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ABSTRACT 

The consistent description of unstable particles, renormalons, or other Schwinger-Dyson- 

type of solutions within the framework of perturbative gauge field theories necessitates 
the definition and resummation of off-shell Green's functions, which must respect several 

crucial physical requirements. A formalism is presented for resummation of off-shell two- 

point correlation functions, which is mainly based on arguments of analyticity, unitarity, 

gauge invariance and renormalizability. The analytic results obtained with various methods, 

including the background field gauges and the pinch technique are confronted with the 

physical requirements imposed; to one-loop order the pinch technique approach satisfies all 

of them. Using renormalization group arguments, we discuss issues of uniqueness of the 

resummation procedure related to the latter method. 

b 

PACS nos.: 14.70.Fm, 11.15.Bt, 1 1 . 1 5 . E ~  

*e-mail address: papavassQcpt.univ-mrs.fr 
'Email address: pilaftsisQv2.rl.ac.uk 
Address after 1st of October: Max-Planck-Institute, Fijhringer Ring 6, D-80805 Miinchen, FRG. 

1 



1 Introduction 

It is well known that in non-Abelian gauge theories individual off-shell Green’s func- 
tions are in general plagued with various pathologies, such as gauge dependences, bad high 
energy behaviour, or lack of renormalizability, which, strictly speaking, render them void 
of any physical meaning. To the extend that the physical issues at hand can be dealt with 
within the confines of conventional perturbation theory, the aforementioned pathologies 
pose no real problem. Indeed, when combined together to form observables, the individu- 
ally pathological Green’s functions conspire in such a way as to give a physically meaningful 
answer, order by order in perturbation theory. A classic example of the subtle cancellation 
mechanisms in effect is the computation of electroweak S-matrix elements in the unitary 
gauge; there, even though the conventional two-, three- and four- point functions are not 
even renormalizable, the final S-matrix element turns out to be well-defined. 

There is, however, a plethora of physically important questions, which cannot be 

treated in the framework of conventional perturbation theory. In quantum chromodynamics 
(QCD) for example, the only known way to study in the continuum phenomena, such 
as chiral symmetry breaking or gluon mass generation, is by means of the Schwinger- 
Dyson equations [l]. Here, the pathologies of the Green’s functions start playing a rde. 

Indeed, the Schwinger-Dyson equation are build up by off-shell Green’s functions; if one 
could solve these equations exactly, the Green’s functions obtained would again conspire to 
yield physically meaningful answers. However, since the Schwinger-Dyson series constitutes 
an infinite set of coupled non-linear integral equations, a truncation is necessary, which, 
if carried out casually, may give rise to physically meaningless answers, such as gauge- 
dependent expressions for ostensibly gauge independent, physical quantities. 

Even though the need for a self-consistent scheme for constructing off-shell Green’s 
functions is more or less expected when dealing with a strongly coupled theory such as 
QCD, perhaps the most compelling physical circumstances advocating its necessity have 
been encountered in the context of a “weakly” coupled theory, namely the electroweak 
s U ( 2 ) ~  8 U( 1)y model [2-41. Indeed, the presence of unstable particles makes it impossible 
to compute physical amplitudes for arbitrary values of the kinematic parameters, unless 
a resummation has first taken place. Simply stated, perturbation theory breaks down in 
the vicinity of resonances, and information about the dynamics to “all orders” needs be 

encoded already at the level of Born amplitudes. As was already pointed out in [2], if 
one attempts to naively promote Veltman’s formalism for scalar theories [5] to  the case of 
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gauge theories, one is invariably led to gross violations of gauge invariance and unitarity. As 

explained in [4], resumming the conventional two-point function of a gauge boson in order 

to construct a Breit-Wigner type of propagator, takes into account higher order corrections 

for only certain parts of the Born amplitude, whereas crucial contributions originating 

from box and vertex graphs are not included properly. As a result, the subtle cancellation 

mechanism alluded to before, even though in reality is still in effect, gets distorted by the 

casual resummation, resulting in artifacts, which thwart the predictive power of S-matrix 

perturbation theory. 

Given the subtle nature of the problem, the question naturally arises, what set of 

physical criteria must be satisfied by a resummation algorithm, in order for it to qualify 

as “physical”. In other words, what are the guiding principles, which will allow one to 

determine whether or not the resummed quantity carries any physically meaningful infor- 

mation, and to what extend it captures the essential underlying dynamics? To address these 

questions in this paper, we postulate a set of field-theoretical requirements that we con- 

sider crucial when attempting to define a proper resummed propagator. Our considerations 

propose an answer to the question of how to analytically continue the Lehmann-Symanzik- 

Zimmermann (LSZ) formalism [6] in the off-shell region of Green’s functions in a way which 

is manifestly gauge-invariant and consistent with unitarity. In addition, we demonstrate 

that the off-shell Green’s functions obtained by the Pinch Technique (PT) [7-101 satisfy 

all these requirements. In fact, these requirements are, in a way, inherent within the PT 
approach, as we will see in detail in what follows. 

In particular, the following is required from an off-shell, one-particle irreducible (lPI), 
effective two-point function: 

(i) Resumrnability. The effective two-point functions must be resummable. For the 

conventionally defined two-point functions, the resummability can be formally derived 

from the path integral. In the S-matrix PT approach, the resummability of the 
effective two-point functions is more involved and must be based on a careful analysis 

of the structure of the S-matrix to higher orders in perturbation theory [4]. 

(ii) Analyticity of the ofl-shell Green’s function. An analytic two-point function has the 

property that its real and imaginary.parts are related by a dispersion relation (DR), 
up to a maximum number of two subtractions. The latter is a necessary condition 

when considering renormalizable Green’s functions, as we will discuss in Section 2. 

(iii) Unitarity and the optical relation. In the conventional framework, unitarity is defined 
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only for on-shell S-matrix elements, leading to the familiar optical theorem (OT) for 
the forward scattering. Here, we postulate the validity of the optical relation for the 
off-shell Green’s function, when embedded in an S-matrix element, in a way which 
will become clear in what follows. An important consequence of this requirement 
is that the imaginary part of the off-shell Green’s function should not contain any 
unphysical thresholds. As a counter-example, in Section 7, it will be shown that 
this pathology is in fact induced by the quantum fields in the background-field-gauge 
(BFG)  method [ll] for t~ # 1. 

(iv) Gauge invariance. As has been mentioned above, one has to require that the effective 
Green’s functions are gauge-fixing parameter (GFP) independent and satisfy WIs 
in compliance with the classical action. For instance, the latter is guaranteed in 
the B F G  method but not the former. This condition also guarantees that gauge 

invariance does not get spoiled after Dyson summation of the GFP-independent self- 
energies. In some of the recent literature, the terms of gauge invariance and gauge 
independence have been used for two different aspects. For example, in the B F G  the 
classical background fields respect gauge invariance in the classical action. However, 
this fact does not ensure that the quantum fields respect some form of quantum 
gauge invariance, neither does imply that some kind of a Becchi-Rouet-Stora (BRS)  
symmetry [12] is present for the fields inside the quantum loops after fixing the gauge 
of the theory [13,14]. In our discussion, when referring to gauge invariance, we will 
encompass both meanings, i . e . ,  gauge invariance of the tree-level classical particles as 
well as B R S  invariance of the quantum fields. A direct but non-trivial consequence of 
the gauge invariance and of the abelian-type WIs that the effective off-shell Green’s 

functions satisfy is that for large asymptotic momenta transfers ( s  + oo), the self- 
energy under construction must capture the running of the gauge coupling, as it 
happens in quantum electrodynamics (QED). Because of the abelian-type WIs and on 
account of resummation, the above argument can be generalized to n-point functions. 
In addition, the off-shell n-point transition amplitudes should display the correct 
high-energy limit as is dictated by the Equivalence Theorem [15]. 

(v) Multiplicative renormalization. Since we are interested in renormalizable theories, i.e., 

theories containing operators of dimension no higher than four, the off-shell Green’s 
functions calculated within an approach should admit renormalization. However, this 
requirement alone is not sufficient when resummation is considered. The appearance 
of a two-point function in the denominator of a resummed propagator makes it un- 
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avoidable to demand that renormalization be multiplicative; otherwise, the analytic 
expressions will suffer from spurious ultraviolet (UV) divergences. Particular exam- 

ples of the kind are some ghost-free gauges, such as the light-cone or planar gauge 

[161* 

(vi) Position ofthe pole. Since the position of the pole is the only gauge-invariant quantity 
that one can extract from conventional self-energies, any acceptable resummation 
procedure should give rise to effective self-energies which do not shift the position 

of the pole. This requirement drastically reduces the arbitrariness in constructing 
effective two-point correlation function. 

A closer look at these requirements reveals that they are in fact very tightly interwo- 

ven; relaxing even one of them could give rise to unphysical results, sometimes in rather 

subtle ways. As an example of the subtleties involved, we investigate the B F G  [11,17] in 
Section 8.  Despite the fact that the background fields of the B F G  obey the Ward identities 

(WIs) of the classical Lagrangian, even after quantizing the theory, the B F G  expressions for 
the self-energies depend explicitly on the quantum gauge parameter (Q; in turn, in theories 
with spontaneous symmetry breaking (SSB), this dependence on t~ gives rise to  unphysical 
threshold channels for (Q # 1. Obviously, such unphysical absorptive contributions should 
not be resummed to all orders. In fact, we find that the sub-amplitudes containing physical 
Landau singularities and those, which do not, satisfy the same B F G  WIs. Only the case 

of B F G  with (Q = 1 is free from unphysical poles, and the results of the Green’s functions 
collapse to these of the PT. Evidently, relaxing the requirement of G F P  independence, by 
allowing (Q to survive, interferes with unitarity in a non-trivial way. 

