
Technical Report
RAL-TR-96-010

CLRC

MA46, a FORTRAN Code for Direct Solution
of Sparse Unsymmetric Linear Systems of
Equations from Finite-element Applications

A C Damhaug and J K Reid

February 1996

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

0 Council for the Central Laboratory of the Research Councils 1995

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX1 1 OQX
Tel: 01 235 445384
E-mail library@rl .ac. uk

Fax: 01 235 446403

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or

damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

RAL-TR-96-010

MA46, a FORTRAN code for direct solution of sparse unsymmetric linear
systems of equations from finite-element applications

by
A. C. Damhaug. and J. K. Reid

Abstract

We descrjbe the design of a new code for direct solution of
sparse unsymmetric linear systems of equations from finite-
element applications. The code accepts both the finite-element
structure and the matrix coefficients in the form of finite ele-
ments. We show that the sparsity analysis using the know-
ledge about the finite-element structure is economic in time
and space and that the matrix can be factored and the equa;
tions can be solved efficiently by a multifrontal technique.

Categories and subject descriptors: G. 1.3 [Numerical Linear Algebra]: Linear systems (direct
methods), sparse and very large systems.

General Terms: Algorithms, performance.

Additional Key Words and Phrases: Sparse unsymmetric matrices, the finite-element method,
Gaussian elimination, multifrontal organization, BLAS.

Computing and Information Systems Department,
Rutherford Appleton Laboratory,
Chilton, Didcot,
Oxfordshire OX 1 1 OQX.

January 30,1996.

* Det Norske Veritas Research AS
Veritasveien 1 ,
N-1322 Hevik,
NORWAY.

CONTENTS

Page

1

2

3

4

5

6

7

8

Introduction .. 1

MA46A: analysis .. 4

2.1 Preparation .. 4

2.2 Pivot order choice ... 5

2.3 Tree construction and tree analysis .. 6

MA46B: assembly and factorization .. 8

3.1 The symbolic assembly ... 8

3.2 The numerical assembly ... 10

3.3 The actual factorization ... 10

MA46C: solve ... 12

Performance results ... 12

5.1 . Matrix analysis options .. 14

Comparison with MA37 ... 21

5.2

5.3

Block size and factorization ... 17

Summary and conclusions ... 22

Acknowledgement .. 22

References ... 23

Appendix A . Auxiliary routines and data structures used in MA46 24

Appendix B . The specification document for MA46 ... 34

I

RAL-TR-96-010

1 Introduction
We consider the direct solution of a set of linear equations

AX = B, (1.1)

where the matrix A arises from a finite-element calculation and is large, sparse, and unsymmetric.
We require the user to specify the number of finite-element nodes, and the number of variables at
each of the nodes. This allows considerable storage and efficiency gains for any problem that has
a significant number of nodes with more than one variable. The analysis is performed in terms of
the super-variables formed by the sets of variables at the nodes. We will refer also to ‘super-rows’
and ‘super-columns’ for the corresponding sets of rows and columns.

The k-th finite element gives rise to a matrix

that is zero except in a small number of rows and columns. It may be represented by a list of indi-
ces of the nodes associated with the finite element and a square full matrix whose order is the total
number of variables at the nodes. Because of nodal quantities, such as masses, springs and damp-
ers, which are often used to modify the diagonal of the matrix A, we allow for an additional diag-
onal matrix Ad to give the overall form

m

A = A(k) +A,.
k = l

Note that the structure is symmetric.

We use the multifrontal method (see, for example [6] and [7]), which is a variant of Gaussian
elimination and produces the triangular factorization of a permutation of A.

Our approach is to assume initially that any diagonal entry is suitable as a pivot. This allows us to
use exactly the same pivot choice strategies as for the symmetric and positive-definite case. We
permit the user to supply a symmetric permutation in the form of an ordering for the nodes, but
normally this is chosen automatically by MA46 from the structure of the matrix. In pivotal order,
the matrix is

-
A = PAP:, (1.4)

where P, is the permutation matrix corresponding to the node order supplied by the user or gener-
ated by MA46. The order of the variables within any node is not changed by P,.

Given such a permutation, and again working only with the matrix structure, we construct a tree
that has a node for each finite-element node. The links of this tree are determined by the structure

RAL-TR-96-010

of the super-rows when pivotal. If the off-diagonal entry of super-row i that is earliest in the pivot
sequence is in super-columnj, node i has nodej as its parent. It is straightforward to show that any
other off-diagonal entry of super-row i corresponds to an ancestor of node i. Following Liu [15],
we refer to this as the elimination tree.

We will associate each finite element with the tree node corresponding to the finite-element node
that is first in the pivot sequence among the nodes of the element. Because each element matrix is
full, all the other nodes of the element must correspond to ancestors.

Suppose we consider the matrix obtained by summing the elements associated with a leaf node of
the elimination tree. The super-row and super-column corresponding to the variables of the leaf
node will be the same as for the matrix A, that is, they are fully-summed. We can take advantage
of the fact that elimination steps

-I a . . t aij - ailall alj
1J (1.5)

may be performed before all the assembly steps

(1 -6) (k) a + a +alJ
V 1J

: I

are complete. It is necessary only that the terms in the triple product be fully-summed. We can
therefore perform the elimination operations within a full temporary matrix (the frontal matrix) of
order the number of variables associated with the nodes of the entries in the pivot super-row. The
pivot rows and columns are stored away and the Schur complement is added into the frontal
matrix. Once all the elimination operations of the node have been completed, we are left with a
reduced matrix that has a status like that of an element matrix; we will refer to it as a generated
element matrix, keep it in temporary storage, and associate it with the parent node.

There is considerable freedom in the ordering of the operations.' What is required is that all the
operations at the children of a node be completed before those at the node. To simplify the organ-
ization of temporary storage, we postorder the nodes following a depth-first search of the elimina-
tion tree. This allows a stack to be used to hold the generated elements awaiting assembly.

In the elimination tree; suppose there'is a sequence of nodes no, nl , n2, ... , nk such that, for i = I ,
2, ... , k,

(a) node ni has node ni-1 as its only child and
(b) the entries of the pivot super-row at node ni are the off-diagonal entries of the pivot row at

node q-1,

then the corresponding rows and columns can be treated as blocks with no loss of sparsity. The
elimination tree may be condensed by merging each such chain of nodes into a supernode, and we
call the resulting tree the supernode elimination tree. Working with such blocks allows us to take

2

RAL-TR-96-010

advantage of the additional efficiency associated with the use of full-matrix code and the BLAS
(Basic Linear Algebra Subprograms) [4,5,12] during factorization.

If a supernode has one or more original elements as children, the code must somehow access real
data supplied by the user. We have chosen to use reverse communication. The code must be called
NB times, where NB is the number of supernodes with which original elements are associated. On
each return the user is told which original element matrices are required. This avoids having to
store all the original element matrices. Of course, the user may choose to store them all, but other
alternatives may be convenient, such as generating them as required or holding them in a file.

For numerical stability, it is necessary to introduce further row and column interchanges into this
process. It is usual for sparse unsymmetric matrices to require every pivot to satisfy the relative
pivot tolerance

where U is a fixed parameter, and this is what we do. The pivots must be chosen from the squke
submatrix that is fully-summed and we choose as many as possible, khich may leave a few row;
and columns uneliminated. Such rows and columns are simply passed to the parent as part of the
generated element matrix. If we use the notation P and Q for the permutation matrices of the row
and column interchanges introduced for stability, the final factorization is

where L is lower triangular and U is upper triangular.

The subroutines are named according to the naming convention of the Harwell Subroutine
Library [2]. We describe the single-precision versions which have names that commence with
MA46 and have one more letter. The corresponding double-precision versions have the additional
letter D. The code itself is available from AEA Technology, Harwell; the contact is Dr Scott Rob-
erts or Mr Richard Lee, AEA Technology, Bldg 552, Harwell, Didcot, Oxon OX11 ORA, tel(44)
1235 434714 or (44) 1235 435690, Fax (44) 1235 434136, email: scott.roberts@aeat.co.uk or
richard.lee@aeat.co.uk, who will provide details of price and conditions of use.

There are four subroutines that are called directly by the user:

Initialize. MA461 provides default values for the arrays CNTL and ICNTL that together control
the execution of the package. For details, see appendix B.

MA46A is called to analyse the sparsity pattern. If a pivot order is not provided by the
user, the routine chooses one. It then prepares data structures for assembly and factor-
ization, and computes the number of assembly steps NB.

Analyse.

3

RAL-TR-96-010

Factorize. MA46B assembles and factorizes the matrix A based on the information computed by
MA46A and chooses permutations P and Q for numerical stability. The routine must
be called NB times in order to assemble and factorize the matrix. The routine may be
called for several finite-element matrices A with the same sparsity pattern without the
need for a new call to MA46A. This is common practice in non-linear finite-element
packages, for instance when a Newton-Raphson iterative scheme is used.

MA46C uses the factorization produced by MA46B to solve the equation AX=B. Note
that several right-hand side matrices B may be solved for the same matrix A without
the need for a new sequence of calls to MA46B. This is common practice in linear
finite-element packages when several load cases are analysed.

Solve.

2 MA46A: analysis
This section describes the analyse subroutine MA46A. MA46A is logically divided into three
parts: preparation, pivot order choice, and tree construction and tree analysis.

2.1 Preparation
We require the user to provide:

The number o f finite elements, NELS.

The number o f finite-element nodes, NNODS.

The number o f variables, NEQNS.

An array IELT that holds the list o f nodes for element 1 , followed by the list o f nodes for
element 2, etc.
An array IPIELT of length NELS+l that holds the position in IELT of the first node o f ele-
ment i, for i = 1,2 , ..., NELS, and the first unused position in IELT.

An array IVAR of length NNODS that holds the number o f variables at node i, for i = 1,2 ,
... , NNODS.
Optionally, the first NNODS locations o f an array KEEPA may be set to specify the pivot
order. The node to be used in position i of the pivot order must be placed in KEEPA(i), i =
1 , 2 ,..., NNODS.

The routine first checks the validity o f the input data and exits with an appropriate error message
if errors are found. Then the routine proceeds with three preparatory steps.

The first step is to compute the number of finite-element nodes that are active (have one or more
variables) and the total number o f variables. This provides a check on the value NEQNS provided
by the user. If the total number o f variables is not equal to NEQNS, the routine exits with an
appropriate error message.

The second step is to order the active nodes ahead of the others. This permutation o f the nodes is
done regardless o f whether or not a pivot order is provided. When it is provided, the relative order
o f the nodes with variables is retained. This permutation information is saved in KEEPA in a sub-

4

RAL-TR-96-010

array denoted BSPERM. BSPERM is thus, in this stage of the analysis, the permutation from the
initial order to the order provided by the user. BSPERM is needed in order to find the indices that
the user associated with the finite-element nodes.

The third step is to compute a representation of the element-node connectivity information pro-
vided by the user in the array pair IPIELT, IELT. The representation consists of four sub-arrays
that are tailored for efficient execution of the ordering step, if requested, and the subsequent tree
construction and tree analysis. The first two arrays are denoted XELNOD, ELNOD and give a
compressed version of IPIELT, IELT, that is, a compressed element-node connectivity structure.
The compression is done in order to disregard the nodes that have no variables. The two last
arrays are denoted XNODEL, NODEL and give the node-element connectivity and may be
regarded as the inverse arrays to XELNOD, ELNOD. The four arrays are referred to as the
implicit adjacency structure, or as the implicit graph structure, of the assembled coefficient matrix
A. Note that the implicit adjacency structure represents the nodal structure of the coefficient
matrix and not the variable structure.

2.2 Pivot order choice
A pivot order does not need to be chosen if it is provided by the user. In this case, the internal per-
mutation arrays PERM and INVP are set to the identity. Otherwise, the routine MA46F is used to
compute an ordering of the nodes that is stored in the arrays PERM and INVP by means of a mini-
mum-degree type algorithm. The minimum-degree algorithm symbolically simulates the factori-
zation of a sparse matrix. For each step in the algorithm, a node of minimum degree is chosen and
eliminated. This symbolic elimination procedure is performed on some graph representation of
the sparse matrix structure and creates a sequence of graphs, which are usually referred to as elim-
ination graphs. MA46F uses a generalized element representation of this sequence of elimination
graphs. The benefit is that the storage needed is no more than that needed for the original struc-
ture.

We have chosen to minimize the ‘external degree’, that is to choose each pivot supervariable to
minimize the number of entries in the pivot row that lie outside the pivot block. This was intro-
duced by Liu [13], who found that the number of entries in the factors was between 3% and 7%

less than with ‘true minimum degree’ for his test problems. Amestoy, Davis and Duff report cases
with bigger gains, including one with a reduction of over 50% in the number of entries in the fac-
tors [11.

The code implements a standard minimum-external-degree algorithm. That is, for each node of
minimum external degree, the routine performs a graph elimination step and a degree update step.
The routine is implemented to exploit indistinguishable nodes [131 (indistinguishable nodes are
nodes that have the same list of connected elements) and uses incomplete degree update [lO].
That is, the routine does a merge of nodes that have the same adjacency set in the current elimina-

5

RAL-TR-96-010

tion graph aqd does not update the degree of nodes that are known not to be of minimum external
degree after a degree update step. Incomplete degree update is often implemented as a search for
outmatched nodes [13] (an outmatched node is a node whose list of connected elements includes
all those connected to a neighbouring node). Since the routine uses an element representation, it is
customary to formulate both the requirements in terms of generated elements. In most implemen-
tations of the minimum-degree algorithm, a simplified search for outmatched nodes is used. In
this implementation, a complete search is used since the search procedure is very efficient in a
generated element setting and often produces orderings of higher quality.

