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ABSTRACT

The preconditioning of linear least-squares problems is a hard task. The linear model underpinning

least-squares problems, that is the overdetermined matrix defining it, does not have the properties

of differential problems that make standard preconditioners effective. Incomplete Cholesky

techniques applied to the normal equations do not produce a well conditioned problem. We attempt

to remove the ill-conditioning by identifying a subset of rows and columns in the overdetermined

matrix defining the linear model that identifies the “best” conditioned basic variables matrix.

We then compute a symmetric quasi-definite linear system having a condition number depending

solely on the geometry of the non-basic variables and that is independent of the original condition

number. We illustrate the performance of our approach on some standard test problems and show

it is competitive with other approaches.
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1 Introduction

Let A ∈ IRm×n, with m ≥ n, be a full rank matrix and b ∈ IRm, then the linear least-squares problem

(LLSP)

min
x
||b−Ax||22 (1.1)

has a unique solution x∗ ∈ IRn. The preconditioning of A when the LLSP is not related to differential

problems is difficult. An incomplete Cholesky factorization on the normal equations

ATAx = AT b, (1.2)

is hard to make robust unless we allow fill-in in the Cholesky factor that is comparable with the fill-in of

a full Cholesky factor, that is we are very close to using a direct method. Although many people have

proposed ways for preconditioning the iterative solution of linear least squares problems [5, 8, 28, 30], the

search for a robust preconditioner is still open and it is our intention to take a step in the direction of

finding one.

In the following we will explore the use of the augmented system Im A

AT 0

  r

x

 =

 b

0

 , (1.3)

where r is the residual vector equal to b−Ax. In Section 2 we show that by partitioning the rows of A into

basic and non-basic parts we can obtain an equivalent symmetric quasi-definite (SQD) linear system with

a natural and effective preconditioner. We develop the theory supporting this in Section 3. Although our

approach is independent of the conditioning of A we show that it is very much influenced by the partitioning

of A and we discuss this in Section 4. In Section 5, we show some experiments with a sparse factorization

routine that is able to identify a reasonable approximation to the best partition. We discuss the solution

of the SQD system in Section 6. In Section 7, we present several experiments showing the performance

of our approach on a range of test problems and compare this with using incomplete Cholesky on the

normal equations and show it is competitive with the RIF preconditioner of [5]. We show, in Section 8,

the importance of selecting a good basis matrix in the case of totally unimodular matrices although, in this

case, we use a different technique for selecting the basis matrix. We present some conclusions in Section 9.

Hereafter, we will denote the condition number of A by:

κ(A) =
maxi(σi)

mini(σi)
,

where σi are the singular values of A.

Preconditioning least-squares matrices

A fascinating illustration of the dramatic effect of having a good preconditioner can be seen by looking at

the (in)famous Vandermonde matrix, with first column of ones and succeeding columns increasing powers

of the data points. If we consider a matrix with 20 columns and 10000 rows generated from points chosen

randomly from the box (0,1), the condition number of this matrix is & 1016.

If we define a preconditioning matrix C by choosing uniformly spaced data points then the condition

number of AC−1 is around 1×104. However, if the preconditioning matrix is formed using the Chebyshev

points in the interval (0,1) then the condition number is around 5!

We show, in Figure 1.1, histograms for the distribution of these condition numbers over a large sample

of matrices whose rows comprise different sets of random points.

1



Figure 1.1: Histograms of condition numbers of Vandermonde and preconditioned Vandermonde matrices.

2 Expressing the least-squares problem as a symmetric quasi-

definite system

Since the matrix A has full column rank, there exists an invertible matrix B and a permutation matrix P

such that

PA =

 B

N

 . (2.1)

This corresponds to partitioning A into basic and non-basic parts.

We can rewrite the augmented system of equations (1.3) using the partitioning (2.1) as
In 0 B

0 Im−n N

BT NT 0



rB

rN

x

 =


bB

bN

0

 . (2.2)

In passing, we note that setting the (1,1) block of the matrix in equation (2.2) equal to zero, the constraint

preconditioner used by [13] is obtained. We observe that if we eliminate the first n-variables, we obtain

the reduced system:  Im−n N

NT −BTB

  rN

x

 =

 bN

−BT bB

 . (2.3)

This linear system has a matrix that is Symmetric Quasi-Definite (SQD) [20, 18, 39, 42], and by

symmetrically scaling the system (2.3) by

M =

 Im−n 0

0 B−T

 (2.4)
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we have  Im−n NB−1

B−TNT −In

  rN

Bx

 =

 bN

−bB

 . (2.5)

As we will be interested in the conditioning of these systems and in the effect of using our preconditioner

(2.4) we now study the eigenvalues and singular values of the relevant matrices.

3 Theory

In the following we will use the QR-decomposition of A:

A = QR, QTQ = In, Q ∈ IRm×n, and R ∈ IRn is upper triangular.

We note that this is for theoretical purposes and we do not compute it explicitly in practice. Expressing

the QR-decomposition in terms of the partitioning of A in Section 2 we get

B = QBR

N = QNR

 , (3.1)

where QB ∈ IRn×n and QN ∈ IR(m−n)×n are the basic and non-basic partitions of Q, respectively.