We now present a roadmap of our paper: In Section 2, we review the crucial properties 

of analyticity of two-point correlation functions. We then derive some important conse- 
quences arising from DRs, which should be satisfied by a consistent analytic approach. The 
results of this analysis may also be applied to eliminate a large degree of arbitrariness in 
defining off-shell transition amplitudes. Issues of renormalization are also discussed. 

In Section 3, we discuss the r6le of unitarity and OT and elucidate its connection with 

gauge invariance. In Section 4, we show how to  employ unitarity, analyticity and elementary 
tree-level WIs (EWIs), in order to obtain a self-consistent picture in the context of QCD. 
In particular, we work with the right hand side (RHS) of the O T ,  where only physical 
particles (no ghosts) appear as intermediate states. In Section 5 ,  we focus again on the 
same process as in the previous section and present a different (equivalent but non-trivial) 
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point of view., In particular, we start again from the RHS of the OT and show how the 

unitarity of an on-shell transition amplitude and the BRS symmetry [12] of the quantum 

action can be exploited to reinforce gauge invariance and GFP independence for off-shell 

Green’s functions. In the context of one-loop QCD, these properties rigorously prove the 

independence of the PT on the gauge-fixing procedure. 

In Section 6,  the analysis of Section 5 is extended to  the case of the minimal Standard 

Model (SM). We concentrate on a charged process with non-conserved external currents and 

resort again to the (slightly more involved) EWIs. The propagator-like expression obtained 

by working with the RHS of the OT is then fed into a twice subtracted DR. The result 

obtained is identical to the real part of the PT W-boson self-energy, already known from 

previous considerations. This example convincingly demonstrates the combined power of 

unitarity and analyticity. In Section 7 ,  we take a different point of view and work directly 

with the left-hand-side (LHS) of the OT, where “unphysical” degrees of freedom, such as 

ghosts and would-be Goldstone bosons, appear now as intermediate states. Using the usual 

Cutkosky rules, and exploiting again the EWIs of the theory to the fullest, we arrive at 

the imaginary part of the PT W-boson self-energy. This constitutes a highly non-trivial 

self-consistency check, demonstrating that as long as one fully exploits the elementary 

symmetries of the theory, one can work freely with either side of the optical relation, 

arriving at the same physically consistent results. 

In Section 8, we turn our attention to  the BFG and show that the dependence of 

the resummed BFG two-point functions on the “quantum” GFP (Q is far from innocuous, 

leading to the violation of unitarity, because of the appearance of unphysical thresholds. 

Furthermore, the physical and unphysical expressions are found to satisfy exactly the same 

tree-level WIs. This fact demonstrates beyond any doubt that a combination of require- 

ments need be imposed in order to arrive at a physically reliable result. Indeed, satisfying 

external tree-level WIs is a necessary but not sufficient requirement in this context. 

In Section 9,  we show under mild assumptions that the PT resummation gives rise to 

“unique” results [ 181. B y  “unique”, we mean that at the end of the PT rearrangement, and 

after renormalization has been completed, no further pieces may be moved around without 

leading to a violation of some of the physical properties characterizing the PT Green’s 

functions. Finally, we present our conclusions in Section 10. 
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2 Analyticity and renormalization 

Analyticity is one of the most important properties that governs physical transition 
amplitudes. Correlation functions are considered to be analytic in their kinematic variables, 
which is expressed by means of the so-called DRs [19-211. In this section, we briefly review 
some important facts about DRs and renormalization and discuss the subtleties encountered 
in non-Abelian gauge theories. 

If a complex function f ( z )  is analytic in the interior of and upon a closed curve, CT 
say in Fig. 1, and x + ie (with z, E E R and E > 0) is a point within the closed curve Cr, 
we then have the Cauchy’s integral form, 

f dz f (2) f ( X + i E )  = - 
2na C, z - x - i ~  ’ 

where $ denotes that the path Cl is singly wound. Using Schwartz’s reflection principle, 
one also obtains 

f ( x  - i E )  = -- f dz f (2) 

2na cL z -  x + i e  * 

Note that C; = CJ. Sometimes, an analytic function is called holomorphic; both terms are 
equivalent for complex functions. 

Fig. 1: Contours of complex integration 

Of significant importance in the discussion of physical processes is a DR, which relates 
the imaginary part of an analytic function f ( x )  to its real part, and vice versa. We assume 
for the moment that the analytic function f ( z )  has the asymptotic behaviour, If(z)I I 
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C/Rk,  for large radii R as shown in Fig. 1, where C is a real nonnegative constant and 
k > 0; this assumption will be relaxed later on, giving rise to more involved DR. Taking 
now the limit e -+ 0, it is easy to evaluate %ef(x)  through 

Here, ‘lime+,-, ’ means that the limit should be taken after the integration has been per- 
formed, and 

Because of the assumed asymptotic behaviour of f ( z )  at infinity, the integral over the upper 
infinite semicircle in Fig. 1, rW, can be easily shown to vanish. Employing the well-known 

identity for distributions, 

+ iTb(X‘ - x ) ,  
1 = p- 

e-0 X ’ - X - i &  x‘ - x 

1 
‘ l im’ 

we arrive at the unsubtracted DR, 
+= 

1 I Smf (4 
7r 2 ‘ - x  * 

%ef(x)  = - P 1 dx 
-W 

In Eq. (2.5), the symbol P in front of the integral stands for principle value integration. 
Following a similar line of arguments, one can express the imaginary part of f ( x )  as an 

integral over %ef(x) .  

In the previous derivation, the assumption that If( z )  I approaches zero sufficiently 
fast at infinity has been crucial, since it guarantees that I’W -+ 0. However, if we were 
to relax this assumption, additional subtractions need be included in order to arrive at a 

finite expression. For instance, for If(.)[ 5 CRk with k < 1, it is sufficient to carry out a 

single subtraction at a point z = a. In this way, one has 

Sm f ( X I )  
+W 

(2‘ - a)(xl - x )  
P 1 dx’ ( x  - a> 

T 
Ref (x )  = %ef(a) + 

-W 

From Eq. (2.6), it is obvious that %ef(x)  can entirely be obtained from S m f ( x ) ,  up to a 

unknown, real constant %ef(a). Usually, the point a is chosen in a way such that Ref(a)  

takes a specific value on account of some physical requirement. For example, if S m f ( q 2 )  
is the imaginary part of the magnetic form factor of an electron with photon virtuality q2, 

one can prescribe that the physical condition %ef(O) = 0 should hold true in the Thomson 
limit. 
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We next focus on the study of some crucial analytic properties of off-shell transition 

amplitudes within the context of renormalisable field theories. In such theories, one is 

allowed to have at most two subtractions for a two-point correlation function. If U(S) 
is the self-energy function of a scalar particle with mass m and off-shell momentum q 

( s  = q2) -the fermionic or vector case is analogous- then the real (or dispersive) part 

of this amplitude can be fully determined by its imaginary (or absorptive) part via the 
expression 

%II( 5') 
+= 

( S I  - m2 s' - s ) *  
P J ds' 

( s  - m2)2 
%en(s) = ReII(m2) + (s-m2)ReII'(m2) + 

?r 
0 - 

(2.7) 
From Eq. (2.7), one can readily see that the two subtractions, ReII(m2) and the deriva- 
tive %ell'( m2) ,  correspond to the mass and wave-function renormalization constants in the 
on-mass shell (OS) scheme, respectively. At higher orders, internal renormalizations of 
SmII(s), due to counterterms (CTs) coming from lower orders, should also be taken into 
account. Then, Eq. (2.7) is still valid, i . e . ,  it holds to order n provided Smn(s) is renormal- 
ized to order n- 1. In general, the function SmII(s) has its support in the non-negative real 
a x i s ,  i . e . ,  for s 2 0. This can be attributed to the semi-boundness of the spectrum of the 
Hamiltonian, SpecH 2 0 [22]. Note that for spectrally represented two-point correlation 
functions, we have the additional condition SmII(m2) 2 0 [23,24]. 

As has been mentioned above, in renormalizable field theories it is required that II(s) 

should be finite after two subtractions have been performed. This implies that 

as s + 00. Obviously, the same inequality holds true for the real as well as the imagi- 

nary part of n(s). In pure non-abelian Yang-Mills theories, such as quark-less QCD, the 
transverse part, IIT(s), of the gluon vacuum polarization behaves asymptotically as 

II,(s) + cs(ln$)-. 

This result is consistent with Eq. (2.8), for any n < 00. Furthermore, we mention in passing 
that the Froissart-Martin bound [25], 

at s -+ 00, which may be derived from axiomatic methods of field theory [26], is weaker 
than Eq. (2.8). The analytic expression of gluon vacuum polarization satisfies Eq. (2.9). As 
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a counter-example to this situation, we may consider the Higgs self-energy in the unitary 

gauge; the absorptive part of the Higgs self-energy has an s2 dependence at high energies, 

and its resummation [27] is therefore not justified. 

We will now illustrate how DRs work in practice in the context of a scalar field theory. 

