
CLRC

Technical Report
RAL-TR- 96-023

An Evaluation of Arnoldi based Software
for Sparse Nonsymmetric Eigenproblems

R B Lehoucq and J A Scott

March 1996

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

0 Council for the Central Laboratory of the Research Councils 1995

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX1 1 OQX
Tel: 01 235 445384
E-mail library@rl.ac.uk

Fox: 01 235 446403

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports o r in any communication about their tests or investigations.

RAL-TR-96-023

An evaluation of Arnoldi based software for
sparse nonsymmetric eigenproblems.*

R. B. Lehoucq' and J. A. Scott2

Abstract

In recent years, high quality software for computing selected eigenvalues of large
sparse nonsymmetric matrices has started to become publicly available. In this study
we consider software which implements algorithms based on the original method of
Arnoldi. We briefly describe the software which is available. We look at the key
features of the codes and the important differences between them. Then, using a
wide range of practical problems, we compare the performance of the codes in terms
of storage requirements, execution times, accuracy, and reliability, and consider their
suitability for solving large-scale industrial problems. Finally, we point to possible
future directions of research for improving Arnoldi based software.

* Current reports available by anonymous ftp from seamus. cc . rl . ac .uk (internet 130.246.8.32)
in the directory pub/reports.

Argonne National Laboratory,
Mathematics and Computer Science Division,
Argonne, IL 60439, U.S.A.

2Computing and Information Systems Department,
Atlas Centre, Rutherford Appleton Laboratory,
Didcot, Oxfordshire OX1 1 OQX, England.
March 18, 1996.

CONTENTS i

Contents

1 Introduction 1

2 Arnoldi iteration 2

3 Arnoldi iteration software 3
3.1 ARNCHEB . 3
3.2 EB13 . 4
3.3 ARPACK . 5

4 Software comparison
4.1 Restart mechanism .
4.2 Deflation
4.3 Matrix products A x .
4.4 Exploiting BLAS . .
4.5 The stopping criteria
4.6 Storage requirements
4.7 User interface

6
. 6

. 7

. 7

. 8

. 9

. 10

. 11

5 Numerical experiments 12
5.1 The test matrices . 12
5.2 Verification . 12
5.3 The test environment . 14
5.4 Results for the TOLOSA Matrix . 15
5.5 Results for a Convection-Diffusion Problem 17
5.6 General Findings . 19

6 Future directions 20

7 Availability of the Software and Test Matrices 21

8 Acknowledgements 22

A Appendix: Tables of results for right-most eigenpair 25

B Appendix: Tables of results for several eigenvalues 29

1 INTRODUCTION 1

1 Introduction

The development of efficient numerical methods for solving large sparse nonsymmet-
ric eigenvalue problems has been the subject of much interest and research effort
during the last decade. Several classes of methods have received attention and
support. These include subspace (or simultaneous) iteration methods, Arnoldi’s
method and its variants, the (nonsymmetric) Lanczos method, and, recently, the
Jacobi-Davidson method (Sleijpen and Van der Vorst, 1995). Software is gradually
becoming available and we feel that it is now time to evaluate this software to see
how robust it is and how suitable it is for solving today’s large scale nonsymmetric
eigenvalue problems. In this report, we focus attention on software which imple-
ments Arnoldi type methods. In a separate report, we examine subspace iteration
software (Lehoucq and Scott, 1996b). The results of our studies of subspace it-
eration and Arnoldi software are brought together, summarised, and compared in
Lehoucq and Scott (1996~) . In the future, we plan to extend our study to software
which uses the Lanczos method and, once it becomes available, to software for the
Jacobi- Davidson met hod.

In addition to numerous research codes, several library-quality packages which
employ Arnoldi iteration techniques have been developed for the standard eigenvalue
problem Az = Xz. We are interested in codes which are written either in the C
programming language or in FORTRAN. In addition, for inclusion in our study, the
codes must be available either in the public domain or under licence. There are
currently (to the authors’ knowledge) three such packages (we apologise if there
are any other packages which meet our criteria but which we are not aware of).
These are the ARNCHEB package of Braconnier (1993), the ARPACK package (Lehoucq,
Sorensen, Vu and Yang, 1995) and the Harwell Subroutine Library code E B 1 3 (Scott,
1995). The reports and papers which accompany each of these codes provide limited
numerical results illustrating their use but results comparing their performances have
not been published. Our aims are to review, compare, and evaluate the codes, to
look at their limitations, and to highlight problems for which more sophisticated
software is still needed.

This report is organised as follows. We briefly review Arnoldi iteration in Sec-
tion 2 then in Section 3 we look at the software packages ARNCHEB, ARPACK, and EB13 .
We outline the algorithms used and discuss the main features of each of the codes.
We examine the main differences between the codes in Section 4. In Section 5 we
discuss the design of our experiments to compare the performance of the software,
we explain how we verify the computed results, and present numerical results for a
set of test problems. Based on our findings, in Section 6 we propose possible future
developments in Arnoldi based software. Details of the availability of the software
packages are given in Section 7.

We end this section by introducing notation which we use throughout this report.

0 A is a large sparse real nonsymmetric matrix of order n.

0 The eigenvalues of A are denoted by AI, A 2 , . . . , A,, with associated eigenvec-
tors z1, z2,. . . , z,. The eigenvalues are assumed to be ordered according to
which are being sought. For example, if the eigenvalues of largest absolute

2 ARNOLDI ITERATION 2

value are required, the eigenvalues are ordered in decreasing order of their
absolute values. Subscripts are dropped when doing so causes no confusion.

0 r denotes the number of sought-after eigenvalues of A .

0 rn denotes the dimension of the subspace used in the Arnoldi algorithm.

0 X, denotes the matrix representation of this subspace.

0 (s , B) denotes an eigenpair of the projection matrix H, of order rn of A onto
the column space of X,.

0 The approximate eigenpairs for A are called Ritz pairs if Ay M yB, where
y = x,s.

0 T,. denotes the quasi-triangular Schur matrix associated with the projection
of A.

0 XZAX, M T, is an approximate real partial Schur form if XZX, M I,.

0 U denotes the relative machine precision (that is, the smallest machine number
such that 1 + U > 1).

0 E denotes the user-prescribed convergence tolerance.

In this study we are concerned with the case r < rn << n.

2 Arnoldi iteration

Arnoldi's method (1951) is an orthogonal projection method for approximating a
subset of the eigensystem of a general square matrix. Starting with a vector xl, the
method builds, step by step, an orthogonal basis for the Krylou space of A :

K,(A,x,) E Span{xl, Ax l , . . . , A"-lxl}.

It is a generalization of the power method in that a sequence of iterates are used
to approximate eigenvalues of A . The original algorithm was designed to reduce
a dense matrix to upper Hessenberg form. However, because the method requires
knowledge only of A through matrix-vector products, its value as a technique for
approximating a few eigenvalues of a large sparse matrix was soon realised. When
the matrix A is symmetric, the procedure reduces to the method of Lanczos (1950).

Over a decade of research was devoted to understanding and overcoming the
numerical difficulties of the method for the case when A is symmetric (see, for
example, Parlett, 1980, and Grimes, Lewis and Simon, 1994). Development of the
Arnoldi method for nonsymmetric matrices lagged behind because of the inordinate
computational and storage requirements if a large number of steps are required for
convergence. Not only is more storage needed when A is nonsymmetric, but, in
general, more steps are required to compute the desired eigenvalue approximations.

An explicitly restarted Arnoldi iteration (ERA-iteration) was introduced by
Saad (1980) in an attempt to overcome these difficulties. Besides the storage con-
siderations, restarted Arnoldi methods are motivated by attempting to replace the

3 ARNOLDI ITERATION SOFTWARE 3

Table 2.1: Basic restarted Arnoldi iteration

a Start: Choose an initial normalised vector XI.

a Iteration: Until convergence do

1. Compute the Arnoldi reduction AX, = .X,H, t fmez of length m with

2. Using the length m Arnoldi factorisation, select a new starting vector XI.

starting vector Xmel G XI.

starting vector with one that is an element of the nvariant subspace associated with
the r eigenvalues of interest. If this is accomplished, then it may be shown that, in
exact arithmetic, f,. = 0.

