GMRES preconditioned by a perturbed $L D L^{T}$ decomposition with static pivoting

M. Arioli, I. S. Duff, S. Gratton, and S. Pralet

http://www.numerical.rl.ac.uk/people/marioli/marioli.html

Outline

- Multifrontal
-Static pivoting
■GMRES and Flexible GMRES: a roundoff error analysis
■ Numerical experiments

Linear system

We wish to solve large sparse systems

$$
\mathrm{Ax}=\mathrm{b}
$$

where $\mathbf{A} \in \mathbf{R}^{\mathbf{N} \times \mathbf{N}}$ is symmetric indefinite

Linear system

A particular and important case arises in saddle-point problems where the coefficient matrix is of the form

Since we want accurate solutions, we would prefer to use a direct method of solution and our method of choice uses a multifrontal approach.

Multifrontal method

ASSEMBLY TREE

Multifrontal method

ASSEMBLY TREE

AT EACH NODE

Multifrontal method

ASSEMBLY TREE

AT EACH NODE

$$
F_{22} \leftarrow F_{22}-F_{12}^{T} F_{11}^{-1} F_{12}
$$

Multifrontal method

Pivot can only be chosen from F_{11} block since F_{22} is NOT fully summed.

Pivoting (1×1)

Choose x as 1×1 pivot if $|x|>u|y|$ where $|y|$ is the largest in column.

Pivoting (2 $\times 2$)

For the indefinite case, we can choose 2×2 pivot where we require

$$
\left|\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right]^{-1}\right|\left[\begin{array}{l}
|y| \\
|z|
\end{array}\right] \leq\left[\begin{array}{c}
\frac{1}{u} \\
\frac{1}{u}
\end{array}\right]
$$

where again $|y|$ and $|z|$ are the largest in their columns.

Pivoting

If we assume that $k-1$ pivots are chosen but $\left|x_{k}\right|<u|y|$:

Pivoting

If we assume that $k-1$ pivots are chosen but $\left|x_{k}\right|<u|y|$:
\square we can either take the RISK and use it or

Pivoting

If we assume that $k-1$ pivots are chosen but $\left|x_{k}\right|<u|y|$:
■ we can either take the RISK and use it or
■DELAY the pivot and then send to the parent a larger Schur complement.

Pivoting

If we assume that $k-1$ pivots are chosen but $\left|x_{k}\right|<u|y|$:
■ we can either take the RISK and use it or
DELAY the pivot and then send to the parent a larger Schur complement.
This can cause more work and storage

Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x_{k} by

$$
x_{k}+\tau
$$

and CONTINUE.

Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x_{k} by

$$
x_{k}+\tau
$$

and CONTINUE.

This is even more important in the case of parallel implementation where static data structures are often preferred

Static Pivoting

An ALTERNATIVE is to use Static Pivoting, by replacing x_{k} by

$$
x_{k}+\tau
$$

and CONTINUE.

This is even more important in the case of parallel implementation where static data structures are often preferred

Several codes use (or have an option for) this device:

- SuperLU (Demmel and Li)

■ PARDISO (Gärtner and Schenk)
■MA57 (Duff and Pralet)

Static Pivoting

We thus have factorized

$$
A+E=L D L^{T}=M
$$

where $|E| \leq \tau I$

Static Pivoting

We thus have factorized

$$
A+E=L D L^{T}=M
$$

where $|E| \leq \tau I$

The three codes then have an Iterative Refinement option. IR will converge if $\rho\left(M^{-1} E\right)<1$

Static Pivoting

If $\rho\left(M^{-1} E\right)>1$ then
PLAN A (Iterative Refinement Algortithm) fails!!!

Static Pivoting

If $\rho\left(M^{-1} E\right)>1$ then
PLAN A (Iterative Refinement Algortithm) fails!!!

PLEASE DO NOT PANIC!

Static Pivoting

If $\rho\left(M^{-1} E\right)>1$ then
PLAN A (Iterative Refinement Algortithm) fails!!!

PLEASE DO NOT PANIC!

We have Plan B

Static Pivoting

If $\rho\left(M^{-1} E\right)>1$ then
PLAN A (Iterative Refinement Algortithm) fails!!!

PLEASE DO NOT PANIC!