As an example, we consider a toy model with interaction Lagrangian, 

(2.10) 

where 

of the scalar 4 by m and the one of the @ by M and assume that M 2 m. 

is a non-vanishing coupling constant of dimensions of mass. We denote the mass 

Fig. 2: Two-point correlation function II*(s) at one loop 

One can calculate the imaginary part of the one-loop self-energy II*(s) by using 

Cutkosky rules. The self-energy II*(s) develops a branch cut for s = p2 > 4m2, which 

arises from the on-shell &pair contribution shown in Fig. 2. Thus, it is not difficult to 
obtain 

SmII*(s) = - - 4m2) . 
32n 

(2.11) 

On the other hand, adopting dimensional regularization in dimensions D = 4 - 2 ~ ,  we have 

(2.12) 

where s should be analytically continued to s + i ~ .  In fact, for s > 4m2, the logarithmic 

function in Eq. (2.12) assumes the form 

ln 
[ 1 + (1 - %)1'2] S - 

4m2 112 1 - I1 - -\ 
- 4m2). 

10 



Evidently, the absorptive part of II*(s) obtained from Eq. (2.12) is equal to h I I * ( s )  in 
Eq. (2.11). Furthermore, one can verify the validity of a DR of Eq. (2.6), singly subtracted 
at s = 0. Since 

(2.13) 

one can check that indeed, 

This simple example explicitly demonstrates the analytic nature of a two-point correlation 
function. 

In the context of gauge field theories, one should anticipate a similar analytic struc- 
ture for two-point correlation functions. However, an extra complication appears in such 
theories when off-shell transition amplitudes are considered. In a theory with SSB ,  such 
as the SM for example, this complication originates from the fact that, in addition to  the 

physical particles of the spectrum of the Hamiltonian, unphysical, gauge dependent degrees 
of freedom, such as would-be Goldstone bosons and ghost fields make their appearance. 
Although on-shell transition amplitudes contain only the physical degrees of freedom of 
the particles involved on account of unitarity, their continuation to the off-shell region is 
ambiguous, because of the presence unphysical Landau poles, introduced by the aforemen- 
tioned unphysical particles. A reasonable prescription for accomplishing such an off-shell 
continuation, which is very close in spirit to the previous example of the scalar theory, 
would be to continue analytically an off-shell amplitude by taking only physical Landau 
singularities into account. 

Consider for example the off-shell propagator of a gauge particle in the conventional 
Rt gauges or BFGs,  which runs inside a quantum loop, Vsz. 

(2.14) 

with 

One can write two separate DRs for the'transverse self-energy, IIT, of a massive gauge 

boson, which crucially depend on the pole structure of Eq. (2.14), namely 
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(2.15) 

(2.16) 

In the first D R  given in Eq. (2.15), the real part of IIT, RenT, is determined from branch 
cuts induced by physical poles, where the masses of the real on-shell particles in the loop 
are collectively denoted by {MihV8}. In what follows we refer to such a D R  as physical DR. 

Note that % e n T  depends only implicitly on the gauge choice. In fact, % e n T  can be viewed 
as the truncated part of the self-energy that will survive if is embedded in a S-matrix 
element. In Eq. (2.16), the dispersive part of the two-point function depends explicitly on 
(g-dependent unphysical thresholds, collectively denoted by { which are induced 
by the longitudinal parts of the gauge propagators contained in Srnn$!Q). Evidently, one 
has the decomposition 

S r n D ~ ( s )  = SrnnT(s) + Srnn$!Q)(s), %eIIT(s) = %enT(s) + %engQ)(s) .  (2.17) 

From Eq. (2.14), one can now isolate that part of the propagator that should be used in a 

physical DR. For (Q # 1, one has 

(2.18) 

It is therefore obvious that the 'physical' sector of an off-shell transition amplitude in B F G  
(for (g  # 1) - o r  equivalently, the part of the off-shell matrix element that satisfies a 

physical DR- is effectively obtained by considering all the internal propagators in the 
unitary gauge ( (Q + CO), but leaving the Feynman rules for the vertices in the general (Q 

gauge. 

In view of a physical D R ,  the gauge (Q = 1 is very specific, since the physical and 
unphysical poles coincide in such a case, making them indistinguishable. At one-loop order, 
the results of this gauge are found to collapse to those obtained via the PT [17]. Finally 
we remark in passing that, if n~ in (Q # 1 is used for a definition of a 'physical' self- 
energy, one encounters problems with the high-energy unitarity behaviour, even though 
the full II((g) is asymptotically well-behaved. In the case of the one-loop 2 self-energy for 

example, for (Q # 1 [17], n~ contains terms proportional to q4; all such terms eventually 
cancel in the entire II((g) against the part that contains the unphysical poles. Incidentally, 
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it is interesting to  notice that the recovery of the correct asymptotic behaviour is the more 
delayed, i . e . ,  it happens for larger values of q2, the larger the value of [ Q .  However, if one 
was to resum only the n~ part, the terms proportional to  q4 would survive, leading to bad 
high energy behaviour. If, on the other hand, one had resummed the full II([Q), then one 
would have introduced unphysical poles, as explained above. 

3 Unitarity and gauge invariance 

In this section, we will briefly discuss the basic field-theoretical consequences resulting 
from the unitarity of the S-matrix theory, and establish its connection with gauge invari- 
ance. In addition to the requirement of explicit gauge invariance, the necessary conditions 
derived from unitarity will constitute our guiding principle to analytically continue n-point 
correlation functions in the off-shell region. Furthermore, we arrive at the important con- 
clusion that the resummed self-energies, in addition to being GFP independent, must also 
be “unitary”, in the sense that they do not spoil unitarity when embedded in an S-matrix 
element. 

The T-matrix element of a reaction i + f is defined via the relation 

where Pi (Pi) is the sum of all initial (final) momenta of the li) ( I f ) )  state. Furthermore, 
imposing the unitarity relation StS = 1 leads to the OT: 

(~ITI;) - ( i ~ ~ l f ) *  = i c(21)4s(4)(~i l  - ~ ; ) ( i / i ~ i f ) * ( i / ~ ~ ~ i ) .  ( 3 4  
i’ 

In Eq. (3.2), the sum xi, should be understood to be over the entire phase space and spins 
of a l l  possible on-shell intermediate particles i’. A corollary of this theorem is obtained if 
i = f .  In this particular case, we have 

1 ~ ~ ( i l ~ l i )  = - ~ ( 2 , 4 4 a ( 4 ) ( ~ ,  - P~)I(~ITI~)I~. (3.3) 
2 f  

In the conventional S-matrix theory with stable particles, Eqs. (3.2) and (3.3) hold also 

perturbatively. To be precise, if one expands .the transition T = T(’) + T(2) + - + T(”) + - - -, 
to a given order n ,  one has 
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There are two important conclusions that can be drawn from Eq. (3.4). First, the anti- 
hermitian part of the LHS of Eq. (3.4) contains, in general, would-be Goldstone bosons 
or ghost fields [28]. Such contributions manifest themselves as Landau singularities at 
unphysical points, e.g., q2 = (OM$ for a W propagator in a general B F G .  However, 
unitarity requires that these unphysical contributions should vanish, as can be read off 
from the RHS of Eq. (3.4). Second, the RHS explicitly shows the connection between 
gauge invariance and unitarity at the quantum loop level. To lowest order for example, the 
RHS consists of the product of G F P  independent on-shell tree amplitudes, thus enforcing 
the gauge-invariance of the imaginary part of the one-loop amplitude on the LHS. 

The above powerful constraints imposed by unitarity will be in effect as long as one 
computes fiZZ amplitudes to a finite order in perturbation theory. However, for resumma- 
tion purposes, a certain sub-amplitude, i . e . ,  a part of the full amplitude, must be singled 
out and subsequently undergo a Dyson summation, while the rest of the S-matrix is com- 
puted to a finite order n. Therefore, if the resummed amplitude contains gauge artifacts 
and/or unphysical thresholds, the cancellations imposed by Eq. (3.4) will only operate up 
to order n, introducing unphysical contributions of order n + 1 or higher. To avoid the 
contamination of the physical amplitudes by such unphysical artifacts, we impose the fol- 

lowing two requirements on the effective Green’s functions, when one attempts to continue 
them analytically in the off-shell region for the purpose of resummation: 

(i) The off-shell n-point correlation functions ought to  be derivable from or embeddable 
into S-matrix elements. 

(ii) The off-shell Green’s functions should not display unphysical thresholds induced by 
unphysical Landau singularities, as has been described above. 

Even though property (i) is automatic for Green’s functions generated by the func- 
tional differentiation of the conventional path-integral functional, in general the off-shell 
amplitudes so obtained fail to satisfy property (ii). In the PT framework instead, both 
conditions are satisfied: effective Green’s functions are directly derived from the S-matrix 
amplitudes (so condition (i) is satisfied by construction) and contain only physical thresh- 
olds, so that unitarity is not explicitly violated [4]. 

In our discussion of unitarity at one-loop, we will make extensive use of the following 
two-body Lorentz-invariant phase-space (LIPS) integrals: The scalar integral 
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where A(z, y, z )  = (z - y - 

integral: 

- 4yz and S+(k2 - m2) = t9(ko)S(k2 - m2) ,  and the tensor 

The Lorentz projection tensors, tPv(q) and l,(q), have been defined after Eq. (2.14). 

4 The case of QCD 

In this section, we show that a self-consistent picture may be obtained by resorting to 
such fundamental properties of the S-matrix as unitarity and analyticity, using as additional 
input only EWIs for tree-level, on-shell processes, and tree-level vertices and propagators. It 
is important to emphasize that the GFP independence of the results emerges uutomutdcdy 

from the previous considerations. 