By default, the standard minimum-external-degree algorithm is extended with a multiple-elimina-
tion step as described by Liu [13]. Multiple-elimination allows more than one node of minimum
external degree to be eliminated before the degree update step. The consequence is that more than
one generated element may emerge in a multiple-elimination step. The nodes must be independ-
ent, that is no node may be involved in a new generated element other than its own.

An option is an extension of the multiple-elimination version of the minimum-external-degree
algorithm to include independent nodes of degree exceeding the minimum by a user-specified
amount. After all the nodes of minimum external degree have been eliminated the algorithm con-
tinues its sehch for independent nodes with external degree one higher, two higher and so on until
the limit is reached, and eliminates these nodes together with the minimum external degree nodes
in a multiple-elimination step.

2.3 Tree construction and tree analysis
When the preparation and pivot ordering steps have been completed, the routine continues with
the tree construction imd tree analysis, which consists of six steps. All the steps use the implicit
adjacency structure that was computed in the preparation stage and the internal permutation
arrays PERM and INVP. The steps are implemented separately with modularity in mind, which
will make it easy to change parts of the code should new and better algorithms appear.

The first step is to compute the finite-element node-based elimination tree and the corresponding
postordering. The work is done by the routine MA46G. At first glance, it might be assumed that
the nodal elimination tree is not needed since the routine attempts to amalgamate nodes to make
supernodes and the associated supernode elimination tree. This is true, but there is no great cost
associated with the computation of the nodal elimination tree and the subsequent steps in the
matrix analysis are more efficient if the structure is present. The method used to compute the
elimination tree and its postordering is straightforward and is described in [15].

The second step is to compute the number of entries in the pivot rows at each node. The algorithm
used is due to Gilbert, Ng and Peyton [111. The algorithm is implemented in routine MA46H. For
efficiency, it makes use of the postordered nodal elimination tree in addition to the implicit adja-

6

RAL-TR-96-010

cency structure.

In step three, after the pivot row lengths are known, the nodes are grouped into supernodes by
routine MA46J, as explained on page 2. Such supernodes were introduced by Duff and Reid [6]
and called ‘fundamental supernodes’ by Ashcraft and Grimes [3].

The fourth step is the computation of an optimal postordering of the supernode elimination tree.
We use a result of Liu [141. Suppose the children of a node are n[i], i = I, 2, ..., k, that the size of
the generated element at node n[i] is g[i], and that the temporary stack space needed when work-
ing on node n[i] is s[i]. Liu showed that the total stack size needed for work on all the children is
minimized if they are ordered so that s[i]-g[i], i = I, 2, ... , k is a monotonic decreasing sequence.
Such an ordering can therefore be determined, along with the total stack space needed, provided
s[i] and g[i] are known for all the children. Any postorder following a depth-first search allows us

to do this.

Pivoting due to numerical stability considerations may increase the size of the frontal and gener-
ated element matrices. T h s implies that the order found during the analysis stage need not be the
best when the matrix is factorized. We have, however, not found it feasible to try any kind of sub-
optimization during the factorization. Our numerical experiments indicate that the size of the
working stack storage changes little and we believe that the order found is close to the best overall
order that may be computed after the factorization has been completed.

The fifth step is to update the internal permutation vectors PERM and INVP and the representa-
tion of the supernodal elimination tree to correspond with the supernode postordering computed
in step four. This step is done by routine MA46L.

The sixth and final step is to compute the number of assembly steps and some factorization statis-
tics. The step also updates BSPERM by the information collected in the internal permutation
arrays PERM and INVP during the previous matrix analysis steps. The work is done by routine
MA46M. The number of assembly steps may be less than the number of supernodes found in step
three, since there may be many nodes that have no original elements associated with them. We
often see that the number of assembly steps is between 50-75% of the number of supernodes.
Therefore, we have found it convenient to compute an assembly tree in order to reduce the
number of calls to MA46B. The assembly tree consists of amalgamated supernodes and the start
of a new node in the assembly tree is defined by the need for original finite-element coefficients.
The routine checks each supernode to see if it needs coefficients from finite elements. If not, its
right-most child in the supernode elimination tree is merged into it and thus an assembly tree is
created. The procedure used to create the assembly tree assures that the postorder of the super-
nodal elimination tree is maintained as required by the stack management in routine MA46B.

RAL-TR-96-010

3 MA46B: assembly and factorization
Before we start the description of MA46B, we give a skeleton of the basic multifrontal factoriza-
tion algorithm in order to motivate the different choices we have made in the development and
implementation of the code. The skeleton of the factorization is shown in Figure 3.1.

Note that the algorithm needs to process the supernodes in postorder for the internal stack man-
agement to work. In order to facilitate such an arrangement, we assume that a supernode elimina-
tion tree representation in postorder is available for the factorization algorithm.

We observe from Figure 3.1 that no distinction has been made between original finite-element
matrices and generated element matrices and that an implementation of the algorithm will need
data from the user for each supernode. That is, if we were to organize the factorization as is in
Figure 3.1, MA46B would have to be called for each supernode, unless the coefficients were
assembled into the factor submatrices in advance. This latter option would need pre-allocated
storage for the triangular factors, which is not practical in a code where pivoting may alter the
sizes. In addition, this arrangement would exclude the possibility of overlap between the stack
and the triangular factors if we store the finalized triangular factors, the current frontal matrix, and
the stack all in the same array. Such an overlap is implemented in MA46B in order to reduce the
total storage needed.

In addition to the observation made in the previous paragraph, we use the following three obser-
vations to further refine the factorization algorithm:

1. Previously fully-summed variables that were not eliminated for stability reasons appear
naturally in the leading part of the generated element matrices to be assembled into the cur-
rent frontal matrix. These sets of variables must be disjoint since they arrive from disjoint
subtrees in the supernode elimination tree, and thus they may be assembled directly into the
index list in the symbolic assembly step.

2. Newly fully-summed variables are on entry tu the factorization step still in the order arising
from the analysis stage.

3. Row and column pivoting in the fully-summed part of the frontal matrix does not affect the
order of the other rows and columns of the frontal matrix.

Figure 3.2 shows the final assembly and factorization algorithm. The implementation is based on
calls to MA46B for each assembly step, and thus it is the part of the algorithm that starts with
“For each supernode in the assembly step do” that is found inside MA46B. Note that the algo-
rithm needs the supernodes in postorder for the internal management of the stack to work and that
many details have been removed in order to make Figure 3.2 easy to read.

3.1 The symbolic assembly
The assembly starts with the computation of the indices of the variables that are active in the cur-
rent step. This process is denoted symbolic assembly and is organized in two parts:

8

RAL-TR-96-010

For each supernode in postorder do
Merge the index lists of the children of the supernode to form the index list of the frontal matrix;
Allocate space on top of the working stack for the frontal matrix of the supernode and initialize it to zero;
For each child of the supernode do

Pop the generated element matrix associated with the child off the stack and assemble it into the
frontal matrix of the supernode;

End For
Perform the eliminations that are possible on the fully-summed rows and columns;
Move the UU submatrices associated with the performed eliminations to permanent storage for the factors;
Move the generated element of the supernode to the top of the stack;

End For

Figure 3.1: Skeleton of the factorization algorithm.

For each assembly step do
For each supernode in the assembly step do

! Symbolic assembly
Merge the index lists of the children of the supernode to form the index list of the frontal matrix;
! Actual assembly
Allocate space on top of the stack for the parent frontal matrix and initialize it to zero;
For each generated element child do

End For
If this supernode is the first in the assembly step then do

Assemble the generated element of the child into the parent frontal matrix;

For each original finite element that participate in this assembly step do

End For
End If
! Elimination
Perform elimination of the fully-summed rows and columns that may be eliminated;
! Management of the triangular factors and the stack
Move the UU submatrices computed in the elimination step to permanent storage for the
submatrices ;
Compress the generated element matrix and move it to the new top of the stack;

Assemble the original finiteelement matrix into the parent frontal matrix;

End For
End For

Figure 3.2: Final version of the assembly and factorization algorithm.

(i) the index lists of the children of the current supernode are merged together to form the
index list of the parent, and

(ii) if the supernode is the first in an assembly step, index lists from original finite elements
are merged with the parent list.

Since there may be a need to use off-diagonal pivots, we prepare by generating column indices for
the fully-summed part, as well as row indices for the generated element. If at least one of the
incoming generated elements has different row and column indices or an off-diagonal pivot is
selected, we need to keep the column indices for the rows and columns of the factors that are
associated with the supernode.

9

RAL-TR-96-010

0 Finalized triangular factor submatrices.

0 Freespace*

The frontal matrix.

Previously generated elements.

Figure 3.3: The structure of the workspace for triangular factors and the stack after assembly but before the
eliminations have been carried out.

3.2 The numerical assembly
The active frontal matrix is stored on the top of the stack. Before the assembly process starts,
workspace on top of the stack is allocated for the frontal matrix and it is initialized to zero. The
frontal matrix is then assembled and finally the eliminations that are possible are performed on the
matrix. Figure 3.3 shows the structure of the workspace after assembly but before the eliminations
have been carried out.

As for the symbolic assembly step, the actual assembly step is divided into two separate parts:

(i) assembly of coefficients from generated element matrices, and

(ii) if the supernode is the first in an assembly step, assembly of coefficients from original
finite-element matrices.

3.3 The actual factorization
For each assembly step, one or more supernode elimination steps are carried out. These block fac-
torization steps involve eliminations of the fully-summed rows and columns of the frontal matrix.
Each block factorization step is organized around the pivot search and subsequent submatrix
update., The pivot search is done within the block of fully-summed rows and columns that are not
yet eliminated. For better numerical stability, we choose the largest off-diagonal entry of the fully-
summed part of the column even if the diagonal element satisfies the criterion for pivot choice.
This in contrast to how the MA37 package from the Harwell Subroutine Library [2] selects the
next pivot in such a case.

Initially, we planned to provide to the user two versions of the factorization:

(i) a version based on matrix-vector updates, i.e. Level 2 BLAS, and
(ii) a version based on matrix-matrix updates, i.e. Level 3 BLAS.

The final testing showed, however, that this was not necessary since the matrix-matrix version is
the overall best.

10

RAL-TR-96-010

1 Previous triangular factor submatrices.

The new triangular factors. l m
Free space. I n
The new generated element matrix on top of the stack. 1.

I

Figure 3.4: The structure of the workspace for triangular factors and stack after the eliminations and workspace
compression.

In order to make good use of cache memory, we ask the user to provide its size in ICNTL(8) (see
Appendix B), and divide the matrix-matrix update into blocks. Both versions use standard BLAS
routines, that is, I-AMAX, -SCAL, -SWAP, -GER, -TRSM, and -GEMM in the most demand-
ing sections of the elimination. Let the frontal matrix be F and have order$ Further, let it have k

fully-summed rows and columns. We ensure that these are at the front of F.

The matrix-vector update kernel is implemented as follows: in elimination stepj, where I S j I k,

a pivot is selected from F(j:k, j:k), and permuted to position F(j, j) . The pivot search and the per-
mutations are done by the Level 1 BLAS routines I-AMAX and -SWAP. The next step is to scale
the column vector F(j+I$ j) with the pivot using the Level 1 BLAS routine -SCAL and then the
trailing submatrix F(j+I:j j+I:f) is rank-one updated by Level 2 BLAS routine -GER.

As many such elimination steps as possible are performed and the resulting matrix is passed as the
generated element matrix to the parent in the supernode elimination tree.

For the unblocked matrix-matrix update kernel, in elimination stepj, a pivot is selected from the
submatrix F(j:k, j:k), permuted to the F(j, j) position and the column F(j+I:j 11 is scaled by the
pivot inverse, exactly as for the matrix-vector update kernel. Now the Level 2 BLAS routine
- GER is restricted.to a rank-one update of the submatrix F(j+I:j j + l : k) . After all possible such
elimination steps are completed, say Z steps, we perform forward solves on the submatrix F(I:Z,
k+l: f) using the Level 3 BLAS routine -TRSM, and finally update the submatrix F(Z+I:j k+l:f)

using the Level 3 BLAS routine -GEMM. The resulting matrix F(Z+I:j Z+I:f) is passed as the
generated element matrix to the parent in the supernode elimination tree.

We introduced the blocked version of the factorization algorithm in order to increase the amount
of Level 3 BLAS work and avoid swapping between cache and main memory. The block size kb

11

is chosen so that (b + I).

RAL-TR-96-010

CNTL (8) , to ensure that a block column fits in the cache. We
commence processing as if only the first kb rows and columns were fully-summed. Once this is
complete, we regard the next kb rows and columns as fully-summed and process these together
with any we were unable to pivot upon while processing the first block. We continue in this way
with one more block of kb rows and columns at a time. The treatment is essentially the same as
we would have obtained had we limited the merges into supervariables to blocks of size kb.

After a factorization step has been completed, the newly computed submatrices of the triangular
factors are moved from the frontal matrix to permanent storage and thb generated element matrix
is moved to the top of the stack. During its movement, the generated element matrix is com-
pressed in order to eliminate the unused space above the columns. Figure 3.4 shows the structure
of the workspace after the eliminations and workspace compression have been carried out.