We have Plan B

Flexible GMRES

Right preconditioned GMRES and Flexible GMRES

procedure $[\mathrm{x}]=$ right_Prec_GMRES(A,M,b)

$$
\begin{aligned}
& x_{0}=M^{-1} b, r_{0}=b-A x_{0} \text { and } \beta=\left\|r_{0}\right\| \\
& v_{1}=r_{0} / \beta ; \mathrm{k}=0 \\
& \text { while }\left\|r_{k}\right\|>\mu\left(\|b\|+\|A\|\left\|x_{k}\right\|\right) \\
& \quad k=k+1 ; \\
& z_{k}=M^{-1} v_{k} ; w=A z_{k} ; \\
& \text { for } i=1, \ldots, k \text { do } \\
& \quad h_{i, k}=v_{i}^{T} w ; \\
& \quad w=w-h_{i, k} v_{i} \\
& \quad \text { end for; } \\
& \quad h_{k+1, k}=\|w\| ; \\
& v_{k+1}=w / h_{k+1, k} ; \\
& V_{k}=\left[v_{1}, \ldots, v_{k}\right] \\
& H_{k}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1 ; 1 \leq j \leq k} ; \\
& y_{k}=\arg \min y\left\|\beta e_{1}-H_{k} y\right\| ; \\
& x_{k}=x_{0}+M_{1}-1 V_{k} y_{k} \text { and } r_{k}=b-A x_{k}
\end{aligned}
$$

end procedure.
procedure $[\mathrm{x}]=\mathrm{FGMRES}\left(\mathrm{A}, M_{i}, \mathrm{~b}\right)$

$$
\begin{aligned}
& x_{0}=M_{0}^{-1} b, r_{0}=b-A x_{0} \text { and } \beta=\left\|r_{0}\right\| \\
& v_{1}=r_{0} / \beta ; \mathrm{k}=0 ; \\
& \text { while }\left\|r_{k}\right\|>\mu\left(\|b\|+\|A\|\left\|x_{k}\right\|\right) \\
& \quad k=k+1 ; \\
& \quad z_{k}=M_{k}^{-1} v_{k} ; w=A z_{k} ; \\
& \quad \text { for } i=1, \ldots, k \text { do } \\
& \quad h_{i, k}=v_{i}^{T} w ; \\
& \quad w=w-h_{i, k} v_{i} \\
& \quad \text { end for; } \\
& \quad h_{k+1, k}=\|w\| ; \\
& \quad v_{k+1}=w / h_{k+1, k} ; \\
& \quad Z_{k}=\left[z_{1}, \cdots, z_{k}\right] ; V_{k}=\left[v_{1}, \ldots, v_{k}\right] \\
& H_{k}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1 ; 1 \leq j \leq k} \\
& \quad y_{k}=\arg \min _{y}\left\|\beta e_{1}-H_{k} y\right\| ; \\
& \quad x_{k}=x_{0}+Z_{k} y_{k} \text { and } r_{k}=b-A x_{k}
\end{aligned}
$$

end procedure.

Roundoff error 1

The computed \hat{L} and \hat{D} in floating-point arithmetic satisfy

$$
\left\{\begin{array}{l}
A+\delta A+\tau E=M \\
\|\delta A\| \leq c(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \\
\|E\| \leq 1
\end{array}\right.
$$

The perturbation δA must have a norm smaller than τ, in order to not dominate the global error.

Roundoff error 1

The computed \hat{L} and \hat{D} in floating-point arithmetic satisfy

$$
\left\{\begin{array}{l}
A+\delta A+\tau E=M \\
\|\delta A\| \leq c(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \\
\|E\| \leq 1 .
\end{array}\right.
$$

The perturbation δA must have a norm smaller than τ, in order to not dominate the global error.

A sufficient condition for this is

$$
\begin{array}{|l|}
\hline n \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \leq \tau \\
\hline
\end{array}
$$

Roundoff error 1

The computed \hat{L} and \hat{D} in floating-point arithmetic satisfy

$$
\left\{\begin{array}{l}
A+\delta A+\tau E=M \\
\|\delta A\| \leq c(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \\
\|E\| \leq 1 .
\end{array}\right.
$$

The perturbation δA must have a norm smaller than τ, in order to not dominate the global error.

A sufficient condition for this is

$$
\begin{array}{|l|}
\hline n \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \leq \tau \\
\hline
\end{array}
$$

$\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|| | \approx \frac{n}{\tau} \Longrightarrow \varepsilon \leq \frac{\tau^{2}}{n^{2}}$

Roundoff error 1

The computed \hat{L} and \hat{D} in floating-point arithmetic satisfy

$$
\left\{\begin{array}{l}
A+\delta A+\tau E=M \\
\|\delta A\| \leq c(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\| \\
\|E\| \leq 1 .
\end{array}\right.
$$

The perturbation δA must have a norm smaller than τ, in order to not dominate the global error.