We begin from the RHS of the optical relation given in Eq. (3.3). The RHS involves 
on-shell physical processes, which satisfy the EWIs. It turns out that the full exploitation 
of those EWIs leads unambiguously to a decomposition of the tree-level amplitude into 
propagator-, vertex- and box-like structures. The propagator-like structure corresponds 

to the imaginary part of the effective propagator under construction. B y  imposing the 

additional requirement that the effective propagator be  an analytic function of q2 one 
arrives at a D R ,  which, up to renormalization-scheme choices, leads to a unique result for 
the real part. 

Consider the forward scattering process qij + qij. From the O T ,  we then have 

In Eq. (4.1)1 the statistical factor 1/2 in parentheses arises from the fact that the final on- 

shell gluons should be considered as identical particles in the total rate. We now set M = 
(qij)TIqij) and 7 = (qi j lTJgg),  and focus on the RHS of Eq. (4.1). Diagrammatically, the 
amplitude 7 consists of two distinct parts: t and u-channel graphs that contain an internal 

quark propagator, %$,, as shown in Figs. 3(a) and 3(b), and an s-channel amplitude, 
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Z$,, which is given in Fig. 3(c). The subscript “s” and “t” refers to the corresponding 

Mandelstam variables, i . e .  s = q2 = (pl + p z ) 2  = (k l  + k2)2,  and t = (pl - k1)2 = (p2  - k2)2. 

Defining 
AC 

vp’ = d P 2 )  yy”LL(P1) 9 

T: = Z$(t) + zab Ltv ’ 

(4.2) 

(4.3) 

we have that 

with 

Fig. ,3: Diagrams (a)-(c) contribute to cj, and diagram (d) to Sab. 

Notice that depends explicitly on the GFP 4, through the tree-level gluon propagator 
Ai$(q), whereas z does not. The explicit expression of Ai$(q) depends on the specific 
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gauge fixing procedure chosen. In addition, we define the quantities Sab and 7?,;b as follows: 

and 

Clearly, 

R;b = g y " v ; .  

2 ab k:Rzb = - k i R z b  = q S . 
We then have 

where the polarization tensor P p y ( k , q )  is given by 

(4.11) 

Moreover, we have that on-shell, i .e . ,  for k 2  = 0, kpP,, = 0. B y  virtue of this last property, 

we see immediately that if we write the three-gluon vertex of Eq. (4.6) in the form 

the term I'& dies after hitting the polarization vectors Pw(k1,71) and Pvx(k2,772). There- 

fore, if we denote by zF(() the part of Z which survives, Eq. (4.10) becomes 

The next step is to verify that any dependence on the GFP inside the propagator Akzv(q)  
of the off-shell gluon will disappear. This is indeed so, because the longitudinal parts of 
Aopu either vanish because the external quark current is conserved, or because they trigger 

the following EWI: 

QprLp(4,-k1,-k2)  = ( k f  - k,2)gap, (4.14) 
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which vanishes on shell. This last EWI is ‘crucial, because in general, current conservation 
alone is not sufficient to guarantee the G F P  independence of the final answer. In the covari- 
ant gauges for example, the gauge f i n g  term is proportional to qpq’; current conservation 
kills such a term. But if we had chosen an axial gauge instead, i .e. 

(4.15) 

where ij # q in general, then only the term ij,,q,, vanishes because of current conservation, 
whereas the term 7juq,, can only disappear if Eq. (4.14) holds. So, Eq. (4.13) becomes 

(4.16) 
1 
4 

where the GFP-independent quantity TF is given by 

SmM = -(XF + ‘Z)$ PC”(k1, q1) P”’(k2, q2) (xF + ‘Z):?, 

(4.17) 

Next, we want to show that the dependence on q,, and q2 stemming from the polarization 
vectors disappears. Using the on shell conditions k: = k,2 = 0 ,  we can easily verify the 
following EWIs: 

kpTFiab 1 *pu = 2k2,,Sab - Rzb, (4.18) 

kizFcb = 2kl,Sab + R,;b, (4.19) 

kf%$ = Rzb, (4.20) 

kiT$ = -R;b, (4.21) 

from which we have that 

(4.22) 

(4.23) 

Using the above EWIs, it is now easy to check that indeed, all dependence on both q,, 
and q2 cancels in Eq. (4.16), as it should, and we are finally left with (omitting the fully 
contracted colour and Lorentz indices): 

SmM = 
- 1 [ (xFTF* - 8SS*) + (TFr + ZF*‘Z) + %r] 
4 

The first part is the genuine propagator-like piece, the second is the vertex, and the third 
the box. Employing the fact that 

= -8q2tpx(q) t 4(ki - ka),(ki - k 2 ) ~  (4.25) r F  rF,rv 
P W  
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and 

(4.26) 

where CA is the eigenvalue of the Casimir operator in the adjoint representation (CA = N 
for SU(N)), we obtain for S m Z 1  

(4.27) 
1 1 

C A T  - [ - 4q2tp”(q) + (kl - kz)”(kl - kz)”] 7 V,C . 
2 

S?mM 1̂ = 
2 ” q 2  Q 

This last expression must be integrated over the available phase space. With the help of 
Eqs. (3.5) and (3.6), we arrive at the final expression 

(4.28) 
h 1 

SmM 1 = V‘ 1 %m@”’( q )  Vi , 
q2 Q 

with 

and a, = g2/(47r). 

Before we proceed, we make the following remark. It is well-known that the vanishing 
of the longitudinal part of the gluon self-energy is an important consequence of gauge 
invariance. One might naively expect that even if a non-vanishing longitudinal part had 

been induced by some contributions which do not respect gauge invariance, it would not 
have contributed to physical processes, since the gluon self-energy couples to conserved 

fermionic currents, thus projecting out only the transverse degrees of the gluon vacuum 
polarization. However, this expectation is not true in general. Indeed, if one uses, for 
example, the tree-level gluon propagator in the axial gauge, as given in Eq. (4.15), then 
there will be residual 7-dependent terms induced by the longitudinal component of the 
gluon vacuum polarization, which would not vanish, despite the fact that the external quark 
currents are conserved. Such terms are obviously gauge dependent. Evidently, projecting 
out only the transverse parts of Green’s functions will not necessarily render them gauge 
invariant. 

The vacuum polarization of the gluon within the PT is given by [7] 

(4.30) 

Here, Cuv = 1/c - 713 + ln47r + C, with C being some constant and p is a subtraction 
point. In Eq. (4.30), it is interesting to notice that a change of p2 --t p’2 gives rise to a 
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variation of the constant C by an amount C' - C = 1n/l2/p2. Thus, a general p-scheme 

renormalization yields 

(4.31) 

From Eq. (2.7), one can readily see that Refil(s) can be calculated by the following double 

(4.32) 

Inserting Eq. (4.29) into Eq. (4.32), it is not difficult to  show that it leads to  the result 

given in Eq. (4.31), a fact that demonstrates the analytic power of the DR. 

It is important to emphasize that the above derivation rigorously proves the GFP in- 

dependence of the one-loop PT effective Green's functions, for every gauge fming procedure. 

Indeed, in our derivation, we have solely relied on the RHS of the OT, which we have rear- 

ranged in a well-defined way, after having explicitly demonstrated its GFP-independence. 

The proof of the GFP-independence of the RHS presented here is, of course, expected 

on physical grounds, since it only relies on the use of EWIs, triggered by the longitudi- 

nal parts of the gluon tree-level propagators. Note that the tree-level tri-gluon coupling, 

r X P W ,  is uniquely given by Eq. (4.6). Since the GFP-dependence is carried entirely by the 

longitudinal parts of the gluon tree-level propagator in any gauge-fixing scheme whereas 

the gPw part is GFP-independent and universal, the proof presented here is generally true. 

Obviously, the final step of reconstructing the real part from the imaginary by means of a 

DR does not introduce any gauge-dependences. 

5 The QCD analysis from BRS considerations 

In this section, we will show how we can obtain the same answer by resorting only to  

the EWIs that one obtains as a direct consequence of the BRS symmetry of the quantum 

Lagr angian . 
If we consider q: as before, it is easy to  show that it satisfies the following BRS 

identities [29]: 
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where Sab is the ghost amplitude shown in Fig. 3(d); its closed form is given in Eq. (4.7). 

Notice that the B R S  identities of Eq. (5.1) are different from those listed in Eqs. 
(4.18)-(4.23), because the term I ’fvp had been removed in the latter case. Here, we follow 
a different sequence and do not kill the term I’rvp; instead, we will exploit the ezact B R S  
identities from the very beginning. 