4 MA46C: solve
In contrast to MA46A and MA46B, there is no use of finite-element input to the solution routine
MA46C. The reason is that the solve step, and thus MA46C, then has a cleaner interface. The
organization of the solve routine is, however, based on the supernode elimination tree which
means that the equations are solved as a sequence of submatrix solves. The forward elimination is
driven by traversal of the supernode elimination tree in a postorder and the backward elimination
is driven.by traversal of the supernode elimination tree in the inverse order. MA46C may be
called more than once for the same triangular factors. On each call, the number of right-hand sides
(columns of B) must be specified in NRHS. Both the forward and backward elimination steps use
matrix-matrix computational kernels, i.e. Level 3 BLAS, when NRHS>l. It should be noted that
B is involved in this matrix-matrix product and that the kernels become more efficient with an
increased number of columns in B. When there is one right-hand side, i.e. NRHS=l, Level 2
BLAS routines are used since this gives an improvement over the Level 3 BLAS because there is
less administration overhead.

§ Performance results
For performance testing, we have taken a subset of the problems in the Harwell-Boeing collec-
tion, see [8], and some problems collected from structural engineering applications at Det Norske
Veritas Research AS. Table 5.1 shows a summary of the problems and those from the Harwell-
Boeing collection are marked with superscript a. The storage format of the problems from the
Harwell-Boeing collection does not take advantage of the fact that there may be more than one
variable at a finite-element node. This means that all nodes in these problems have at most one
variable and that the matrix analysis of MA46 may perform worse than usual for finite-element
problems: There are, however, many performance results available for these matrices, see for

12

RAL-TR-96-010

Table 5.1:

Problem

1
2
3
4
5
6
7
8
9
10
1 1
12
13
14

The test problems

Description

3D model of a container ship.
CEGB2802'.
CEGB2919'.
CEGB3024'.
CEGB3306'.
3D model of a corrugated plate field.
3D model of a flywheel.
LOCK1074'.
LOCK2232'.
LOCK349 1 '.
LOCK 700a.
MAN5976'.
3D model of part of a condeep cylinder.
3D model of a sandwich beamb.

Number of
variables

10,110
2,694
2,859
2,996
3,222

18,010
4,368
1,038
2,208
3,416

69 1
5,882

15,449
2,508

Number of
e 1 em en ts

3,43 1
108
128
55 1
79 1

3,152
248
323
944
684
324
784
977

3,429

a. See [8] for a description of the problems taken from the Harwell-Boeing collection.
b. The 3D model of the beam consists of randomly distributed 2-noded beam elements.

instance [9], and this choice of problems makes it easier to compare the performance of MA46
with other packages. On the other hand, the problems from Det Norske Veritas Research AS are
presented to MA46 as we expect the code to be implemented in finite-element packages; they are
extracted directly from finite-element applications and most of the nodes have more than one var-
iable.

The matrices of Table 5.1 have been used to test the code on

1. a DEC 3000-400 with operating system OSFA V2.0 and using release V3.4-480 of the f77
compiler with the options - 0 5 and -fast. There are vendor versions of BLAS available on
this platform.

2. a SUN 4 with operating system Sun OS release 4.1.2 and using release SC 1 .O Fortran V1.4
of the f77 compiler with options - 0 3 -cg89 -dalign. There are no vendor version of BLAS
available on this platform.

3. one processor of a Cray Y-MPI/8-128 using release 6.0 (6.52) of the CF77 compiling sys-
tem with default options. There are vendor versions of BLAS available on this platform.

The double precision version of MA46 was used on the DEC 3000-400 and SUN 4 and the single
precision version was used on the Cray Y-MP. The pseudo-random number generator FAO4 from
the Harwell Subroutine Library [2] was used to generate values for the element coefficient matri-
ces and the right-hand sides. Each problem was run enough times for each combination of options
to take at least one second and the average CPU times in seconds are reported.

13

RAL-TR-96-010

Table 5.2: Results from MA46A using default value 0 for ICNTL(5).

Problem Number of Number of Number of Size of factorization
variables assemblies supernodes (thousands)

integers reals

1
2
3
4
5
6
7
8
9
10
11
12
13
14

10,110
2,694
2,859
2,996
3,222

18,010
4,368
1,038
2,208
3,416

69 1
5,882

15,449
2,508

79 1
86
98

398
3 82
929
152
101
293
274
117
499
564
811

828
163
192
657
5 10

1,653
27 1
112
293
40 1
126
956

1,05 1
811

98
15
19
18
11

136
40
6

10
22
4

44
150
15

2,196
267
36 1
111
69

2,825
1,167

61
73

223
26

489
5,522

64

Stack size
(thousands)

with without
reordering reordering

756 2,059
80 177

204 235
19 39
23 28

99 1 1,545
793 97 1
30 47
10 42
87 110
31 36

197 242
3,763 5,180

12 34

Table 5.3: Results from MA46A, ICNTL(5)=-1 and ICNTL(5)=4.

ICNTL(5)=- 1 ICNTL(5)=4

Problem Number of Number of Size of factorization Number of Number of Size of factorization
assemblies supernodes (thousands) assemblies supernodes (thousands)

integers reals integers reals

1
2
3
4
5
6
7
8
9
10
1 1
12
13
14

797
86

101
385
5 14
942
152
103
293
274
117
499
562
810

836
163
192
656
5 14

1,673
27 1
113
293
400
127
956

1,05 1
810

98
14
19
19
11

137
39
6

10
22
4

44
150
15

2,157
236
34 1
113
68

2,783
1,093

61
73

223
25

493
5,420

64

783
86

100
394
382
903
152
103
292
273
114
499
566
794

829
165
192
657
510

1,634
27 1
112
293
399
126
956

1,05 1
794

98 2,167
14 248
19 357
19 117
11 69

134 2,732
40 1,167
6 61

10 74
22 224
4 26

44 510
150 5,476
16 69

5.1 Matrix analysis options
Our first experiments concern the matrix analysis options of MA46A. We have run the test prob-
lems for each of the options:

(1) standard $minimum external degree, ICNTL(S)<O,

(2) multiple minimum external degree, ICNTL(S)=O, the default, and

(3) relaxed'multiple minimum external degree, ICNTL(S)>O,

14

RAL-TR-96-010

Table 5.4: Timing results from MA46A, CPU-seconds on DEC 3000-400.

Problem

1
2
3
4
5
6
7
8
9
10
11
12
13
14

ICNTL(5)z- 1

0.39
0.23
0.29
0.15
0.12
0.19
0.13
0.09
0.13
0.23
0.06
0.32
0.5 1
0.19

ICNTL(S)=O

0.37
0.23
0.29
0.14
0.12
0.17
0.12
0.08
0.13
0.23
0.05
0.32
0.47
0.18

ICNTL(5)=4

0.36
0.23
0.29
0.14
0.12
0.16
0.12
0.09
0.13
0.23
0.05
0.32
0.47
0.19

to see the effect on the number of block factorization steps and assembly steps; the size of the
index information, the triangular factors, and the working stack; and on the CPU time. Table 5.2
shows the results from MA46A for the default value of ICNTL(5).

We see from Table 5.2 that the number of supernodes is often below 10% of the total number of
variables. High percentages are often found for problems that are mainly assembled from bar and
beam elements, such as the problems 5 , 8 , 9 , 10, 1 1 and 14.

The number of assembly steps is for most problems between 50-75% of the number of super-
nodes. Finite-element problems for which the value is higher usually have a high element-to-node
ratio. The most obvious example is problem 14 where there are more elements than nodes in the
finite-element mesh. The problems 1 , 8 , 9 and 1 1 all have a relatively high element-to-node ratio
and this is reflected in the number of assembly steps being greater than 75% of the number of
supernodes.

For all the problems, we find that the number of indices stored to represent the triangular factors is
small compared with the number of reals for the triangular factors themselves.

In the final two columns of Table 5.2, we show the stack sizes with and without reordering of the
children of each node. We found that the additional CPU time for this reordering is negligible (not
measurable within the uncertainty of the timer). It is clear that this reordering is very worthwhile.

Table 5.3 shows the results from MA46A with the options ICNTL(5)=-1, 4. For almost all the
problems, the number of assembly steps, the number of supernodes and the number of indices
stored do not differ much from the values shown in Table 5.2.

G

b :

We conclude that the options for different forms of the minimum-degree algorithm do not have a
big effect on these quantities. None of the algorithms is consistently better than the other two.

Table 5.4 shows the CPU-time consumptions in MA46A for the three forms of the minimum-

15

Table 5.5:

Problem

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Table 5.6:

Problem

1
2
3

- 4
5
.6
7
8
9
10
11
12
13
14

RAL-TR-96-010

The effect of block size on factorization time. Results from DEC 3000-400.

Level 2 BLAS

ICNTL(8)=- 1

DXML
BLAS

98.24
3.11
6.68
0.66
0.34

118.90
59.92
0.49
0.39
2.11
0.18
6.87

540.87
0.35

F77 BLAS

95.21
2.67
6.22
0.60
0.3 1

115.42
58.48
0.43
0.35
1.87
0.16
6.16

539.02
0.32

Level 3 BLAS

ICNTL(8)=O

DXML F77BLAS
BLAS

42.39 54.97
1.96 2.14
3.47 3.82
0.59 0.55
0.33 0.29

46.14 62.84
23.06 30.10
0.37 0.35
0.36 0.32
1.47 1.52
0.17 0.15
4.20 4.58

196.65 341.74
0.38 0.32

Level 3 BLAS

ICNTL(8)=32

DXML F77BLAS
BLAS

42.63
1.86
3.32
0.59
0.33

55.98
27.35
0.36
0.36
1.42
0.16
3.90

480.86
0.38

46.60
2.04
3.75
0.54
0.29

57.20
28.08
0.35
0.32
1.49
0.14
4.37

413.78
0.32

Level 3 BLAS

ICNTL(8)=64

DXML F77BLAS
BLAS

34.07 42.94
1.94 2.07
3.29 3.73
0.59 0.54
0.33 0.30

41.09 50.24
20.53 25.65
0.37 0.35
0.36 0.32
1.44 1.49
0.17 0.15
3.82 4.35

214.63 228.92
0.38 0.32

Solution times. Results from DEC 3000-400.

Number of right-hand sides

NRHS= 1 NRHS=3 NRHS=10 NRHS=50

DXML BLAS

Level2 Level 3

0.69 1.13
0.09 0.15
0.12 0.20
0.07 0.11
0.05 0.07
0.92 1.52
0.35 0.67
0.03 0.04
0.04 0.06
0.10 0.15
0.01 0.02
0.20 0.33
1.62 2.80
0.06 0.09

F77 BLAS

Level 2 Level 3

0.62 0.65
0.08 0.09
0.11 0.11
0.06 0.07
0.05 0.05
0.83 0.85
0.32 0.32
0.02 0.03
0.04 0.04
0.09 0.09
0.01 0.01
0.18 . 0.19
1.46 1.49
0.05 0.06

DXML F77 DXML F77
BLAS BLAS BLAS BLAS

1.62 1.29 2.91 3.58
0.21 0.16 0.38 0.42
0.28 0.21 0.50 0.55
0.17 0.12 0.33 0.30
0.12 0.09 0.22 0.21
2.14 1.68 3.81 4.55
0.9 1 0.65 1.53 1.79
0.06 0.05 0.12 0.12
0.10 0.07 0.18 0.18
0.22 0.17 0.41 0.42
0.04 0.03 0.07 0.07
0.48 0.36 0.88 0.92
3.79 3.38 6.36 10.07
0.15 0.10 0.29 0.26

DXML
BLAS

10.64
1.35
1.82
1.22
0.83

13.65
5.20
0.42
0.65
1.51
0.25
3.27

22.64
1.08

F77
BLAS

17.08
1.93
2.59
1.43
1.02

21.54
8.61
0.57
0.83
1.97
0.33
4.37

49.30
1.22

external-degree algorithm. It may be seen that the differences are not great. We have therefore
decided not to offer the ICNTL(5) < 0 option to users. The option ICNTL(S)>O is offered to the
users since there are some problems, often very big problems modelled with solid finite-elements,
where it is better than the default option.

16

RALTR-96-010

5.2 Block size and factorization
In this section, we report the effect on the CPU time used to factorize the matrices of Table 5.1 of
using Level 2 BLAS and Level 3 BLAS with varying block sizes. The options are controlled by
ICNTL(8) and we have limited our trials to the values:

- 1 Level 2 BLAS,
0 Level 3 BLAS without blocking,

32 Level 3 BLAS with block columns of size less than 32 kbytes, and
64 Level 3 BLAS with block columns of size less than 64 kbytes.

We also consider the effect of using vendor-supplied BLAS. The most important BLAS routines
for MA46B and MA46C are -TRSM and - G E M . In the Fortran 77 versions, we have made the
following modifications in order to improve their performance: -TRSM has been modified to use
level-two unrolling in its inner loop:

DO 82, I = K + 1, M
B(1,J) = B(1,J) - TEMPl*A(I,K)
B(I,J+l) = B(I,J+l) - TEMP2*A(I,K)

82 CONTINUE

and -GEMM has been modified to use level-eight unrolling in its inner loop:

DO 78, I = 1, M
C(1,J) = C(1,J) + TEMPl*A(I,L) + TEMP2*A(I,L+1)

& + TEMP3*A(I,L+2) + TEMP4*A(I,L+3)
& + TEMPS*A(I,L+4) + TEMP6*A(I,L+S)
& + TEMP7*A(I,L+6) + TEMP8*A(I,L+7)

78 CONTINUE

The choice of unrolling level is dependent of the computer architecture. For MA46, the two above
code segments give the best performance on DEC 3000-400 and SUN 4.

The results from runs on the DEC 3000-400 are summarized in Tables 5.5 and 5.6. Here and in
Tables 5.7, 5.8 and 5.9, we show the best result for each problem in bold. The columns labelled
DXML BLAS show the results when the vendor-supplied versions of the BLAS routines are used
and the other columns show the results of using our modified Fortran 77 source. On this machine,
the size of the local cache memory is 64 kbytes and we therefore expect the option ICNTL(8)=64
to perform best. Using the Fortran 77 BLAS, this option is the best in 1 1 cases and is very near the
best (within 8%) in all the others.

