88.2 409

diag 0.0 0.2 80.3 80.3 1031

band(1) 0.1 1.5 129.5 129.6 1682

band(5) 0.1 1.6 60.9 61.0 886

Table 4.7: Matrix with ne = 100, ve = 10, vo = 2 and n = 802. The blocks are generated with

eigenvalues in the range [�min; �max]. tcon is the time of construction of the preconditioner, tpre

the time spent applying the preconditioner, tcg the time of convergence of the cg method, tsol the

total time of the linear solver and #it the number of iterations needed for converging.

5 CONCLUSIONS 21

Overlap Order mixed EBE diag band(1) band(5)

#it tsol #it tsol #it tsol #it tsol #it tsol

0 1000 565 64.2 865 259.1 1723 179.6 3783 398.5 1726 182.8

1 901 420 39.7 634 165.8 1257 107.6 2249 192.2 1183 101.6

2 802 300 22.7 409 88.2 1031 80.3 1682 129.6 886 61.0

3 703 207 11.8 278 45.0 783 41.2 1010 53.2 602 32.3

4 604 139 6.2 183 23.3 483 19.2 743 29.7 410 16.6

5 505 99 3.3 126 11.9 345 9.9 454 13.0 304 8.9

Table 4.8: Matrices with ne = 100, ve = 10 and vo = 0 to 5. �min = 1 and �max = 105.

4.2 Tests on some SIF problems

We now turn to less contrived examples which arise from optimization. Given f and c, we apply

a truncated Newton algorithm (see Dayd�e et al., 1997a) to minimize an augmented Lagrangian

function of the form (4.2) for �xed values of the Lagrange multiplier estimates � = 0 and in-

creasing values of �. The truncated Newton equations are solved using preconditioned conjugate

gradients, and we consider diagonal, EBE and mixed preconditioners; in the mixed precondi-

tioner, the terms
Pm

i=1rxci(x)(rxci(x))
T of (4.3) are approximated using the SBS method,

while the remainder is handled using EBE factors.

In Tables 4.9{4.11, we show results for three di�erent problems from the CUTE collection. For

each preconditioner, we report inew the number of iterations of the truncated Newton algorithm,

icg the total number of CG iterations required for the solution, tnew the total computational time

for the Newton process, tsol the total time required by the linear solver, tcon the construction

time of the preconditioner and tcg the convergence time for the CG method.

The penalty parameter � is varied from 1 to 103, which increases the condition number of the

Hessian. As before, the number of CG iterations is always smallest when using the mixed precon-

ditioner. For the problem STEENBRA (Table 4.9), the diagonal preconditioner is the marginally the

most e�cient in terms of computational time for all four penalty parameters considered, while

the mixed preconditioner is signi�cantly faster than EBE. For GRIDNETA (Table 4.10), the mixed

preconditioner is always the best preconditioner when considering the time spent in the conjugate

gradient iteration and requires slightly fewer Newton iterations than other preconditioners when

� is greater than 10. The gains arising from the use of the mixed preconditioner increase with

the penalty parameter value. Finally, for GENHS28 (Table 4.11), the mixed preconditioner proves

to be fastest for all but the smallest �.

5 Conclusions

The Subspace-by-Subspace preconditioner we have described allows us to take advantage of low-

rank terms in an unassembled matrix. The preliminary results we have reported demonstrate that

the approach has some promise in comparison with a number of currently popular preconditioners

such as band or EBE methods. Mixing SBS and EBE preconditioners proves to be attractive for

5 CONCLUSIONS 22

� = 1 � = 10

Prec inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 7 86 2.0 1.7 0.0 1.7 8 96 2.2 2.0 0.0 2.0

EBE 8 154 8.5 8.3 1.0 7.3 9 194 10.6 10.4 1.1 9.3

mixed 7 38 3.9 2.8 0.8 2.0 8 37 4.0 2.9 1.0 1.9

� = 100 � = 1000

Prec inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 8 89 2.1 1.8 0.0 1.8 9 115 2.6 2.4 0.0 2.4

EBE 9 159 8.9 8.7 1.1 7.6 10 219 12.0 11.8 1.2 10.5

mixed 8 38 4.1 3.0 0.9 2.0 9 40 4.5 3.1 1.0 2.1

Table 4.9: Solution of the problem STEENBRA with di�erent penalty values.

� = 1 � = 10

Prec inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 6 194 17.2 16.6 0.0 16.6 7 592 51.6 50.9 0.0 50.9

EBE 6 153 35.1 34.5 2.1 32.4 7 446 98.4 97.7 2.4 95.2

mixed 6 58 18.1 15.3 2.1 13.3 7 173 44.8 41.6 2.4 39.2

� = 100 � = 1000

Prec inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 8 1209 105.0 104.2 0.0 104.2 9 1790 153.4 153.4 0.0 153.4

EBE 8 1018 223.7 222.9 2.7 220.2 9 1680 368.7 364.8 3.1 364.8

mixed 7 271 67.1 63.9 2.4 61.5 8 536 130.0 126.4 2.7 123.7

Table 4.10: Solution of the problem GRIDNETA with di�erent penalty values.

