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Abstract 

In recent years, high quality software for computing selected eigenvalues of large 
sparse nonsymmetric matrices has started to become publicly available. In this study 
we consider software which implements algorithms based on the original method of 
Arnoldi. We briefly describe the software which is available. We look at the key 
features of the codes and the important differences between them. Then, using a 
wide range of practical problems, we compare the performance of the codes in terms 
of storage requirements, execution times, accuracy, and reliability, and consider their 
suitability for solving large-scale industrial problems. Finally, we point to possible 
future directions of research for improving Arnoldi based software. 
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1 INTRODUCTION 1 

1 Introduction 

The development of efficient numerical methods for solving large sparse nonsymmet- 
ric eigenvalue problems has been the subject of much interest and research effort 
during the last decade. Several classes of methods have received attention and 
support. These include subspace (or simultaneous) iteration methods, Arnoldi’s 
method and its variants, the (nonsymmetric) Lanczos method, and, recently, the 
Jacobi-Davidson method (Sleijpen and Van der Vorst, 1995). Software is gradually 
becoming available and we feel that it is now time to evaluate this software to see 
how robust it is and how suitable it is for solving today’s large scale nonsymmetric 
eigenvalue problems. In this report, we focus attention on software which imple- 
ments Arnoldi type methods. In a separate report, we examine subspace iteration 
software (Lehoucq and Scott, 1996b). The results of our studies of subspace it- 
eration and Arnoldi software are brought together, summarised, and compared in 
Lehoucq and Scott (1996~) .  In the future, we plan to extend our study to software 
which uses the Lanczos method and, once it becomes available, to software for the 
Jacobi- Davidson met hod. 

In addition to numerous research codes, several library-quality packages which 
employ Arnoldi iteration techniques have been developed for the standard eigenvalue 
problem Az = Xz. We are interested in codes which are written either in the C 
programming language or in FORTRAN. In addition, for inclusion in our study, the 
codes must be available either in the public domain or under licence. There are 
currently (to the authors’ knowledge) three such packages (we apologise if there 
are any other packages which meet our criteria but which we are not aware of). 
These are the ARNCHEB package of Braconnier (1993), the ARPACK package (Lehoucq, 
Sorensen, Vu and Yang, 1995) and the Harwell Subroutine Library code E B 1 3  (Scott, 
1995). The reports and papers which accompany each of these codes provide limited 
numerical results illustrating their use but results comparing their performances have 
not been published. Our aims are to review, compare, and evaluate the codes, to 
look at their limitations, and to highlight problems for which more sophisticated 
software is still needed. 

This report is organised as follows. We briefly review Arnoldi iteration in Sec- 
tion 2 then in Section 3 we look at the software packages ARNCHEB, ARPACK, and EB13 .  
We outline the algorithms used and discuss the main features of each of the codes. 
We examine the main differences between the codes in Section 4. In Section 5 we 
discuss the design of our experiments to compare the performance of the software, 
we explain how we verify the computed results, and present numerical results for a 
set of test problems. Based on our findings, in Section 6 we propose possible future 
developments in Arnoldi based software. Details of the availability of the software 
packages are given in Section 7. 

We end this section by introducing notation which we use throughout this report. 

0 A is a large sparse real nonsymmetric matrix of order n. 

0 The eigenvalues of A are denoted by AI, A 2 , .  . . , A,, with associated eigenvec- 
tors z1, z2,. . . , z,. The eigenvalues are assumed to be ordered according to 
which are being sought. For example, if the eigenvalues of largest absolute 
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value are required, the eigenvalues are ordered in decreasing order of their 
absolute values. Subscripts are dropped when doing so causes no confusion. 

0 r denotes the number of sought-after eigenvalues of A .  

0 rn denotes the dimension of the subspace used in the Arnoldi algorithm. 

0 X, denotes the matrix representation of this subspace. 

0 ( s , B )  denotes an eigenpair of the projection matrix H, of order rn of A onto 
the column space of X,. 

0 The approximate eigenpairs for A are called Ritz pairs if Ay M yB, where 
y = x,s. 

0 T,. denotes the quasi-triangular Schur matrix associated with the projection 
of A. 

0 XZAX, M T, is an approximate real partial Schur form if XZX, M I,. 

0 U denotes the relative machine precision (that is, the smallest machine number 
such that 1 + U > 1). 

0 E denotes the user-prescribed convergence tolerance. 

In this study we are concerned with the case r < rn << n. 

2 Arnoldi iteration 

Arnoldi's method (1951) is an orthogonal projection method for approximating a 
subset of the eigensystem of a general square matrix. Starting with a vector xl, the 
method builds, step by step, an orthogonal basis for the Krylou space of A :  

K,(A,x,) E Span{xl, Ax l , .  . . , A"-lxl}. 

It is a generalization of the power method in that a sequence of iterates are used 
to approximate eigenvalues of A .  The original algorithm was designed to reduce 
a dense matrix to upper Hessenberg form. However, because the method requires 
knowledge only of A through matrix-vector products, its value as a technique for 
approximating a few eigenvalues of a large sparse matrix was soon realised. When 
the matrix A is symmetric, the procedure reduces to the method of Lanczos (1950). 

Over a decade of research was devoted to understanding and overcoming the 
numerical difficulties of the method for the case when A is symmetric (see, for 
example, Parlett, 1980, and Grimes, Lewis and Simon, 1994). Development of the 
Arnoldi method for nonsymmetric matrices lagged behind because of the inordinate 
computational and storage requirements if a large number of steps are required for 
convergence. Not only is more storage needed when A is nonsymmetric, but, in 
general, more steps are required to compute the desired eigenvalue approximations. 

An explicitly restarted Arnoldi iteration (ERA-iteration) was introduced by 
Saad (1980) in an attempt to overcome these difficulties. Besides the storage con- 
siderations, restarted Arnoldi methods are motivated by attempting to replace the 
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Table 2.1: Basic restarted Arnoldi iteration 

a Start: Choose an initial normalised vector XI.  

a Iteration: Until convergence do 

1. Compute the Arnoldi reduction AX, = .X,H, t fmez of length m with 

2. Using the length m Arnoldi factorisation, select a new starting vector XI. 

starting vector Xmel G XI. 

starting vector with one that is an element of the nvariant subspace associated with 
the r eigenvalues of interest. If this is accomplished, then it may be shown that, in 
exact arithmetic, f,. = 0. 

The basic restarted Arnoldi method is summarised in Table 2.1. H, is an m x m 
upper Hessenberg matrix, X;X, = I,, and the residual vector f, is orthogonal to 
the columns of X,. The matrix H, = X:AX, is the orthogonal projection of A 
onto the column space of X m  E X,(A,xl). 

The idea of restarting is based on similar approaches used for the Lanczos process 
by Paige (1971), Cullum and Donath (1974), and Golub and Underwood (1977). The 
first example of a restarted iteration is attributed to Karush (1951). A relatively 
recent variant was developed by Sorensen (1992) as a more efficient and numerically 
stable way to implement restarting. One of the benefits of this implicitly restarted 
Arnoldi iteration (IRA-iteration) is that it avoids the need to restart the reduction 
from scratch at  each iteration. 

3 Arnoldi iteration software 

In this section we briefly review the software packages ARNCHEB, ARPACK, and E B 1 3 ,  
which implement restarted Arnoldi iterations. 