From this, we see that the condition number of NB−1 is independent of R and so is independent of the

singular values of A. In order to get a more precise expression for the conditioning of NB−1, we will use

the following version of the CS-decomposition that is a simplified version of the more general one given in

[36]:

Theorem 3.1 Let Q ∈ IRm×n be a matrix such that QTQ = In. Let

Q =

 QB

QN

 (3.2)

where QB is an n×n matrix and QN is an (m−n)×n matrix. Then there exist the matrices UB ∈ IRn×n,

U
(m−n)×(m−n)
N , V ∈ IRn×n, all orthogonal such that

 UB 0

0 UN

 QB

QN

V T =



In−j 0

0 C

0 0

0 S



}n− j

} j

}m− n− j

} j

(3.3)

where C ∈ IRj×j and S ∈ IRj×j are diagonal matrices C = diag(ci) and S = diag(si) such that

c2i + s2i = 1.

Moreover, we have, without loss of generality, that ci, si > 0 for all i.

Theorem 3.1 tells us that we can simultaneously compute the singular value decomposition of both QB

and QN and that the singular values are the cos(θi) and the sin(θi) of the principal angles between the

subspaces generated by the two matrices.
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In particular, using Theorem 3.1 and (3.1), we can compute the singular value decomposition of NB−1:

NB−1 = QNQ
−1
B = UT

N

 0 0

0 SC−1

UB . (3.4)

The eigenvalues of the matrix  Im−n NB−1

B−TNT −In

 (3.5)

are related to the singular values of the matrix NB−1. From the expression (3.4), we have UN 0

0 UB

 Im−n NB−1

B−TNT −In

 UT
N 0

0 UT
B

 =



Im−n−j 0 0 0

0 −In−j 0 0

0 0 Ij SC−1

0 0 SC−1 −Ij


.

(3.6)

Therefore, the eigenvalues µi, i = 1, . . . ,m of the SQD matrix (3.5) are

µi =
1

ci
i = 1, . . . , j , µi =

−1

ci
i = j + 1, . . . , 2j, (3.7)

µ2j+1 = 1 with multiplicity m− n− j, (3.8)

µ2j+2 = −1 with multiplicity n− j. (3.9)

Since the largest singular value of NB−1 is equal to the norm ||NB−1||2 then, from equations (3.4)

and (3.7), the condition number for the preconditioned SQD system (2.5) is given by the expression√
1 + ||NB−1||22, (3.10)

and we can easily obtain an estimate for this norm.

We can envisage the use of preconditioned Krylov methods such as MINRES [38] for the solution of

the SQD system (2.5) or, alternatively, a version of the constrained preconditioned conjugate gradient

algorithm [11, 12, 13].

Clearly our analysis shows the importance of the choice of the matrix B in our partitioning. We discuss

this in detail in the next section.

Before doing so, we should point out that our preconditioning can be interpreted in various ways.

In particular, special choices of constraint preconditioners such as those described in [11, 12, 13] applied

to (1.3) will produce a preconditioned linear system mathematically equivalent to (2.5) on which the

preconditioned conjugate gradient approach proposed in [12] is equivalent to applying the conjugate

gradient method directly to (2.5). We refer to [4] for a full review of the possible alternative Krylov

methods applicable to SQD systems. However, we will see in Section 6 how a specialized CGLS , LSQR

and LSMR for SQD [4, 6, 7, 34, 39] halves the number of iterations of MINRES and CG applied to the SQD

system.
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Figure 4.1: Vectors corresponding to rows of matrix. Optimal choice of basis in bold.

4 The choice of the basis B

From the results and the discussion of the previous sections, we can conclude that the best choice of the

rows for forming the basic and non-basic partition B and N is independent of the condition number of A

and is in reality a combinatorial problem, in the sense that we are choosing n rows from B that best span

the space Rn. We could assume that these rows should be close to orthogonal and this can be the case

even when the matrix A is very badly conditioned. Taking into account the results of Theorem 3.1, the

best choice of B is effectively the best choice of QB . This raises the question as to whether a QB exists

that is close to being orthogonal. First, we point out that if QB is orthogonal then, from the orthogonality

of Q, follows that QN = 0, and thus N = 0. Therefore, the only non-trivial possibility is to look for the

best QB such that ||In −QT
BQB ||2 � 1.

Unfortunately, the following example shows that this perfect QB may not exist even for an apparently

nice matrix. We choose A to be the orthonormal matrix Q viz.

Q =

 In−1 0

0 v

 (4.1)

where v ∈ IRm−n+1 and vi = 1/
√
m− n+ 1, ∀i so that vT v = 1. For m→∞ we have

QTQ = In and Rank(QB)→ n− 1.

It might be thought that one could devise a simple criterion for choosing the best rows of A for

constructing the basis B. To see what this criterion might be, we generated random orthonormal matrices

with 7 rows and 2 columns. For each matrix, we exhaustively checked all 21 choices for the 2×2 basis matrix

to see which one gave the best conditioned matrix NB−1. We then, using this a posteriori information,

tried to understand what criterion could have been used in an a priori way to choose the best basis matrix.