On the smaller problems, we must expect that all the fully assembled columns will often fit into
the cache anyway, so blocking will have little effect. In fact, with no blocking, some overheads in
the factorization routine are avoided, but the effect on timing is not great. These remarks may be
verified in the table.

It may also be seen in Table 5.5 that the vendor-supplied Level 3 BLAS outperform the Fortran
Level 3 BLAS for most of the bigger problems. For the smaller problems our modified Fortran 77

17

RAL-TR-96-010

Table 5.7: The effect of block size on factorization time, and average solution times for NRHS=3.
Results from SUN 4.

Factorization time Solution time

Level 2 BLAS Level 3 BLAS Level 3 BLAS Level 3 BLAS Level 2 BLAS Level 3 BLAS

Problem ICNTL(8)=- 1 ICNTL(8)=O ICNTL(8)=32 ICNTL(8)=64

1
2
3
4
5
6
7
8
9
10
1 1
12
13
14

404.73
18.54
33.89
3.41
1.79

490.75
238.70

2.60
2.02

1 1.70
1.04

40.54
1951.39

1.84

331.34
13.00
24.76
3.09
1.58

394.59
194.06

2.14
1.77
9.04
0.91

30.12
1607.49

1.82

239.36
12.24
21.36
3.17
1.58

297.22
142.15

2.13
1.81
8.61
0.89

25.68
1589.05

1.77

24 1.49
12.41
21.61
3.07
1.60

299.56
143.75

2.14
1.79
8.62
0.88

25.80
1149.34

1.74

2.40
0.29
0.40
0.21
0.14
3.29
1.13
0.08
0.13
0.30
0.05
0.65

15.20
0.16

2.23
0.25
0.34
0.17
0.12
2.97
1.11
0.07
0.10
0.26
0.04
0.56
9.31
0.14

Table 5.8: The effect of block size on factorization time. Results from Cray Y-MP.

Level 2 BLAS Level 3 BLAS Level 3 BLAS Level 3 BLAS

ICNTL(8) ~ - 1 ICNTL(8)=0 ICNTL(8)=32 ICNTL(8)=64

Cray F77 Cray F77 Cray F77 Cray F77
Problem BLAS BLAS BLAS BLAS BLAS BLAS BLAS BLAS

1
2
3
4
5
6
7
8
9
10
11
12
13
14

6.35 10.19 6.33 8.59
0.48 0.72 0.49 0.70
0.74 1.13 0.74 1.04
0.23 0.32 0.25 0.37
0.17 0.23 0.18 0.27
7.92 12.52 7.60 10.67
3.76 5.75 3.54 4.79
0.12 0.17 0.12 0.18
0.16 0.22 0.17 0.25
0.42 0.61 0.44 0.65
0.06 0.08 0.07 0.10
0.98 1.48 1 .oo 1.46

28.35 42.84 26.62 34.53
0.17 0.23 0.19 0.28

7.71 8.90
0.49 0.7 1
0.77 1.06
0.25 0.37
0.18 0.27
9.86 11.13
4.56 4.98
0.12 0.18
0.17 0.25
0.45 0.66
0.07 0.10
1.04 1.49

61.05 43.55
0.20 0.28

6.82 8.44
0.49 0.7 1
0.75 1.04
0.25 0.37
0.18 0.27
8.33 10.63
3.91 4.78

0.17 0.25
0.44 0.65
0.07 0.10
1.01 1.46

36.06 34.73
0.20 0.28

0.12 0118

source is competitive which seems to indicate that the vendor was concentrating on performance
for bigger cases.

From Table 5.5, we see that the results with Level 2 BLAS were almost always worse and often
significantly worse than those with Level 3 BLAS. Except for problem 14 where the Level 2
BLAS are as fast as Level 3 BLAS, for no case was the best time obtained with Level 2 BLAS.

In order to study the effect of vendor-supplied Level 3 BLAS more carefully, we have tabulated

18

RAL-TR-96-010

Table 5.9:

Problem

1
2
3
4
5
6
7
8
9
10
1 1
12
13
14

Average solution times for NRHS=3. Results from Cray Y-MP.

Level 2 BLAS Level 3 BLAS

Cray F77 Cray F77
BLAS BLAS BLAS BLAS

0.069 0.133 0.060 0.099
0.014 0.026 0.011 0.017
0.016 0.03 1 0.013 0.021
0.025 0.059 0.017 0.03 1
0.020 0.047 0.013 0.025
0.106 0.219 0.092 0.153
0.03 1 0.054 0.028 0.043
0.006 0.0 13 0.005 0.008
0.013 0.030 0.009 0.016
0.021 0.045 0.016 0.027
0.005 0.012 0.004 0.006
0.045 0.099 0.033 0.058
0.130 0.224 0.118 0.179
0.026 0.065 0.017 0.033

the solution times for different number of right-hand sides in Table 5.6. It can be seen that our
Fortran BLAS are faster than DXML BLAS when there are few right-hand sides and that the
opposite is true when there are many right-hand sides.

Results for the SUN 4 are shown in Table 5.7. Here we find that ICNTL(8)=64 is best or near best
in all cases. Vendor supplied BLAS were not available on this machine and only Fortran 77 BLAS
were used.

Results for the Cray Y-MP are shown in Tables 5.8 and 5.9. This computer does not use cache
memory and we therefore do not expect blocking to be helpful. In Table 5.8, we can see that this
indeed is the case. The vendor versions of BLAS are usually better here. An exception is for prob-
lem 13 where our modified Fortran 77 source is better than the vendor versions for ICNTL(8)=32,
64, but the best performance is obtained for the unblocked Level 3 BLAS when vendor supplied
BLAS are used. For the Cray, we also see that Level 2 BLAS are competitive with Level 3 BLAS.
Level 2 BLAS are best for the smaller problems and Level 3 BLAS are best for the bigger prob-
lems, but with small margins in both cases. Table 5.9 shows a comparison between Level 2 and
Level 3 BLAS for the solution step. NRHS was set to 3 and we have reported the average solution
times. We can see that vendor supplied Level 3 BLAS are consistently the best on all the prob-
lems.

We conclude that the block strategy of MA46B works as expected on the problems of Table 5.1
on all the three platforms we considered. We have decided not to offer the Level 2 BLAS option
to users because its performance is inferior to the Level 3 BLAS option except for small problems
on the Cray, where the difference is slight.

The most important BLAS routines in MA46B are -TRSM and -GEMM and we recommend that
vendor supplied versions of at least these two should be used when available.

19

RAL-TR-96-010

Table 5.10: Comparison between MA37 and MA46. CPU-time consumptions for MA37 divided by the
best corresponding results for MA46.

DEC 3000-400 SUN 4 Cray Y-MP

Problem Analyse Factorize Solve Analyse Factorize Solve Analyse Factorize Solve

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Table 5.11:

Problem

1
2
3
4
5
6
7
8
9
10
11
12
13
14

13.73 3.67 1.53
4.37 2.57 1.44
4.34 2.90 1.59
2.29 2.7 1 1.16
2.28 2.22 0.94

29.82 10.07 2.18
21.74 4.8 1 1.79
3.22 2.72 1.36
2.48 2.48 1.06
3.33 2.73 1.41
2.26 2.4 1 0.80
2.93 4.77 1.65

19.09 3.71 1.60
0.87 1.61 0.79

11.49
3.63
3.62
1.85
1.98

21.61
18.29
2.92
2.12
2.88
2.19
2.35

15.84
0.86

2.02
1.79
2.06
2.03
1.72
4.85
2.46
1.92
1.83
1.99
1.78
3 .OO
2.16
1.24

1.19 6.99
1.05 2.07
1.10 2.08
0.92 1.47
0.83 1.42
3.57 16.17
1.18 10.95
1.04 1.70
0.92 1.46
1.06 1.73
0.82 1.36
1.20 1.64
1.98 9.67
0.68 0.66

3.18
4.11
3.93
3.25
3.18
5.73
3.59
4.53
3.71
4.02
4.03
3.81
2.77
2.19

1.32
1.37
1.35
0.91
1.01
1.56
1.52
1.13
1.02
1.27
0.99
1.11
1.46
0.79

Comparison between MA37 and MA46 on the number of indices anticipated in analyse and
stored in factorize for each problem. Also compared is the length of the array for the
triangular factors and stack as anticipated in analyse and needed in factorize. The results are
obtained on DEC 3000-400. Default options are used for both packages.

ANALYSE

Size of factorization (thousands)

integers reals, including stack

MA46 MA37 MA46 MA37

98 20 1 4,820 4,848
15 29 565 563
19 39 85 1 903
19 40 23 1 279
11 24 149 154

136 296 6,156 10,781
40 82 2,719 3,395

6 13 135 153
10 21 149 198
22 47 480 54 1
4 8 68 83

44 94 1,100 1,465
150 307 12,476 14,815
16 32 133 133

FACTORIZE

Size of factorization (thousands)

integers reals, including stack

MA46 MA37 MA46 MA37

108 20 1 4,854 4,839
18 29 570 566
22 39 858 907
21 40 235 28 1
15 24 152 156

154 296 6,211 10,445
44 82 2,738 3,355

7 13 136 154
13 21 153 199
26 47 485 542
5 8 69 84

50 94 1,118 1,45 1
166 307 12,545 14,713
18 33 135 135

20

RAL-TR-96-010

5.3 Comparison with MA37
To evaluate the efficiency of the new code we have compared it to the MA37 package [7] from the
Harwell Subroutine Library [2].

The main differences between MA37 and MA46 are that MA37:

creates an explicit graph structure based on variables and an assembled coefficient matrix,

makes no use of Level 2 and Level 3 BLAS in the computationally expensive parts of the
code,

always holds both row and columns indices of frontal matrices, and
does not reorder siblings in the tree to reduce the size of the stack.

Our numerical experiments were run with default options for both codes. We have always com-
pared MA37 to the best result for MA46, regardless if this result was obtained with vendor ver-
sions of the BLAS or with our modified Fortran 77 BLAS. This applies for DEC 3000-400 and
Cray Y-MP. MA37 does workspace compressions in the ANALYSE and FACTORIZE steps only
when this is necessary and in the tests we made sure that the integer and real work arrays were
great enough to avoid this. We did not make provisions to avoid workspace compressions in the
ANALYSE step of MA46, and the FACTORIZE step of MA46 always does a compression of the
workspace after a block factorization step is finished.

Table 5;lO shows the CPU-time consumptions on all three computers for MA37 in ANALYSE,
FACTORIZE and SOLVE divided by the corresponding results obtained by MA46 and shown in
Tables 5.5,5.6,5.7,5.8 and 5.9 respectively.

We see that MA46 is faster than MA37 in all the three steps for most of the problems considered
on all three computers. In ANALYSE, only problem 14 is performed faster by MA37 than MA46.
The reason is that this is a problem with many elements, which makes the ANALYSE step of
MA46 expensive. In FACTORIZE, MA46 performs better than MA37 for all the problems.

Table 5.11 shows a comparison between MA46 and MA37 on the size of the integer array needed
for the triangular factors, and the length of the work array needed in FACTORIZE. We show both
the sizes anticipated by ANALYSE on the assumption of no interchanges and the actual sizes.
Almost all the results favour MA46. The ordering routine of MA37 is a standard minimum degree
ordering that is comparable with the one obtained for ICNTL(5)=-1 in MA46 except that it uses
true degree instead of external degree. The results from the analysis obtained by MA37 on the
problems reflects this since they are like the results shown in Table 5.3. The difference in the
length of the work array for the two routines must therefore be attributed to the requirement for
the stack that is needed in MA37B. This is consistent with the results shown in Table 5.2 where
we saw that the stack was much larger without reordering of siblings.

We have recorded the numerical errors in the resulting solution and due to the fact that MA46

21

RAL-TR-96-010

Table 5.12: Comparison between MA37 and MA46 on the relative numerical errors. The results are
obtained on DEC 3000-400. Default options are used for both packages.

right-hand side 1 right-hand side 2 right-hand side 3
B(i, l)= i B(i,2)=1 B(i, 3)=[-1,1]

Problem MA46 MA37 MA46 MA37 MA46 MA37

1
2
3
4
5
6
7
8
9
10
11
12
13
14

4.3E-14
1.3E-14
3.1E-14
7.8E-15
6.5E-15
2.5E-13
4.5E-14
6.4E-15
3.OE- 14
1.4E-14
1.6E-14
1.8E- 14
l.lE-13
1 .OE- 1 4

2.4E- 13
4.88-14
7.4E- 14
5.9E-14
1.2E-14
3.6E-13
3.3E-13
3.9E- 14
3.5E-14
1.2E-13
3.1E-14
l.lE-13
4.1E-13
8.5E-14

3.9E- 14
1.2E-14
2.4E-14
2.6E-14
9.7E-15
7.6E-14
7.3E-14
9.7E- 15
9.4E-15
1.3E-14
2.5E- 14
2.9E-14
1.6E-13
1.2E- 14

2.28-13
4.6E-14
1.3E-13
5.6E- 14
2.3E-14
2.6E-12
3.7E-13
6.7E-14
4.1E-14
3.9E-14
1.9E-14
1.4E- 13
1.6E- 12
4.9E-14

4.7E-14
2.1E- 14
3.9E-14
7.1E-15
8.5E- 15
4.8E-13
6.3E-14
8.OE-15
6.OE- 15
2.7E-14
1.OE-14
3.2E- 14
1.6E- 13
6.9E- 15

2.8E- 13
7.6E-14
1.2E-13
4.4E-14
3.7E-14
2.8E- 12
2.4E- 13
1.9E-14
1.9E-14
4.48-14
2.4E-14
1.4E-13
9.7E-13
4.7E-14

always chooses the largest element in a column as the next pivot, we get reduced errors compared
with MA37. The reduced error in the solution for MA46 over MA37 is maintained on al l the three
platforms that we considered. Table 5.12 shows the errors as computed on DEC 3000-400 for
three-vectors stored in B, i.e. NRHS=3, with components B(i, 1) = i , B(i, 2) = 1 , and B(i, 3) a
pseudo-random number in [- 1 , 1] generated by the Harwell Subroutine Library code FA04 [2].