3.1 ARNCHEB 
The ARNCHEB package of Braconnier (1993) provides subroutine A W O L  that imple- 
ments an explicitly restarted Arnoldi method. The code is based on the algorithms 
of Saad (1980, 1984) and may be used to compute either the eigenvalues of largest 
or smallest real parts, or those of largest imaginary part. 

In ARNCHEB, the computation of the restart vector is a two-step process. First, a 
linear combination of the r Ritz vectors associated with the T Ritz values of interest 
is formed. Then, a fixed-degree Chebychev polynomial pl(A) on an ellipse containing 
the unwanted Ritz values is applied to the linear combination. The evaluation of 
pl( A ) x  is carried out by using the three- term recurrence relation for C hebychev 
polynomials. The polynomial is fixed in the sense that the degree is chosen by the 
user and is not varied from iteration to iteration. 

An iterated classical Gram-Schmidt algorithm is used to maintain orthogonality 
of the Arnoldi basis vectors. ARNCHEB requires the user to supply a subroutine ATq to 
perform matrix products AX,. The subroutine P W V  does not include the matrix 
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A in its argument list so A need not be held explicitly-only the action of A on 
vectors is needed. 

The package AFUVCHEB offers the user the option of using a variant of Wielandt 
deflation (see Wilkinson, 1965, and Saad, 1992, for further details). Let A0 = A 
and denote by Oj the diagonal matrix of converged Ritz values. As the individual 
Ritz values converge, the Arnoldi iteration builds factorisations with the rank j 
modification 

of A where A;-IU;e; m Uieie;, for i = 1,. . . , j  and 8; is the i-th diagonal element 
of Oj. The deflation's goal is that the converged Ritz values are no longer extremal 
for Aj and the remaining eigenvalues of A are computed. 

In order to use real arithmetic, ARNCHEB chooses Oj to be a quasi-diagonal ma- 
trix. The quasi-diagonal matrix contains the real eigenvalues on the diagonal and 
the real and imaginary portions of the complex conjugate pairs on diagonal blocks 
of order two. For the blocks of order two on the diagonal of Oj the corresponding 
complex eigenvector is stored in two consecutive columns of Uj, the first holding 
the real part, and the second the imaginary part. 

Unfortunately, although the column space of Uj is approximately invariant for 
A and Aj, the eigenvectors are not the same. The extra computation involves com- 
puting the projection of A onto the column space of Uj. Although not complicated, 
the computation must be carried out by the user. Moreover, there is no documenta- 
tion to guide the user on how this could be done nor are the converged Ritz values 
saved.' We further discuss this in Section 4.2. 

3.2 EB13 
The Harwell Subroutine Library code EB13 (Scott, 1995) also implements an explic- 
itly restarted Arnoldi method. It allows the user to compute the eigenvalues of A 
that are right-most, of largest modulus, or of largest imaginary parts. By work- 
ing with -A in place of A, the code may also be used to compute the left-most 
eigenvalues . 

EB13 incrementally computes a partial Schur form for A, locking approximate 
Schur vectors corresponding to Ritz values that converge. At each iteration, the 
best approximating Ritz vector of the unlocked portion of the Arnoldi reduction is 
used to restart. For example, if the eigenvalues of largest magnitude are desired, 
then the best approximating Ritz vector is the one associated with the Ritz value 
largest in magnitude. 

A Chebychev polynomial pl(A) on an ellipse containing the unwanted Ritz val- 
ues i s  applied to the restart vector in an attempt to accelerate convergence. The 
code adaptively selects the degree 1 of the Chebychev polynomial on each iteration 
(although the user may override this value). 

An iterated classical Gram-Schmidt algorithm is used to orthogonalise the Arnoldi 
basis vectors. The code EB13 uses reverse communication. Each time a set of vec- 
tors is required to be multiplied by A, control is returned to the user. This allows 

'In fact, the author of ARNCHEB was not aware that this was possible. 
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Table 3.2: The Arnoldi iteration used by EB13. 

0 Build a length m Arnoldi reduction. Set j = 0 define QO 0. 

0 Iteration: 

1. Compute the ordered Schur decomposition' H m - j Z m - j  = Z m - j T m - j .  

2. Check the Ritz vector X m - j Z m - j e l  for convergence. If it satisfies the conver- 
gence criterion, increment j and set Qj = [ Q j - 1  X m - j Z m - j e l  ] . If j = T ,  

exit the Iteration. 

3. Compute the Arnoldi reduction - 
+ fme; of length m with 

H m - j  Mj J A [ Qj X m - j  ] = [ Qj  X m - j  ] [ T j  

starting vector p,(A)X,-jel orthogonal to the Range(Qj). 

full advantage to be taken of the sparsity and structure of A and of vectorisation 
or parallelism. It also gives the user greater freedom in cases where the matrix A 
is not held explicitly and only the product of A with vectors is known. Reverse 
communication is discussed further in Section 4.3. 

Unlike any of the other Arnoldi codes tested, EB13 optionally computes a block 
Arnoldi reduction. This option is designed for problems where the wanted eigen- 
values are multiple or closely clustered. Another option is available to perform 
Chebychev polynomial preconditioning on A. 

Finally, once the required eigenvalues of A are computed, subroutine EB13B may 
be used to compute the corresponding (normalised) eigenvectors and, optionally, the 
scaled eigenvector residuals 11 Ay - 6y112/11Ay112. 

Table 3.2 summarises the default procedure used by EB13. 

3.3 ARPACK 
The ARPACK software package (Lehoucq et al., 1995) provides subroutine DNAUPD that 
implements an implicitly restarted Arnoldi method. The scheme is called implicit 
because the starting vector is updated with an implicitly shifted QR algorithm on 
the Hessenberg matrix H,. 

The method is motivated by the following observation. Let AXm = XmHm + 
fme2 be a length rn Arnoldi factorisation. Suppose that $ is a polynomial of degree 
rn - r. A simple but tedious derivation shows that 

$(A)xr = Xm+(Hm) [ el e2 ... er ] ( 3 4  

Compute the QR factorisation $(Hm) [ el e2 ..- e, ] = Q r R .  Equation (3.2) 
may then be rewritten as $(A)X, = XmQ,R,. The column space of XmQr is an 
orthogonal basis for $(A)X,. 

Restarting the iteration involves post-multiplying the length rn Arnoldi factori- 
sation with Q r  and thus obtaining a length r factorisation. Thus, an IRA-iteration 
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may be viewed as a truncated QR algorithm (see Lehoucq, 1995, and Sorensen, 1995, 
for further details). 

DNAUPD computes the eigenvalues of A that are right-most, left-most, of largest 
or smallest modulus, or of largest or smallest imaginary parts. It uses approximate 
Schur vectors to restart. An iterated classical Gram-Schmidt algorithm is used to 
orthogonalise the Arnoldi basis vectors. The standard deflation rules used by the 
QR algorithm are employed on H,. Thus, if a subdiagonal element of H, becomes 
small enough, it is set to zero, and the corresponding columns of X, are locked. 
As in EB13, reverse communication is used when computing matrix-vector products 
with A. An option allows the user to define a polynomial preconditioner on A 
through its roots via the implicitly shifted QR iteration on H, performed during 
each iteration. Spectral transformations are also available, as well as the ability 
to solve the generalised eigenvalue problem, Az = XBz, when B is a symmetric 
positive semi-definite matrix. 