In Figure 4.1 we show the vectors corresponding to the 7 rows of two matrices. As in the discussion in

the previous subsection, we might think that it is best to choose the two most orthogonal rows. However,

we see from the left-hand graph of Figure 4.1 that it is not the case for the matrix whose rows are

represented in the figure. We notice that the best choice of rows for this matrix (shown in bold) are those

forming an envelope for the other rows and so we could be tempted into thinking that this might be the

best choice of basis. However, the right-hand graph in the figure shows that this is not always the case.

From these results and runs on many other random matrices, our conclusion is that there is no easy

criterion to determine the best basis rows.

5 Selection of basis using LU factorization

Given the m×n matrix A, we look for ways of automatically finding a good set of basis vectors B through

a pivoting strategy on A. A standard technique for choosing a pivot in sparse Gaussian elimination is to
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choose an entry that minimizes the product of the number of entries in its row with the number in its

column. This so-called Markowitz [31] count is a bound on the amount of fill-in that can occur at that

step of the elimination. Of course, for stability reasons, the entry so chosen cannot be too small and so

we only allow an entry to be eligible as a pivot if it satisfies a threshold pivoting criterion. The standard

threshold pivoting strategy for sparse systems is to only choose aij as pivot if it satisfies

|aij | ≥ umax
k
|akj |,

where the threshold parameter u is such that 0 < u ≤ 1.0. Note that values of u near zero allow greater

freedom to choose pivots for good maintenance of sparsity while values nearer 1.0 should give a more

stable and accurate factorization. Choosing u = 1.0 is just the partial pivoting algorithm commonly used

for factorizing dense linear systems. For the solution of square sparse linear equations, a threshold value

of 0.01 is often recommended and used, but we will see later that a higher value is beneficial when using

the LU factorization to choose the basis for a rectangular system.

To identify the basis, we use the HSL [27] package MC58 that performs a sparse LU factorization and

has a wide range of options for sparsity pivoting although it does not keep the factors. When run on

rectangular matrices, it will identify which rows and columns are in a nonsingular block of order r, the

estimated rank of the matrix, where r ≤ min {m,n}. Note that this identification would not be possible

if we used a sparse QR factorization [10] to find the basis matrix.

We experimented extensively with the range of pivoting options including a sparse threshold variant

of rook pivoting where aij is only eligible to be chosen as a pivot if

|aij | ≥ u ∗max{max
k
|akj |,max

k
|aik|}.

We had thought that, because this approach is more stable than column threshold pivoting, it might be

a better choice for choosing a basis. However, in our extensive experiments (not reported here) we found

that the crucial parameter for getting a good basis was the threshold parameter. So much so, that we

choose one of the cheapest options in MC58 for selecting pivots. That is to choose the numerically eligible

entry with the best Markowitz count from a search of the sparsest three columns of the reduced matrix.

In order to factorize the basis matrix that we have thus identified, we use MA48 which is an HSL package

for solving sets of sparse linear equations where the matrix is unsymmetric or rectangular. It also uses an

LU factorization.

To summarize, we first use MC58 with a high threshold value, u, on the matrix A to find the rows in

B and then perform the factorization of B by MA48 using threshold pivoting with a threshold value of

0.01. This two step approach has the advantage over earlier work by [33] because we can keep storage

requirements low by avoiding the computation of the LU factors while using the high threshold to obtain

the basis. We note that while the LUSOL code [19] has a range of pivoting options, it does not have this

facility.

We now illustrate experimentally the effect of using this strategy on some standard test problems,

popularized by Paige and Saunders that were obtained by Saunders from DSIR Wellington, NZ, and were

included in the original Harwell-Boeing test set and in the Florida collection of Tim Davis. We show the

main characteristics of these matrices in Table 5.1.

Although they are small, they are widely used in the literature and are challenging enough for our

purpose. Indeed, the lack of realistic test matrices is a problem in this area although we do some runs

on larger matrices in Section 7.3. Here we use the the Paige and Saunders matrices to comment on a few

aspects of our preconditioner without overwhelming the reader with too much data.

We show the condition number of the scaled SQD matrix (3.5) for all the Paige-Saunders matrices

and three levels of threshold in Table 5.2. We see that, in every case, the condition number decreases

monotonically with increasing u. We will see the effect of this on the convergence of our iterative solution

in Section 7.
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id m n nnz κ(A)

well1033 1033 320 4732 1.6e+02

illc1033 1033 320 4719 1.8e+04

well1850 1850 712 8755 1.1e+02

illc1850 1850 712 8636 1.4e+04

Table 5.1: Dimensions, number of nonzeros and condition numbers for Paige-Saunders tests.

Figure 5.1: Spectra of preconditioned SQD system.

We illustrate the effect of our preconditioning and the dependence on the threshold parameter u in

Figure 5.1. In this figure we show the eigenvalues of the SQD matrix (see equation (2.3)) for illc1033

using threshold values of 0.1 and 1.0 to determine the basis matrix B.

√
1 + ||NB−1||22

id u=.1 u=.5 u=1.0

illc1033 7.5e+01 2.4e+01 1.4e+01

illc1850 2.0e+03 2.7e+01 2.1e+01

well1033 1.2e+02 2.4e+01 1.3e+01

well1850 8.3e+02 4.7e+01 2.4e+01

Table 5.2: Condition numbers of the preconditioned SQD matrices.