The basic restarted Arnoldi method is summarised in Table 2.1. H, is an m x m
upper Hessenberg matrix, X;X, = I,, and the residual vector f, is orthogonal to
the columns of X,. The matrix H, = X:AX, is the orthogonal projection of A
onto the column space of X m E X,(A,xl).

The idea of restarting is based on similar approaches used for the Lanczos process
by Paige (1971), Cullum and Donath (1974), and Golub and Underwood (1977). The
first example of a restarted iteration is attributed to Karush (1951). A relatively
recent variant was developed by Sorensen (1992) as a more efficient and numerically
stable way to implement restarting. One of the benefits of this implicitly restarted
Arnoldi iteration (IRA-iteration) is that it avoids the need to restart the reduction
from scratch at each iteration.

3 Arnoldi iteration software

In this section we briefly review the software packages ARNCHEB, ARPACK, and E B 1 3 ,
which implement restarted Arnoldi iterations.

3.1 ARNCHEB
The ARNCHEB package of Braconnier (1993) provides subroutine A W O L that imple-
ments an explicitly restarted Arnoldi method. The code is based on the algorithms
of Saad (1980, 1984) and may be used to compute either the eigenvalues of largest
or smallest real parts, or those of largest imaginary part.

In ARNCHEB, the computation of the restart vector is a two-step process. First, a
linear combination of the r Ritz vectors associated with the T Ritz values of interest
is formed. Then, a fixed-degree Chebychev polynomial pl(A) on an ellipse containing
the unwanted Ritz values is applied to the linear combination. The evaluation of
pl(A) x is carried out by using the three- term recurrence relation for C hebychev
polynomials. The polynomial is fixed in the sense that the degree is chosen by the
user and is not varied from iteration to iteration.

An iterated classical Gram-Schmidt algorithm is used to maintain orthogonality
of the Arnoldi basis vectors. ARNCHEB requires the user to supply a subroutine ATq to
perform matrix products AX,. The subroutine P W V does not include the matrix

3 ARNOLDI ITERATION SOFTWARE 4

A in its argument list so A need not be held explicitly-only the action of A on
vectors is needed.

The package AFUVCHEB offers the user the option of using a variant of Wielandt
deflation (see Wilkinson, 1965, and Saad, 1992, for further details). Let A0 = A
and denote by Oj the diagonal matrix of converged Ritz values. As the individual
Ritz values converge, the Arnoldi iteration builds factorisations with the rank j
modification

of A where A;-IU;e; m Uieie;, for i = 1,. . . , j and 8; is the i-th diagonal element
of Oj. The deflation's goal is that the converged Ritz values are no longer extremal
for Aj and the remaining eigenvalues of A are computed.

In order to use real arithmetic, ARNCHEB chooses Oj to be a quasi-diagonal ma-
trix. The quasi-diagonal matrix contains the real eigenvalues on the diagonal and
the real and imaginary portions of the complex conjugate pairs on diagonal blocks
of order two. For the blocks of order two on the diagonal of Oj the corresponding
complex eigenvector is stored in two consecutive columns of Uj, the first holding
the real part, and the second the imaginary part.

Unfortunately, although the column space of Uj is approximately invariant for
A and Aj, the eigenvectors are not the same. The extra computation involves com-
puting the projection of A onto the column space of Uj. Although not complicated,
the computation must be carried out by the user. Moreover, there is no documenta-
tion to guide the user on how this could be done nor are the converged Ritz values
saved.' We further discuss this in Section 4.2.

3.2 EB13
The Harwell Subroutine Library code EB13 (Scott, 1995) also implements an explic-
itly restarted Arnoldi method. It allows the user to compute the eigenvalues of A
that are right-most, of largest modulus, or of largest imaginary parts. By work-
ing with -A in place of A, the code may also be used to compute the left-most
eigenvalues .

EB13 incrementally computes a partial Schur form for A, locking approximate
Schur vectors corresponding to Ritz values that converge. At each iteration, the
best approximating Ritz vector of the unlocked portion of the Arnoldi reduction is
used to restart. For example, if the eigenvalues of largest magnitude are desired,
then the best approximating Ritz vector is the one associated with the Ritz value
largest in magnitude.

A Chebychev polynomial pl(A) on an ellipse containing the unwanted Ritz val-
ues i s applied to the restart vector in an attempt to accelerate convergence. The
code adaptively selects the degree 1 of the Chebychev polynomial on each iteration
(although the user may override this value).

An iterated classical Gram-Schmidt algorithm is used to orthogonalise the Arnoldi
basis vectors. The code EB13 uses reverse communication. Each time a set of vec-
tors is required to be multiplied by A, control is returned to the user. This allows

'In fact, the author of ARNCHEB was not aware that this was possible.

3 ARNOLDI ITERATION SOFTWARE 5

Table 3.2: The Arnoldi iteration used by EB13.

0 Build a length m Arnoldi reduction. Set j = 0 define QO 0.

0 Iteration:

1. Compute the ordered Schur decomposition' H m - j Z m - j = Z m - j T m - j .

2. Check the Ritz vector X m - j Z m - j e l for convergence. If it satisfies the conver-
gence criterion, increment j and set Qj = [Q j - 1 X m - j Z m - j e l] . If j = T ,

exit the Iteration.

3. Compute the Arnoldi reduction -
+ fme; of length m with

H m - j Mj J A [Qj X m - j] = [Qj X m - j] [T j

starting vector p,(A)X,-jel orthogonal to the Range(Qj).

full advantage to be taken of the sparsity and structure of A and of vectorisation
or parallelism. It also gives the user greater freedom in cases where the matrix A
is not held explicitly and only the product of A with vectors is known. Reverse
communication is discussed further in Section 4.3.

Unlike any of the other Arnoldi codes tested, EB13 optionally computes a block
Arnoldi reduction. This option is designed for problems where the wanted eigen-
values are multiple or closely clustered. Another option is available to perform
Chebychev polynomial preconditioning on A.

Finally, once the required eigenvalues of A are computed, subroutine EB13B may
be used to compute the corresponding (normalised) eigenvectors and, optionally, the
scaled eigenvector residuals 11 Ay - 6y112/11Ay112.

Table 3.2 summarises the default procedure used by EB13.

3.3 ARPACK
The ARPACK software package (Lehoucq et al., 1995) provides subroutine DNAUPD that
implements an implicitly restarted Arnoldi method. The scheme is called implicit
because the starting vector is updated with an implicitly shifted QR algorithm on
the Hessenberg matrix H,.

The method is motivated by the following observation. Let AXm = XmHm +
fme2 be a length rn Arnoldi factorisation. Suppose that $ is a polynomial of degree
rn - r. A simple but tedious derivation shows that

$(A)xr = Xm+(Hm) [el e2 ... er] (3 4

Compute the QR factorisation $(Hm) [el e2 ..- e,] = Q r R . Equation (3.2)
may then be rewritten as $(A)X, = XmQ,R,. The column space of XmQr is an
orthogonal basis for $(A)X,.

Restarting the iteration involves post-multiplying the length rn Arnoldi factori-
sation with Q r and thus obtaining a length r factorisation. Thus, an IRA-iteration

4 SOFTWARE COMPARISON 6

may be viewed as a truncated QR algorithm (see Lehoucq, 1995, and Sorensen, 1995,
for further details).

DNAUPD computes the eigenvalues of A that are right-most, left-most, of largest
or smallest modulus, or of largest or smallest imaginary parts. It uses approximate
Schur vectors to restart. An iterated classical Gram-Schmidt algorithm is used to
orthogonalise the Arnoldi basis vectors. The standard deflation rules used by the
QR algorithm are employed on H,. Thus, if a subdiagonal element of H, becomes
small enough, it is set to zero, and the corresponding columns of X, are locked.
As in EB13, reverse communication is used when computing matrix-vector products
with A. An option allows the user to define a polynomial preconditioner on A
through its roots via the implicitly shifted QR iteration on H, performed during
each iteration. Spectral transformations are also available, as well as the ability
to solve the generalised eigenvalue problem, Az = XBz, when B is a symmetric
positive semi-definite matrix.

Finally, analogous to the approach of EB13, once the desired Ritz values have
converged, subroutine DNEUPD optionally computes associated approximate Ritz or
Schur vectors. Moreover, if a spectral transformation is employed, DNEUPD maps the
computed Ritz values to those of the original system.