Finally, analogous to the approach of EB13, once the desired Ritz values have 
converged, subroutine DNEUPD optionally computes associated approximate Ritz or 
Schur vectors. Moreover, if a spectral transformation is employed, DNEUPD maps the 
computed Ritz values to those of the original system. 

4 Software comparison 

ARNCHEB, ARPACK, and EB13 are all Arnoldi based codes written in FORTRAN 77, but 
it is clear from the above descriptions that the algorithms they use differ from one 
another in a number of important ways. Furthermore, implementation details differ. 
The aim of this section is to examine some of the main differences. This should help 
us to understand the difference in performance of the codes when used to solve a 
set of test problems (see Section 5). 

4.1 Restart mechanism 
A principal difference between all three codes is the manner in which each algorithm 
restarts the iteration. As discussed in Section 2, restarting mechanisms attempt 
to alleviate storage and replace the starting vector with one that is “rich” in the 
direction of the desired invariant subspace. 

ARNCHEB and EB13 explicitly restart with Ritz vectors. However, EB13 carefully 
deflates the converged Ritz vectors, using them to incrementally build a partial Schur 
decomposition. Moreover, ARNCHEB uses a linear combination of r Ritz vectors while 
EB13 uses the best approximating Ritz vector when restarting. Mathematically, 
r linearly independent eigenvectors may not exist and thus ARNCHEB may not be 
able to compute the r eigenvalues of interest. In practical computation, the r lin- 
early independent eigenvectors may form a poorly conditioned basis for the wanted 
eigenspace. 

It may be shown that ARPACK’S restarting procedure implicitly replaces the start- 
ing vector by a linear combination of r approximate Schur vectors associated with 
the r wanted Ritz values. Thus the Arnoldi factorisation is restarted by using nu- 
merically orthogonal matrices of order rn and an explicit restart is avoided. 
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4.2 Deflation 
Each of the codes attempts to use deflation in order to reduce the size of the active 
Arnoldi factorisation and for robustness. This section is adapted from similar ideas 
discussed in Lehoucq and Sorensen, 1995. For ease of discussion, we suppose that 
converged quantities are known exactly. 

We first examine the deflation strategy used by EB13.  iFrom line 3 of the algo- 
rithm in Table 3.2, the length rn Arnoldi factorisation is equivalent to 

AjX,-j = Xm-jH,-j + fme:-j, 

where Aj  E (I - QjQT)A(I - QjQT). If we assume that AQj = QjTj,, then 
it is easily shown that any vector in the range of Qj is annihilated by Aj and 
that IC,-j(Aj, Xm-jel) is orthogonal to the range of Qj. The locking process used 
by EB13  thus allows convergence to the remaining eigenvalues of A. Of course, 
E B 1 3  never needs to explicitly apply Aj. During the orthogonalisation phase of the 
Arnoldi iteration, the columns are orthogonalised against the X,-j locked vectors. 

Section 3.3 explains the manner in which ARPACK uses deflation. It sets to zero 
any subdiagonal elements of H, that are negligible according to the criteria used 
by the standard QR algorithm. If the i-th subdiagonal element of H, is set to zero, 
then the first i columns of X, are locked. We remark, that unlike the standard QR 
algorithm, ARPACK rarely encounters the opportunity to deflate. Moreover, there is 
no guarantee that all the associated vectors locked are desired ones. Upon approxi- 
mation of the T desired eigenvalues, a postprocessing step is performed so that the 
first r columns of X, are a Schur basis for these T eigenvalues. 

Section 3.1 briefly introduced the Wielandt deflation used by ARNCHEB. We as- 
sume complex arithmetic in order to avoid being overwhelmed by technical details. 
An inductive proof shows that 

AUj = UjCj (4-3) 

where Cj is the upper triangular portion of the matrix OjUrUj. iFrom equa- 
tion (4.3), a direct computation reveals that 

AjUj = Uj(Cj - OjUyUj), 

and thus Cj - OjUrUj is a strictly lower triangular matrix. The converged Ritz 
values are now zero eigenvalues of Aj. However, IC;(Aj,X,el) is not orthogonal to 
the column space of Uj unless two further conditions are met. The first requires 
Xmel to be orthogonal to the column space of Uj. Assuming the previous condition, 
AX,el must also be orthogonal to the column space of Uj. For example, this would 
occur if A were a symmetric matrix. In general, the Wielandt deflation adopted by 
ARNCHEB does not prevent locked vectors from emerging in subsequent factorisations 
computed with Aj. Moreover, careful inspection of ARNCHEB reveals that the starting 
vector selected is not orthogonal to the column space of X,. 

4.3 Matrix products A x  
A large part of the total cost of computing eigenvalues of a sparse nonsymmetric 
matrix using Arnoldi’s method is the cost of performing matrix-vector products Ax. 
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Some timings which illustrate this are given in Scott (1995). It is therefore very 
important for the overall performance of the software that matrix-vector products 
are computed as efficiently as possible. If the software is to be general purpose, 
it is also important that the matrix A is not required to be held in a prescribed 
fixed format. In many practical situations, the matrix is not known explicitly, but 
only the action of A on vectors is available, so the software needs to be able to 
cope with this. Each of the three codes in our study recognises the need to allow 
the user to exploit the sparsity and structure of the matrix but one of the major 
implementation differences between ARNCHEB and the other two codes is the way in 
which matrix-vector products are carried out. 

ARNCHEB requires the user to supply a subroutine to perform matrix-vector prod- 
ucts. The matrix A is not an argument to the subroutine so the user is not required 
to hold the matrix explicitly. Nevertheless, for some problems it can be inconve- 
nient to pass the matrix into this subroutine. For example, since ARPACK is written 
in FORTRAN 77, the number of subroutine arguments is fixed. Consequently, if a 
user needs additional descriptors to perform matrix products, they must be passed 
using a COMMON block. 

The reverse communication approach adopted by ARPACK and EB13 provides 
flexibility and gives the user a greater degree of control. By avoiding passing the 
matrix through a COMMON block, the user is able to take full advantage of parallelism 
and/or vectorisation. Reverse communication also allows the user to incorporate 
different preconditioning techniques in a very straightforward way. For example, 
the user may wish to use a shift-and-invert transformation, in which (A  - aI)-' 
is used in place of A.  The eigenvalues close to the shift a will tend to converge 
most rapidly since under the transformation they become dominant. In this case, 
linear systems of the form (A - aI)w = x are solved in place of the matrix products 
w = Ax. If a direct method of solution is used, the LU factorisation of (A - 01) 
need only be performed once. However, since reverse communication allows progress 
to be monitored, the user may choose to update o as the computation progresses, 
and a new factorisation will be required for each shift. 

4.4 Exploiting BLAS 

Apart from the matrix-vector products with A, Arnoldi's method only requires 
dense linear algebra operations to be performed on matrices of order rn. One way 
of achieving an efficient implementation and assisting with robustness, portabil- 
ity, readability, and maintance of the software is through the use of BLAS (Basic 
Linear Algebra Subprograms) kernels (Lawson, Hanson, Kincaid and Krogh, 1979, 
Dongarra, DuCroz, Hammarling and Hanson, 1988, and Dongarra, DuCroz, Duff 
and Hammarling, 1990). Highly efficient machine-specific implementations of the 
BLAS are available for many modern high-performance computers. By exploiting 
the BLAS, software can achieve high performance and be portable. 