The relative numerical errors are computed as:

where the max norm is used and b, x refer to one column in B and X, respectively.

6 Summary and conclusions
This report has described the implementation of a new code for the solution of sets of linear equa-
tions where the matrices and the structure are of finite-element form. We have given a brief
description of the input philosophy and the design of the code. The numerical experiments show
that the code performs well and that it is faster than the code MA37 from the Harwell Subroutine
Library [2].

7 Acknowledgement
We would like to thank Iain Duff, Nick Gould and Jennifer Scott for useful discussions and
remarks that have improved the report.

22

8

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

References

Amestoy, P.R., Davis, T.A., and Duff, I.S.: “An approximate minimum degree ordering algorithm”,
To appear in SIAM J. Matrix Anal. and Applics., 1996.

Anon. Harwell Subroutine Library Catalogue (Release 12). AEA Technology, Harwell Laboratory,
Oxfordshire, 1995.

Ashcraft, C.C., and Grimes, R.G.: “The influence of relaxed supernode partitions on the multifrontal
method”, Technical Report ETA-TR-60-R1, Boeing Computer Services, 1988.

Dongarra, J.J., Du Groz, J., Hammarling, S., and Hanson, R.J.: “An extended set of Fortran basic lin-
ear algebra subprograms“, ACM Trans. Math. Softw. 14, 1-17, 1988.

Dongarra, J.J., Du Groz, J., Duff, I.S., and Hammarling, S.: “A set of level 3 basic linear algebra sub-
programs“, ACM Trans. Math. Softw. 16, 1-17, 1990.

Duff, I.S., and Reid, J.K.: “The multifrontal solution of indefinite sparse symmetric linear systems”,
ACM Trans. Math. So@. 9,302-325, 1983.

Duff, I.S., and Reid, J.K.: “The multifrontal solution of unsymmetric sets of linear equations”, SIAM
J. Sci. Stat. Comput. 5,633-641, 1984.

Duff, I.S., Grimes, R.G., and Lewis, J.G.: “Users’ Guide for the Harwell-Boeing Sparse Matrix Col-
lection (Release 1)”, Technical Report RAL-92-086, Rutherford Appleton Laboratory, Chilton DID-
COT Oxon OX1 1 OQX, UK, December 1992.

Duff, I.S., and Scott, J.A.: “MA42-A new frontal code for solving sparse unsymmetric systems”,
Technical Report RAL-93-064, Rutherford Appleton Laboratory, Chilton Didcot Oxon OX1 1 OQX,
UK, September 1993.

Eisenstat, S.C., Schultz, M.H., and Sherman, A.H.: “Yale sparse matrix package I: The symmetric
codes”, Int J. Num. Methods Eng., 18, 1145-1151, 1982.

Gilbert, J.R., Ng, E.G. and Peyton, B.W.: “An efficient algorithm to compute row and column counts
for sparse Cholesky factorization”, Technical Report ORNUTM-I 21 95, Oak Ridge National Labora-
tory, Oak Ridge, TN, USA, September 1992.

Lawson, C., Hanson, R., Kincaid, D., and Krogh, F.: “Basic linear algebra subprograms for Fortran
usage”, ACM Trans. Math. Softw. 5,308-329, 1979.

Liu, J.W.H.: “Modification of the minimum-degree algorithm by multiple elimination”, ACM Trans.
Math. Softw. 11, 141-153, 1985.

Liu, J.W.H.: “On the storage requirement in the out-of-core multifrontal method for sparse factoriza-
tion”, ACM Trans. Math. So@. 12,249-264, 1986.

Liu, J.W.H.: “The role of elimination trees in sparse factorization”, SIAM J. Matrix Anal. Appl., 11,
134- 172, 1990.

23

RAL-TR-96-010

Appendix A. Auxiliary routines and data structures used in MA46
This appendix describes the auxiliary routines and the main internal data structures of the MA46
package. The package consists of two set of subroutines MA46 and MA56. The former includes
the user-callable routines along with auxilliary routines, while the latter includes only auxilliary
routines needed by the package.

24

RAL-TR-96-010

Tables A. 1 and A.2 list the auxiliary routines of the MA46 package and explain their tasks.

Table A.1:

Routine

MA46D

MA46E

MA46F

MA46G

MA46H

MA46J

MA46K

MA46L

MA46M

MA46N

MA460

MA46P

MA46Q

MA46R

MA46S

MA46T

MA46U

MA46V

MA46W

MA46X

MA46Y

MA46Z

The MA46* auxiliary routines.

Task

Given a permutation, it computes the inverse permutation.

Given an element-node connectivity structure, it computes the corresponding node-element
connectivity structure.

It computes a minimum-degree ordering of the nodes.

It computes the nodal elimination tree and the corresponding postordering.

It computes the length of each nodal column in the triangular factor L, or the row length of the
triangular factor U.

Given the nodal postordered elimination tree and the column length of the triangular factor L, it
computes the corresponding fundamental supernode partition of the nodes. It also computes
the adjacency set representation of the supernode elimination tree.

Given the supernode elimination tree, it computes an optimal or a standard depth-first pos-
torder of the supernode elimination tree.

It updates the permutation and the supernode elimination tree after a depth-first search of the
supernode elimination tree as performed by MA46K.

It computes the number of assembly steps, the assembly sequence of the elements, the element
assembly tree, and does the final updates of the permutation vectors and the supernode parti-
tion. In addition it computes factorization statistics.

It performs a symbolic assembly step of generated elements in a block elimination step.

It performs a symbolic assembly step of original finite elements in an assembly step.

It finalizes the index information needed for a supernode in a block elimination step.

It performs coefficient assembly of generated elements into the frontal matrix in a block elimi-
nation step.

It performs coefficient assembly of original finite elements into the frontal matrix in an assem-
bly step.

It performs pivot search in a block elimination step.

It prints triangular factors to standard output unit defined by ICNTL(2).

It performs the block forward substitution steps of the right-hand sides.

It checks the forward solved right-hand sides for consistency with the matrix system in case of
a rank deficient system.

It performs the block backward substitution steps of the right-hand sides.

Called from MA46T to print an M times N matrix to standard output defined by ICNTL(2).

It copies an integer vector from vector IX to vector IY.

It updates the permutation given a permutation increment.

25

RAL-TR-96-010

Table A.2:

Routine

MA56A

MA56B

MA56C

MA56D

MA56E

MA56F

MA56G

MA56H

MA561

MA56J

MA56K

MA56L

MA56M

MA56N

MA560

MA56P

The MA56* auxiliary routines.

Task

It initializes data structures for the minimum-degree routine.

It updates the graph representation due to the elimination of a minimum-degree node.

It updates the degree of nodes after a multiple elimination step in the minimum-degree routine.

After the nodes are eliminated in the minimum-degree routine, it computes the final permuta-
tion of the nodes.

It computes the nodal elimination tree.

It computes the first child-sibling vectors of the nodal elimination tree to facilitate fast postor-
dering of the tree.

It postorders the nodal elimination tree by a depth-first search and computes the corresponding
permutation increment

It updates the permutation with the increment computed by the depth-first search of the nodal
elimination tree.

It computes the adjacency set representation of an elimination tree represented as a parent vec-
tor.

It sorts a list of integers in decreasing order of their keys using insertion sort.

It computes the stack storage for a non-trivial supernode, i.e. an updated postordering of the
supernode elimination tree.

Given the information computed by MA56K, it computes a postordering of the supernode
elimination.

It sorts a list of integers into ascending order.

It compresses lists held by MA56B for the generated elements and adjusts the pointers.

It computes the leftmost unexplored children of a node in an elimination tree in connection
with depth-first search of the tree.

It computes the right sibling of a child in an elimination tree in connection with depth-first
search of the tree.

26

RAL-TR-96-010

Tables A.3, A.4 and AS show the structure of the calls in MA46A, MA46B and MA46C, includ-
ing the calls to the BLAS routines that are used in the package.

Table A.3: Structure of the calls in MA46A.

User called 1 . Level 2. Level 3. Level

27

RAL-TR-96-010

- MA46T

MA46U -

I-

Table A.4: Structure of the calls in MA46B.

MA46X

- TRSM

- GEMM

User called I . Level 2. Level

-

Table AS: Structure of the calls in MA46C.

MA46V

- GEMM MA46W -
J

I

User called 1 . Level 2. Level

28

RAL-TR-96-010

Table A.6 defines the parameter array W A R that is stored in the first 50 locations of KEEPA.

Table A.6: Definition of the sub array MNPAR stored in the first 50 locations of KEEPA. The length of
MNPAR currently in use is 31.

Location

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

Name

STAGE
NB

NSUF'ER
NACTIV
NACTEQ
NNODS
NEQNS
NELS

NELNOD
NCOMPR
MAXSUP
MAXFRT
NOFSUB
NZEROU
NZSTCK
DPSTCK
KPUSED
MAXLIW
NELACT
LKEEPB
LFACT

LKEEPB
LFACT

TPSTCK
MAXFRT
MAXSUP
NOFSUB
NZEROU

NZSTCK
NELIMS

MAXLAW

Definition

Stage control.
Number of assembly steps.
Number of block factorization steps.
Number of nodes that is active ascomputed by MA46A.
Number of equations as computed by MA46A.
Number of nodes as input by the user.
Number of equations as input by the user.
Number of elements as input by the user.
Length of the implicit graph representation arrays.
Number of workspace compressions performed by MA46F.
The largest supernode as computed by MA46A. (Block factorization node).
Order of the largest front matrix as computed MA46A.
Number of indices needed to represent the factors as computed by MA46A.
Size of the upper triangular factor as computed by MA46A.
Size of the stack as computed by MA46A.
Depth of the stack.
Length of KEEPA after MA46A.
The maximum length of IW that was used in MA46A.
Number of elements that actually participate in the assembly.
Length of KEEPB as anticipated in MA46A.
Length of FACT for triangular factors and stack as computed by MA46A.
Length of KEEPB after factorization.
Length of FACT for triangular factors.
Top of the stack.
Order of the largest front matrix after factorization.
The largest supernode after factorization. (Block factorization node).
The number of indices needed to represent the factors.
The number of real storage locations needed to hold the upper triangular fac-
tor U.
The maximal number of real storage locations needed to hold the stack.
Number of eliminations performed by MA46B.
Minimum length of FACT for successful factorization.

29

RAL-TR-96-010

Table A.7 shows the structure of KEEPA on exit from MA46A, i. e. the form of the array as
passed to MA46B and MA46C, and Table A.8 explains the contents of each sub-array except for
MNPAR that is explained in Table A.6.

Table A.7: Structure o f KEEPA on exit from MA46A.

KEEPA

KEEPA XSIBL SIBL SUPLEN XBLOCK I
Table A.8: Definition o f the sub-arrays that are stored in KEEPA on exit from MA46A.

Sub-array Length on entry

XELSEQ NNODS+l

ELSEQ NELS

BSPERM NNODS

XSUPER NNODS+

XSIBL NNODS+ 1

SIBL NNODS+l

SUPLEN NNODS

XBLOCK NNODS+l

Length on exit

NB+1

NELACT

NNODS

NSUPERt

NSUPER+ 1

NSUPER+ 1

NSUPER

NB+ 1

Definition

Pointer to the list of original finite elements stored in
ELSEQ that are needed in the assembly step i, for
i=l:NB.

The lists of original finite elements that are needed in
each assembly step.

The new to old permutation o f the nodes from the final
order o f the nodes computed by MA46A to the order of
the nodes as input by the user.

The supernode partition related to the variables.

Pointer to the supernode elimination tree adjacency set
that is stored in SIBL for each supernode.

The lists of supernode children belonging to supernode
i , for i=l :NSUPER.
IP=SIBL[NSUPER+l] gives the number of supernodes
that are roots of connected trees in the supernode elimi-
nation tree, and these roots are found in locations
SIBL[NSUPER-IP+l] to SIBL[NSUPER].

The column length of each supernode in the triangular
factor L or the length of each row in the triangular fac-
tor U.

The assembly tree partition of the supernodes. I.e. the
structure of the assembly tree.

From Tables A.6 and A.8 we have:
length of KEEPA on entry to MA46A=NELS+7*NNODS+55, and:

length of KEEPA on exit from MA46A=NELACT+4*NSUPER+2*NB+NNODS+55.

30

RAETR-96-010

Tables A.9 shows the structure of KEEPB on exit from MA46B, and Table A. 10 explains the con-
tent of each sub-array.

Table A.9: Structure of KEEPB on exit from MA46B.

KEEPB

Table A.lO: Definition of the sub-arrays that are stored in KEEPB on exit from MA46B.

Sub-array Length on entry Length on exit Definition

XFINDX NSUPER NSUPER XFINDX[i] points to the start in FINDX for the index
information stored for supernode, or block elimination
step i.

FINDX FLIMIF MAXSUBb See Table A. 11 for a definition of the quantities that are
stored for each supernode, or block elimination step.

a. FLIMIT=3*NSUPER+NOFSUB+NACTEQ, see the explanation of these quantities in Table A.6.
b. For a diagonally dominant matrix we have MAXSUB=3*NSUPER+NOFSUB where NSUPER and MAX-
SUB are as anticipated by MA46A.