4 Software comparison

ARNCHEB, ARPACK, and EB13 are all Arnoldi based codes written in FORTRAN 77, but
it is clear from the above descriptions that the algorithms they use differ from one
another in a number of important ways. Furthermore, implementation details differ.
The aim of this section is to examine some of the main differences. This should help
us to understand the difference in performance of the codes when used to solve a
set of test problems (see Section 5).

4.1 Restart mechanism
A principal difference between all three codes is the manner in which each algorithm
restarts the iteration. As discussed in Section 2, restarting mechanisms attempt
to alleviate storage and replace the starting vector with one that is “rich” in the
direction of the desired invariant subspace.

ARNCHEB and EB13 explicitly restart with Ritz vectors. However, EB13 carefully
deflates the converged Ritz vectors, using them to incrementally build a partial Schur
decomposition. Moreover, ARNCHEB uses a linear combination of r Ritz vectors while
EB13 uses the best approximating Ritz vector when restarting. Mathematically,
r linearly independent eigenvectors may not exist and thus ARNCHEB may not be
able to compute the r eigenvalues of interest. In practical computation, the r lin-
early independent eigenvectors may form a poorly conditioned basis for the wanted
eigenspace.

It may be shown that ARPACK’S restarting procedure implicitly replaces the start-
ing vector by a linear combination of r approximate Schur vectors associated with
the r wanted Ritz values. Thus the Arnoldi factorisation is restarted by using nu-
merically orthogonal matrices of order rn and an explicit restart is avoided.

4 SOFTWARE COMPARISON 7

4.2 Deflation
Each of the codes attempts to use deflation in order to reduce the size of the active
Arnoldi factorisation and for robustness. This section is adapted from similar ideas
discussed in Lehoucq and Sorensen, 1995. For ease of discussion, we suppose that
converged quantities are known exactly.

We first examine the deflation strategy used by EB13. iFrom line 3 of the algo-
rithm in Table 3.2, the length rn Arnoldi factorisation is equivalent to

AjX,-j = Xm-jH,-j + fme:-j,

where Aj E (I - QjQT)A(I - QjQT). If we assume that AQj = QjTj,, then
it is easily shown that any vector in the range of Qj is annihilated by Aj and
that IC,-j(Aj, Xm-jel) is orthogonal to the range of Qj. The locking process used
by EB13 thus allows convergence to the remaining eigenvalues of A. Of course,
E B 1 3 never needs to explicitly apply Aj. During the orthogonalisation phase of the
Arnoldi iteration, the columns are orthogonalised against the X,-j locked vectors.

Section 3.3 explains the manner in which ARPACK uses deflation. It sets to zero
any subdiagonal elements of H, that are negligible according to the criteria used
by the standard QR algorithm. If the i-th subdiagonal element of H, is set to zero,
then the first i columns of X, are locked. We remark, that unlike the standard QR
algorithm, ARPACK rarely encounters the opportunity to deflate. Moreover, there is
no guarantee that all the associated vectors locked are desired ones. Upon approxi-
mation of the T desired eigenvalues, a postprocessing step is performed so that the
first r columns of X, are a Schur basis for these T eigenvalues.

Section 3.1 briefly introduced the Wielandt deflation used by ARNCHEB. We as-
sume complex arithmetic in order to avoid being overwhelmed by technical details.
An inductive proof shows that

AUj = UjCj (4-3)

where Cj is the upper triangular portion of the matrix OjUrUj. iFrom equa-
tion (4.3), a direct computation reveals that

AjUj = Uj(Cj - OjUyUj),

and thus Cj - OjUrUj is a strictly lower triangular matrix. The converged Ritz
values are now zero eigenvalues of Aj. However, IC;(Aj,X,el) is not orthogonal to
the column space of Uj unless two further conditions are met. The first requires
Xmel to be orthogonal to the column space of Uj. Assuming the previous condition,
AX,el must also be orthogonal to the column space of Uj. For example, this would
occur if A were a symmetric matrix. In general, the Wielandt deflation adopted by
ARNCHEB does not prevent locked vectors from emerging in subsequent factorisations
computed with Aj. Moreover, careful inspection of ARNCHEB reveals that the starting
vector selected is not orthogonal to the column space of X,.

4.3 Matrix products A x
A large part of the total cost of computing eigenvalues of a sparse nonsymmetric
matrix using Arnoldi’s method is the cost of performing matrix-vector products Ax.

4 SOFTWARE COMPARISON 8

Some timings which illustrate this are given in Scott (1995). It is therefore very
important for the overall performance of the software that matrix-vector products
are computed as efficiently as possible. If the software is to be general purpose,
it is also important that the matrix A is not required to be held in a prescribed
fixed format. In many practical situations, the matrix is not known explicitly, but
only the action of A on vectors is available, so the software needs to be able to
cope with this. Each of the three codes in our study recognises the need to allow
the user to exploit the sparsity and structure of the matrix but one of the major
implementation differences between ARNCHEB and the other two codes is the way in
which matrix-vector products are carried out.

ARNCHEB requires the user to supply a subroutine to perform matrix-vector prod-
ucts. The matrix A is not an argument to the subroutine so the user is not required
to hold the matrix explicitly. Nevertheless, for some problems it can be inconve-
nient to pass the matrix into this subroutine. For example, since ARPACK is written
in FORTRAN 77, the number of subroutine arguments is fixed. Consequently, if a
user needs additional descriptors to perform matrix products, they must be passed
using a COMMON block.

The reverse communication approach adopted by ARPACK and EB13 provides
flexibility and gives the user a greater degree of control. By avoiding passing the
matrix through a COMMON block, the user is able to take full advantage of parallelism
and/or vectorisation. Reverse communication also allows the user to incorporate
different preconditioning techniques in a very straightforward way. For example,
the user may wish to use a shift-and-invert transformation, in which (A - aI)-'
is used in place of A. The eigenvalues close to the shift a will tend to converge
most rapidly since under the transformation they become dominant. In this case,
linear systems of the form (A - aI)w = x are solved in place of the matrix products
w = Ax. If a direct method of solution is used, the LU factorisation of (A - 01)
need only be performed once. However, since reverse communication allows progress
to be monitored, the user may choose to update o as the computation progresses,
and a new factorisation will be required for each shift.

4.4 Exploiting BLAS

Apart from the matrix-vector products with A, Arnoldi's method only requires
dense linear algebra operations to be performed on matrices of order rn. One way
of achieving an efficient implementation and assisting with robustness, portabil-
ity, readability, and maintance of the software is through the use of BLAS (Basic
Linear Algebra Subprograms) kernels (Lawson, Hanson, Kincaid and Krogh, 1979,
Dongarra, DuCroz, Hammarling and Hanson, 1988, and Dongarra, DuCroz, Duff
and Hammarling, 1990). Highly efficient machine-specific implementations of the
BLAS are available for many modern high-performance computers. By exploiting
the BLAS, software can achieve high performance and be portable.

Level 1 BLAS perform basic vector operations, such as y t ax+y. They are not
able to achieve high efficiency on most modern supercomputers but they do assist
with the clarity and portability. Level 2 BLAS perform matrix-vector products,
such as y t aAx + Py. For machines having a memory hierarchy, the Level 2
BLAS do not have a ratio of floating-point operations to data movement that is

4 SOFTWARE COMPARISON 9

high enough to make efficient use of data that reside in cache or local memory. For
these architectures, it is often preferable to partition matrices into blocks and to
perform the computation using matrix-matrix operations on the blocks. The Level
3 BLAS are targeted at the matrix-matrix operations required for these purposes.

Each of the codes in our study uses BLAS routines. ARNCHEB and EB13 employ
mainly Level 1 and Level 2 routines and, in addition, they use EISPACK routines
(Smith, Boyle, Garbow, Ikebe, Klema and Moler, 1976). EISPACK has for many
years provided high-quality portable software for eigenvalue problems; but on mod-
ern high-performance computers EISPACK routines often achieve only a small frac-
tion of the peak performance of the machines. LAPACK (Anderson, Bai, Bischof,
Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney, Ostrouchov and
Sorensen, 1992) was designed to supersede EISPACK. The authors of LAPACK
developed new routines and restructured the EISPACK software with the aim of
achieving much greater efficiency. This was accompolished by writing routines us-
ing the BLAS as building blocks. ARPACK makes extensive use of both the BLAS
and LAPACK routines and we anticipate that this will be reflected in its efficiency
and robustness.