We start again with the expression for SrnM given in Eq. (4.10). First of all, it is 

easy to verify again that the dependence on the GFP of the off-shell gluon vanishes. This 
is so because of the tree-level EWI, involving the f.22 vertex rPVp, 

The RHS vanishes after contracting with the polarization vectors, and employing the on- 
shell condition kf = k,2 = 0. Again, by virtue of the B R S  identities and the on-shell 

condition kf = k,2 = 0, the dependence of SmM on the parameters q,, and q2 cancels, and 
we eventually obtain 

1 
SrnM = ;I,” P P p ( I c 1 , q 1 ) P v Q ( k 2 , q 2 ) 7 ~  

= -pq” 1 - 2SS’) 
4 
1 
4 = - [(x= + xp + z)””(x= + xp + z);” - 2ss* ]  , (5.3) 

where 
PX zfcb = -gPk 9 I’fPv(q, -k1, -k2) y.  (5.4) 

q2 

At this point, one must recognize that due to the four-momenta of the trilinear vertex 
rP inside xp, one can further trigger the EWIs, exactly as one did in order to derive from 

Eq. (4.10) the last step of Eq. (5.3). In fact, only the process-independent terms contained 
in SrnM will be projected out on account of the BRS identities of Eq. (5.1). It is important 
to emphasize that and z do not contain any pinching momenta. This is particular to 
this example, where we have only two gluons as final states, but is not true for more gluons. 
To further exploit the EWIs derived from B R S  symmetries, we re-write the RHS of Eq. 

(5.3) in the following way (we omit the fully contracted Lorentz indices): 

SrnM = -[(z+qp+xF)(%+?;p+xF)* 1 - 2ss*]  4 
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In Eq. (5.5)) the reader may recognize the rearrangement characteristic of the “intrinsic” 

PT, presented in [30]. 

Inserting the explicit form of 7‘ given in Eq. (5.4) into Eq. (5.5) and using the B R S  

identities, 

x p l -  = -2ss*, 
l yy*  = 2 s s * ,  

we obtain 

which is the same result found in the previous section, i . e . ,  Eq. (4.24). 

An interesting by-product of the above analysis is that one is able to show the inde- 

pendence of the PT results of the number of the external fermionic currents [lO]. Indeed, 

the B R S  identities in Eqs. (5.1)) as well as those given in Eq. (5.6)) will still hold for any 

transition amplitude of n-fermionic currents to two gluons. By analogy, one can decompose 

the transition amplitude into ‘;rl and structures. Similarly, the form of the sub-structures 

zF and Tp will then change accordingly. In fact, the only modification will be that the 

vector current, y, contained in Eqs. (4.17) and (5.4) will now represent the transition of 

one gluon to n-fermionic currents. Making use of the “intrinsic” PT, one then obtains the 

result given in Eq. (5.7). Hence, we can conclude that the PT does not depend on the 

number of the external fermionic currents attached to gluons. 

6 The electroweak case 

In this section, we will show how the same considerations apply directly to the case of 
the electroweak sector of the SM. We consider the charged current process e-u + e-u and 

assume that the electron mass me is non-zero, so that the external current is not conserved. 
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We focus on the paxt of the amplitude which has a threshold at q2 = M&. This corresponds 
the virtual process W- + W - 7 ,  where 7 is the photon. From the OT, we have 

Fig. 4: Amplitudes contributing to the reaction e-6 -, W-7 

We set again M = (e-ulTle-v) and 7 = (e-vlTIW-7). As in the case of QCD, the 

amplitude consists of two distinct parts, a part that contains an electron propagator (Fig. 

4(a)) and a part that does not, which is shown in Figs. 4(b) and 4(c). As before, we denote 
them by '& and %(tu,), respectively. We first define 

and 

Clearly, one has the EWI 

qpV: = MwSR. 

The amplitude z can the be written down in the closed form 

where I'zz-wt = eI',(-k2, q, -kl) is the tree-level 7 W - W +  vertex and I'zz-wt = 

eMwgpu is the tree-level 7G-W+ vertex. In the expression (6.5), we explicitly display 
the dependence on the GFP tw. In addition, the amplitude '& is given by 
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Notice that 7/” does not depend on tW. Denoting by kl the four-momentum of the W and 
by k2 that of the photon, Eq. (6.1) becomes 

SmM = ~,,QPp(k1)P”(k2, q)7;, (6.7) 

where P”” is the photon polarization tensor given in Eq. (4.11)) and 

is the W polarization tensor. The polarization tensor Q””(k) shares the property that, on 
shell, i . e . ,  for k2 = M$, k~Q,,(k)  = 0. Furthermore, in Eq. (6.7), we omit the integration 
measure 1/2  J d X ~ ~ p s .  

First, we will show how the dependence on the GFP tW cancels. To that end, we 

employ the usual decomposition 

(6.9) 
QPQV (&U) 2 

MW AgAQ)  = UCI”(Q) - ?& ( Q  ) ,  

the EWI 

qppW-Wt ”PP (-k2, Q,  -hi) QPx(k1)PVu(k2,q) = Mwr,, 7G-Wt QPA(kl)P”(k2,q) (6.10) 

and the EWI of Eq. (6.4), and we obtain the following &,-independent expression for 7f” 

xp” = ieVLXUxp(*)rYPP(-k2,q, -kl) = ieVi U A ~ ( ~ ) I ’ ~ ~ ” ~ ~ ( - ~ ~ , Q ,  -kl) 

1 (6.11) - - ~ F w  

where contraction over the polarization tensors QPu and PPy is implied. In the last step 

of Eq. (6.11)) we have used the fact that the I’p part of the vertex, defined in Eq. (4.12)) 
vanishes when contracted with the polarization tensors. 

Next, we show how the dependence on the four-vector q,, and the parameter q2 
vanishes. First, it is straightforward to verify the following EWI: 

k;r&,( -k2, Q,  -a) = [ u 3 k 2 )  - - u-l(kl)lUp 

+2M&gup + (kl  - k2)uklp 

= -UG1(Q) + 2M&gup - k2u(kl - k2)p, (6.12) 

where the on-shell conditions k: = M& and k,2 = 0 are used in the last equality of Eq. 

(6.12). Similarly, one has 

u F  k2rupP(-k2, Q ,  -k1) = [U-l(4) - U-l(k1) + u,-’(k2)lp/J 

+k2,(kl - h),, 
= U;;(Q) - (kl  - k2)pklp , (6.13) 
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with 

(6.14) 

So, when the ~ “ k , ”  term from P y 0 ( k 2 , ~ )  gets contracted with 7&,, we have 

77“~ZyZpv = ieV“v2 [gAp - UX”(q) U,;’(h)] , 
f“’Zy~,,,, = -iefVL,. (6.15) 

Adding the last two equations by parts, we find 

Since the result is proportional to kip, the four-momentum of the external W boson, we 
immediately see that 

Tj“’Zyq&vQpP(kl) = 0 .  (6.17) 

For the same reasons, the term proportional to v2 vanishes as well. Consequently, %M 
takes on the form 

The absorptive sub-amplitude, SmM“, consists of three terms, 

SmM” = xF?;“* + (xFr + zxF*) + zr 
= SmM f̂ + + Sm@. (6.19) 

The first term, SmM^y, can easily be identified with a propagator-like contribution. In 
particular, using Eq. (4.25), we find 

SmM r̂ = e2 VLp UP,,(q) [ - 8q2t””(q) + 4(kl - k2)”(kI - k 2 ) ” ] U v ~ ( q )  V2 . (6.20) 

The amplitudes, Sma; and Sm@, are vertex- and box-like contributions, respectively, 
and they will not be considered any further here. 

We must now isolate the corresponding propagator-like piece from %Mb. By virtue 
of the EWI of Eq. (6.12), we have 

kfZ:v = -ieVL,, - ieVLx U’.(*) [(kl - k2)Pk2v - 2M&gPv] . (6.21) 
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In addition, we evaluate the EWI 
iegwme - 1 

2Jz1MW 
7u 4 P l )  

$1- p 2  -me  kfZ,,,, = ieVL, + MW 4 P 2 )  (l + 7 5 )  

= ieVL, + MwL,,, 
which is shown diagrammatically in Fig. 5.  

(6.22) 

te  + Mw. 

Fig. 5: Elementary BRS identity for the e-dependent amplitude Zpu 

Adding Eqs. (6.21) and (6.22) by parts, we obtain 

kf (z= + Z ) p u  = -ieV.x U”“() [(a - k2)pk2, - 2M&gpu] + MWJL * (6.23) 

Making now use of the EWI of Eq. (6.4) and writing 

SR = M W  VLp upu (q )  qu 

yields the following WI for &: 

(6.24) 

k i t c v  = -ieSR = -ieMw V L ~  Uua(q)qp. (6.25) 

We also use the following algebraic identity 

Taking the above relations into account, we eventudy obtain 

S m M b  = -e2 V L ~  Upp(q) [4M&gpu + 2(ki - k2),(ki - k2)v]U”x(q) VLX 

- 2 i e ~ w  [vL, up’(q) L; - L~ P ( q )  vL~] - PL; 
= SmG: + SmG: + SmG: .  (6.27) 
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Adding the two propagator-like parts Sm@ and Sm@ from Eqs. (6.20) and (6.27), 
respectively, we find 

Next, we carry out the phase-space integration over 1/2 J dXLIps ,  using the formulas given 

in Eqs. (3.5) and (3.6), and the fact that A'/2(q2,M&,0) = q2 - M& > 0. In this way, we 

have 

(6.29) = VLpc/pP(q) Smfi,W, P ( q )  v L ~ ,  

with 

(6.30) 

Here, a,, = e2 / (4n)  is the electromagnetic fine structure constant. The real part of the 

transverse, on-shell renormalized, W-boson self-energy, %eaT ' ( s ) ,  can be determined by 

means of a doubly subtracted D R  given in Eq. (2.7). Furthermore, we have to assume 

a fictitious photon mass, pr,  in order to regulate the infra-red (IR) divergences. More 

explicitly, the DR of our interest reads 

^ W R  

ds' %fiF(s') . (6.31) 
(5' - M&)2( s' - s )  

( 5  - M&)2 
= lim lim 

A+w 111'0 7r 
(Mw+11113 

To obtain the analytic form of %ef iFR(s ) ,  we first evaluate the following integrals: 

m 

(6.32) 

F,(s) = (9 - M&) P 7 ds' 1 M& 
(s' - M&)(s' - 9) 9' 

(Mw tccr la 
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(6.33) 

Armed with the integrals defined in Eqs. (6.32)-(6.34), one then obtains 

(6.35) %efi,”(s) = ?!E (s - M$) ( -  Y F o  + jF1 + -F2). 3 

Eq. (6.35) coincides with the PT W-boson self-energy [8] or equivalently with the W-boson 
self-energy computed in the BFG for ( Q  = 1 [l?]. 