Level 1 BLAS perform basic vector operations, such as y t ax+y. They are not 
able to achieve high efficiency on most modern supercomputers but they do assist 
with the clarity and portability. Level 2 BLAS perform matrix-vector products, 
such as y t aAx + Py. For machines having a memory hierarchy, the Level 2 
BLAS do not have a ratio of floating-point operations to data movement that is 
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high enough to make efficient use of data that reside in cache or local memory. For 
these architectures, it is often preferable to partition matrices into blocks and to 
perform the computation using matrix-matrix operations on the blocks. The Level 
3 BLAS are targeted at the matrix-matrix operations required for these purposes. 

Each of the codes in our study uses BLAS routines. ARNCHEB and EB13 employ 
mainly Level 1 and Level 2 routines and, in addition, they use EISPACK routines 
(Smith, Boyle, Garbow, Ikebe, Klema and Moler, 1976). EISPACK has for many 
years provided high-quality portable software for eigenvalue problems; but on mod- 
ern high-performance computers EISPACK routines often achieve only a small frac- 
tion of the peak performance of the machines. LAPACK (Anderson, Bai, Bischof, 
Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney, Ostrouchov and 
Sorensen, 1992) was designed to supersede EISPACK. The authors of LAPACK 
developed new routines and restructured the EISPACK software with the aim of 
achieving much greater efficiency. This was accompolished by writing routines us- 
ing the BLAS as building blocks. ARPACK makes extensive use of both the BLAS 
and LAPACK routines and we anticipate that this will be reflected in its efficiency 
and robustness. 

4.5 The stopping criteria 
Each of the codes uses different stopping criteria, which adds to the difficulties asso- 
ciated with trying to compare their performance (see Section 5). Helpful discussions 
of stopping criteria for iterative eigensolvers are given by Bennani and Braconnier 
(1994) and Scott (1995). Throughout this section, E denotes a user-defined tolerance. 

EB13 follows Stewart (1978) and bases its stopping criterion on demanding that 

The difficulty of choosing appropriate stopping criteria was recognised during the de- 
velopment of EB13 (Scott, 1995) and as a result, EB13 offers a choice of stopping cri- 
teria. The user can require that the j th  column of X satisfies II(AX, -XmTm)jl12 < 
IIA~~E, or < ~ ~ ( A X m ) j ~ ~ 2 ~ ,  or, finally, < E. The advantage of using the norm of A 
is that the stopping criterion is based on the backward error. This is discussed 
by Chatelin and Frayske (1993). The idea of backward error is to measure the 
shortest distance between the original problem with computed solution z and a per- 
turbed problem with exact solution z. The normwise backward error associated 
with (Tm,X,)  is defined by 

In the 2-norm, it can be shown that 77 = IIAX, - XmT,112/(IA112. 
A disadvantage of using the backward error is that it requires IlAll to be known. 

If the user wants to use the stopping criteria involving IlAll, EB13 asks for IlAll (or 
an estimate of llAll) to be provided. If the user is unable to do this, the code will 
compute the Frobenius norm of A but at the cost of n matrix-vector products. 

To save work, the residual II(AX, -XmTm)jIl2 is computed only if all the basis 
vectors X; with 0 < i < j have already been accepted. EB13 monitors the residuals 
for unacceptably slow convergence and, if necessary, terminates the computation 
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with a warning that the requested accuracy was not achieved. In this event, the user 
is advised on how to modify the input parameters to try and obtain the requested 
accuracy and facilities are included for restarting the computation from the point 
at which the warning was issued. 

The most compelling reason for possibly not wishing to use a stopping criterion 
that involves the norm of A is that it can lead to accepting Ritz values that have 
no digits of accuracy. In some practical situations, eigenvalues are used to study 
stability, and the interest is in whether the right-most eigenvalue has a nonpositive 
real part. Since high precision in the computed eigenvalues may not be necessary, 
the user may be tempted to set the convergence tolerance E to be, for instance, 
l O W 4 .  But if the norm of A is of order 105, the stopping criterion may lead to a 
computed 8 being accepted as converged when it actually has no accuracy. Thus, 
wrong conclusions concerning the stability of the system may be drawn. Clearly, if 
the norm of A is to be used, the user should take its size into account when selecting 
the convergence tolerance. 

For Arnoldi’s method, an inexpensive estimate of the norm of the eigenvector 
residual is available. Let AX, = X,H, + fme: be an Arnoldi factorisation of 
length rn. If s is an eigenvector of H, and y = X,S, it follows that 

The benefit of using the Ritz estimate Ilf,II le:sl is that it avoids explicit formation 
of the direct residual IIAX,s - Xms811. ARPACK bases its stopping criterion on the 
Ritz estimate. Moreover, since only the last component of s is needed, ARPACK does 
not compute the full eigenvectors of H, at each iteration. The computation is 
terminated on the first iteration that r Ritz values all satisfy llf,II le:sl < 101~. 

Recent work by Chatelin (1993) and Bennani and Braconnier (1994) suggests 
that when A is highly non-normal, there can be a significant difference between 
the Ritz estimate and the eigenvector residual. Because of this potential difference, 
ARNCHEB computes both the scaled Ritz estimate and the direct backward error given 
by 

respectively, where IlAll~ denotes the Frobenius norm of A. The current version of 
the code tests the direct backward errors for convergence. ARNCHEB does not offer 
the user the option of supplying IlAll~ but computes l lA / l~  with n matrix-vector 
products. Our numerical results show that this can make ARNCHEB uncompetitive 
with the other codes (see Appendix). 

4.6 Storage requirements 

When the order n of the matrix A is large, the amount of storage needed can be 
an important consideration when choosing software. In Table 4.3 we compare the 
storage requirements of the codes in our study. We observe that, for a given subspace 
dimension m, ARPACK uses the least amount of storage. We also see that, for a block 
size nb = 1, E B 1 3  needs three arrays of length nrn. There are two reasons why 
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Code 

EB13 demands an extra array. First, to use the three-term recurrence relation for 
Chebychev polynomials to compute pl(A)X, three arrays of length nm are needed. 
Second, as already discussed, EB13 uses reverse communication. To try to ensure 
against the user’s overwriting the latest approximation X, to the Schur vectors, the 
user forms matrix-vector products by using two arrays U and W of dimension nm 
and then, within the code, copying into the appropriate part of the third array X, 
is performed. Thus, even if Chebychev acceleration is not employed, EB13 demands 
three arrays of length nm. 

Storage 

Table 4.3: Storage requirements (nb denotes the block size for EB13, and t denotes 
that ARNCHEB is used with deflation) 

ARNCHEB 
ARNCHEBt 
EB13 
ARPACK 

2n x (m + 5 )  + 2m2 + O(m) 
3n x (m + 5 )  + 2m2 + o ( m )  
3n x rn x nb + 2m2 + O(m) 
n x (m + 4) + 3m2 + o ( m )  

4.7 User interface 

An important feature of any code written for general use is that it should be ac- 
companied by straightforward but comprehensive documentation which allows the 
code to be used with a minimum of effort. The documentation should also assist the 
user in the event of the computation failing for his or her problem. Our numerical 
experiments have provided us with a feel for how easy the software is to use and in 
this section we comment briefly on our experiences. 

0 EB13 and ARPACK came with a well-commented parameter list which allowed 
us to use them without any difficulties. ARNCHEB does not document all input 
and output parameters fully, and the code itself does not include comments to 
explain each of the parameters. 