� = 1 � = 10

Prec inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 6 46 12.7 10.9 0.0 10.9 8 103 26.0 23.8 0.0 23.8

EBE 6 19 19.3 17.5 6.1 11.4 7 25 24.0 22.0 7.1 14.9

mixed 5 12 17.1 12.4 5.1 7.2 5 9 15.6 10.6 5.2 5.4

� = 100 � = 1000

Prec inew icg tnew tsol tcon tcg inew icg tnew tsol tcon tcg

diag 8 116 29.2 27.0 0.0 27.0 10 143 35.3 32.7 0.0 32.7

EBE 8 37 31.7 29.5 8.0 21.4 9 42 35.8 33.4 8.9 24.5

mixed 6 13 19.2 13.7 6.0 7.7 7 12 21.0 14.4 7.1 7.4

Table 4.11: Solution of the problem GENHS28 with di�erent penalty values.

REFERENCES 23

problems where some, but not all, elements have low rank.

However, we recognize that the tests are at best an attempt to demonstrate the viability

of the approach, and that there are a number of unresolved issues, such as improvements to

the amalgamation algorithm, and a complete understanding of the e�ects that reordering the

elements has on the quality of the preconditioner. More importantly, it is not known what e�ect

such preconditioners have on the spectrum of the preconditioned matrix. We intend to consider

these and other issues in due course.

Acknowledgment

The authors are very grateful to Iain Du� and Daniel Ruiz for their help in reading and improving

draft versions of this paper.

References

�A. Bj�orck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and unconstrained

testing environment. ACM Transactions on Mathematical Software, 21(1), 123{160, 1995.

P. Concus, G. H. Golub, and D. P. O'Leary. Numerical solution of nonlinear elliptic partial

di�erential equations by a generalized conjugate gradient method. In J. Bunch and D. Rose,

eds, `Sparse Matrix Computations', pp. 309{332, Academic Press, London and New York,

1976.

M. Dayd�e, J. P. D�ecamps, J.-Y. L'Excellent, and N. I. M. Gould. Solution of large scale partially

separable unconstrained optimization problems using element-by-element preconditioners.

In `Proceedings of NAFEMS World Congress 97', Vol. 2, pp. 942{953, 1997a.

M. J. Dayd�e, J.-Y. L'Excellent, and N. I. M. Gould. Element-by-element preconditioners for

large partially separable optimization problems. SIAM Journal on Scienti�c Computing,

18(6), 1767{1787, 1997b.

I. S. Du�. The solution of augmented systems. In D. F. Gri�ths and G. A. Watson, eds,

`Numerical Analysis 1993', pp. 40{55, Longman Scienti�c and Technical, Harlow, England,

1994.

I. S. Du�, R. G. Grimes, and J. G. Lewis. Users' guide for the Harwell-Boeing sparse matrix

collection (Release 1). Technical Report RAL-92-086, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, England, 1992.

J. Erhel, A. Traynard, and M. Vidrascu. An element-by-element preconditioned conjugate gradi-

ent method implemented on a vector computer. Parallel Computing, 17, 1051{1065, 1991.

REFERENCES 24

P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix factor-

izations. Mathematics of Computation, 28, 505{535, 1974.

D. Goldfarb and S. Wang. Partial-update Newton methods for unary, factorable, and partially

separable optimization. SIAM Journal on Optimization, 3(2), 382{397, 1993.

A. Griewank and Ph. L. Toint. On the unconstrained optimization of partially separable functions.

InM. J. D. Powell, ed., `Nonlinear Optimization 1981', pp. 301{312, Academic Press, London

and New York, 1982.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal

of Research of the National Bureau of Standards, 49, 409{436, 1952.

T. J. R. Hughes, R. M. Ferencz, and J. O. Hallquits. Large-scale vectorized implicit calculations

in solid mechanics on a CRAY X-MP/48 utilizing EBE preconditioned conjugate gradients.

Computational Methods in Applied Mechanics and Engineering, 61, 215{248, 1987.

T. J. R Hughes, I. Levit, and J. Winget. An element-by-element solution algorithm for prob-

lems of structural and solid mechanics. Computational Methods in Applied Mechanics and

Engineering, 36, 241{254, 1983.

J.-Y. L'Excellent. Utilisation de pr�econditionneurs �el�ement-par-�el�ement pour la r�esolution de

probl�emes d'optimisationde grande taille. PhD Thesis, Institut National Polytechnique de

Toulouse, 1995.

P. Matstoms. Sparse QR factorization in MATLAB. ACM Transactions on Mathematical Soft-

ware, 20(1), 136{159, 1994.

M. Ortiz, P. M. Pinsky, and R. L. Taylor. Unconditionally stable element-by-element algo-

rithms for dynamic problems. Computational Methods in Applied Mechanics and Engineer-

ing, 36, 223{239, 1983.

B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cli�s, New Jersey,

1980.

	ABSTRACT
	1 Introduction
	2 Development
	2.1 Element-by-Element preconditioners
	2.2 Subspace-by-Subspace preconditioners
	2.3 Subspace-by-Subspace preconditioners for structured problems

	3 Least squares problems
	3.1 Development
	3.2 Numerical experiments
	3.2.1 Experiments with zero residual problems
	3.2.2 Experiments with nonzero residual problems

	4 Mixing SBS with other Element-by-Element preconditioners
	4.1 Tests on an arti cial problem
	4.2 Tests on some SIF problems

	5 Conclusions
	Acknowledgment
	References