11 4 1 
2 

7 Cutkosky considerations 

In this section, we focus on the LHS of the OT and present a different point of view 
and a self-consistency check. In particular, we consider the one-loop S-matrix element 
for a given process and compute its imaginary part by direct application of the Cutkosky 
rules. The expressions so obtained consist of the product of tree-level amplitudes, with 
the import ant difference that now “unphysical” degrees of freedom appear as intermediate 
states, giving in turn rise to “unphysical” thresholds. These tree-level amplitudes are 
related by EWIs. We show that, when fully exploited, these EWIs give rise to propagator-, 
vertex- and box-like expressions, which contain physical thresholds only, whereas all the 
unphysical thresholds disappear completely. The expressions so derived are identical to the 
imaginary parts of the corresponding PT Green’s functions, which one can obtain directly 
from the S-matrix. Also, both real and imaginary parts are related via a DR, as has been 
discussed in Section 2. 

For the process lul + w-(p)H(p~) ,  we have in an arbitrary ( gauge 
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Fig. 6: Graphs contributing to the amplitudes T)fI9, T:$, T(=), and T(d). 

We will carry out an explicit calculation of the SrnM Î of the process eve + eve at the 

one-loop electroweak order, working on the LHS of the OT. To simplify the algebra, we 

will assume that only the W and H particles can come kinematically on the mass shell, as 

shown in Fig. 6. In what follows, we omit the common integration measure of the loop, 

l / [ 2 ( 2 ~ ) ~ ]  J d4pd4p~6(4,)(p~ + p - p, - py).  Then, the absorptive amplitude, h M ,  for the 

aforementioned process may be written as (suppressing contraction over Lorents indices, 
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and using the on-shell conditions p& = M;, p2 = M&) 

where the tilde acting on the tree-level propagators simply projects out the corresponding 
absorptive parts. Such a projection can effectively be obtained by applying the Cutkosky 
rules. More explicitly, we have 

where the W-boson polarization tensor QPu(p) is given in Eq. (6.8) and S+(p2 - M 2 )  = 

6(p2 - M2)8(p0). After identifying the PT piece, Tp = -ig,SR/(2Mw), which is obtained 
from Eq. (7.2) each time the fpU-dependent part of A,, - (0 gets contracted with T O ,  we 

observe that the imaginary propagator-like part may be decomposed as follows: 

where 

and 

In the first term, S m f i p ) ,  we have collected all contributions originating from the 
physical poles at p& = M; and p2 = M&, whereas all those occuring at p2 = (M& and 
are proportional to B!j"(p) are included in bM^1. 
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The first important observation is that bM 1̂ = 0, which can be shown with the help 
of the EWI in Eq. (7.1). So, the full exploitation of this WI gives rise to a propagator-like 
imaginary part where all unphysical thresholds have been cancelled. In addition, with the 
help of the same WI, we obtain for SmM^Sphy.), 

We must now demonstrate that the final dependence on < cancels in the above equation. 
Notice that even though we use the on shell conditions p2 = M& and p& = M;, the 
amplitudes T in the last equation are not really "on shell", because they are not contracted 

by the corresponding polarization vectors; therefore the <-cancellation is not immediate. To 
verify the cancellation, we must employ the identity of Eq. (6.9) to decompose the internal 
tree-level W propagators, and the WIs, which relate the tree-level vertices involved, i . e . ,  

Thus, the final expression can be cast into the form 

(7.11) 

(7.12) 

where by the index a1 (b1) denotes the first graph in Fig. 6a (6b), and the superscript "CO" 
means that the internal tree-level W propagators are in the unitary gauge. 

This is precisely what one would obtain from the straightforward computation of the 
imaginary part of the one-loop PT WW self-energy, presented in [8]. The expression for 
the GFP-independent propagator-like part of M,  M1, in terms of the PT WW self-energy, 
fiPv( q) ,  is given by 

M^1 = vLouocc(4) fi&) V P ( q )  VLp * (7.13) 

The Higgs-dependent part of ffpv, call it a::"), is given by [31] 

A A  

where a, = gt/(47r) is the s U ( 2 ) ~  fine structure constant and 
4 

(7.14) 

(7.15) 

It is now easy to see that the imaginary part of fiL:") is indeed equal to Eq. (7.12). This 
can be verified by an explicit application of the Cutkosky rules on the expression in the 
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RHS of Eq. (7.14). Actually, this amounts to determining where the logarithmic terms, 

which are obtained after the integration over the virtual momenta, turn negative. One 
could then compare that result with the result we will obtain after integrating Eq. (7.1) 
over the phase space integral given above. To that end, we must make use of the fact that 
the typical integral over the Feynman parameter z 

The above relation gives an explicit connection between Cutkosky rules and the two-body 
LIPS given in Eq. (3.5). As has been discussed in Section 2, the analytic continuation of the 

logarithmic function in the RHS of Eq. (7.16) is uniquely determined via the prescription 
s + s + i&. 

It is important to emphasize the conclusions of this section: We have proceeded in two 
different ways. First, we have calculated the propagator-like imaginary part by applying the 
Cutkosky rule, and exploiting the tree-level EWIs. Then, we have computed the imaginary 

part of the one-loop PT W self-energy, obtained by the usual S-matrix PT rules. The 
two analytic results have turned out to be identical. We can therefore conclude that the 
PT Green’s functions, contrary to their conventional counterparts, satisfy individually the 

OT. We consider that a crucial point for the success:of our resummation algorithm. In 
addition, the above analysis demonstrates that one can work freely on either side of the 
O T  and arrive at a unique result, just by following the same rules, i . e . ,  by fully exploiting 
the EWIs of the theory. 

8 The Background Field Gauge 

The formulation of non-Abelian gauge field theories in the framework of the BFG 
endows the n-point functions obtained from the generating functional with a number of 
characteristic properties. Most remarkably, the B F G  n-point functions satisfy tree-level 
Ward identities, to a l l  orders in perturbation theory. This fact is to  be contrasted with the 
Slavnov-Taylor idintities of the conventional covariant formulation, where the tree-level WI 
are spoiled by the appearance of “ghost” Green’s function, as soon as quantum corrections 
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are introduced. On the other hand, the BFG n-point functions display in general a residual 

dependence on the quantum GFP (Q, which is used to "gauge-fix" the gauge fields inside 

the quantum loops. As we will show in this section, the functional dependence of the BFG 
two-point functions on (Q is such that it leads to the appearance of unphysicd threshokds, 

at q2 = (*AI2. 

What is rather striking in this context is the following observation. Consider a BFG 
two-point function computed at one-loop at some arbitrary (Q. Let us then separate it 
into two parts: the part that has only physical thresholds (at q2 = M2) and the part that 

has unphysical thresholds (at q2 = tQM2).  Interestingly enough, one finds that each part 

satisfies separately the correct tree-level WI. 

W+ 

e+ 
t- 

Q+ 
-t 

H 

G+ 
0 - - .  

0 \ 
/ 

Q+ I 

-*-! 

\ 

\ G+ k t -  

(4 (4 

Fig. 7: WH contributions to II, @"' [(a),(b)] and [(c),(d)]. 

Defining IQ as follows: 

1 
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and using the identity 

we have for the Feynman diagrams (a) and (b) in Fig. 7 (loop integration, Jdnk/i(2r)",  

implied) 

from which follows that 

where n,, contains only physical thresholds, at q2 = (Mw + M H ) ~ ,  whereas II$ contains 

unphysical thresholds at q2 = ( G M w  + MH)~. Similarly, from Figs. 7(c) and 7(d), we 
calculate 

and so 

It is elementary to check that up to irrelevant tadpole terms, the following WIs hold: 

and 

q"q"II$(q) - M&RQ(q) = 0 .  , (8.9) 

It is worth noticing that the tree-level Ward identities, Eqs. (8.8) and (8.9), are individzsally 
satisfied by the contributions having physical and gauge-dependent unphysical thresholds, 
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respectively. This property is not an accidental feature of the specific example considered 

above, but, as we will argue in a moment, it must be valid for any individual contribution 

to an analytic two-point correlation function. On the other hand, it is obvious that neither 

n nor IIQ can be obtained from a specific choice of the ( Q  value. An exception to this is the 

value ( Q  = 1. In this gauge, the physical and unphysical sectors are not distinguishable. If 

we impose the constraint of the absence of unphysical thresholds in the BFG -a property 

which is always preserved within the PT framework [4], then the two-point correlation 

functions of the PT and the BFG for ( Q  = 1 have to coincide at one loop. This feature 

should also hold true for all n-point functions at one loop. 