0 A particularly helpful feature of the documentation provided with EB13 was 
that it included a simple sample program. This would be of particular value 
to users who are unfamiliar with using reverse communication. 

0 The codes all provide sample programs that illustrate their use. In partic- 
ular, ARPACK has an extensive set of programs illustrating the use of reverse 
communication and all its options. 

0 EB13 and ARPACK have error flags and check the parameters supplied by the 
user for errors. If an error is detected, EB13 optionally prints a message indi- 
cating what the error is. ARPACK sets a flag and provides documentation for 
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interpreting the flag. ARNCHEB has no error flag, performs no error checking, 
and offers no assistance in the event of an error. 

0 The codes all have monitoring printing; that is, at each iteration they print val- 
ues of, for example, the computed eigenvalues and the corresponding residuals. 
This information allows the user to follow the convergence. It is particularly 
useful for the reverse communication codes EB13 and ARPACK because, if the 
convergence is not proceeding satisfactorily, the user is able to intervene. For 
EBI3 and ARPACK the monitoring printing is optional. 

0 Our experience suggests that ARNCHEB was not comprehensively tested. The 
code was found to contain bugs.2 

0 The FORTRAN programming within ARNCHEB could be considerably improved. 
The code uses nonstandard FORTRAN 77 (such as REAL*8 declarations), which 
caused some of the compilers we used for testing to return error messages. 
When the code was checked with a FORTRAN code analy~er,~ a large number 
of errors messages were returned. The analyzer passed the other two codes as 
conforming to the FORTRAN 77 standard and they were found to be portable 
when tested on a range of computers (including SUN workstations, a Cray 
Y-MP, and IBM RS/6000’s). 

5 Numerical experiments 
In this section and the Appendix we present the results of using the software dis- 
cussed in this report to compute a small number of eigenvalues and eigenvectors of 
a set of test problems. 

5.1 The test matrices 
The test problems all arise from real scientific and industrial applications. A brief 

description of the test problems is given in Table 5.4. The problems are drawn from 
the Harwell-Boeing collection of sparse matrices (Duff, Grimes and Lewis, 1992) and 
the recent collection of large eigenvalue problems of Bai, Barrett, Day and Dongarra 
(1995). Further details of the problems may be found in the above two references. 
We have attempted to select a range of problems with different properties and 
applications. We employ the same set of test problems in our evaluation of subspace 
iteration software (Lehoucq and Scott, 1996b). This study has again highlighted 
the need to have a set of practical problems available as a testbed for eigenvalue 
algorithms and we would welcome further problems which could also be used to test 
the software. 

5.2 Verification 

It is important when testing software that an attempt is made to check the correct- 
ness of the computed results. For example, an important consideration is whether 

2The author of the code was contacted with our findings. 
3pfort, ISTLA - Toolpack Static Analyser, Version 1.2 
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Identifier 

PORES2 
PORES3 
GRE1107 

HOR131 
IMPCOLC 
IMPCOLD 
NNC666 
NNC1374 
WEST0156 
WEST0 167 
WEST2021 
*CK400 
*CK656 
* RWK5 15 1 

*CDDE 
*TOLOSA 
*BW2000 
* PDE2961 

Order 

1224 
532 

1107 

434 
137 
425 
666 

1374 
156 
167 

2021 
400 
656 

5151 

2000 
2961 

Number of 
entries 

9613 
3474 
5664 

4710 
41 1 

1339 
4044 
8606 
371 
507 

7353 
2860 
3884 

20199 

7996 
14585 

Description/discipline 

Oil reservoir simulation. 
Oil reservoir simulation. 
Simulation studies in 
computer systems. 
Flow network problem. 
Ethylene plant model. 
Nitric acid plant model. 
Nuclear reactor core modelling. 
Nuclear reactor core modelling. 
Chemical engineering plant model. 
Chemical engineering plant model. 
Chemical engineering plant model. 
Not available. 
Not available. 
Markov chain modelling: 
random walk. 
2-D convection diffusion problem. 
Stability of aircraft in flight. 
Chemical engineering model. 
Model PDE eigenvalue problem 

Table 5.4: The matrices used for performance testing (* indicates matrix from the 
collection of Bail Barratt, Day and Dongarra, 1995). 

any of the sought-after eigenvalues have been missed. In the symmetric case, if a 
factorisation is performed, an inertia count can then be used to provide a check for 
missing eigenvalues (see Grimes et al., 1994 and Parlett, 1980 for details). There is 
no analogous procedure for nonsymmetric matrices. 

For the purposes our study, we may determine the reliability of the codes using 
the exact eigenvalues. The forward error is defined to be 

where A; and 0; are the exact and computed eigenvalues, respectively, of A. This 
tests the forward stability of the software. For the test problems for which the exact 
eigenvalues are not known, we compare the computed eigenvalues with those found 
using the QR algorithm. 

We also check results by computing the r eigenvector residuals 

llAY - flYll2, 

and the real and imaginary portions of the Rayleigh Quotient errors 

llYTAY - 0YTYl12. 
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For ARPACK and EB13, we check the orthogonality of the computed Schur basis 
and quality of the Schur projection by computing 

respectively. 
The checks (5.5)-(5.7) are designed to test the backward stability of the software. 

5.3 The test environment 

The numerical experiments were performed on an IBM RS/SOOO 3BT using double 
precision arithmetic, and the vendor-supplied BLAS. As we have already seen, the 
software in our study employ different stopping criteria. Therefore, even if we supply 
each code with the same convergence tolerance and the computations all terminate 
successfully, the eigenvalues computed by each code may differ. For the results 
reported in this section and in the Appendix, the codes each used a convergence 
tolerance that gave eigenvalues with an accuracy of at least fi (for some of the test 
examples, different codes used different convergence tolerances). The convergence 
tolerances used were all in the range 1Ou to 10-4. 

In designing their software, the authors have all attempted to produce software 
which can be used as a black box while at the same recognising that in doing so 
they have had to make a number of ad hoc decisions and there may be problems for 
which the choices that have been made are either poor or completely unsuitable. To 
assess the usefulness of the choices, in our numerical experiments we only use the 
default values (or values recommended by the authors in their documentation). 

Good general-purpose software should make most decisions automatically and 
not require the user to have a detailed understanding of the algorithm being imple- 
mented. Each of the codes in our study requires the user to choose the number T 

of eigenvalues required, the subspace dimension m, and the convergence tolerance 
E. In addition, the codes require the user to decide which portion of the spectrum is 
to be computed. 

Table 5.5: Input from the user 

1 Code Required Input 

ARNCHEB Matrix-vector product routine 
Type of ellipse 
Degree of Chebychev polynomial 
Amount of orthogonalisation 
Whether to perform deflation 

ARPACK Maximum number of iterations 
EB13 Block size 

Requiring the user to choose these parameters may appear reasonable because 
the user is likely to know how many eigenvalues are required and how much accuracy 
is wanted. However, as discussed in Section 4.5, in order to select an appropriate 
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value for E, the user generally needs some knowledge of the problem, such as the norm 
of A or the size of the sought-after eigenvalues. Furthermore, our experience with 
the codes has shown that selecting r to be greater than the number of eigenvalues 
actually required can sometimes yield more rapid convergence. This can happen 
if the sought-after eigenvalues are not well separated from the remaining ones and 
better separation is achieved by increasing r. Moreover, the efficiency of the software 
depends strongly on the choice of rn. For small m, convergence may not be possible. 
On the other hand, if rn is large, the amount of work per iteration and the storage 
requirements may be prohibitively high. 