For matrices A with a particular structure, there can be other approaches for obtaining a good basis, and

we illustrate this in the case of totally unimodular matrices in Section 8. In this case, we use an approach

based on graphs rather than a matrix factorization to choose the basis matrix, but the importance of

selecting a good basis and its effect on the conditioning of the SQD system is seen clearly in this case also.
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6 Solution of the SQD system

The class of SQD matrices underpins the modelling of optimisation problems. In particular, it is useful

and important in the formalization of regularized least-squares problems and hybrid-mixed finite-element

methods. We can denote by

A =

 Im−n H

HT −In

 , (6.1)

the matrix (3.5) that is in the class of SQD matrices. Arioli and Orban [4] give a full account of these

regularized problems in a more general framework where Im−n and In are substituted by general positive

definite matrices, and introduce a formal Hilbert space setting, but we keep details to a minimum here for

clarity. The matrix D = A2 has a two by two block diagonal structure that is the key for implementing

efficient Krylov methods, viz.

D = ATA = A2 =

 Im−n +HHT 0

0 In +HTH

 , (6.2)

so that

A−1 = D−1A = AD−1. (6.3)

Similar relations are satisfied when we replace the diagonal blocks in A with M and −N , where both

M and N are positive definite matrices [4]. We have seen in equation (3.7) that the spectrum of A is

symmetric. Fischer [14, Theorem 6.9.9] has proved that Krylov space methods based on A such as MINRES

[35] or CG display some form of stagnation at every other step (see also [16]) or exhibit oscillations in the

energy norm of the error, respectively. In particular, MINRES and CG will, in exact arithmetic, require

double the number of iterations of LSQR [37] or the LSMR algorithm introduced in [15].

We denote by GLSMR and GLSQR two algorithms based on the Golub-Kahan bidiagonalization algorithm

[21] applied to H. They are generalizations of the LSMR and LSQR methods that solve Im−n H

HT −In

 rN

z

 =

 c

0

 , (6.4)

where, in our case, H = NB−1 and the right-hand side c is obtained from rN and Bx in (2.5) as follows

c = bN −HbB

and

z = Bx− bB .

We point out that the algorithms in exact arithmetic are equivalent to solving the equations(
HTH + In

)
z = HT c, (6.5)

by MINRES (GLSMR ) or CG (GLSQR ) methods, respectively.

By using recursive formulae, it is possible to compute iterative updates, at each step k, of both rN
and z in (6.4). Moreover, we can obtain both the solution and an estimate of the error measured in the

energy norm, i.e. || · ||ATA. We remark that at each step k both GLSQR and LSQR locally minimise the

error in the energy norm. Our stopping criterion uses this local property to obtain, by the use of d extra

steps, a lower bound for the global energy norm error at step k − d. In our numerical experiments, we

use a Matlab implementation of GLSQR given in [4, Algorithm 6.1]. We note that a viable alternative

8



algorithm is CGLS [6, 7] that can be specialised to solve (6.4) using (6.5) without explicitly forming the

matrix HTH + In. In exact arithmetic, GLSQR on (6.4) and CGLS applied to (6.5) will be equivalent. We

emphasize that the aim of our current work is to demonstrate the performance of our preconditioner and

not to compare this wide range of iterative solvers. Therefore, we decided to choose GLSQR in order to show

how our preconditioner improves the convergence. The difference in the number of iterations between the

different iterative solvers is marginal and is mainly due to the different stopping criteria used. We present

our results for using GLSQR in Section 7. In these tests, we respect the error measures minimized in GLSQR

and compute the relative errors in the ATA-norm given by:

(x− x(k))TATA(x− x(k))/(xTATAx). (6.6)

In the GLSQR implementation we compute a lower bound for (6.6) to stop the iterative process with

a given tolerance. This stopping criterion is based on the technique described in [4] where an extra d

iterations are performed to compute the lower bound estimates for the quantities in equation (6.6).

We point out that a similar preconditioning to ours can be used in all the alternative iterative solvers

we have referenced above. Moreover, for both GLSQR and CGLS we can take advantage of the fact that the

smallest eigenvalue of (3.5) is equal to 1 in order to have upper bounds for the error in the ATA-norm at

each iteration using an extra d steps [4] .

Finally, we note that, with our preconditioner, we are able to compute the condition number of both

HTH + I and of (3.5) using a few steps of a power method taking into account that the smallest singular

value of (3.5) is one and the largest is given by (3.10). This will allow us to predict a priori the behaviour

of the iterative solver and the quality of the preconditioner. We remark that this is not true for general

preconditioners like incomplete Cholesky where the smallest singular value of the preconditioned matrix

is unknown.

7 Numerical experiments

As we are want to entertain the possibility of having solutions to the overdetermined systems that

yield a nonzero residual, we consider the generation of right-hand sides in Section 7.1. We then show

the results from using our preconditioner and running GLSQR on the Paige-Saunders test matrices in

Section 7.2 and on larger test matrices in Section 7.3. We discuss in Section 7.4 the solution of the systems

using as a preconditioner an incomplete Cholesky factorization of the normal equations and compare our

preconditioner with the well known RIF preconditioner [5] in Section 7.5.