Table A.ll: Initial, intermediate and final structure of FINDX for supernode, or block elimination step i
in routine MA46B.

(i) it is set to the anticipated size of the front matrix for supernode i as computed in
MA46A.
(ii) after symbolic assembly o f generated element indices it is updated with the number
of delayed eliminations received from its incoming children, i.e. it holds the active size
of the new frontal matrix. If at least one child had negative value o f A[chifd], then A[i] is
also negated to signal that column indices for the variables in the supernode need be
stored as well as the row indices.
(iii) after numerical eliminations in supernode i it is not changed i f A[i] was already set
to a negative value in step (ii), i f it was positive from (ii) it is set to a negative value if at
least one off-diagonal pivot was selected.

(i) it is set to the anticipated number of delayed eliminations to be received from the chil-
dren o f the supernode, i.e. B[i]=O.
(ii) after symbolic assembly of generated elements it is incremented with the total
number of delayed eliminations that have been received from its incoming children
which is its final form.

(i) it is set to the size o f the supernode, i.e. to the number o f eliminations to be performed
in the supernode, i.e. C[i]=XSUPER[i+1]-XSUPER[i].
(ii) after symbolic assembly it is set to the number of indices found so far.
(iii) after elimination it holds the number of eliminations performed.

Row indices for [i] After elimination of supernode, or block elimination step i it holds the global row indices
in ascending order for the supernode and the column of L below the supernode.

31

RAL-TR-96-010

Table A.ll: Initial, intermediate and final structure of FINDX for supernode, or block elimination step i
in routine MA46B.

Column indices for [i] After elimination of supernode, or block elimination step i it is not stored if A[i] is posi-
tive. If A[i] is negative it holds the column indices for the pivots found during the elimi-
nation of the supernode. The number of pivots found is C[i].

The block pivot.

The pivot rows and columns.

The generated element.

The row and column indices
saved.

that are

Figure A.l: The figure shows a frontal matrix after the eliminations have been carried out and shows the
row and column indices that are saved when at least one off-diagonal pivot was selected.

32

RAGTR-96410

Table A. 12 defines the contents of FACT on exit from MA46B and Figure A.2 shows the finalized
L and U blocks and indicates the workspace compression that is performed in MA46 after each
supernode, or block elimination step has been carried out.

Table A.12: The contents of FACT on exit from MA46B. The LIU factors are stored as a sequence of
submatrices.

FACT

The L block.

The U block.

The generated element.

I

Figure A.2: The L and U blocks of the finalized frontal matrix.

The workspace.compression is done as follows: (i) the L block is moved from the frontal matrix to
the final storage for supernode submatrices, (ii) the U block is moved and compressed, and (iii)
the generated element is moved to the new stack top and compressed at the same time. It is the
space between the column of the finalized U block segments, or between the column segments of
the generated element, that is taken into account and freed after every elimination step.

33

RAL-TR-96-010

Appendix B. The specification document for MA46
In this appendix, we include a copy of the specification document for MA46. The code itself is
available from AEA Technology, Harwell; the contact is Dr Scott Roberts or Mr Richard Lee,
AEA Technology, Bldg 552, Harwell, Didcot, Oxon OX11 ORA, tel (44) 1235 434714 or (44)
1235 435690, Fax (44) 1235 434136, email: scott.roberts@aeat.co.uk or richard.lee@aeat.co.uk,
who will provide details of price and conditions of use.

34

aAEA CLRC

HSL MA46
HARWELL SUBROUTINE LIBRARY SPECIFICATION Release 12 (1995)

1 SUMMARY
To solve one or more set of sparse unsymmetric linear equations Ax = B from finite-element applications,

using a multifrontal elimination scheme. The matrix A must be input by elements and be o f the form
m

A = CA'k'
bl

where A"' is nonzero only in those rows and columns that correspond to variables of the nodes of the k-th element.
Optionally, the user may pass an additional matrix A, of coefficients for the diagonal. A is then of the form

m

A = CA(~)+A,
bl

The right-hand side B should be assembled through the summation
m

B = CB"),
bl

before calling the solution routine.

ATTRIBUTES - versions: MA4 6A, MA4 6AD. calls: MA5 6, -GEMM, -GEMV, C E R , I-AMAX, -SCAL, -SWAP, -TRSM,
- TRSV. Origin: A.C. Damhaug, Det Norske Veritas Research AS and J.K. Reid, Rutherford Appleton Laboratory.
Date: September 1995. Conditions on external use: (i), (ii), (iii) and (iv).

2 HOW TO USE THE PACKAGE

2.1 Argument lists and calling sequences

There are four routines that can be called by the user:

(a) MA46I/ID sets default values for the control parameters for the other routines.

(b) MA46A/AD accepts the matrix pattern by element-node connectivity lists and chooses diagonal pivots for
Gaussian elimination to preserve sparsity while disregarding numerical values. It also constructs information
for the numerical factorization to be performed by MA46B/BD. The user may provide a pivot sequence by
means of node numbers, in which case the necessary information for MA46B/BD will be generated.

(c) MA46B/BD factorizes the finite-element matrix A by NB calls, where NB is the number of assembly steps
computed by routine MA46A/AD. For all the elements involving a node, the variables at the node must be in the
same order. The actual pivot sequence may differ from that specified by MA46A/AD or provided by the user,
due to numerical stability considerations.

(d) MA46C/CD uses the factors generated by MA46B/BD to solve the set of linear equations. The solution
overwrites the right-hand side.

Normally, the user will call MA46I/ID prior to the call of any other routine in the package. If non-default values
for any of the control parameters are required, they should be set immediately after the call to MA46I/ID. A call to
MA46C/CD must be preceded by a call to MA46B/BD, which in turn must be preceded by a call to MA46A/AD. Since the
information passed from one routine to the next is not corrupted by the second, several sequences of calls to
MA46B/BD for matrices with the same sparsity pattern but different values may follow a single call to MA46A/AD, and
similarly MA46C/CD can be used repeatedly to solve for different sets o f right-hand sides B.

2.1.1 To set default values for control parameters

The single precision version

The double precision version

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 2 that need not be set by the user. On return

CALL MA4 6 I (CNTL, ICNTL)

CALL MA46ID(CNTL,ICNTL)

35

MA46 HSL Release 12 (1995)

it contains default values. For further information see Section 2.2.

further information see Section 2.2.
ICNTL is an INTEGER array of length 10 that need not be set by the user. On return it contains default values. For

2.1.2 To perform ordering and generate assembly tree

The single precision version

CALL MA46A(NELS,NNODS,NEQNS,IPIELT,IELT,LIELT,IVAR,NB,KEEPA,LKEEPA,
.$ IW,LIW,ICNTL,RINFO,INFO)

The double precision version

CALL MA46AD(NELS,NNODS,NEQNS,IPIELT,IELT,LIELT,IVAR,~,KEEPA,LKEEPA,
.$ IW,LIW, ICNTL,RINFO, INFO)

NELS is an INTEGER variable that must be set by the user to the largest integer that is used to index a finite element.

NNODS is an INTEGER variable that must be set by the user to the largest integer that is used to index a finite-element

NEQNS is an INTEGER variable that must be set by the user to the number of variables. It is not altered by the routine.

IPIELT is an INTEGER array of length NELS+1. It must be set by the user so that the nodes connected to element I
areinIELT(IPIELT(I)),IELT(IPIELT(I)+1), . ..,IELT(IPIELT(I+l)-1) for1 = 1,2, . . . ,NELS. It
is not altered by the routine.

IELT is an INTEGER array of length LIELT that must be set by the user to contain the lists of nodes in each element.
Its length must be at least IPIELT (NELS+l) -1. It is not altered by the routine.

LIELT is an INTEGER variable that must be set by the user to the length of IELT. It is not altered by the routine.

IVAR is an INTEGER array of length NNODS that must be set by the user. It gives the number of variables for each
node. It may contain values equal to zero. A node, I, I = 1, 2, . . . , NNODS that has IVAR (I) =O is not
processed. It is not altered by the routine.

is an INTEGER variable that need not be set by the user. On exit it holds the number of assembly steps needed
to factor the matrix. This variable must be preserved between a call to MA46A/AD and a sequence of calls to
MA46B/BD.

KEEPA is an INTEGER array of length at least NELS+7*NNODS+55. If the user wishes to provide an ordering for the
nodes, the index of the node in position i must be placed in KEEPA (i 1, i = 1,2, . . . , NNODS and ICNTL (4)
must be set to 1. The given order is likely to be replaced by one that is equivalent apart from reordering of
additions and subtractions. Otherwise, KEEPA need not be set by the user. On exit, KEEPA contains, in locations
KEEPA (51 : 51+NB), a pointer array into KEEPA for the sequence of finite elements needed in each assembly
step. For assembly step, IBL, IBL = 1, 2, . . . , NB, the index of the first element required by MA46B/BD is
found in location KEEPA(KEEPA(1BL) +NB+51) and the last element index is found in location
KEEPA (KEEPA (IBL+l) -1+NB+51). The number of elements needed in assembly step IBL is thus
KEEPA(5O+IBL+l) -KEEPA (50+IBL). KEEPA must be preserved between a call to MA46A/AD and other
routines.

LKEEPA is an INTEGER variable that must be set by the user to the length of KEEPA. It is not altered by the routine.

Iw is an INTEGER array of length LIW that need not be set by the user. It is used as workspace by the routine. Its
length must be at least max(1, ,1,), where 1, = 3*NELS+2*NNODS+4*LIELT+8*NEQNS+2 (or
NELS+NNODS+2*LIELT+2 if the pivot order is specified in KEEPA), and 1, = NELS+ll*NNODS+2*LIELT+5.

LIW is an INTEGER variable that must be set by the user to the length of IW. It is not altered by the routine.

ICNTL is an INTEGER array of length 10 that contains control parameters and must be set by the user. Default values
for the components may be set by a call to MA46I/ID. Details of the control parameters are given in Section

' 2.2. It is not altered by the routine.

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 6 that need not be set by the user. For the
meaning of the values of components of RINFO set by MA46A/AD, see Section 2.2.

INFO is an INTEGER array of length 16 that need not be set by the user. On return from MA46A/AD, a value of zero
for INFO (1) indicates that the routine has performed successfully. For nonzero values, see Section 2.3. For
the meaning of the value of other components of INFO set by MA46A/AD, see Section 2.2.

It is not altered by the routine.

node. It is not altered by the routine.

NB

36

HSL Release 12 (1995) MA46

2.1.3 To factorize a matrix

To factorize the matrix, MA46B/BD uses ‘reverse communication’ which means that the routine must be called by
the user NB times, where NB is the number o f assembly steps determined by MA46A/AD. In each call, the user must
pass a specified sequence o f finite-element coefficient matrices to the routine.

The single precision version

CALL MA46B(IBL,NELS,NNODS,IPIELT,IELT,LIELT,IVAR,KEEPA,LKEEPA,KEEPB,
$ LKEEPB,ELMAT,A,LA,AD,LAD,IW,LIW,CNTL,ICNTL,RINFO,INFO)

The double precision version

CALL MA46BD(IBL,NELS,NNODS,IPIELT,IELT,LIELT,IVAR,KEEPA,LKEEPA,KEEPB,
$ LKEEPB,ELMAT,A,LA,AD,LAD,IW,LIW,CNTL,ICNTL,RINFO,INFO)

IBL is an INTEGER variable that must be set by the user to the current assembly step. Calls to the routine must be in
the order IBL = 1, 2, . . . , NB . It is not altered by the routine.

NELS , NNODS, IPIELT, IELT, LIELT and IVAR are as in the preceding call to MA46A/AD and their values must not
have changed. They are not altered by the routine.

KEEPA is an INTEGER array of length LKEEPA. It must be as on exit from MA46A/AD. It is not altered by the routine.

LKEEPA is an INTEGER variable that must be set by the user to the length of KEEPA. It must be at least as great as
INFO (2) as output from MA46A/AD (see Section 2.2). It is not altered by the routine.

KEEPB is an INTEGER array of length at least LKEEPB that need not be set by the user. It is used as workspace by
MA46B/BD and on exit holds integer index information on the matrix factors. It must be preserved by the user
between the calls to this routine and subsequent calls to MA46C/CD.

LKEEPB is an INTEGER variable that must be set by the user to the length of KEEPB. It must be at least as great as
INFO(8) as output from MA46A/AD (see Section 2.2). A greater value is recommended because numerical
pivoting may increase storage requirements. It is not altered by the routine.

ELMAT is a REAL (DOUBLE PRECISION in the D version) array that must be set by the user to hold the element

A

LA

AD

LAD

IW

LIW

coefficient matrices for this assembly step, column by column in the sequence defined by KEEPA (FIRST),
KEEPA (FIRST+l) , . . . , KEEPA (LAST), where FIRST = KEEPA (IBL) +51+NB and LAST =
KEEPA (IBL+1) +50+NB. It is not altered by the routine.

is a REAL (DOUBLE PRECISION in the D version) array of length LA that need not be set on the first entry to
MA46B/BD. It must be preserved between the calls to MA46B/BD and for subsequent calls to MA46C/CD. On exit
from each intermediate call, A will hold the entries of the factors o f the matrix A that have been completed. On
exit from the final call, A holds the factors needed by MA46C/CD.

is an INTEGER variable that must be set by the user to the length of A. It must be at least as great as INFO (9)
as output from MA46A/AD (see Section 2.2). It is advisable to allow a greater value because the use of
numerical pivoting may increase storage requirements. It is not altered by the routine.

is a REAL (DOUBLE PRECISION in the D version) array o f length LAD that need not be set if ICNTL (10 has its
default value (see Section 2.2). Otherwise, its NEQNs first positions must hold the coefficients for the diagonal
o f A. It is assumed by the routine that variables at nodes are stored consecutively and that nodes are in the
initial order. MA46B/BD alters the order o f the entries according to the tentative pivot order computed by
MA46A/AD.

is an INTEGER variable that must be set by the user to the length of AD. It must be set to at least 1 if ICNTL (10 1
has its default value. Otherwise, it must be set to a value as least as great as NEQNS as input to MA46A/AD.

is an INTEGER array of length LIW that need not be set by the user. It is used as workspace by the routine.

is an INTEGER variable that must be set by the user to the length of IW. It must be at least as great as
3 * (NNODS+NEQNS) +l. NNODS and NEQNS are as input to MA46A/AD. It is not altered by the routine.