4.5 The stopping criteria
Each of the codes uses different stopping criteria, which adds to the difficulties asso-
ciated with trying to compare their performance (see Section 5). Helpful discussions
of stopping criteria for iterative eigensolvers are given by Bennani and Braconnier
(1994) and Scott (1995). Throughout this section, E denotes a user-defined tolerance.

EB13 follows Stewart (1978) and bases its stopping criterion on demanding that

The difficulty of choosing appropriate stopping criteria was recognised during the de-
velopment of EB13 (Scott, 1995) and as a result, EB13 offers a choice of stopping cri-
teria. The user can require that the j th column of X satisfies II(AX, -XmTm)jl12 <
IIA~~E, or < ~ ~ (A X m) j ~ ~ 2 ~ , or, finally, < E. The advantage of using the norm of A
is that the stopping criterion is based on the backward error. This is discussed
by Chatelin and Frayske (1993). The idea of backward error is to measure the
shortest distance between the original problem with computed solution z and a per-
turbed problem with exact solution z. The normwise backward error associated
with (Tm,X,) is defined by

In the 2-norm, it can be shown that 77 = IIAX, - XmT,112/(IA112.
A disadvantage of using the backward error is that it requires IlAll to be known.

If the user wants to use the stopping criteria involving IlAll, EB13 asks for IlAll (or
an estimate of llAll) to be provided. If the user is unable to do this, the code will
compute the Frobenius norm of A but at the cost of n matrix-vector products.

To save work, the residual II(AX, -XmTm)jIl2 is computed only if all the basis
vectors X; with 0 < i < j have already been accepted. EB13 monitors the residuals
for unacceptably slow convergence and, if necessary, terminates the computation

4 SOFTWARE COMPARISON 10

with a warning that the requested accuracy was not achieved. In this event, the user
is advised on how to modify the input parameters to try and obtain the requested
accuracy and facilities are included for restarting the computation from the point
at which the warning was issued.

The most compelling reason for possibly not wishing to use a stopping criterion
that involves the norm of A is that it can lead to accepting Ritz values that have
no digits of accuracy. In some practical situations, eigenvalues are used to study
stability, and the interest is in whether the right-most eigenvalue has a nonpositive
real part. Since high precision in the computed eigenvalues may not be necessary,
the user may be tempted to set the convergence tolerance E to be, for instance,
l O W 4 . But if the norm of A is of order 105, the stopping criterion may lead to a
computed 8 being accepted as converged when it actually has no accuracy. Thus,
wrong conclusions concerning the stability of the system may be drawn. Clearly, if
the norm of A is to be used, the user should take its size into account when selecting
the convergence tolerance.

For Arnoldi’s method, an inexpensive estimate of the norm of the eigenvector
residual is available. Let AX, = X,H, + fme: be an Arnoldi factorisation of
length rn. If s is an eigenvector of H, and y = X,S, it follows that

The benefit of using the Ritz estimate Ilf,II le:sl is that it avoids explicit formation
of the direct residual IIAX,s - Xms811. ARPACK bases its stopping criterion on the
Ritz estimate. Moreover, since only the last component of s is needed, ARPACK does
not compute the full eigenvectors of H, at each iteration. The computation is
terminated on the first iteration that r Ritz values all satisfy llf,II le:sl < 101~.

Recent work by Chatelin (1993) and Bennani and Braconnier (1994) suggests
that when A is highly non-normal, there can be a significant difference between
the Ritz estimate and the eigenvector residual. Because of this potential difference,
ARNCHEB computes both the scaled Ritz estimate and the direct backward error given
by

respectively, where IlAll~ denotes the Frobenius norm of A. The current version of
the code tests the direct backward errors for convergence. ARNCHEB does not offer
the user the option of supplying IlAll~ but computes l lA / l~ with n matrix-vector
products. Our numerical results show that this can make ARNCHEB uncompetitive
with the other codes (see Appendix).

4.6 Storage requirements

When the order n of the matrix A is large, the amount of storage needed can be
an important consideration when choosing software. In Table 4.3 we compare the
storage requirements of the codes in our study. We observe that, for a given subspace
dimension m, ARPACK uses the least amount of storage. We also see that, for a block
size nb = 1, E B 1 3 needs three arrays of length nrn. There are two reasons why

4 SOFTWARE COMPARISON 11

Code

EB13 demands an extra array. First, to use the three-term recurrence relation for
Chebychev polynomials to compute pl(A)X, three arrays of length nm are needed.
Second, as already discussed, EB13 uses reverse communication. To try to ensure
against the user’s overwriting the latest approximation X, to the Schur vectors, the
user forms matrix-vector products by using two arrays U and W of dimension nm
and then, within the code, copying into the appropriate part of the third array X,
is performed. Thus, even if Chebychev acceleration is not employed, EB13 demands
three arrays of length nm.

Storage

Table 4.3: Storage requirements (nb denotes the block size for EB13, and t denotes
that ARNCHEB is used with deflation)

ARNCHEB
ARNCHEBt
EB13
ARPACK

2n x (m + 5) + 2m2 + O(m)
3n x (m + 5) + 2m2 + o (m)
3n x rn x nb + 2m2 + O(m)
n x (m + 4) + 3m2 + o (m)

4.7 User interface

An important feature of any code written for general use is that it should be ac-
companied by straightforward but comprehensive documentation which allows the
code to be used with a minimum of effort. The documentation should also assist the
user in the event of the computation failing for his or her problem. Our numerical
experiments have provided us with a feel for how easy the software is to use and in
this section we comment briefly on our experiences.

0 EB13 and ARPACK came with a well-commented parameter list which allowed
us to use them without any difficulties. ARNCHEB does not document all input
and output parameters fully, and the code itself does not include comments to
explain each of the parameters.

0 A particularly helpful feature of the documentation provided with EB13 was
that it included a simple sample program. This would be of particular value
to users who are unfamiliar with using reverse communication.

0 The codes all provide sample programs that illustrate their use. In partic-
ular, ARPACK has an extensive set of programs illustrating the use of reverse
communication and all its options.

0 EB13 and ARPACK have error flags and check the parameters supplied by the
user for errors. If an error is detected, EB13 optionally prints a message indi-
cating what the error is. ARPACK sets a flag and provides documentation for

5 NUMERICAL EXPERIMENTS 12

interpreting the flag. ARNCHEB has no error flag, performs no error checking,
and offers no assistance in the event of an error.

0 The codes all have monitoring printing; that is, at each iteration they print val-
ues of, for example, the computed eigenvalues and the corresponding residuals.
This information allows the user to follow the convergence. It is particularly
useful for the reverse communication codes EB13 and ARPACK because, if the
convergence is not proceeding satisfactorily, the user is able to intervene. For
EBI3 and ARPACK the monitoring printing is optional.

0 Our experience suggests that ARNCHEB was not comprehensively tested. The
code was found to contain bugs.2

0 The FORTRAN programming within ARNCHEB could be considerably improved.
The code uses nonstandard FORTRAN 77 (such as REAL*8 declarations), which
caused some of the compilers we used for testing to return error messages.
When the code was checked with a FORTRAN code analy~er,~ a large number
of errors messages were returned. The analyzer passed the other two codes as
conforming to the FORTRAN 77 standard and they were found to be portable
when tested on a range of computers (including SUN workstations, a Cray
Y-MP, and IBM RS/6000’s).

5 Numerical experiments
In this section and the Appendix we present the results of using the software dis-
cussed in this report to compute a small number of eigenvalues and eigenvectors of
a set of test problems.

5.1 The test matrices
The test problems all arise from real scientific and industrial applications. A brief

description of the test problems is given in Table 5.4. The problems are drawn from
the Harwell-Boeing collection of sparse matrices (Duff, Grimes and Lewis, 1992) and
the recent collection of large eigenvalue problems of Bai, Barrett, Day and Dongarra
(1995). Further details of the problems may be found in the above two references.
We have attempted to select a range of problems with different properties and
applications. We employ the same set of test problems in our evaluation of subspace
iteration software (Lehoucq and Scott, 1996b). This study has again highlighted
the need to have a set of practical problems available as a testbed for eigenvalue
algorithms and we would welcome further problems which could also be used to test
the software.