In the following, we argue that the reason which forces n,,(q) and II$(q) to satisfy 

individually the same tree-like Ward identities as those of the full II,,(q), is the analyticity 

of II,,(q). In fact, it is sufficient to show that CsmII,(q) = Smn,,(q) # 0 for a finite 

domain of q2 (for ( Q  # 1). Then, Eq. (8.8) will be valid for the finite kinematic region and 

will also hold true for any q2, since Smn,,, is analytic. That %en,, will also satisfy Eq. 

(8.8) is guaranteed through a DR. Finally, it is evident that II$(q) = II,,(q) - n,,(q) will 
obey the same WI (8.9). 

To give a specific example, let us consider the absorptive part of the WW self-energy 

in the BFG at one loop, in which only the Wy contributions are considered. It is clear 

that, for the finite domain M& < q2 < min[&M&, (Mw + Mz)2] ( ( Q  # l), SmII,(q) = 

Smngw)(q). The latter leads to the fact that nEw)(q) satisfies Eq. (8.8) independently, 

for any q2. Similar arguments can carry over to the other distinct threshold contributions. 

9 Issues of uniqueness 

In this section, we will address issues related to the uniqueness of the PT rearrange- 

ment. We know that the PT rearrangement gives rise to effective self-energies (a), vertices 

(f) and box graphs (@, endowed with several characteristic properties. The question nat- 

urally arises whether these effective Green’s functions are unique. By “unique” we mean, 

whether after the PT rearrangement has been completed, one could still define new Green’s 

functions, by moving GFP-independent terms around, in such a way as: 

(i) The new Green’s functions have the same properties with the old ones. 

(ii) The above reshuffling does not change the unique value of the S-matrix, order by 

order in perturbation theory. 
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In what follows, we will show a “mild” version of uniqueness, namely that the one-loop 
PT effective Green’s functions are unique, provided that: 

(i) The PT procedure can be generalized to higher orders in perturbation theory, as 
described in [4]. In particular, we assume that effective GFP-independent Green’s 

functions can be constructed, satisfying the simple QED-like WI known from the one- 
loop explicit constructions, and that the effective self-energies so constructed can be 

Dyson resummed. Regarding the last point, the resummation algorithm proposed in 
[4] not only is inextricably connected to the fact that the PT self-energies do not shift 
the position of the pole [4], but has already passed another non-trivial consistency 
check [32]; still, one has not conclusively shown its validity for the most general of 
cases. 

(ii) The renormalization has been successfully carried out, giving rise to UV finite effec- 

tive PT Green’s functions. This assumption is crucial, and is the main reason why 
we characterize the uniqueness proved here as “mild”. Things may be different if 
one attempts the aforementioned reshuffling before renormalization, but this will not 
concern us in the present work. 

It is known [7] that the PT self-energy in QCD, fi(q2) (the lower and upper indices 
T and R are dropped for convenience), captures the running of the coupling, exactly as 

happens in QED. To be specific, setting 

at one-loop, then the combination, 

obeys the following renormalization group equation (RGE): 

where p1 = -blcu,/(47r). The reason for this is exactly the same as in QED, namely the fact 
that the PT vertex and quark self energy satisfy an Abelian, tree-level type Ward identity, 

a.e., 

Q’lfr = & + q )  - q p )  (9.4) 
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n-112 or equivalently gg = 2, 
renormalizations, respectively. 

, where gg, 2 A  are the gluon-field and strong-coupling-constant 

Let us now assume that the PT rearrangement, as described in [4], works to  higher 
orders in perturbation theory. In particular, let us assume that Eq. (9.3) holds to  all orders 
of perturbation, i . e . ,  for 

a p = - [ b l ( L )  + b2(")2 + ... + bn(")" + -1, 47r 47r 47r (9.5) 

and 

fi(q2) = fi1(q2) + f i 2 ( q 2 )  + - - -  + fin(q2) + - * .  , (9.6) 

where fin are one-particle irreducible of n-loop order and independent of the GFP. Note 
that the coefficients b, in Eq.(9.5) are renormalization prescription dependent, for n > 2. 
The first three coefficients for quark-less QCD are: 

(9.7) 

and have been evaluated in Refs. [33], [34] and [35], respectively. The values of bl and 
b2 quoted above are renormalization scheme independent, whereas b3 has been evaluated 
within the minimal subtraction (MS) scheme [36]. 

Substituting Eqs. (9.5) and (9.6) into Eq. (9.3), and equating powers of g2, it is easy 
to obtain 

with pn = -bn(a,/47r)". Notice that Eq. (9.8) is identical to the one obtained for the 

photon vacuum polarization in QED [37]. As happens in the QED case, for n = 1,2 the 
dependence of fin on the renormalization point p is logarithmic, whereas for n > 2, higher 

powers of logarithms start appearing. 

Let us now assume that we were to change by hand the value of fil, and & , in such 
a way as to not change the value of the S-matrix at one loop. So, we make the following 
replacements : 

where f1, u1 and hl are in principle arbitrary functions of q2, subject to the constraint 



which guarantees that the value of the S-matrix does not change at one loop, after the 
substitution given in Eq. (9.9). 

The functions f1, u1 and hl do not depend on the gauge fixing parameter, and are 
UV and IR finite. Therefore, they do not depend on the renormalization point p, viz. 

afl 8% - ahl 
acl & 
- - -  - - - = o .  

In the case of QCD, the only physical choice for f1 would be f1 = C q 2 ,  where C is a 
numerical constant, since the only available mass scale is q2. In other words, since f 
does not depend on p, we cannot have ratios of momenta q2/p2.  At the same time, one 
does not want to use the mass of the external fermions, since that would convert fil to a 

process-dependent quantity. Moreover, the R G E  in Eq. (9.8) would then be modified by 
the p dependence of the running quark masses. For the sake of argument, let us, however, 
assume that one uses a “universal” mass scale Mu, such as the Planck mass, or some 
combination involving the sum of all quark masses. So, f1 may contain ratios of q2/M,2. 

For example, f1 could be of the form f1  = q2exp(-q2/M:). However, it is important to 
emphasize that Mu should not depend on p, i . e . ,  aM,/ap = 0. 

Q2 42 

(4 (b) (4 (d) 

Fig. 8: PT resummation at two loops in QCD. 

Returning to the uniqueness issue, since the PT self-energies can be Dyson summed [4], 
one should impose the same property on their new counterparts. Therefore, following the 
method developed in [4], a string of the form fi1( l / q 2 )  must be converted to  fi1( l/q2) fi1. 

To accomplish this, one must provide the appropriate combinations involving the functions 

f1, u1, and hl , just as we had to  provide the missing pinch parts in going from I I 1 (  l / q 2 )  l I 1  
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to f i 1  (l/q2)fi1 (see [4]). To see this in detail, we return to the diagrams of Fig. 8 ,  and 
assume that the PT rearrangement has already been completed. So, now all bubbles and 
vertices in these graphs refer to the PT objects. The relevant equations are 

filfil = (fil  + fl)(fil + fl) 
= f i l f i l+ 2fi1f1 + fi" , (9.11) 

filF1 = (fil + fl)(fl + U l )  
A A  

= I I J l +  flfl + U l f i l  + flu1 , (9.12) 

Wl = ( f l  + U l ) ( f l  + 211) 

= FIT, + 2Ul f l+  21;. (9.13) 

Hereafter, the explicit q2 dependence of the functions fi, fi, f') etc., will not be displayed for 
brevity. Omitting a common factor of ( l / ~ ~ ) ~ ,  we obtain for the afore-mentioned diagrams, 

with 

R = ( f  1 + Q2U1)[2fil + 2f1 + (fl + Q2U1)] (9.15) 

At one loop, the new effective charge 51 satisfies the correct RGE. In particular, since 
a f / a p  = 0 by assumption, we have that 

(9.16) 

which is what Eq. (9.8) yields for n = 1. 

According to the method in [4], the propagator-like parts of R must be allotted to I I 2 .  

The second term in Eq. (9.15) is process-dependent, since it is proportional to f1. This 
term should be given to the two loop vertex or box graphs. In any case, as we w i l l  see, 
this will make no difference in our analysis. But I I 2  has already been converted into 02) 
because we assumed that the PT procedure has been completed. Therefore, f i 2  must be 
defined as follows: 

f i 2  = f i 2 + R ; ,  (9.17) 

where R; is the propagator-like part of R2. After all appropriate powers of l/q2 have been 
restored, R; is given by 

(9.18) 
2 R; = -(f1 + Q2Ul)f i l  + . . . , 
Q2 
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where the ellipses denote the optional inclusion of the third term in Eq. (9.15), which is 
irrelevant for what follows, because it is pindependent. 

I t  is now clear that f i 2  fails to satisfy the correct RGE, since its p-dependence is not 

in compliance with the result deduced from Eq. (9.8) for n = 2. In particular, we have 

(9.19) 

So, in order to reconcile Dyson summation and the correct RGE behaviour to the next 
order, we must impose the additional constraint that 

(9.20) fl + q2u1 = 0 .  

Combining this together with Eq. (9.10) we find that hl = -ul/q4. 

expression for R in Eq. (9.15) vanishes, and Eq. (9.14) becomes 

Thus, the entire 

(9.21) 

It appears at this point that we have succeeded in implementing the substitution 

given in Eq. (9.9), without compromising any of the PT properties, at the seemingly modest 

expense of imposing on fl and u1 the additional constraint given in Eq. (9.20). However, 
as we will see in a moment, Eq. (9.20) is very crucial, because it actually guarantees the 
uniqueness of our gauge-invariant resummation method [4], at one-loop. 