7.1 Constructing right-hand sides

In most of the earlier work that we have referenced, for example [5], the right-hand side is computed by

multiplying a given solution vector by A, that is the system is consistent. This does not reflect general

linear least squares systems where the residual is often nonzero sometimes markedly so. In particular,

when the right-hand side is obtained from experimental observations and is a realization of a stochastic

variable, the residual, r = b−Ax, is also the realization of a stochastic variable with a standard deviation

that is much larger than machine precision. In some cases, ||r||2 ≈ O(10−2) with large oscillations in the

entries.

We note that our method would act as a direct method for consistent equations and would converge

in only one iteration and indeed would normally require only a few iterations if the residual was small.

Thus we need to have right-hand sides that define inconsistent linear least-squares problems. We do this

by using our knowledge of the matrices N and B. We compute the b in (1.1) by using (2.5) as follows:

• We fix xi = 1, i = 1, . . . , n and (rN )j = 1, j = 1, . . . ,m− n;
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• We compute B ∗ x and set

b =

 Bx−B−TNT rN

rN +Nx

 .
We then compare our solution vector with the unit input vector noting that, depending on the condition

number of B, we cannot guarantee that this should be small. However, for all our test problems, we assume

that such an error will be in the worst case of order 10−5 and use this in setting the tolerance to stop

the iterative method. For the small test matrices from Paige and Saunders, which come with a given

inconsistent right-hand side, we compare our solution with that computed using the QR-method.

7.2 Runs on Paige-Saunders test problems

We give a summary of our results on the Paige-Saunders test problems in Table 7.1. We see that, as the

theory predicts, the performance of using LSQR on the augmented system and using the GLSQR approach

are very similar. Although mathematically equivalent, the computation is quite different so we would

not expect to get identical results. We do note that, in all cases, GLSQR is marginally better in terms of

iteration count and final residual. We also see that MINRES performs twice the number of iterations as

GLSQR (we note that the stopping criterion used in GLSQR requires a few additional iterations in order to

compute reliable estimates of the errors) with marginally worse final residual. We also note that CGLS

performs similarly to GLSQR and the variations in number of iterations are insignificant.

Problem Aug. System SQD

LSQR MINRES GLSQR

illc1033 3.9e-13 (95) 6.7e-13 (182) 1.0e-13 (94)

illc1850 4.5e-14 (142) 6.2e-14 (270) 1.5e-14 (138)

well1033 1.2e-14 (105) 7.3e-15 (204) 4.8e-15 (105)

well1850 3.8e-15 (148) 1.5e-14 (285) 1.3e-15 (146)

Table 7.1: Actual errors ||xQR−x(k)||2/||xQR||2, with the number of iterations in parentheses. The matrix

B is computed using a threshold of 1.0 and 5 steps are used in the computation for the stopping criterion

of GLSQR .

To emphasize our point about the convergence of GLSQR wrt MINRES , we show, in Figure 7.1,

convergence curves for illc1033 with a threshold value of 0.5 used to determine the basis matrix B.

7.3 Runs on larger test problems

As we mentioned earlier, there is a dearth of large least-squares problems in the standard matrix test sets,

but we have run our algorithm on a few larger problems and show the effect of our preconditioner on the

condition number of the SQD system in Table 7.2. We chose these large problems from the Florida test

set with the Rav4.constraint matrix coming from an LS-DYNA application and given to us by Cleve

Ashcraft. We present our results from running GLSQR on these problems in Table 7.3. Although we have

performed all the same runs with GLSMR as with GLSQR, we have not included the results of these since

they were very similar to those from GLSQR and were essentially identical when the relative error in the

solution for each method was calculated. The times in the tables were obtained on a 1.3 GHz Intel Core

i5 laptop with 4GB of RAM.
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Figure 7.1: Convergence of MINRES and GLSQR on matrix illc1033

Name m n entries κ(A)
√

1 + ||NB−1||22

Matrix u=.1 u=1.0

C.raw 2850 1230 5687 8.3e+01 5.7e+1 5.7e+1

Kemelmacher 28452 9693 100875 2.5e+04 2.5e+4 7.1e+1

lp osa 07 25067 1118 144812 6.8e+02 9.9e+2 2.5e+2

lp osa 30 104374 4350 604488 1.4e+03 1.4e+3 3.6e+2

lp truss d 8806 1000 27836 784 174 166

Rav4.constraint 2880897 238324 558270 >3.8e+27 2.0e+2 6.9e+2

mesh deform 234023 9393 853829 1.7e+03 7.1e+1 4.0e+1

Table 7.2: Condition numbers of the preconditioned SQD matrices for larger test matrices.

We see that the conditioning of the SQD system is markedly influenced by the threshold chosen in

determining the basis and usually directly translates into a lower number of iterations for GLSQR. That this

is not always the case is because the condition number does not tell the whole story for the convergence

of Krylov based methods. It is the distribution of eigenvalues that is important. If the eigenvalues are

uniformly distributed, the convergence of the Krylov based method can slow down and can behave as

predicted by the Chebyshev method [40].