CNTL .is a REAL (DOUBLE PRECISION in the D version) array of length 2 that contains control parameters and must
be set by the user. Default values for the components may be set by a call to MA461/1D. Details o f the control
parameters are given in Section 2.2. It is not altered by the routine.

ICNTL is an INTEGER array of length 10 that contains control parameters and must be set by the user. Default values
for the components may be set by a call to MA461/ID. Details o f the control parameters are given in Section
2.2. It is not altered by the routine.

31

MA46 HSL Release 12 (1995)

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 6 that need not be set by the user. For the
meaning of the values of components of RINFO set by MA46B/BD, see Section 2.2.

INFO is an INTEGER array of length 16 that need not be set by the user. On return from MA46B/BD, a value of zero
for INFO (1) indicates that the routine has performed successfully. For nonzero values, see Section 2.3. For
the meaning of the value of other components of INFO set by MA46B/BD, see Section 2.2.

2.1.4 To solve equations, given the factorization

The single precision version

CALL MA46C(IVAR,NNODS,KEEPA,LKEEPA,KEEPB,LKEEPB,A, LA,B,LDB,NRHS,
$ IW, LIW, RW, LRW, ICNTL, INFO)

The double precision version

CALL MA46CD(IVAR,NNODS,KEEPA,LKEEPA,KEEPB,LKEEPB,A,LA,B,LDB,NRHS,
$ IW,LIW,RW,LRW,ICNTL,INFO)

NNODS and IVAR are as in the preceding call to MA46A/AD and their values must not have changed. They q e not

KEEPA is an INTEGER array of length at least LKEEPA. The first INFO (2) components must be as on exit from

LKEEPA is an INTEGER variable that must be set by the user to the length of KEEPA. It must be at least as great as

KEEPB is an INTEGER array of length at least LKEEPB. The first INFO (8) components must be as on exit from

altered by the routine.

MA4 6B/BD.

INFO (2) as output from MA46A/AD (see Section 2.2). It is not altered by the routine.

MA4 6B/BD.
4 LKEEPB is an INTEGER variable that must be set by the user to the length of KEEPB. It must be at least as great as

INFO (8) as output from MA46B/BD (see Section 2.2). It is not altered by the routine.

A is a REAL (DOUBLE PRECISION in the D version) array of length LA that must be unchanged since the call to
MA46B/BD. It is not altered by the routine.

is an INTEGER variable that must be set by the user to the length of A. It must be at least as great as INFO (9)
as output from MA46B/BD which may be smaller than predicted in MA46A/AD (see Section 2.2). It is not altered
by the routine.

is a REAL (DOUBLE PRECISION in the D version) array of leading dimension LDB, whose first NRHS columns
must be set by the user to hold the right-hand sides. It is assumed that the right-hand side is passed to
MA46C/CD in the input node order with the variables at each node stored consecutively. On exit, the solution
overwrites the right hand side and the initial nodal order with variables at each node stored consecutively is
maintained .

LDB is an INTEGER variable that must be set by the user to the leading dimension of B. It must be at least as great as
NEQNS. It is not altered by the routine.

NRHS is an INTEGER variable that must be set by the user to hold the number of right hand sides to be solved in this
call to MA46C/CD. It is not altered by the routine.

IW is an INTEGER array of length LIW that need not be set by the user. It is used as workspace by the routine and
must be preserved between the calls to the routine.

LIW is an INTEGER variable that must be set by the user to the length of IW. It must be at least as great as
NNODS+NEQNS+l. NNODS and NEQNS are as input to MA46A/AD. It is not altered by the routine.

is a REAL (DOUBLE PRECISION in the D version) work array of length as least as great as INFO (15) as output
from MA46B/BD, that need not be set by the user. It is used as workspace by the routine.

LRW is an INTEGER variable that must be set by the user to the length of RW. It is not altered by the routine.

ICNTL is an INTEGER array of length 10 that contains control parameters and must be set by the user. Default values
for the components may be set by a call to MA46 I / ID. Details of the control parameters are given in Section
2.2. It is not altered by the routine.

INFO is an INTEGER array of length 16 that need not be set by the user. On return from MA46C/CD, a value of zero
for INFO (1) indicates that the routine has performed successfully. For nonzero values, see Section 2.3. For
the meaning of the value of other components of INFO set by MA46C/CD, see Section 2.2.

LA

B

RW

38

HSL Release 12 (1995)

2.2 Arrays for control and information

The elements o f the arrays CNTL and ICNTL control the action o f MA46A/AD, MA46B/BD and MA46C/CD. Default
values for the elements are set by MA461/ ID. The elements o f the arrays RINFO and INFO provide information on the
action of MA46A/AD, MA46B/BD and MA46C/CD.

CNTL (1 has default value 0.1 and is used for pivoting by MA46B/BD. Values greater than 1.0 are treated as 1.0 and

CNTL (2 1 has default value zero. If it is set to a positive value, MA46B/BD will treat any pivot whose modulus is less

less than zero as zero.

than CNTL (2) as zero.

ICNTL (1) has default value 6 and holds the unit number to which the error messages are sent.

ICNTL (2 1 has default value 6 and holds the unit number to which warning messages and additional printing is sent.

ICNTL (3 1 is used by the routines to control printing. It has default value 1. Possible values are:

0 No printing.

1 Error messages only.

2

3

4

ICNTL (4 1 has default value 0. It must be set by the user to a value o f 1 when calling MA46A/AD i f a pivot sequence
is being supplied by the user in array KEEPA.

has default value 0. This option is related to the node ordering step of MA46A/AD. If the value is zero or
less, the minimum external degree algorithm is used. Multiple elimination is used when the value is zero. If
value is greater than zero, multiple elimination is still in effect, but the minimum external degree condition is
relaxed (see Section 4).

has default value 0. With this value, MA46A/AD reorders the assembly steps to reduce the temporary
working storage required by MA46BlBD while computing the triangular factors. If ICNTL(6) is set to 1,
MA46AlAD uses a standard depth first postordering of the assembly steps.

ICNTL (7) has default value 0. It is ignored in the present version, but the intention is for a later version to have the
option of amalgamating tree nodes into supernodes even if this introduces additional structural zeros.

ICNTL (8) has default value 64. MA46B/BD is written to make good use of the cache memory if its size in kBytes is
ICNTL(8). Setting the value to zero will mean that the routine assumes that the computer has no cache.

ICNTL (9 has default value 0. It is ignored in the present version, but the intention is for a later version to have the
option of using indirect addressing in the solve step of MA46C/CD.

ICNTL (10) has default value 0. This means that no diagonal matrix A , is used to specify the diagonal matrix
nonzero coefficients, otherwise ICNTL (10) must be set to 1.

RINFO (1) gives the number o f floating-point additions used to assemble the original finite-element matrix
coefficients.

RINFO (2) gives the number of floating-point additions used to assemble the generated elements if the tentative
pivot sequence calculated by MA47AlAD is acceptable numerically.

RINFO (3) gives the sum of floating-point additions, multiplications and divisions used to factorize the matrix if it
the tentative pivot sequence calculated by MA47A/AD is acceptable numerically.

RINFO (4) gives the number of floating-point additions used to assemble the generated elements in MA46B/BD.

RINFO (5) gives the sum of floating-point additions, multiplications and divisions used to factorize the matrix in

RINFO (6) gives the sum of floating-point additions, multiplications and divisions used to solve one set Of h e a r

INFO (1) has the value zero if the call was successful, and a negative value in the event o f an error (see Section 2.3).

INFO(2) gives the required size o f KEEPA in MA46B/BD and MA46C/CD on exit from MA46A/AD i f INFO(1) =o. If

Error and warning messages only.

Scalar parameters and a few entries of arrays on entry and exit from routines.

All parameter values printed on entry and exit from routines.

ICNTL (5

ICNTL (6

MA4 6BlBD.

equations in MA4 6C ICD.

INFO (1) =-1 it gives the required size o f KEEPA needed in MA46AlAD.

39

MA46 HSL Release 12 (1995)

INFO (3) gives the size of IW that has been used in MA46A/AD or in MA46B/BD if INFO (1) = O . If INFO (1) =-1 it
gives the required size of IW needed in MA46A/AD. If INFO (1) =-6 it gives the required size of Iw needed in
MA4 6B/ BD.

INFO (4) gives the number o f entries out of range for INFO (1) =-2.

INFO (5) gives the number of duplicate entries for INFO (1) =-2.

INFO (6) gives the number of active nodes computed by MA46A/AD if INFO (1) = O .

INFO (7) gives the number of variables computed by MA46A/AD if INFO (1) =O.

INFO (8) gives the minimum required length o f KEEPB in MA46B/BD on exit from MA46A/AD and the required length
of KEEPB in MA46C/CD on exit from MA46B/BD if INFO (1) = O . If INFO (1) =-6 on exit from MA46B/BD it gives
the minimum required length o f KEEPB for a successful exit.

INFO (9) gives the minimum required length of A in MA46BD on exit from MA46A/AD and the required length O f A in
MA46C/CD on exit from MA46B/BD if INFO(l)=O. If INFO(l)=-7 on exit from MA46B/BD it gives the
minimum required length of A for a successful exit.

INFO 10) gives the order of the largest front matrix i f INFO(1) = O .

INFO 11) gives the number indices in the factorized matrix if INFO (1) = O .

INFO 12) gives the number of entries in the factorized matrix if INFO (1) = O .

INFO 13) gives the number of assembly steps if INFO (1) = O .

INFO (14) gives the number of elements if INFO (1) =O.

INFO (15) gives the size of the largest front matrix that occured in the factorization step if INFO (1) =O.

INFO (16) gives the number o f eliminations done by MA46BD i f INFO (1) = O .

2.3 Error diagnostics

nonzero values for INFO (1) are given below.
A successful return from MA46A/AD or MA46B/BD is indicated by a value of INFO(1) equal to zero. Possible

A nonzero flag value is associated with an error message that will be output on unit ICNTL (1).

-1 The length of KEEPA andlor IW is not great enough (MA46A/AD).

- 2 Entries in KEEPA are out of range andlor are duplicates (MA46A/AD).

-3 NEQNS less than the number of variables computed by MA46A/AD or the number of variables computed is less

-4 Indices out of range in IELT (MA46A/AD).

-5 NELSA 0, andor NNODS SO, andlor NEQNS 5 0 (MA46A/AD).

-6 The length o f KEEPB andor IW is not great enough. (MA46B/BD).

-7 The length o f A is not great enough. (MA46B/BD).

- 8 Error from previously called routine is not cleared (MA46B/BD or MA46C/CD) .
- 9 Error in the symbolic assembly step in MA46B/BD. Signals that KEEPA may have been altered before the call to

than one (MA46A/AD).

MA4 6B/BD.

2.4 Singular systems

right-hand side is not consistent with the factorization.
If the.matrix is singular, MA46B/BD factorizes a nonsingular submatrix. A warning message is written i f the

3 GENERAL INFORMATION
Use of common: None.

Other routines called directly: MA46D/DD, MA46E/ED, MA46F/FD, MA46G/GD, MA46H/HD, MA46J/JD,
MA46K/KD, MA46L/LD, MA46M/MD, MA46N/ND, MA460/OD, MA46P/PD, MA46Q/QD, MA46R/RD, MA46S/SD,
MA46T/TD, MA46U/UD, MA46V/VD, MA46W/WD, MA46X/XD, MA46Y/YD, MA46Z/ZD, MA56A/AD, MA56B/BD,
MA56C/CD, MA56D/DD, MA56E/ED, MA56F/FD, MA56G/GD, MA56H/HD, MA56I/ID, MA56J/JD, MA56K/KD,

HSL Release 12 (1995) MA46

5 4 . 4 . 3 . 4 . 5 . 4 . 3 . 4 .
3 . 1 . 4 . 3 . 4 . 2 . 4 . 3 .

6 2 . 3 . 6 . 2 . 3 . 4 . 7 . 2 .
3 . 2 . 1 . 5 . 4 . 3 . 2 . 6 .

9 4 . 3 . 2 . 3 . 4 . 4 . 3 . 4 .
3 . 1 . 3 . 2 . 3 . 1 . 4 . 3 .

8 2 . 3 . 6 . 1 . 2 . 3 . 6 . 2 .

MA56L/LD, MA56M/MD, MA56N/ND, MA560/OD and MA56P/PD.

The package uses the Basic Linear Algebra Subprograms SGEMM/DGEMM, SGEMV/DGEMV, SGER/DGER,
SSCAL/DSCAL, ISAMAX/ IDAMAX, STRSM/'DTRSM and SSWAP/DSWAP.

Each has default value 6.
Input/output: Error messages on unit ICNTL (1) . Warning messages and additional printing on unit ICNTL (2) .