To make this explicit, we proceed to the next order in perturbation theory. The 
situation may be slightly more cumbersome calculationally, but the conceptual issues are 
the same. By converting the old strings into new strings, we pick up additional terms, 
which, when allotted to fi3, these extra terms will invalidate the RGE that f i3  is expected 

to satisfy, i . e . ,  Eq. (9.8) for n = 3, unless a further constraint is imposed on f1.  To 
determine that constraint, we focus on the three-loop diagrams shown in Fig. 9. 

- 
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91 91 

Fig. 9: P T  resummation at three loops in QCD. 

Again, in order to be as general as possible, we assume that one can reshuffle the 
second order PT Green’s functions, without affecting the value of t.he S-matrix to that 

order. In other words, we allow the additional substitutions 

41 



with 

Of course the proof becomes easier if we assume f 2  = u2 = h2 = 0, but we do not have to. 

We will need the following algebraic relations: 

f i l f i2  = (bl + f l ) ( f i2  + f2)  

= f i l f i 2  + f i l f 2  + f i2 f l  + f l f2  , 

f i l f 2  = (bl + f l ) ( f2  + u2) 
C I A  

= nlr2 + blu2 + f1f2 + flu2 , 

f i 2 f l  = (b2 + f2)(f l  + u1) 
= b2fl + fi2u1+ f 2 & +  f 2 U l j  

(9.24) 

(9.25) 

(9.26) 

(9.27) 

fi:Fl = (fil + f l )2(f1 + u1) 

w: = (81 + fl)(Pl + zcl)2 

= fi;f1 + .la; + 2flUlfil t 2flfilfl + f;fl + f;u1, (9.28) 

C I A  A *  

= w: + %:al + 2u1nlrl + flF: + 2flulF1 + flu:, (9.29) 

FlF2 = ( f l  + u1)(P2 + 212) 

= f,f, + u2f, + u1f2 + 211212. (9.30) 

Using the above formulas, the crucial constraint of Eq. (9.20), and remembering that the 
graphs of the Figs. 9(b)-(e) and 9(g) must be multiplied by a factor of 2, which takes 
account of the symmetric (mirror image) graphs, we have that the original set of graphs, 

call d (we factor out a factor ( 1 1 ~ 7 4  ) 

and the new one, A say, which is obtained by replacing all “hatted” quantities in Eq. (9.31) 
by “tilded” ones, are related by 

d = A - & ,  (9.32) 
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where R 3  is given by 

R 3  = flfi? + 2q2(f2 + Q2U2)iIl + 2q2f1fir,T1 + *4flp; 

+2q4(f2 + q2~2)f1 . (9.33) 

Clearly, the first two terms in Eq. (9.33) must be allotted to  0 3 ,  thus converting it to 
fi3.  The rest of the terms cannot be absorbed by fi3,  since they are explicitly process- 
dependent, because they contain T1. Therefore, the remaining terms must be distributed 
among the two-loop vertex and/or box graphs. So, after all powers of l /q2 are restored, 
the propagator-like part R! of R 3  reads 

and so 

2 fl -2 G = - II, + - (f2 + Q2U2)ff 1 ,  
q4 q2 

a 3  = f i3  + R!. 

(9.34) 

(9.35) 

It is now important to observe that, because of the particular structure of R!, the 
R G E  satisfied by f i3  will be modified. Indeed, from Eq. (9.8), we derive for n = 3 

and after the substitution a; + a;, we must have 

Subtracting the two last equations by parts, we obtain 

a 
p- ( i i3  - II3) = -2&(ii2 - 0 2 )  

ap 
= --Wlfi. 

Instead, from Eqs. (9.34) and (9.35), we find 

a aR; 
p - ( i i 3 - f i 3 )  = p- 

aP ap 

(9.36) 

(9.37) 

(9.38) 

(9.39) 

Given the fact that 01 depends explicitly on p, in order to reconcile Eqs. (9.38) and 

(9.39) one must necessarily choose f1 = 0. Thus, the only possible solution for the set of 
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substitutions described in Eq. (9.9) is the triwialone, i.e.,  f1 = u1 = hl = 0, which proves 
the uniqueness of the P T  resummation approach to one-loop, after renormalization. 

After setting fl = 0, we must impose the additional constraint 3f2 + 2q2u2 = 0, in 
order that Eqs. (9.38) and (9.39) become equal. Evidently, the same arguments presented 
above must be repeated to the next order, which will finally determine the value of f 2 ;  

we will not pursue this issue any further here. Instead, we add some further clarifications 
regarding the assumptions made in the previous proof of the one-loop uniqueness of the 
P T  resummation formalism. As emphasized at the beginning of this section, we assume 
that the PT can be extended to higher orders, giving rise to effective Green’s function 
with all the characteristics known from the explicit one-loop analysis. We further assume 
that the renormalization programme has been carried out to all orders. Thus, all “hatted” 
Green’s functions appearing are UV finite. So far, the renormalization scheme chosen has 
been left unspecified. Because of Eq. (9.8), the effect of adopting different renormalization- 
scheme choices will be to modify the values of b,,, for n > 2. However, within a specific 
renormalization scheme, the values of b,, are fixed, and this is what we have implicitly 
assumed. 

The resummation formalism discussed for the case of Yang-Mills theories such as QCD 
can equally carry over to SSB models such as the SM. In the SM, W and 2 bosons are 
considered to be unstable gauge particles. In the case of the W boson, a RGE similar to Eq. 

(9.8) will hold for the leading logarithmic part of the transverse W-boson self-energy. Again, 
one can form the RGE invariant combination involving the W-boson Green’s function 

-w 2 
g: [n2 + Qr(q ,I-’. 

Analogously with Eq. (9.4), one can derive a similar relation between the weak-coupling- 
constant renormalization gew and the wave-function renormalization of the W boson gw, 
i.e., ZeW = 2, . Hence, one can show the uniqueness of this expression by following a 

line of arguments similar to the case of QCD. Furthermore, possible modifications of the 
longitudinal part of the W-boson self-energy, @’, will result in direct violations of the 
tree-level WIs, which govern the gauge invariance of the classical action. 

h A-112 

10 Conclusions 

We have presented a formalism for resummation of off-shell two-point correlation 
functions, which relies entirely on arguments of analyticity, unitarity, gauge invariance and 
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multiplicative renormalization. In addition, several crucial aspects of the GFP-independent 
resummation approach presented in [4] have been clarified. Specifically, we have shown 
that unitarity requires the absence of unphysical thresholds for the resummed Green’s 
functions at the quantum loop level. Within the PT resummation approach this property 

is satisfied, since the effective gauge-invariant Green’s functions are directly derived from 
S-matrix elements, with the only additional input the use of elementary tree-level WIs and 
anal yt icit y. 

This is, however, not true in other approaches. For instance, we have explicitly shown 
that (g-dependent unphysical thresholds appear in the B F G ,  even though the Green’s 
functions obey the same tree-level WIs as the PT Green’s functions. For the very specific 
value of (Q = 1 ,  the results of B F G  and PT coincide to one-loop, as this is the only 
gauge that avoids unphysical propagator poles. The situation may change in higher orders. 
Furthermore, we have found that the B F G  Green’s functions can be decomposed into 
two parts, one containing only physical poles and one containing tg-dependent unphysical 
thresholds, which separately satisfy the same WIs as the total B F G  Green’s functions. 

Furthermore, we have addressed issues of gauge invariance by resorting to the B R S  

symmetries at the one-loop quantum level. We have explicitly demonstrated that the PT 
two-point correlation function may be obtained from its absorptive part through a DR. The 
absorptive part of the P T  Green’s functions can equally well be calculated from the optical 
relation of the anti-hermitian part of the transition amplitude. As a result of this, we 
have also been able to identify the pinching parts of the P T  algorithm, as those terms that 
quantify the deviation from the intrinsic B R S  symmetries. Most importantly, we have been 
able to show how gauge invariance is restored, within the PT framework, by reinforcing 
B R S  symmetries inside the quantum loops. 

In Section 9,  we have examined the issue of “uniqueness” of the gauge-invariant 
resummation approach proposed in [4]. In the context of QCD, we have focused on the 

most basic R G E  invariant quantity involving the PT two-point correlation function, namely 
the effective (running) strong coupling. By means of a three-loop analysis, we have shown 
that, at one-loop, the PT resummation method gives rise to unique results. We have 
also briefly outlined how these considerations can be naturally extended to spontaneously 
broken gauge theories. 

Considering the fact that all the basic field-theoretical requirements imposed thus far 
are preserved within the PT resummation approach that was introduced in [4] and was 

further analysed in the present paper, one might be tempted to argue that some deeper 
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underlying principle is in effect, which has yet to be discovered. Here we wish to point out 
two possibly relevant directions in such a quest. First, there is a interesting recent result 
of “stringy” origin [38], which seems to single out the one-loop B F G  Green’s functions for 
the special value of (Q = 1, which are, of course, identical to the PT Green’s functions. 
This observation makes the question of whether the correspondence between the PT and 
the B F G  at ( Q  = 1 persists beyond one loop even more pressing. Second, one should 
investigate possible connections between the PT and the Vilkovisky-DeWitt formalism 
[39]. In particular, the gauge invariant and GFP-independent Green’s functions obtained 
from the Vilkovisky-DeWitt effective action must be compared with their PT counterparts, 
establishing the origin and the physical significance of any possible difference between them. 
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