Tyrtyshnikov and his co-workers have implemented an iterative technique [22] based on an algorithm

developed by [23] that tries to maximize the volume of the basis matrix. That is, they iterate to increase

the modulus of the determinant of the matrix B. The idea of doing this was in [24] and is related to earlier

work by Knuth [29]. We are very grateful to Dmitry Savostyanov for the results shown in Table 7.4, where

he refined the basis that we obtained from a threshold of 1.0. We show that this can significantly improve

the condition number and convergence.

However, the above problems are not used by earlier papers in this area, and so we also perform runs

on problems from pig breeding that were obtained from Markus Hegland [25, 26] for experiments on a QR

code at CERFACS [1]. We show the condition numbers and results from running GLSQR on these matrices

in Tables 7.5 and 7.6, respectively. Again these show clearly the benefit of using our preconditioner and

the effect of using a high threshold to determine the basis matrix.
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Problem thresh Cond. number GLSQR on SQD

Iterations Rel. error Time

C.raw 0.1 57.6 117 2.0e-05 0.8

1.0 57.6 117 2.0e-05 0.6

Kemelmacher 0.1 24616.3 139 7.7e-03 1.7

1.0 71.2 146 6.2e-05 2.1

lp osa 07 0.1 994.4 56 2.3e-04 0.6

1.0 246.0 43 1.6e-04 0.3

lp osa 30 0.1 1457.5 50 1.1e-04 0.8

1.0 358.4 34 1.9e-06 0.4

Rav4.constraint 0.1 196.6 356 1.3e-05 53.0

1.0 69.9 185 3.4e-06 29.0

mesh deform 0.1 71.2 230 2.3e-05 4.6

1.0 39.9 152 1.7e-05 2.6

Table 7.3: Results of running GLSQR on preconditioned SQD system on larger systems. Rel error is

||x− x(k)||ATA/||x||ATA (u = 1 , d = 5).

Basis steps Cond. number GLSQR on SQD

Iterations Rel. error Time

0 71.20 146 7.7e-03 1.7

1229 36.19 71 1.1e-05 1.1

1778 37.13 71 1.3e-05 1.0

Table 7.4: Results of running GLSQR on preconditioned SQD system from Kemelmacher problem with

threshold 1.0 using improved basis from Dmitry Savostyanov. Basis steps is number of iterations of

algorithm to improve basis.
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Name m n entries κ(A)
√

1 + ||NB−1||22

Matrix u=.1 u=1.0

PIGS small1 3140 1988 8510 3.9e+05 125.4 33.7

PIGS small2 6280 3976 25530 5.2e+05 115.3 30.4

PIGS medium1 9397 6119 25013 4.3e+05 384.6 45.1

PIGS medium2 18794 12238 75039 4.2e+05 317.7 38.5

PIGS large1 28254 17264 75018 4.6e+05 334.9 93.2

PIGS large2 56508 34258 225054 4.7e+05 686.7 66.3

PIGS verylarge 174193 105882 463303 1.5e+06 592.1 193.6

Table 7.5: Condition numbers of the preconditioned SQD matrices for the pig-breeding matrices.

Problem thresh Cond. number GLSQR on SQD

Iterations Rel. error Time

PIGS small1 0.1 125.4 114 6.7e-06 0.6

1.0 33.7 69 5.3e-07 0.4

PIGS small2 0.1 115.3 173 5.8e-05 1.1

1.0 30.4 77 6.4e-06 0.5

PIGS medium1 0.1 384.6 288 4.6e-05 1.8

1.0 45.1 107 3.7e-07 0.7

PIGS medium2 0.1 317.7 376 7.2e-04 3.2

1.0 38.5 108 6.2e-06 0.9

PIGS large1 0.1 334.9 350 1.3e-04 3.4

1.0 93.2 140 6.4e-06 1.4

PIGS large2 0.1 686.7 441 5.2e-03 7.9

1.0 66.3 153 5.9e-05 2.8

PIGS verylarge 0.1 592.1 700 3.4e-04 34.0

1.0 193.6 168 2.9e-05 8.0

Table 7.6: Results of running GLSQR on preconditioned SQD system from pig-breeding matrices. Rel error

is ||x− x(k)||ATA/||x||ATA (u = 1 , d = 5).
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7.4 Using incomplete Cholesky on the normal equations

We have run LSQR on the original augmented system (1.3) using the popular preconditioner generated by

an incomplete Cholesky method on the normal equations matrix

ATA,

using the code ichol supplied in Matlab. For the LP matrices and Kemelmacher, we used the ichol

option of an incomplete Cholesky factor with no fill-in. For the Kemelmacher matrix we needed to use

the modified incomplete Cholesky option. For both C.raw and mesh deform, it was only when the drop

tolerance value was close to zero that we were able to succeed in completing the incomplete factorization.

In this case, the incomplete Cholesky factors were practically the true Cholesky factors of the normal

equations matrix. The results in Table 7.7 show that when incomplete Cholesky is working it can do very

well but that it has problems on larger problems and is not robust.

We did try to use ichol on the Rav4.constraint matrix but were unable to do so because of the

enormous fill-in when forming the normal equations matrix ATA. The construction of ATA for this test

example required several minutes using Matlab on the same laptop as used for the runs in Section 7.3.