,

4 METHOD
The method used is a direct method using multifrontal sparse Gaussian elimination. The matrix structure is passed

to the routine in the form of element-node connectivity lists. The matrix analyse step (MA47A/AD) uses this
'unassembled' form to find the ordering of the nodes, and to build the necessary information for the factorise and
solve steps. The ordering is done with the minimum degree heuristic. It is possible to relax this by altering the
default value given by ICNTL (5) . Setting it greater than zero has the effect of allowing nodes with degree ICNTL (5)
greater than the minimum to be eliminated together with the nodes of minimum degree: Sometimes, this helps to
reduce the size o f the decomposition. The final assembly tree is reordered in an attempt to reduce the size of the
working stack. The default value of option ICNTL (6) gives this and is recommended. The factorization step
(MA47B/BD) is provided by the analyse step with a tentative pivot sequence, which it uses except when this would be
numerically unstable. The numerical stability criterion is the relative pivot tolerance given by CNTL (1 1 , with a
default value o f 0.1. In general, increasing its value gives a more stable factorization, but increases in the size o f the
decomposition. A value of 1 .O gives partial pivoting as defined for the dense matrix case.

Reference A.C. Damhaug and J.K. Reid (1994) MA46, a FORTRAN code for direct solution of sparse
unsymmetric linear systems of equations from finite-element applications. Rutherford Appleton Laboratory Report,
to appear.

5 EXAMPLE OF USE
We give an example o f the code required to solve a set of equations using the MA46 package. The example

illustrates the use o f MA46 when no input order and additional diagonal matrix A,, is provided by the user. There are
two right-hand sides to solve for.

We wish to solve the following simple finite-element problem in which the finite-element mesh consists of four
4-noded elements with two degrees of freedom at each node. The nodes 1,4, and 7 are assumed constrained, which
means that they do not contribute to the matrix system to be solved.

The input to the routine is then:
NELS = 4
NNODS' = 9
NEQNS = 12
LIELT = 16
IVAR = [0,2,2,0,2,2,0,2,21
IPIELT = [1,5,9,13,171
IELT = [4,5,8,7,5,6,9,8,1,2,5,4,2,3,6,5]

The four elemental matrices A") (1 I k 14) are

41

MA46 HSL Release 12 (1995)

2

3

6

5

4 . 4 . 3 . 4 . 5 . 4 . 3 . 4 .
3 . 1 . 4 . 3 . 4 . 2 . 4 . 3 .
2 . 3 . 6 . 2 . 3 . 4 . 7 . 2 .
3 . 2 . 1 . 5 . 4 . 3 . 2 . 6 . ,
4 . 3 . 2 . 3 . 4 . 4 . 3 . 4 .
3 . 1 . 3 . 2 . 3 . 1 . 4 . 3 .
2 . 3 . 6 . 1 . 2 . 3 . 6 . 2 .

, 3 . 2 . 1 . 5 . 3 . 2 . 1 . 5 .
where the node numbers are indicated by the integers before each matrix (columns are identified symmetrically to
rows). The two right-hand side vectors b(k) (1 I k 52) are

2 0.
0.

3 0.
1.

5 0.
0.

6 0.
2.

8 0.
0.

9 0.
1.

f

2

3

5

6

8

9

where the node numbers are indicated by the integers before each vector.
The following program is used to solve this problem.

INTEGER NELS , NNODS , NEQNS , LIELT
PARAMETER (NELS = 4, NNODS = 9 , NEQNS = 12, LIELT = 16)
INTEGER IVAR(NNODS), IPIELT(NELS+l), IELT(L1ELT)
INTEGER KEEPA(200), KEEPB(ZOO), IW(300), XELMAT(lO),

$ ELSIZE(10)
INTEGER NB , LKEEPA, LIW , LKEEPB, LA , LAD ,

$ IBL , IPEL , LDB , NRHS , LRW , LAMAX ,
$ LELMAT, L1 , L2 , I , J , K ,
$ MNPAR , NODE , NVAR , XELSEQ, ELEMNT, ELSEQ ,
$ LORDER, ISTRT , ISTOP
PARAMETER (LAMAX = 200, LELMAT = 200, MNPAR = 50)
DOUBLE PRECISION ELMAT(LELMAT), A(-), AD(NEQNS), B(NEQNS,2),

INTEGER ICNTL(10), INFO(16)
DOUBLE PRECISION CNTL(2), RINFO(6)

$ RW(NEQNS),RELMAT(LELMAT)

0.
0.
1.
0.
0.
0.
1 .
0.
0.
0.
1.

\ 0.

NRHS=2

READ(5, ' (1013) I) (IVAR(1) ,I=l,NNODS)
READ(5, ' (1013) ') (IPIELT(1) ,I=l,NELS+l)
READ(5, ' (1013) ') (IELT(1) ,I=l,LIELT)
READ(5, ' (8F5.0) ') (ELMAT(1) ,1=1,160)
READ(5,'(12F5.0)') ((B(I,J),I=l,NEQNS),J=l,NRHS)

* .
* COMPUTE THE ORDER OF THE ELEMENT MATRICES.
* .

DO 200 I = 1, NELS
ELSIZE(1) = 0
DO 100 J = IPIELT(I), IPIELT(I+l)-1

NODE = IELT(J)
NVAR = IVAR(N0DE)
IF (WAR .GT. 0)

$ ELSIZE (I) =ELSIZE (I) +NVAR
100 CONTINUE
200 CONTINUE

42

HSL Release 12 (1995) MA46

CALL MA46ID(CNTL, ICNTL)

LKEEPA = NELS+7*NNODS+55
L1 = 3*NELS+2*NNODS+4*LIELT+EfNEQNS+2
L2 = NELS+ll*NNODS+2*LIELT+5
LIW = MAX(Ll,L2)
IF (LKEEPA .GT. 200 .OR.

$ LIW .GT. 300) GOTO 8000

CALL MA46AD(NELS,NNODS,NEQNS,IPIELT,IELT,LIELT,IVAR,NB,KEEPA,

IF (INFO(1) .NE. 0) GOTO 8000
$ LKEEPA, IW, LIW, ICNTL, RINFO, INFO)

*
* STORE THE ELEMENT MATRICES IN THE
* SEQUENCE DETERMINED BY MA46AD.
* .

XELSEQ = MNPAR
ELSEQ = XELSEQ+NB+l
IPEL = 1
XELMAT(1) = IPEL
DO 600 IBL = 1, NB

DO 500 I = KEEPA(XELSEQ+IBL), KEEPA(XELSEQ+IBL+l)-1
ELEMNT = KEEPA(ELSEQ+I)
LORDER = ELSIZE(ELEMNT)
K = O
DO 300 J = 1, ELEMNT-1

K = K + ELSIZE(J)*ELSIZE(J)
300 CONTINUE

XELMAT(IBL+l) = XELMAT(1BL) + LORDER*LORDER
DO 400 J = IPEL, IPEL+LORDER*LORDER-1

K = K + l
RELMAT(J) = ELMAT(K)

400 CONTINUE

500 CONTINUE

600 CONTINUE

IPEL = IPEL + LORDER*LORDER

XELMAT(IBL+l) = IPEL

* _________________________-_- - - - - - - - - - - -
* SET UP THE STORAGE REQUIRED FOR MA46BD.
* -----_______-_-------------------------

LKEEPA = INFO(2)
LKEEPB = INFO(8)
LA = INFO(9)
LAD = 1
LIW = 3 * (NNODS+NEQNS) + 1
IF (LKEEPA .GT. 200 .OR.

$ LKEEPB .GT. 200 .OR.
$ LA .GT. 200 .OR.
$ LIW .GT. 300) GOTO 8000

* FACTORIZE THE MATRIX BY NB CALLS TO MA46BD.
* ____________________-----------------------

DO 700 IBL = 1, NB
IPEL = XELMAT(1BL)
CALL MA46BD(IBL,NELS,NNODS,IPIELT,IELT,LIELT,IVAR,KEEPA,LKEEPA,

$
$ ICNTL, RINFO, INFO)

KEEPB, LKEEPB, RELMAT (IPEL) ,A, LA, AD, LAD, IW, LIW, CNTL,

IF (INFO(1) .NE. 0) GOTO 8000
700 CONTINUE

MA46 HSL Release 12 (1995)

LIW = NNODS + NEQNS + 1
LRW = INFO(15)
IF (LKEEPB .GT. 200 .OR.

$ LA .GT. 200 .OR.
$ LIW .GT. 300 .OR.
$ LRW .GT. NEQNS) GOT0 8000
LDB = NEQNS

CALL MA46CD (IVAR, NNODS, KEEPA, LKEEPA, KEEPB, LKEEPB, A, LA, B, LDB, NRHS,
$ IW,LIW,RW,LRW, ICNTL, INFO)

ISTRT = 1
DO 1000 NODE = 1, NNODS

IF (IVAR(N0DE) .GT. 0)
$ THEN

ISTOP = ISTRT + IVAR(N0DE) - 1
DO 900 J = 1, NRHS

WRITE(6, ' (A,I6,A,I6) ')

WRITE(6, ' (45X,lPEl2.5) ')
$ 'SOLUTION VECTOR ',J,' FOR NODE : I , NODE

$ (B(1,J) ,I=ISTRT,ISTOP)

ISTRT = ISTOP + 1

WRITE(6, ' (/A,16/) ')

900 CONTINUE

ELSE

$ 'NO VARIABLES AT NODE : I , NODE
ENDIF

1000 CONTINUE

WRITE(6, ' (A,I6) ')

WRITE(6, ' (A,I6) ')

WRITE(6,' (A,I6) ')

WRITE(6,' (A,I6) ')

$'NUMBER OF ELIMINATIONS PERFORMED ' , INFO

$'ORDER OF THE LARGEST FRONT MATRIX ' , INFO

$'LENGTH OF THE UPPER TRIANGULAR FACTOR ',INFO

$'SIZE OF THE INDEX INFORMATION ' , INFO

STOP
8000 CONTIkE

*
*

.
ERROR CONDITION, PRINT THE INFO ARRAY.

WRITE(6, ' (1015) ')
STOP
END

* - -____________________________________
(INFO(1) ,1=1,16)

The input data used for this problem is:
0 2 2 0 2 2 0 2 2
1 5 9 13 17
4 5 8 7 5 6 9 8 1 2
5 - 4 2 3 6 5
6 . 2 . 3 . 4 . 1 . 5 . 4 . 3 .
2 . 3 . 4 . 4 . 3 . 2 . 3 . 1 .
4 . 4 . 3 . 4 . 5 . 4 . 3 . 4 .
3 . 1 . 4 . 3 . 4 . 2 . 4 . 3 .
2 . 3 . 6 . 2 . 3 . 4 . 7 . 2 .
3 . 2 . 1 . 5 . 4 . 3 . 2 . 6 .
4 . 3 . 2 . 3 . 4 . 4 . 3 . 4 .

44

HSL Release 12 (1995) MA46

3 . 1 . 3 . 2 . 3 . 1 . 4 . 3 .
2 . 3 . 6 . 1 . 2 . 3 . 6 . 2 .
3 . 2 . 1 . 5 . 3 . 2 . 1 . 5 .
6 . 2 . 3 . 4 . 1 . 5 . 4 . 3 .
2 . 3 . 4 . 4 . 3 . 2 . 3 . 1 .
4 . 4 . 3 . 4 . 5 . 4 . 3 . 4 .
3 . 1 . 4 . 3 . 4 . 2 . 4 . 3 .
2 . 3 . 6 . 2 . 3 . 4 . 7 . 2 .
3 . 2 . 1 . 5 . 4 . 3 . 2 . 6 .
4 . 3 . 2 . 3 . 4 . 4 . 3 . 4 .
3 . 1 . 3 . 2 . 3 . 1 . 4 . 3 .
2 . 3 . 6 . 1 . 2 . 3 . 6 . 2 .
3 . 2 . 1 . 5 . 3 . 2 . 1 . 5 .
0 . 0 . 1 . 0 . 0 . 0 . 1 . 0 .
0 . 0 . 0 . 1 . 0 . 0 . 0 . 2 .

The program produces the following output:

NO VARIABLES AT NODE :

SOLUTION VECTOR 1

SOLUTION VECTOR 2

SOLUTION VECTOR 1

SOLUTION VECTOR 2

NO VARIABLES AT NODE :

SOLUTION VECTOR 1

SOLUTION VECTOR 2

SOLUTION VECTOR 1

SOLUTION VECTOR 2

NO VARIABLES AT NODE :

SOLUTION VECTOR 1

SOLUTION VECTOR 2

SOLUTION VECTOR 1

SOLUTION VECTOR 2

1

FOR NODE :

FOR NODE :

FOR NODE :

FOR NODE :

4

FOR NODE :

FOR NODE :

FOR NODE :

FOR NODE :

7

FOR NODE :

FOR NODE :

FOR NODE :

FOR NODE :

NUMBER OF ASSEMBLY STEPS
NUMBER OF ELIMINATIONS PERFORMED
ORDER OF THE LARGEST FRONT MATRIX
LENGTH OF THE UPPER TRIANGULAR FACTOR
SIZE OF THE INDEX INFORMATION

0. 0. 1. 0.
0. 0. 0. 1.

2
-9.805593-01
-8.62854E-02

6.860963-01
9.451423-02

-6.575563-01
-8.170853-01

2

3

3
9.307063-01
5.849073-01

5
4.807623-01
7.996173-01

-6.563103-01
-4.63449E-01

9.156473-01

5

6

1.177923+00
6

-6.225183-01
-9.863803-01

8
-7.587283-01
-8.155993-01

4.504453-01
8.147643-01

-1.542143+00
-6.426983-01

8

9

9
1.682283+00
2.913763-01

2
12
8
62
24

45