5.2 Verification

It is important when testing software that an attempt is made to check the correct-
ness of the computed results. For example, an important consideration is whether

2The author of the code was contacted with our findings.
3pfort, ISTLA - Toolpack Static Analyser, Version 1.2

5 NUMERICAL EXPERIMENTS 13

Identifier

PORES2
PORES3
GRE1107

HOR131
IMPCOLC
IMPCOLD
NNC666
NNC1374
WEST0156
WEST0 167
WEST2021
*CK400
*CK656
* RWK5 15 1

*CDDE
*TOLOSA
*BW2000
* PDE2961

Order

1224
532

1107

434
137
425
666

1374
156
167

2021
400
656

5151

2000
2961

Number of
entries

9613
3474
5664

4710
41 1

1339
4044
8606
371
507

7353
2860
3884

20199

7996
14585

Description/discipline

Oil reservoir simulation.
Oil reservoir simulation.
Simulation studies in
computer systems.
Flow network problem.
Ethylene plant model.
Nitric acid plant model.
Nuclear reactor core modelling.
Nuclear reactor core modelling.
Chemical engineering plant model.
Chemical engineering plant model.
Chemical engineering plant model.
Not available.
Not available.
Markov chain modelling:
random walk.
2-D convection diffusion problem.
Stability of aircraft in flight.
Chemical engineering model.
Model PDE eigenvalue problem

Table 5.4: The matrices used for performance testing (* indicates matrix from the
collection of Bail Barratt, Day and Dongarra, 1995).

any of the sought-after eigenvalues have been missed. In the symmetric case, if a
factorisation is performed, an inertia count can then be used to provide a check for
missing eigenvalues (see Grimes et al., 1994 and Parlett, 1980 for details). There is
no analogous procedure for nonsymmetric matrices.

For the purposes our study, we may determine the reliability of the codes using
the exact eigenvalues. The forward error is defined to be

where A; and 0; are the exact and computed eigenvalues, respectively, of A. This
tests the forward stability of the software. For the test problems for which the exact
eigenvalues are not known, we compare the computed eigenvalues with those found
using the QR algorithm.

We also check results by computing the r eigenvector residuals

llAY - flYll2,

and the real and imaginary portions of the Rayleigh Quotient errors

llYTAY - 0YTYl12.

5 NUMERICAL EXPERIMENTS 14

For ARPACK and EB13, we check the orthogonality of the computed Schur basis
and quality of the Schur projection by computing

respectively.
The checks (5.5)-(5.7) are designed to test the backward stability of the software.

5.3 The test environment

The numerical experiments were performed on an IBM RS/SOOO 3BT using double
precision arithmetic, and the vendor-supplied BLAS. As we have already seen, the
software in our study employ different stopping criteria. Therefore, even if we supply
each code with the same convergence tolerance and the computations all terminate
successfully, the eigenvalues computed by each code may differ. For the results
reported in this section and in the Appendix, the codes each used a convergence
tolerance that gave eigenvalues with an accuracy of at least fi (for some of the test
examples, different codes used different convergence tolerances). The convergence
tolerances used were all in the range 1Ou to 10-4.

In designing their software, the authors have all attempted to produce software
which can be used as a black box while at the same recognising that in doing so
they have had to make a number of ad hoc decisions and there may be problems for
which the choices that have been made are either poor or completely unsuitable. To
assess the usefulness of the choices, in our numerical experiments we only use the
default values (or values recommended by the authors in their documentation).

Good general-purpose software should make most decisions automatically and
not require the user to have a detailed understanding of the algorithm being imple-
mented. Each of the codes in our study requires the user to choose the number T

of eigenvalues required, the subspace dimension m, and the convergence tolerance
E. In addition, the codes require the user to decide which portion of the spectrum is
to be computed.

Table 5.5: Input from the user

1 Code Required Input

ARNCHEB Matrix-vector product routine
Type of ellipse
Degree of Chebychev polynomial
Amount of orthogonalisation
Whether to perform deflation

ARPACK Maximum number of iterations
EB13 Block size

Requiring the user to choose these parameters may appear reasonable because
the user is likely to know how many eigenvalues are required and how much accuracy
is wanted. However, as discussed in Section 4.5, in order to select an appropriate

5 NUMERICAL EXPERIMENTS 15

value for E, the user generally needs some knowledge of the problem, such as the norm
of A or the size of the sought-after eigenvalues. Furthermore, our experience with
the codes has shown that selecting r to be greater than the number of eigenvalues
actually required can sometimes yield more rapid convergence. This can happen
if the sought-after eigenvalues are not well separated from the remaining ones and
better separation is achieved by increasing r. Moreover, the efficiency of the software
depends strongly on the choice of rn. For small m, convergence may not be possible.
On the other hand, if rn is large, the amount of work per iteration and the storage
requirements may be prohibitively high.

When using ARNCHEB, the user has a number of decisions to make. He or she
must decide which of the routines provided for computing an ellipse is to be used and
whether or not to use reorthogonalisation and/or deflation. Making these decisions
requires an understanding of Arnoldi’s method and its implementation. The ability
to experiment with different options is of considerable value, and thus EB13 also
offers different ellipse routines. The difference is that EB13 has a default routine
that is used unless the user selects one of the alternatives. The use of default
settings helps make EB13 user friendly while at the same time providing flexibility.

The code ARNCHEB requires the degree of the Chebychev polynomial to be spec-
ified by the user but provides no advice on how to do this. We performed some
preliminary experiments with the code and, on the basis of these experiments, se-
lected a degree of rn - r for all our reported results. In our tests, doubling or even
tripling this value generally increased the total time required for convergence.

In our tests, a limit of 4000rn was imposed on the number of matrix-vector
products allowed.

The results of our numerical experiments are lengthy so in the next two subsec-
tions we present detailed results for the TOLOSA matrix and the two-dimensional
convection-diffusion problem (CDDE), and we then summarise our findings for the
remaining test problems. The complete results for computing a single eigenpair
are given in Appendix A and for computing several eigenpairs the results are in
Appendix B.

5.4 Results for the TOLOSA Matrix

The TOLOSA matrix arises from the stability analysis of a model of an airplane in
flight. Its eigenvalues lie on a parabola in the left-half plane that opens to the left.
The eigenvalues of interest are the eigenvalues of largest imaginary part, which are
also those of largest modulus. The matrix is non-normal, and its departure from
normality increases with the order of the matrix.

We employed each of the codes to compute the complex conjugate pair of eigen-
values of largest imaginary part and the corresponding eigenvectors of the TOLOSA
matrix with orders up to 2000. Since the The eigenvalues of interest are the eigen-
values of largest imaginary part are also those of largest modulus, we ran the codes
ARPACK and EB13 with WHICH = LM (largest modulus) and tt WHICH = LI (largest
imaginary part). Our findings for n = 1000 and n = 2000 are summarised in
Tables 5.6 and 5.7.

We see that for this problem the value of rn giving the best ARPACK results is
larger than that giving the best ARNCHEB and EB13 results. This suggests that the

5 NUMERICAL EXPERIMENTS 16

Table 5.6: CPU times (in seconds) and matrix-vector products for the TOLOSA
matrix of order 1000

Subspace dimension m
Algorithm WHICH 8 16 32
ARNCHEB L I 1.011867 2.412583 7.314294
ARPACK LM 1213992 4.511080 3.21482
ARPACK L I 1515120 3.11744 3.01452
EB13 LM 0.81405 2.21749 2.61496
EB13 L I 5.615545 0.81625 8.213917

Table 5.7: CPU times (in seconds) and matrix-vector products for the TOLOSA
matrix of order 2000

Subspace dimension m ,

Algorithm WHICH 8 16 32
ARNCHEB L I 5.014201 6.314100 1515484
ARPACK LM 1612528 3.41422 1211052
ARPACK L I 108116844 1311612 7.11602
EB13 LM 3.31793 8.711429 8.81892
EB13 LI 2.811451 6.412468 7.111657

5 NUMERICAL EXPERIMENTS 17

figures given in Table 4.3 for the storage requirements of the different codes should
be taken into consideration. We also see in this example that none of the codes
clearly performs better than the others, and each code is sensitive to the value of rn
and, in the case of ARPACK and EB13, to which eigenvalues the code has been asked
to compute.