Although better implementations of incomplete Cholesky can compute an incomplete factorization without

forming the normal equations, the storage requirement for the incomplete factorization will be prohibitive.

On Rav4.constraint, ichol requires essentially a full Cholesky factorization of the normal equations

matrix. This matrix has 269,385,705 entries whereas the LU factorization using MA48 has only 642,577

entries; a factor of 419 less entries! The cost of using ichol as a preconditioner would be consequently

that much more.

Problem Its nnz(R) nnz(L) nnz(LU)

Kemelmacher 5 3620709 72357 186838

lp osa 07 20 56013 53584 1305

lp osa 30 22 222970 220544 4539

C.raw 244 17710 17710 2454

mesh deform 500 10205860 10205860 28405

Table 7.7: Number of nonzeros (nnz) in the full Cholesky factor R, in the factor L produced by ichol of

Matlab, and in the LU-factorization of the basis matrix B.

7.5 Comparison with RIF

Perhaps the most referenced and one of the best general purpose preconditioners for least-squares

preconditioning is the RIF preconditioner of [5]. We compare the storage for our approach with that

for using RIF for the PIGS matrices in Table 7.8. For the RIF preconditioner, it is necessary to select

a dropping parameter τ which could be hard to determine a priori. We show runs with several values

for this parameter in Table 7.8. The higher values will normally decrease the storage required but will

increase the number of iterations for the iterative solver (see Table 7.9), although the increase is certainly

not monotonic. For example, for PIGS verylarge, RIF with a τ value of 0.5 requires 210 iterations while

our approach requires 168. However, sometimes RIF requires less iterations on the smaller problems in

particular for small values of the drop tolerance τ but, in these cases, RIF requires more storage than our

preconditioner. We see that our method is at least competitive and sometimes requires significantly less
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storage than RIF. In all the cases where our method requires much more storage it converges much more

quickly. We note that when using GLSQR to solve (2.5) we need to compute NB−1 times a vector and its

transpose times a vector at each iteration, that is we do not need A. On the contrary, using the upper

triangular matrix R given by RIF, we need to use A in order to compute AR−1 times a vector and its

transpose times a vector. In Table 7.10, we compare the number of floating-point operations (additions

and multiplications) for an iteration using each preconditioner on the PIGS matrices:

• complexity for NB−1 = number of nonzeros in N plus the number of nonzeros in the factor L and

in the factor U produced by MA48 with pivot threshold of 0.01;

• complexity for AR−1 = number of nonzeros in A plus the number of nonzeros in R.

These results show that even when the storage required for the LU factors is higher than that required

for the R computed by RIF, the complexity is in favour of our method. In some cases, we require under

50% of the operations required by RIF and our runs using MATLAB require correspondingly half the time

although we appreciate that the actual time will depend strongly on the implementation and the machine.

We also note that, in contrast to RIF, we will solve consistent equations in only one iteration and will

normally require very few iterations when the residual at the solution is small. Finally, we did not directly

compare our method with the other preconditioners discussed in [5] because we accepted from the results

in [5] that RIF was the best preconditioner on the PIGS matrices.

Problem SQD RIF

τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

PIGS small1 5224 12200 9353 8633 5820 5723

PIGS small2 16061 4307 4058 3979 3976 3976

PIGS medium1 15392 37253 28422 26068 17795 17348

PIGS medium2 47503 13265 12383 12241 12238 12238

PIGS large1 42261 107015 82289 76097 50093 48324

PIGS large2 131092 37647 35013 34530 34528 34528

PIGS verylarge 258582 739982 499582 426833 272210 249333

Table 7.8: Comparison of storage with RIF.
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Problem Num.of iterations

SQD τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

PIGS small1 69 57 76 85 80 93

PIGS small2 77 288 371 349 329 308

PIGS medium1 107 67 95 105 80 97

PIGS medium2 108 310 463 466 379 349

PIGS large1 140 70 103 110 79 105

PIGS large2 153 340 521 493 401 366

PIGS verylarge 168 193 172 205 229 210

Table 7.9: Comparison of iterations with RIF for an energy norm stopping criterion tolerance = 10−8.

Problem NB−1 AR−1

τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

PIGS small1 8680 20710 17863 17143 14330 14233

PIGS small2 26098 29837 29588 29509 29506 29506

PIGS medium1 25226 62266 53435 51081 42808 42361

PIGS medium2 75790 88304 87422 87280 87277 87277

PIGS large1 75231 182033 157307 151115 125111 123342

PIGS large2 225694 262701 260067 259584 259582 259582

PIGS verylarge 463785 1203285 962885 890136 735513 712636

Table 7.10: Comparison of complexity between NB−1 (SQD) and AR−1 (RIF) .
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8 Totally unimodular matrices

We now discuss the selection of the basis matrix for a class of totally unimodular matrices. In this case

we exploit a characteristic of the structure to avoid having to use a sparse LU factorization. For totally

unimodular matrices, the determinant of every square submatrix is either 0, or ±1. An important example

of these are incidence matrices that arise in several fields including optimisation on networks and mixed

finite-element methods [9]. Several algorithms using network programming techniques for the solution of

Darcy’s problems by finite-element methods are described in [2, 3].