When using ARNCHEB, the user has a number of decisions to make. He or she 
must decide which of the routines provided for computing an ellipse is to be used and 
whether or not to use reorthogonalisation and/or deflation. Making these decisions 
requires an understanding of Arnoldi’s method and its implementation. The ability 
to experiment with different options is of considerable value, and thus EB13 also 
offers different ellipse routines. The difference is that EB13 has a default routine 
that is used unless the user selects one of the alternatives. The use of default 
settings helps make EB13 user friendly while at the same time providing flexibility. 

The code ARNCHEB requires the degree of the Chebychev polynomial to be spec- 
ified by the user but provides no advice on how to do this. We performed some 
preliminary experiments with the code and, on the basis of these experiments, se- 
lected a degree of rn - r for all our reported results. In our tests, doubling or even 
tripling this value generally increased the total time required for convergence. 

In our tests, a limit of 4000rn was imposed on the number of matrix-vector 
products allowed. 

The results of our numerical experiments are lengthy so in the next two subsec- 
tions we present detailed results for the TOLOSA matrix and the two-dimensional 
convection-diffusion problem (CDDE), and we then summarise our findings for the 
remaining test problems. The complete results for computing a single eigenpair 
are given in Appendix A and for computing several eigenpairs the results are in 
Appendix B. 

5.4 Results for the TOLOSA Matrix 

The TOLOSA matrix arises from the stability analysis of a model of an airplane in 
flight. Its eigenvalues lie on a parabola in the left-half plane that opens to the left. 
The eigenvalues of interest are the eigenvalues of largest imaginary part, which are 
also those of largest modulus. The matrix is non-normal, and its departure from 
normality increases with the order of the matrix. 

We employed each of the codes to compute the complex conjugate pair of eigen- 
values of largest imaginary part and the corresponding eigenvectors of the TOLOSA 
matrix with orders up to 2000. Since the The eigenvalues of interest are the eigen- 
values of largest imaginary part are also those of largest modulus, we ran the codes 
ARPACK and EB13 with WHICH = LM (largest modulus) and tt WHICH = LI (largest 
imaginary part). Our findings for n = 1000 and n = 2000 are summarised in 
Tables 5.6 and 5.7. 

We see that for this problem the value of rn giving the best ARPACK results is 
larger than that giving the best ARNCHEB and EB13 results. This suggests that the 
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Table 5.6: CPU times (in seconds) and matrix-vector products for the TOLOSA 
matrix of order 1000 

Subspace dimension m 
Algorithm WHICH 8 16 32 
ARNCHEB L I  1.011867 2.412583 7.314294 
ARPACK LM 1213992 4.511080 3.21482 
ARPACK L I  1515120 3.11744 3.01452 
EB13 LM 0.81405 2.21749 2.61496 
EB13 L I  5.615545 0.81625 8.213917 

Table 5.7: CPU times (in seconds) and matrix-vector products for the TOLOSA 
matrix of order 2000 

Subspace dimension m , 

Algorithm WHICH 8 16 32 
ARNCHEB L I  5.014201 6.314100 1515484 
ARPACK LM 1612528 3.41422 1211052 
ARPACK L I  108116844 1311612 7.11602 
EB13 LM 3.31793 8.711429 8.81892 
EB13 LI 2.811451 6.412468 7.111657 
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figures given in Table 4.3 for the storage requirements of the different codes should 
be taken into consideration. We also see in this example that none of the codes 
clearly performs better than the others, and each code is sensitive to the value of rn 
and, in the case of ARPACK and EB13, to which eigenvalues the code has been asked 
to compute. 

5.5 Results for a Convection-Diffusion Problem 

The second problem for which we present results is a two-dimensional model convection- 
diffusion problem 

-Au(s, Y )  + PV * VU(Z, Y )  = Y>, 

on the unit square [0,1] x [0,1], with zero boundary data and p a real number. 
The problem is discretised using centered finite differences. The eigenvalues and 
eigenvectors of the resulting matrix are known explicitly (see, for example, Bai et 
al., 1995). We have chosen this example because it has the following interesting 
properties: 

0 Many of the eigenvalues have multiplicity two. It may be shown that, if 
IpI 5 fi, the eigenvalues are all real and the matrix is diagonalisable. 

0 As the mesh size decreases, the relative separation of all the eigenvalues de- 
creases. All the eigenvalues are contained within the interval (0 ,  8). 

0 As p increases, so does the non-normality of the matrix. 

We computed r = 6 eigenpairs of largest real part for a range of values of p and 
for orders up to n = 10,000. The eigenvalues of largest real part are also those 
of largest modulus. We found that, as n was increased, EB13 and ARPACK required 
small a convergence tolerance to avoid missing multiple eigenvalues. 

Table 5.8: CPU times (in seconds) and matrix-vector products for the 2-D Laplacian 
( p  = 0) matrix of order 2500 (t denotes that one or more of the requested eigenvalues 
was missed) 

Subspace dimension m 
Algorithm WHICH i a  36 

ARPACK LM 8.71630 9.11532 
ARPACK LR 9.21616 9.61557 
EB13 LM 3513707 3212375 

ARNCHEB LR t t 

EB13 LR 7.212116 8.211358 

In addition to the tests reported in the tables, we ran the case p = 40 with n = 
10,000. Since IpI 5 fi, the exact eigenvalues are all real. All the codes experienced 
difficulties for this example. Using convergence tolerances of fi and 103u, ARPACK 
ran without an error flag being set, but complex eigenvalues were returned. When 
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Table 5.9: CPU times (in seconds) and matrix-vector products for the 2-D Laplacian 
( p  = 0) matrix of order 10,000. (t denotes that one or more of the requested 
eigenvalues was missed. * denotes that code did not converge within 4000m matrix- 
vector products). 

Subspace dimension m 
Algorithm WHICH 18 36 
ARNCHEB LR * * 
ARPACK LM 171/2625 85/1153 
ARPACK LR 185/2827 79/1081 
EBi3 LM t 342/5687 
EBi3 LR 81/4781 115/4263 

Table 5.10: CPU times (in seconds) and matrix-vector products for the CDDE 
matrix with p .=  10 of order 2500. (t denotes that one or more of the requested 
eigenvalues was missed. * denotes that code did not converge within 4000m matrix- 
vector products). 

Subspace dimension m 
Algorithm WHICH 18 36 
ARNCHEB LR t t 
ARPACK LM 8.6/620 12/694 
ARPACK LR 8.31602 11/613 
EBi3 LM t 46/3383 
EBi3 LR 41/12178 * 

Table 5.11: CPU times (in seconds) and matrix-vector products for the CDDE 
matrix with p = 15 of order 10000 (* denotes that code did not converge within 
4000m matrix-vector products) 

Subspace dimension m 
Algorithm WHICH 18 36 
ARNCHEB LR * * 
ARPACK LM 71/1123 103/1398 
ARPACK LR 61/991 80/1095 
EBi3 LM 727/20004 436/7263 
EBi3 LR 1251/74107 * 
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the accuracy of the computed eigenvalues was tested, the forward error was found to 
be O(10-2). However, the computed results were those of a nearby matrix: the four 
residuals (5.5)-(5.7) were suitably small. With the same convergence tolerances, 
EB13  returned real eigenvalues but missed the multiplicities. 