5.5 Results for a Convection-Diffusion Problem

The second problem for which we present results is a two-dimensional model convection-
diffusion problem

-Au(s, Y) + PV * VU(Z, Y) = Y>,

on the unit square [0,1] x [0,1], with zero boundary data and p a real number.
The problem is discretised using centered finite differences. The eigenvalues and
eigenvectors of the resulting matrix are known explicitly (see, for example, Bai et
al., 1995). We have chosen this example because it has the following interesting
properties:

0 Many of the eigenvalues have multiplicity two. It may be shown that, if
IpI 5 fi, the eigenvalues are all real and the matrix is diagonalisable.

0 As the mesh size decreases, the relative separation of all the eigenvalues de-
creases. All the eigenvalues are contained within the interval (0 , 8).

0 As p increases, so does the non-normality of the matrix.

We computed r = 6 eigenpairs of largest real part for a range of values of p and
for orders up to n = 10,000. The eigenvalues of largest real part are also those
of largest modulus. We found that, as n was increased, EB13 and ARPACK required
small a convergence tolerance to avoid missing multiple eigenvalues.

Table 5.8: CPU times (in seconds) and matrix-vector products for the 2-D Laplacian
(p = 0) matrix of order 2500 (t denotes that one or more of the requested eigenvalues
was missed)

Subspace dimension m
Algorithm WHICH i a 36

ARPACK LM 8.71630 9.11532
ARPACK LR 9.21616 9.61557
EB13 LM 3513707 3212375

ARNCHEB LR t t

EB13 LR 7.212116 8.211358

In addition to the tests reported in the tables, we ran the case p = 40 with n =
10,000. Since IpI 5 fi, the exact eigenvalues are all real. All the codes experienced
difficulties for this example. Using convergence tolerances of fi and 103u, ARPACK
ran without an error flag being set, but complex eigenvalues were returned. When

5 NUMERICAL EXPERIMENTS 18

Table 5.9: CPU times (in seconds) and matrix-vector products for the 2-D Laplacian
(p = 0) matrix of order 10,000. (t denotes that one or more of the requested
eigenvalues was missed. * denotes that code did not converge within 4000m matrix-
vector products).

Subspace dimension m
Algorithm WHICH 18 36
ARNCHEB LR * *
ARPACK LM 171/2625 85/1153
ARPACK LR 185/2827 79/1081
EBi3 LM t 342/5687
EBi3 LR 81/4781 115/4263

Table 5.10: CPU times (in seconds) and matrix-vector products for the CDDE
matrix with p .= 10 of order 2500. (t denotes that one or more of the requested
eigenvalues was missed. * denotes that code did not converge within 4000m matrix-
vector products).

Subspace dimension m
Algorithm WHICH 18 36
ARNCHEB LR t t
ARPACK LM 8.6/620 12/694
ARPACK LR 8.31602 11/613
EBi3 LM t 46/3383
EBi3 LR 41/12178 *

Table 5.11: CPU times (in seconds) and matrix-vector products for the CDDE
matrix with p = 15 of order 10000 (* denotes that code did not converge within
4000m matrix-vector products)

Subspace dimension m
Algorithm WHICH 18 36
ARNCHEB LR * *
ARPACK LM 71/1123 103/1398
ARPACK LR 61/991 80/1095
EBi3 LM 727/20004 436/7263
EBi3 LR 1251/74107 *

5 NUMERICAL EXPERIMENTS 19

the accuracy of the computed eigenvalues was tested, the forward error was found to
be O(10-2). However, the computed results were those of a nearby matrix: the four
residuals (5.5)-(5.7) were suitably small. With the same convergence tolerances,
EB13 returned real eigenvalues but missed the multiplicities.

In each of our tests on this problem, ARNCHEB failed to compute the required
eigenvalues with the requested accuracy. The code was successful in computing the
leading eigenpair. As mentioned in Section 3.1, if deflation is used, ARNCHEB does
not return the Ritz values associated with the locked vectors nor the Ritz vectors for
A. As an experiment, we computed the projection of A onto the orthogonal span
of the column space of Uj and computed the Ritz values. For the smaller problems,
this allowed ARNCHEB to compute more of the required eigenvalues, however, for n 2
2,500, ARNCHEB was not successful. Moreover, it often returned spurious Ritz values.
Section 4.2 demonstrated how Wielandt deflation does not, in general, prevent the
locked vectors from re-appearing in subsequent Arnoldi iterations. We are lead to
conclude that the re-appearing vectors contaminated the overall iteration.

5.6 General Findings

Our general findings from the numerical experiments may be summarised as follows:

ARPACK is generally the fastest and most dependable of the codes studied, es-
pecially for small convergence tolerances and large departures from normality.

An attractive feature of ARPACK is that it displays monotonic consistency, that
is, as the convergence tolerance decreases so does the size of the computed
residuals. The stopping criteria used by EB13 which attempts to detect stag-
nating convergence means that EB13 does not always display this property.

There is tendency for Arnoldi codes to miss multiplicities and to miss some
of the sought-after eigenvalues when they are not well-separated from the
unwanted ones. We found that E B 1 3 and ARPACK were, in general, able to
detect multiple eigenvalues but to do so it was necessary to use double precision
arithmetic and to choose a very small convergence tolerance (for example,
104u). If a larger tolerance (such as J.;l> was used, multiple eigenvalues could
be missed.

The code EB13 offers many options and, as these options are fully documented,
they enable the user to experiment with different choices of the parameters
which define the underlying algorithm. Further work needs to be done on
selecting appropriate choices and on automatically changing and modifying
parameters as the computation proceeds and knowledge of the eigenvalue dis-
tribution is gained.

For some of the examples (in particular, when several eigenvalues were re-
quested), ARPACK uses dramatically fewer matrix-vector products than the
other codes (see, for example, problems GRE1107, IMPCOLD, and WEST2021
with r = 5). This can result in substantial savings in computation time when
application of the matrix-vector product is expensive. However, the restarting
strategy used by ARPACK can be more expensive than that used by the other

6 FUTURE DIRECTIONS 20

codes. This is typically the case when the cost of a matrix-vector product is
inexpensive. The CDDE examples show this, although the ratio of the num-
ber of matrix-vector products to the total time taken decreased as the problem
sized decreased.

0 For problems for which several eigenvalues are required, EB13’s blocking option
can give worthwhile reductions in the number of iterations and in the computa-
tion time needed for convergence. For example, for problem GRE1107, which
has clustered eigenvalues, using EB13 with Chebychev acceleration, the com-
putation times for r = 5 are 4.9 and 2.7 seconds for the unblocked and blocked
versions, respectively. However, for some problems, the blocking option gives
disappointing results and further work appears to be needed. Results can be
particularly poor if an inappropriate blocksize is chosen. For problem IMP-
COLD, if 5 eigenvalues are wanted and the blocksize is also taken to be 5 ,
then using 4 Arnoldi steps per iteration, EB13 requires 64 iterations to achieve
convergence. However, if the blocksize is increased to 6, the number of iter-
ations is cut to 19. This is because X6 is close to X g and better separation
is achieved by increasing the block size. We observe that the results for the
block Arnoldi scheme given in Sadkane (1993) reflect a much larger subspace
being constructed than was attempted in our study.

0 A major disadvantage of all the codes is that they are sensitive to the choice
of the input parameters. Moreover, we have found that the performance of
Arnoldi based software is extremely sensitive to implementation details.

6 Future directions
We end our study of Arnoldi based software by briefly discussing how the quality
of existing software might be improved in terms of efficiency, reliability, and ease of
use.

Each of the codes in our study was written in FORTRAN 77. As discussed in Sec-
tion 4.3, for such codes, the use of reverse communication for carrying out matrix-
vector products is recommended. However, it is perhaps time to consider developing
software using a more modern programming language. This could remove the re-
quirement for a reverse communication interface. A more modern programming
language could also help simplify the user interface in other ways. For example, the
FORTRAN 90 programming language allows the use of optional arguments. By using
optional arguments, the experienced user can be given a large amount of control
and freedom to experiment, while at the same time the less familiar user can have
the amount of input data reduced to a minimum.

Further research is needed into the automated selection of parameters such as
the dimension rn of the Krylov subspace. Here again there would be advantages in
using, for example, FORTRAN 90, which allows dynamic allocation of storage. Thus,
the user would only be asked to specify the number r of sought-after eigenvalues,
and the software would automatically choose rn and then adjust it at each iteration
as the computation proceeded to try and accelerate convergence.