The problem of identifying a suitable basis matrix B for this special class of incidence matrices of

undirected graphs can be solved by simple heuristics based on the identification of spanning trees [32].

The incidence matrix A of a graph G with m edges and n vertices (we assume that m > n) is a totally

unimodular matrix [32] with m rows and n columns. Its entries are −1, 0, 1 and in each row there are

two nonzero entries corresponding to the two nodes identifying an edge. We can assume without loss of

generality that one entry is equal to 1 and the other is equal to -1, that is we fix a direction for the edge.

Each column j of A has a number of nonzero entries corresponding to the nodes connected to j by an edge

in G. These matrices have rank equal to n− 1 with

Ker(A) = {x : such that x = ρe, ρ ∈ IR, eT = (1, . . . , 1)}.

However, because of the elementary structure of the kernel, we easily reduce problem (1.1) to one of full

rank by fixing one node arbitrarily (the “root”) and removing the corresponding column. The resulting

matrix is still totally unimodular. Denoting by Ã the matrix formed by the remaining (n − 1) columns,

a heuristic that can be used to select the best basis matrix, B̃, is to determine the rooted spanning tree

that has the smallest height h, where the tree height is the longest path from the root to a leaf node.

A possible choice is to compute the shortest path tree [32, 41] and several low-complexity algorithms are

available to do this (see [17] for a elegant presentation). Different choices of roots (thus different columns

to remove) will result in different spanning trees and so different matrices B̃. In each case the matrix Ã

will be partitioned as

 B̃

Ñ

.

The matrix B̃ ∈ IR(n−1)×(n−1), representing the spanning tree, can be permuted to lower triangular

form. The number of nonzeros (they are ±1) in each row of ÑB̃−1 is the length of the shortest circuit

that can be formed using the edge corresponding to the row in Ñ and edges in the tree. In the worst case,

the number of nonzeros is twice the height of the spanning tree. Therefore, we have

‖ÑB̃−1‖∞ ≤ 2h.

Table 8.1 shows that the preconditioner does a good job of reducing the condition number and that

choosing the root node to obtain a short bushy tree in general leads to a better preconditioned SQD

system. In every case, the infinity norm of NB−1 is bounded by twice the tree height. As this is only an

upper bound, a taller tree can give a lower norm as we can see in the runs on the geo matrices, but this

is the only case on which we saw this happening.
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Test problem class pref

(m,n) Tree height ||NB−1||∞
√

1 + ||NB−1||22 κ(A)

(m,n) SPTs SPTl SPTs SPTl SPTs SPTl

( 9975, 5000) 6 8 9.0 14.0 46.3 65.3 1597.1

(19965,10000) 6 9 10.0 16.0 56.8 141.2 2275.4

Test problem class smallw

(m,n) Tree height ||NB−1||∞
√

1 + ||NB−1||22 κ(A)

(m,n) SPTs SPTl SPTs SPTl SPTs SPTl

(10499, 5000) 21 34 42.0 67.0 55.9 91.0 325.0

(20982,10000) 23 35 44.0 69.0 62.4 144.5 465.4

Test problem class kleinberg

(m,n) Tree height ||NB−1||∞
√

1 + ||NB−1||22 κ(A)

(m,n) SPTs SPTl SPTs SPTl SPTs SPTl

(14906, 5000) 12 15 24.0 27.0 73.8 89.1 344.7

(29625,10000) 14 17 28.0 33.0 109.1 111.0 565.7

Test problem class geo

(m,n) Tree height ||NB−1||∞
√

1 + ||NB−1||22 κ(A)

(m,n) SPTs SPTl SPTs SPTl SPTs SPTl

(11013, 5000) 83 156 86.0 67.0 31.6 23.3 956.8

(22384,10000) 173 338 136.0 173.0 33.2 52.7 833.9

Test problem class shar te2-b1

(m,n) Tree height ||NB−1||∞
√

1 + ||NB−1||22 κ(A)

(m,n) SPTs SPTl SPTs SPTl SPTs SPTl

(17160, 286) 2 2 4.0 4.0 97.0 97.0 371.7

Table 8.1: SPTs: root giving tree of least height; SPTl: root for which we have the longest path to a node.
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9 Conclusions

We have studied the almost paradoxical nature of conditioning and preconditioning in sparse linear

least-squares problem, analysed carefully a particular form of preconditioning, and shown its efficacy

on standard test problems. We have shown that a major aspect is to identify a suitable set of rows from

the overdetermined system to constitute the basis matrix. One way that has proved successful over a range

of problems has been to determine the basis matrix through a sparse threshold pivoting factorization of

the least-squares matrix. We have also shown that, for particular matrix structures, other approaches can

be used to get the basis matrix but the importance and influence of choosing a good basis matrix is still

evident.

We showed that the use of a preconditioned SQD system is a competitive way of solving the least-

squares problem. In this paper, we have assumed that the matrix A is full column rank. There are many

cases in real applications where this is not so, and we plan to extend our approach to these cases, perhaps

using versions of the algorithms of Savostyanov and his colleagues [22].
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