In each of our tests on this problem, ARNCHEB failed to compute the required 
eigenvalues with the requested accuracy. The code was successful in computing the 
leading eigenpair. As mentioned in Section 3.1, if deflation is used, ARNCHEB does 
not return the Ritz values associated with the locked vectors nor the Ritz vectors for 
A. As an experiment, we computed the projection of A onto the orthogonal span 
of the column space of Uj and computed the Ritz values. For the smaller problems, 
this allowed ARNCHEB to compute more of the required eigenvalues, however, for n 2 
2,500, ARNCHEB was not successful. Moreover, it often returned spurious Ritz values. 
Section 4.2 demonstrated how Wielandt deflation does not, in general, prevent the 
locked vectors from re-appearing in subsequent Arnoldi iterations. We are lead to 
conclude that the re-appearing vectors contaminated the overall iteration. 

5.6 General Findings 

Our general findings from the numerical experiments may be summarised as follows: 

ARPACK is generally the fastest and most dependable of the codes studied, es- 
pecially for small convergence tolerances and large departures from normality. 

An attractive feature of ARPACK is that it displays monotonic consistency, that 
is, as the convergence tolerance decreases so does the size of the computed 
residuals. The stopping criteria used by EB13  which attempts to detect stag- 
nating convergence means that EB13  does not always display this property. 

There is tendency for Arnoldi codes to miss multiplicities and to miss some 
of the sought-after eigenvalues when they are not well-separated from the 
unwanted ones. We found that E B 1 3  and ARPACK were, in general, able to 
detect multiple eigenvalues but to do so it was necessary to use double precision 
arithmetic and to choose a very small convergence tolerance (for example, 
104u). If a larger tolerance (such as J.;l> was used, multiple eigenvalues could 
be missed. 

The code EB13  offers many options and, as these options are fully documented, 
they enable the user to experiment with different choices of the parameters 
which define the underlying algorithm. Further work needs to be done on 
selecting appropriate choices and on automatically changing and modifying 
parameters as the computation proceeds and knowledge of the eigenvalue dis- 
tribution is gained. 

For some of the examples (in particular, when several eigenvalues were re- 
quested), ARPACK uses dramatically fewer matrix-vector products than the 
other codes (see, for example, problems GRE1107, IMPCOLD, and WEST2021 
with r = 5). This can result in substantial savings in computation time when 
application of the matrix-vector product is expensive. However, the restarting 
strategy used by ARPACK can be more expensive than that used by the other 
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codes. This is typically the case when the cost of a matrix-vector product is 
inexpensive. The CDDE examples show this, although the ratio of the num- 
ber of matrix-vector products to the total time taken decreased as the problem 
sized decreased. 

0 For problems for which several eigenvalues are required, EB13’s blocking option 
can give worthwhile reductions in the number of iterations and in the computa- 
tion time needed for convergence. For example, for problem GRE1107, which 
has clustered eigenvalues, using EB13 with Chebychev acceleration, the com- 
putation times for r = 5 are 4.9 and 2.7 seconds for the unblocked and blocked 
versions, respectively. However, for some problems, the blocking option gives 
disappointing results and further work appears to be needed. Results can be 
particularly poor if an inappropriate blocksize is chosen. For problem IMP- 
COLD, if 5 eigenvalues are wanted and the blocksize is also taken to be 5 ,  
then using 4 Arnoldi steps per iteration, EB13 requires 64 iterations to achieve 
convergence. However, if the blocksize is increased to 6, the number of iter- 
ations is cut to 19. This is because X6 is close to X g  and better separation 
is achieved by increasing the block size. We observe that the results for the 
block Arnoldi scheme given in Sadkane (1993) reflect a much larger subspace 
being constructed than was attempted in our study. 

0 A major disadvantage of all the codes is that they are sensitive to the choice 
of the input parameters. Moreover, we have found that the performance of 
Arnoldi based software is extremely sensitive to implementation details. 

6 Future directions 
We end our study of Arnoldi based software by briefly discussing how the quality 
of existing software might be improved in terms of efficiency, reliability, and ease of 
use. 

Each of the codes in our study was written in FORTRAN 77. As discussed in Sec- 
tion 4.3, for such codes, the use of reverse communication for carrying out matrix- 
vector products is recommended. However, it is perhaps time to consider developing 
software using a more modern programming language. This could remove the re- 
quirement for a reverse communication interface. A more modern programming 
language could also help simplify the user interface in other ways. For example, the 
FORTRAN 90 programming language allows the use of optional arguments. By using 
optional arguments, the experienced user can be given a large amount of control 
and freedom to experiment, while at the same time the less familiar user can have 
the amount of input data reduced to a minimum. 

Further research is needed into the automated selection of parameters such as 
the dimension rn of the Krylov subspace. Here again there would be advantages in 
using, for example, FORTRAN 90, which allows dynamic allocation of storage. Thus, 
the user would only be asked to specify the number r of sought-after eigenvalues, 
and the software would automatically choose rn and then adjust it at each iteration 
as the computation proceeded to try and accelerate convergence. 
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Improved polynomial restarting methods are required. The success of the Arnoldi 
codes depends upon such strategies. EB13 includes mechanisms for tracking the 
polynomials constructed as the iteration progresses. Such mechanisms should be 
incorporated into new polynomial restarting methods. ARPACK allows the user to 
select shifts during each iteration and should prove useful for determining alternate 
or new polynomials. Again, the selection of the restart polynomial needs to be 
automated. 

The whole question of the stopping criteria is another area requiring investiga- 
tion. Further research and testing need to be undertaken to improve the ways in 
which the software decides to terminate the computation. Strategies for detecting 
stagnating convergence to prevent unnecessary work from being performed are also 
needed. Although not always successful, EB13 does attempt to do this. 

Closely related to the stopping criteria is the verification of the computed eigen- 
values and eigenvectors. At present, no software is publicly available for determining 
whether the given eigenvalue problem was solved. Successful convergence implies 
only that an eigenvalue problem was solved. For the Arnoldi software, which we 
found can experience difficulties when attempting to locate multiple and closely 
clustered eigenvalues, it is particularly important to have some means of checking 
that one or more of the sought-after eigenvalues has not been missed. Some promis- 
ing work on a possible approach has been reported on by Meerbergen, Spence and 
Roose (1994). 

In conclusion, it is clear that although the Arnoldi software situation is much 
more promising than it was even 5 years ago, there remains important problems and 
limitations with the current software which need to be addressed. Given the results 
of all our experiments, we believe that an implicitly restarted Arnoldi iteration is a 
promising way forward and that further investigation into block algorithms is also 
likely to be worthwhile. 

7 Availability of the Software and Test Matrices 

We summarise how the interested reader may obtain the test matrices and software 
reviewed in this study. 

The Harwell-Boeing matrices of Duff et al. are available by anonymous ftp to 
seamus. cc . rl . ac  . uk in the directory pub/harwell-boeing. 

ARNCHEB is available by anonymous ftp to or ion.  cerf acs . f r in the directory 
pub/algo/software/Qualcomp/Arncheb/Real. 

ARPACK is available by anonymous ftp to ftp.caam.rice.edu in the direc- 
tory pub/people/sorensen/ARPACK. The file README provides directions on 
downloading the software. 