7 AVAILABILITY OF THE SOFTWARE AND TEST MATRICES 21

Improved polynomial restarting methods are required. The success of the Arnoldi
codes depends upon such strategies. EB13 includes mechanisms for tracking the
polynomials constructed as the iteration progresses. Such mechanisms should be
incorporated into new polynomial restarting methods. ARPACK allows the user to
select shifts during each iteration and should prove useful for determining alternate
or new polynomials. Again, the selection of the restart polynomial needs to be
automated.

The whole question of the stopping criteria is another area requiring investiga-
tion. Further research and testing need to be undertaken to improve the ways in
which the software decides to terminate the computation. Strategies for detecting
stagnating convergence to prevent unnecessary work from being performed are also
needed. Although not always successful, EB13 does attempt to do this.

Closely related to the stopping criteria is the verification of the computed eigen-
values and eigenvectors. At present, no software is publicly available for determining
whether the given eigenvalue problem was solved. Successful convergence implies
only that an eigenvalue problem was solved. For the Arnoldi software, which we
found can experience difficulties when attempting to locate multiple and closely
clustered eigenvalues, it is particularly important to have some means of checking
that one or more of the sought-after eigenvalues has not been missed. Some promis-
ing work on a possible approach has been reported on by Meerbergen, Spence and
Roose (1994).

In conclusion, it is clear that although the Arnoldi software situation is much
more promising than it was even 5 years ago, there remains important problems and
limitations with the current software which need to be addressed. Given the results
of all our experiments, we believe that an implicitly restarted Arnoldi iteration is a
promising way forward and that further investigation into block algorithms is also
likely to be worthwhile.

7 Availability of the Software and Test Matrices

We summarise how the interested reader may obtain the test matrices and software
reviewed in this study.

The Harwell-Boeing matrices of Duff et al. are available by anonymous ftp to
seamus. cc . rl . ac . uk in the directory pub/harwell-boeing.

ARNCHEB is available by anonymous ftp to or ion. cerf acs . f r in the directory
pub/algo/software/Qualcomp/Arncheb/Real.

ARPACK is available by anonymous ftp to ftp.caam.rice.edu in the direc-
tory pub/people/sorensen/ARPACK. The file README provides directions on
downloading the software.

EB13 is included in Release 12 of the Harwell Subroutine Library, and any-
one interested in using the code should contact the HSL Manager: Dr. S. J.
Roberts, Harwell Subroutine Library, AEA Technology, Building 552, Har-
well, Oxfordshire, OX11 ORA, England, tel. $44 (0) 1235 434714, fax +44 (0)

8 ACKNOWLEDGEMENTS 22

1235 434136, or e-mail S c o t t .RobertsQaeat . co .uk, who will provide details
of price and conditions of use.

8 Acknowledgements
The authors are grateful to Zhaojun Bai and David Day for supplying some of the
test problems, and to Iain Duff and Danny Sorensen for their interest and support
of this project.

References

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LA-
PACK Users’ Guide. SIAM, Philadelphia, PA., second edn, 1992.

W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix

Z.

M

T.

F.

F.

J.

eigenvalue problem. Quarterly of Applied Mathematics, 9, 17-29, 1951.

Bai, R. Barrett, D. Day, and J. Dongarra. Nonsymmetric test matrix collection.
Research report, Department of Mathematics, University of Kentucky, 1995.

Bennani and T. Braconnier. Stopping criteria for eigensolvers. Technical report,
CERFACS, November 1994.

Braconnier. The Arnoldi-Tchebycheff algorithm for solving large nonsymmetric
eigenproblems. Technical Report TR/PA/93/25, CERFACS, Toulouse, France,
1993.

Chatelin. Eigenvalues of Matrices. Wiley, 1993.

Chatelin and V. Frayske. Qualitative computing: elements of a theory for finite-
precision computation. Technical report, CERFACS and THOMSON-CSF,
June 1993. Lecture Notes for the Commett European Course, June 8-10, Orsay,
France.

Cullum and W. E. Donath. A block Lanczos algorithm for computing the q al-
gebraically largest eigenvalues and a corresponding eigenspace for large, sparse
symmetric matrices. In ‘Proceedings of the 1974 IEEE Conference on Decision
and Control’, pp. 505-509, New York, 1974.

J.J. Dongarra, J. DuCroz, I. S. Duff, and S. Hammarling. A set of level 3 basic linear
algebra subprograms. ACM Transactions on Mathematical Software, 16(l), 1-
17, 1990.

J.J. Dongarra, J. DuCroz, S. Hammarling, and R. J. Hanson. An extended set of
Fortran basic linear algebra subprograms. A CM Transactions on Mathematical
Software, 14(1), 1-17, 1988.

REFERENCES 23

I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing
sparse matrix collection (Release 1). Technical Report RAL-92-086, Rutherford
Appleton Laboratory, Chilton, England, 1992.

G. H. Golub and R. Underwood. The block Lanczos method for computing eigen-
values. In J. R. Rice, ed., ‘Mathematical Software III’, pp. 361-377, 1977.

R. G. Grimes, J. G. Lewis, and H. D. Simon. A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems. SIAM Journal on Matriz
Analysis and Applications, 15(l), 228-272, January 1994.

W. Karush. An iterative method for finding characteristics vectors of a symmetric
matrix. Pacific Journal of Mathematics, 1, 233-248, 1951.

C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. Journal of Research of the National Bureau
of Standards, 45(4), 255-282, October 1950. Research Paper 2133.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T . Krogh. Basic linear algebra
subprograms for Fortran usage. A CM Transactions on Mathematical Software,
5(3), 308-323, 1979.

R. B. Lehoucq. Analysis and Implementation of an Implicitly Restarted Iteration.
PhD thesis, Rice University, Houston, Texas, May 1995. Also available as
Technical Report TR95-13, Dept. of Computational and Applied Mathematics.

R. B. Lehoucq and J. A. Scott. An evaluation of software for computing eigenvalues
of sparse nonsymmetric matrices. Technical Report MCS P547, Argonne Na-
tional Laboratory, 1996a. Submitted to ACM Transactions on Mathematical
Soft ware.

R. B. Lehoucq and J. A. Scott. An evaluation of subspace iteration software
for sparse nonsymmetric eigenproblems. Technical Report RAL-TR-96-022,
Rutherford Appleton Laboratory, Chilton, England, 1996b.

R. B. Lehoucq and D. C. Sorensen. Deflation techniques within an implicitly
restarted iteration. SIAM Journal on Matrix Analysis and Applications, 1995.
To appear.

R. B. Lehoucq, D. C. Sorensen, P. Vu, and C. Yang. ARPACK: An impbementa-
tion of the Implicitly Re-started Arnoldi Iteration that computes some of the
eigenvalues and eigenvectors of a large sparse matrix, 1995. Available from
netlib@ornl.gov under the directory scalapack.

K. Meerbergen, A. Spence, and D. Roose. Shift-invert and Cayley transforms for the
detection of rightmost eigenvalues of nonsymmetric matrices. BIT, 34,409-423,
1994.

C. C. Paige. The computation of eigenvalues and eigenvectors of very large sparse
matrices. PhD thesis, University of London, London, England, 1971.

REFERENCES 24

B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.

Y. Saad. Variations on Arnoldi’s method for computing eigenelements of large
unsymmetric matrices. Linear Algebra and Its Applications, 34, 269-295, 1980.

Y. Saad. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue
problems. Mathematics of Computation, 42, 567-588, 1984.

Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halsted Press, 1992.

M. Sadkane. A block Arnoldi-Chebyshev method for computing the leading eigen-
pairs of large sparse unsymmetric matrices. Numerische Mathematik, 64, 181-
193, 1993.

J. A. Scott. An Arnoldi code for computing selected eigenvalues of sparse real
unsymmetric matrices. ACM Transactions on Mathematical Software, 21,432-
475, 1995.

G. L. G. Sleijpen and H.A. Van der Vorst. A Jacobi-Davidson iteration method for
linear eigenvalue problems. Technical Report 856 (revised), University Utrecht,
Department of Mathematics, 1995.