A sufficient condition for this is

$$
n \varepsilon\left\|| | \hat { L } | | \hat { D } \left|\left|\hat{L}^{T}\right| \| \leq \tau\right.\right.
$$

$\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|| | \approx \frac{n}{\tau} \Longrightarrow \varepsilon \leq \frac{\tau^{2}}{n^{2}}$
Moreover, we assume that

$$
\max \left\{\left\|M^{-1}\right\|,\left\|\bar{Z}_{k}\right\|\right\} \leq \frac{\tilde{c}}{\tau} \text {. }
$$

Roundoff error FGMRES

Theorem 1.

$$
\sigma_{\min }\left(\bar{H}_{k}\right)>c_{7}(k, 1) \varepsilon\left\|\bar{H}_{k}\right\|+\mathcal{O}\left(\varepsilon^{2}\right) \quad \forall k,
$$

$$
\left|\bar{s}_{k}\right|<1-\varepsilon, \forall k
$$

(where \bar{s}_{k} are the sines computed during the Givens algorithm)
and

$$
2.12(n+1) \varepsilon<0.01 \text { and } 18.53 \varepsilon n^{\frac{3}{2}} \kappa\left(C^{(k)}\right)<0.1 \forall k
$$

$$
\exists \hat{k}, \quad \hat{k} \leq n
$$

such that, $\forall k \geq \hat{k}$, we have
$\left\|b-A \bar{x}_{k}\right\| \leq c_{1}(n, k) \varepsilon\left(\|b\|+\|A\|\left\|\bar{x}_{0}\right\|+\|A\|\left\|\bar{Z}_{k}\right\|\left\|\bar{y}_{k}\right\|\right)+\mathcal{O}\left(\varepsilon^{2}\right)$.

Roundoff error FGMRES

Moreover, if $M_{i}=M, \forall i$,

$$
\rho=1.3\left\|\hat{W}_{k}\right\|+c_{2}(k, 1) \varepsilon\|M\|\left\|\bar{Z}_{k}\right\|<1 \quad \forall k<\hat{k},
$$

where

$$
\hat{W}_{k}=\left[M \bar{z}_{1}-\bar{v}_{1}, \ldots, M \bar{z}_{k}-\bar{v}_{k}\right]
$$

we have:

$$
\left\|b-A \bar{x}_{k}\right\| \leq c(n, k) \gamma \varepsilon\left(\|b\|+\|A\|\left\|\bar{x}_{0}\right\|+\|A\|\left\|\bar{Z}_{k}\right\|\left\|M\left(\bar{x}_{k}-\bar{x}_{0}\right)\right\|\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

$$
\gamma=\frac{1.3}{1-\rho}
$$

Roundoff error FGMRES

Theorem 2

Under the Hypotheses of Theorem 1, and

$$
\mathbf{c}(n) \varepsilon\left\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|\right\|<\tau
$$

$$
c(n, k) \gamma \varepsilon\|A\|\left\|\bar{Z}_{k}\right\|<1 \quad \forall k<\hat{k}
$$

$$
\max \left\{\left\|M^{-1}\right\|,\left\|\bar{Z}_{k}\right\|\right\} \leq \frac{\tilde{c}}{\tau}
$$

we have

Roundoff error FGMRES

Theorem 2

Under the Hypotheses of Theorem 1, and

$$
\mathbf{c}(n) \varepsilon\left\|| | \hat { L } | | \hat { D } \left|\left|\hat{L}^{T}\right| \|<\tau\right.\right.
$$

$$
c(n, k) \gamma \varepsilon\|A\|\left\|\bar{Z}_{k}\right\|<1 \quad \forall k<\hat{k}
$$

$$
\max \left\{\left\|M^{-1}\right\|,\left\|\bar{Z}_{k}\right\|\right\} \leq \frac{\tilde{c}}{\tau}
$$

we have

$$
\begin{gathered}
\left\|b-A \bar{x}_{k}\right\| \leq 2 \mu \varepsilon\left(\|b\|+\|A\|\left(\left\|\bar{x}_{0}\right\|+\left\|\bar{x}_{k}\right\|\right)\right)+\mathcal{O}\left(\varepsilon^{2}\right) . \\
\mu=\frac{c(n, k)}{1-c(n, k) \varepsilon\|A\|\left\|\bar{Z}_{k}\right\|}
\end{gathered}
$$