EB13 is included in Release 12 of the Harwell Subroutine Library, and any- 
one interested in using the code should contact the HSL Manager: Dr. S. J. 
Roberts, Harwell Subroutine Library, AEA Technology, Building 552, Har- 
well, Oxfordshire, OX11 ORA, England, tel. $44 (0) 1235 434714, fax +44 (0) 
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1235 434136, or e-mail S c o t t  .RobertsQaeat . co  .uk, who will provide details 
of price and conditions of use. 
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A Appendix: Tables of results for right-most 
eigenpair 

For examples for which the right-most eigenvalue is also the eigenvalue of largest 
modulus, results are given for ARPACK and EB13 when the right-most eigenvalue is 
requested (WHICH = LR) and the eigenvalue of largest modulus is requested (WHICH 
= LM). 

PORES2, T = l , m  = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 1401 7 3.37 
ARPACK LR 90 5 0.50 
EB13 LR 119 3 0.40 

PORES3, T = 1,m = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR * * * 
ARPACK LM 100 24 0.23 
ARPACK LR * * * 
EB13 LM 217 27 0.40 
EB13 LR * * * 

* denotes that code did not converge with 
the requested accuracy within 4000m matrix-vector products. 

GRE1107, T = 1,m = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 2204 47 4.00 
ARPACK LM 420 119 1.94 
ARPACK LR 320 71 1.28 
EB13 LM 929 116 2.85 
EB13 LR 465 7 1.05 
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HOR131, T = 1,m = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 496 2 0.53 
ARPACK LM 28 6 0.07 
ARPACK LR 28 6 0.07 
EB13 LM 32 7 0.08 
EB13 LR 57 2 0.09 

IMPCOLC, T = 1,m = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 360 9 0.06 
ARPACK LM 200 34 0.15 
ARPACK LR 59 14 0.06 
EB13 LM 181 20 0.08 
EB13 LR 117 3 0.02 

IMPCOLD, T = l , m  = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARMCHEB LR t t t 
ARPACK LR t t t 
EB13 LR 1963 24 1.29 

t indicates sought-after eigenvalue was missed. 

NNC666, T = l , m  = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 912 10 1.00 
ARPACK LR 132 32 0.35 
EB13 LR 117 3 0.18 
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NNC1374, T = l , m  = 8 

Code WIIICH Matrix-vector Iterations Time 
products (secs) 

~ ~~~ 

ARNCHEB LR 1758 16 4.11 
ARPACK LR 176 43 1.15 
EB13 LR 201 4 0.66 

WEST0156, T = 1,m = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 195 1 0.03 
ARPACK LR 38 6 0.04 
EB13 LR 59 2 0.02 

WEST0167, T = 1,m = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 367 8 0.08 
ARPACK LR 135 38 0.19 
EB13 LR 58 2 0.01 

WEST2021, T = 1,m = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 3233 52 8.64 
ARPACK LR 40 1 103 3.73 
EB13 LR 4869 57 17.34 

PDE2961, T = l , m  = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 3299 14 13.36 
ARPACK LR 180 30 2.29 
EB13 LR 204 4 1.37 
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RWK5151, T = l ,m = 8 

Code WHICH Matrix-vector Iterations Time 
products (secs) 

ARNCHEB LR 5167 1 19.18 
ARPACK LR 350 88 7.44 
EB13 LR 905 12 7.71 
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B Appendix: Tables of results for several eigen- 
values 

PORES2, T = 4,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 1712 8 4.74 
ARPACK LR 1 230 17 1.92 
EB13 LR 1 1759 25 6.99 
EB13 LR 4 t t t 

t denotes that code did not converge with 
the requested accuracy within 4000m matrix-vector products. 

PORES3, T = 5,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 t t t 

ARPACK LR 1 11684 782 38.19 
EB13 LR 1 t t t 

EB13 LR 5 t t t 

t denotes that code did not converge with 
the requested accuracy within 4000m matrix-vector products. 
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GRE1107, T = 5, m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 * * * 
ARPACK LM 1 227 20 1.54 
ARPACK LR 1 260 18 1.42 
EB13 LM 1 1558 77 5.91 
EB13 LR 1 1950 21 4.95 
EB13 LM 5 3925 196 19.05 
EBI3 LR 5 1449 6 2.69 

* denotes that code did not converge with 
the requested accuracy within 4000m matrix-vector products. 

HOR131, T = 5,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 749 5 0.98 
ARPACK LM 1 46 3 0.15 
ARPACK LR 1 45 3 0.14 
EB13 LM 1 221 11 0.49 
EB13 LR 1 237 5 0.40 
EB13 LM 5 505 25 1.04 
EB13 LR 5 245 2 0.23 

IMPCOLC, T = 5,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 t t t 
ARPACK LR 1 188 16 0.33 
EB13 LR 1 436 6 0.16 
EB13 LR 5 245 2 0.06 

t indicates sought-after eigenvalues were missed. 
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IMPCOLD, T = 5,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 * * * 
ARPACK LR 1 793 61 0.72 
EB13 LR 1 2950 31 2.38 
EB13 LR 5 12656 64 7.73 

* denotes that code did not converge with 
the requested accuracy within 4000m matrix-vector products. 

NNC666, T = 5,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 2246 28 3.48 
ARPACK LR 1 102 7 0.40 
EB13 LR 1 419 6 0.75 
EB13 LR 5 42 3 3 0.51 

NNC1374, T = 5 ,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 t t t 
ARPACK LR 1 145 10 1.24 
EB13 LR 1 557 7 2.07 
EB13 LR 5 700 4 1.83 

t indicates sought-after eigenvalues were missed. 

WEST0156, T = 5,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 25 1 1 0.06 
ARPACK LR 1 29 2 0.05 
EB13 LR 1 25 1 0.02 
EB13 LR 5 286 4 0.12 
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WEST0167, T = 5,m = 20 

Code WHICH Block Matrix-vector Iterations .Time 
size products (secs) 

ARNCHEB LR 1 317 2 0.09 
AFPACK LR 1 91 7 0.15 
EB13 LR 1 26 1 0.02 
EB13 LR 5 434 5 0.15 

WEST2021, T = 5,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size products (secs) 

ARNCHEB LR 1 15921 252 70.67 
ARPACK LR 1 167 13 2.12 
EB13 LR 1 4149 42 18.07 
EB13 LR 5 6865 19 20.96 

CK400, T = 8,m = 20 

Code WHICH Block Matrix-vector Iterations Time 
size moducts (secs) 

ARNCHEB ~~ LR 1 t t t 
AFPACK LM 1 71 7 0.20 
ARPACK LR 1 80 8 0.40 
EB13 LM 1 223 12 0.39 
EB13 LR 1 228 9 0.35 
EB13 LM 4 340 17 0.58 
EB13 LR 4 256 6 0.28 

t indicates sought-after eigenvalues were missed. 
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CK656, T = 8 , m  = 20 

Code WHICH Block 
size 

ARNCHEB 
ARPACK 
ARPACK 
EB13 
EB13 
EB13 
EB13 

LR 
LM 
LR 
LM 
LR 
LM 
LR 

Matrix-vector 
products 

t 
80 
80 

254 
238 
356 
224 

Iterations Time 
(secs) 

t t 
8 0.40 
8 0.40 
13 0.72 
9 0.58 
18 1.02 
5 0.49 

t indicates sought-after eigenvalues were missed. 