B. T. Smith, J. M. Boyle, J. J. Dongarra B. S. Garbow, Y . Ikebe, V. C. Klema,
and C. B. Moler. EISPACK Guide. Springer-Verlag, Berlin, second edn, 1976.
Volume 6 of Lecture Notes in Computer Science.

D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method.
SIAM Journal on Matrix Analysis and Applications, 13(l) , 357-385, January
1992.

D. C. Sorensen. Implicitly restarted Arnoldi/Lanczos methods for large scale eigen-
value calculations. In D. E. Keyes, A. Sameh and V. Venkatakrishnan, eds,
‘Proceedings of the ICASE/LaRC Workshop on Parallel Numerical Algorithms,
May 23-25, 1994’, Kluwer, Norfolk, Va, 1995. To appear.

G. W. Stewart. SRRIT - A FORTRAN subroutine to calculate the dominant in-
variant subspaces of a real matrix. Technical Report TR-514, University of
Maryland, 1978.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, UK,
1965.

A APPENDIX: TABLES OF RESULTS FOR RIGHT-MOST EIGENPAIR 25

A Appendix: Tables of results for right-most
eigenpair

For examples for which the right-most eigenvalue is also the eigenvalue of largest
modulus, results are given for ARPACK and EB13 when the right-most eigenvalue is
requested (WHICH = LR) and the eigenvalue of largest modulus is requested (WHICH
= LM).

PORES2, T = l , m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 1401 7 3.37
ARPACK LR 90 5 0.50
EB13 LR 119 3 0.40

PORES3, T = 1,m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR * * *
ARPACK LM 100 24 0.23
ARPACK LR * * *
EB13 LM 217 27 0.40
EB13 LR * * *

* denotes that code did not converge with
the requested accuracy within 4000m matrix-vector products.

GRE1107, T = 1,m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 2204 47 4.00
ARPACK LM 420 119 1.94
ARPACK LR 320 71 1.28
EB13 LM 929 116 2.85
EB13 LR 465 7 1.05

A APPENDIX: TABLES OF RESULTS FOR RIGHT-MOST EIGENPAIR 26

HOR131, T = 1,m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 496 2 0.53
ARPACK LM 28 6 0.07
ARPACK LR 28 6 0.07
EB13 LM 32 7 0.08
EB13 LR 57 2 0.09

IMPCOLC, T = 1,m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 360 9 0.06
ARPACK LM 200 34 0.15
ARPACK LR 59 14 0.06
EB13 LM 181 20 0.08
EB13 LR 117 3 0.02

IMPCOLD, T = l , m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARMCHEB LR t t t
ARPACK LR t t t
EB13 LR 1963 24 1.29

t indicates sought-after eigenvalue was missed.

NNC666, T = l , m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 912 10 1.00
ARPACK LR 132 32 0.35
EB13 LR 117 3 0.18

A APPENDIX: TABLES OF RESULTS FOR RIGHT-MOST EIGENPAIR 27

NNC1374, T = l , m = 8

Code WIIICH Matrix-vector Iterations Time
products (secs)

~ ~~~

ARNCHEB LR 1758 16 4.11
ARPACK LR 176 43 1.15
EB13 LR 201 4 0.66

WEST0156, T = 1,m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 195 1 0.03
ARPACK LR 38 6 0.04
EB13 LR 59 2 0.02

WEST0167, T = 1,m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 367 8 0.08
ARPACK LR 135 38 0.19
EB13 LR 58 2 0.01

WEST2021, T = 1,m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 3233 52 8.64
ARPACK LR 40 1 103 3.73
EB13 LR 4869 57 17.34

PDE2961, T = l , m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 3299 14 13.36
ARPACK LR 180 30 2.29
EB13 LR 204 4 1.37

A APPENDIX: TABLES OF RESULTS FOR RIGHT-MOST EIGENPAIR 28

RWK5151, T = l ,m = 8

Code WHICH Matrix-vector Iterations Time
products (secs)

ARNCHEB LR 5167 1 19.18
ARPACK LR 350 88 7.44
EB13 LR 905 12 7.71

B APPENDIX: TABLES OF RESULTS FOR SEVERAL EIGENVALUES 29

B Appendix: Tables of results for several eigen-
values

PORES2, T = 4,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 1712 8 4.74
ARPACK LR 1 230 17 1.92
EB13 LR 1 1759 25 6.99
EB13 LR 4 t t t

t denotes that code did not converge with
the requested accuracy within 4000m matrix-vector products.

PORES3, T = 5,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 t t t

ARPACK LR 1 11684 782 38.19
EB13 LR 1 t t t

EB13 LR 5 t t t

t denotes that code did not converge with
the requested accuracy within 4000m matrix-vector products.

B APPENDIX: TABLES OF RESULTS FOR SEVERAL EIGENVALUES 30

GRE1107, T = 5, m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 * * *
ARPACK LM 1 227 20 1.54
ARPACK LR 1 260 18 1.42
EB13 LM 1 1558 77 5.91
EB13 LR 1 1950 21 4.95
EB13 LM 5 3925 196 19.05
EBI3 LR 5 1449 6 2.69

* denotes that code did not converge with
the requested accuracy within 4000m matrix-vector products.

HOR131, T = 5,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 749 5 0.98
ARPACK LM 1 46 3 0.15
ARPACK LR 1 45 3 0.14
EB13 LM 1 221 11 0.49
EB13 LR 1 237 5 0.40
EB13 LM 5 505 25 1.04
EB13 LR 5 245 2 0.23

IMPCOLC, T = 5,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 t t t
ARPACK LR 1 188 16 0.33
EB13 LR 1 436 6 0.16
EB13 LR 5 245 2 0.06

t indicates sought-after eigenvalues were missed.

B APPENDIX: TABLES OF RESULTS FOR SEVERAL EIGENVALUES 31

IMPCOLD, T = 5,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 * * *
ARPACK LR 1 793 61 0.72
EB13 LR 1 2950 31 2.38
EB13 LR 5 12656 64 7.73

* denotes that code did not converge with
the requested accuracy within 4000m matrix-vector products.

NNC666, T = 5,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 2246 28 3.48
ARPACK LR 1 102 7 0.40
EB13 LR 1 419 6 0.75
EB13 LR 5 42 3 3 0.51

NNC1374, T = 5 ,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 t t t
ARPACK LR 1 145 10 1.24
EB13 LR 1 557 7 2.07
EB13 LR 5 700 4 1.83

t indicates sought-after eigenvalues were missed.

WEST0156, T = 5,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 25 1 1 0.06
ARPACK LR 1 29 2 0.05
EB13 LR 1 25 1 0.02
EB13 LR 5 286 4 0.12

B APPENDIX: TABLES OF RESULTS FOR SEVERAL EIGENVALUES 32

WEST0167, T = 5,m = 20

Code WHICH Block Matrix-vector Iterations .Time
size products (secs)

ARNCHEB LR 1 317 2 0.09
AFPACK LR 1 91 7 0.15
EB13 LR 1 26 1 0.02
EB13 LR 5 434 5 0.15

WEST2021, T = 5,m = 20

Code WHICH Block Matrix-vector Iterations Time
size products (secs)

ARNCHEB LR 1 15921 252 70.67
ARPACK LR 1 167 13 2.12
EB13 LR 1 4149 42 18.07
EB13 LR 5 6865 19 20.96

CK400, T = 8,m = 20

Code WHICH Block Matrix-vector Iterations Time
size moducts (secs)

ARNCHEB ~~ LR 1 t t t
AFPACK LM 1 71 7 0.20
ARPACK LR 1 80 8 0.40
EB13 LM 1 223 12 0.39
EB13 LR 1 228 9 0.35
EB13 LM 4 340 17 0.58
EB13 LR 4 256 6 0.28

t indicates sought-after eigenvalues were missed.

~ ~ ~ ~~

B APPENDIX: TABLES OF RESULTS FOR SEVERAL EIGENVALUES 33

CK656, T = 8 , m = 20

Code WHICH Block
size

ARNCHEB
ARPACK
ARPACK
EB13
EB13
EB13
EB13

LR
LM
LR
LM
LR
LM
LR

Matrix-vector
products

t
80
80

254
238
356
224

Iterations Time
(secs)

t t
8 0.40
8 0.40
13 0.72
9 0.58
18 1.02
5 0.49

t indicates sought-after eigenvalues were missed.