Roundoff error right preconditioned GMRES

Theorem 3
We assume of applying Iterative Refinement for solving $M\left(\bar{x}_{k}-\bar{x}_{0}\right)=\bar{V}_{k} \bar{y}_{k}$ at last step.
Under the Hypotheses of Theorem 1 and $c(n) \varepsilon \kappa(M)<1$

$$
\exists \hat{k}, \quad \hat{k} \leq n
$$

such that, $\forall k \geq \hat{k}$, we have

$$
\begin{aligned}
\left\|b-A \bar{x}_{k}\right\| \leq & c_{1}(n, k) \varepsilon\left\{\|b\|+\|A\|\left\|\bar{x}_{0}\right\|+\|A\|\left\|\bar{Z}_{k}\right\|\left\|M\left(\bar{x}_{k}-\bar{x}_{0}\right)\right\|+\right. \\
& \left\|A M^{-1}\right\|\|\|M\|\| \bar{x}_{k}-\bar{x}_{0} \|+ \\
& \left\|A M^{-1}\right\|\left\|| | \hat { L } | | \hat { D } \left|\left|\hat{L}^{T}\right|\left\|\left\|M\left(\bar{x}_{k}-\bar{x}_{0}\right)\right\|\right\}+\mathcal{O}\left(\varepsilon^{2}\right) .\right.\right.
\end{aligned}
$$

Test Problems

	n	nnz	Description
CONT_201	80595	239596	KKT matrix Convex QP (M2)
CONT_300	180895	562496	KKT matrix Convex QP (M2)
TUMA_1	22967	76199	Mixed-Hybrid finite-element

Test problems

MA57 tests

	n	nnz(L)+nnz(D)	Factorization time
CONT_201	80595	9106766	9.0 sec
CONT_300	180895	22535492	28.8 sec

MA57 without static pivot

MA57 tests

	n	$\mathrm{nnz}(\mathrm{L})+\mathrm{nnz}(\mathrm{D})$	Factorization time
CONT_201	80595	9106766	9.0 sec
CONT_300	180895	22535492	28.8 sec

MA57 without static pivot

	nnz(L)+nnz(D)+ FGMRES (\#it)	Factorization time	\# static pivots
CONT_201	$5563735(6)$	3.1 sec	27867
CONT_300	$12752337(8)$	8.9 sec	60585

MA57 with static pivot $\tau=10^{-8}$

$\||\hat{L}||\hat{D}|\left|\hat{L}^{T}\right|| |$ vs $1 / \tau$

$$
\left\|\bar{Z}_{k}\right\|\left\|_{F}\right\| M\left(x_{k}-x_{0}\right) \| \mathbf{v s} \tau
$$

Numerical experiments

FGMRES on CONT-201 test example

Numerical experiments

GMRES on CONT-201 test example

Restarted GMRES vs. FGMRES on CONT-201 test example: $\tau=10^{-8}$

Restarted GMRES on CONT-201 test example: $\tau=10^{-6}$

Summary

■IR with static pivoting is very sensitive to τ and not robust

Summary

-IR with static pivoting is very sensitive to τ and not robust
■GMRES is also sensitive and not robust

Summary

-IR with static pivoting is very sensitive to τ and not robust
■ GMRES is also sensitive and not robust
\square FGMRES is robust and less sensitive (see roundoff analysis)

Summary

■IR with static pivoting is very sensitive to τ and not robust
■ GMRES is also sensitive and not robust
\square FGMRES is robust and less sensitive (see roundoff analysis)
■ Gains from restarting. Makes GMRES more robust, saves storage in FGMRES (but not really needed)

Summary

■IR with static pivoting is very sensitive to τ and not robust
■ GMRES is also sensitive and not robust
\square FGMRES is robust and less sensitive (see roundoff analysis)
■ Gains from restarting. Makes GMRES more robust, saves storage in FGMRES (but not really needed)
\square Understanding of why $\tau \approx \sqrt{\varepsilon}$ is best.

Summary

■IR with static pivoting is very sensitive to τ and not robust
■ GMRES is also sensitive and not robust
\square FGMRES is robust and less sensitive (see roundoff analysis)
■ Gains from restarting. Makes GMRES more robust, saves storage in FGMRES (but not really needed)
\square Understanding of why $\tau \approx \sqrt{\varepsilon}$ is best.

- PLAN B is working

