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Starting from the Additive Quark SU(6) Model and taking into account pion, kaon 

and rJ emission during the initial stage of evolution (from q2 
"' m~uark to q2 

"' 1 GeV2
) 

we convert the main fraction of the proton spin into the orbital momentum of pseu­

doscalar mesons. The results are in good agreement with the experimental data. We get 

J g1 ( x )dx = 0.152 for proton and +0.007 for the A hyperon (i.e. the quarks carry out only 

about 39% of the A spin). In the same model we explain the violation of the Gottfried 

sum rule, J(Ff(x)- Ft(x))dx = 0.23 due to charged meson exchanges at the beginning 

of the evolution. The Gribov-Lipatov relation between the polarized structure functions 

in DIS and e+ e- -annihilation is discussed. It allows the possibility of studying the spin 

structure of A hyperon produced through the decay of a jet originating from a polarized 

quark in e+e- annihilation or in DIS. 

1This work was support in part, by a Soros Foundation Grant awarded by American Physical Society. 
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The so-called "spin crisis" problem has generated a lot of publications after the EMC experiment 

[1] where the polarized quark structure function g1 was measured for the first time. The value 

of the integral J g1(x)dx = 0.126 ± 0.018 turns out to be much less than the SU(6) prediction 

rv 0.28. It means that less than half of the initial proton spin is carried by the quarks. One 

can find a detail review of the subject in ref. [2]. 

It is well known that due to the Adler-Bell-Jackiw anomaly [3] the singlet (with respect to the 

flavour symmetry SU(3)F) axial current J~Jt = 2: iJ!sl~tq, which controls the total spin carried 
F 

by the quarks, is not conserved. Nevertheless, within perturbative QCD this nonconservation 

is small and almost negligible. In the region of rather large Q2 ~ 1 GeV2 (where the QCD 

coupling a 8 ~ 1) the anomalous dimension 1° which describes the Q2 dependence of the J~JL 

operator is proportional to the square of a 8 [4] 

1 (a 8
)

2 

/o = 2 --:; np. (1) 

Thus the variation of the total quark spin 

(2) 

does not exceed 7% for a 8 ( Q6) :::; 0.35 (here we put the number of light flavours np = 3 and 

the Gell-Mann-Low constant b = 11- 2/3 np = 9). 

However it is not excluded that the J~1L-current non-conservation may reveal itself in the 

non-perturbative region of not too large Q2 :::; 1Ge V 2• To study this problem we will use 

the effective QCD Lagrangian, which deals only with the lightest degrees of freedom: the 

constituent u, d, s-quarks and the octet of the pseudoscalar mesons ( 1r, K, ry). 

Our goal is to consider a model which is very close to the additive quark one, but starting 

from SU(6) we will follow the initial part of the structure function evolution. Due to the 

possibility of emitting the pseudoscalar mesons ( 1r or K, ry) the initial valence quark may flip its 

spin and thus reduce the sum of the quark chiralities (A .E); the remaining part of the proton 

spin goes to the orbital momentum of the parton wave function. The probability of the pion 

(kaon) emission is given by the ratio 16~ 2 n2 
(where M is the constituent quark mass). It is not 

large but within the low q2 interval (before the pion form factor reveals itself and damps the 

contribution) it is enhanced by the log integration J dq2
/ q2

) and finally produces a noticeable 

effect which is almost enough to explain the spin crisis. 
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An idea very close to this was discussed before in the framework of a slightly different 

Lagrangian[5] in the context of the Gottfried sum rule violation. The possibility of transferring 

part of the initial proton spin to the pions emitted by the parent nucleon was considered also 

in [6]. Thus our explanation of spin crisis is not a completely new one. The advantage is that 

we start from the simplest Lagrangian (see eq.(3)), which preserves all the symmetry relations 

(isotopic symmetry will be fulfilled, for example) and write an evolution equation which gives 

the possibility to study (and predict) the x-dependence of polarized quark structure functions, 

not just the contribution of quarks to the nucleon spin, .6-:E. It is also possible to consider 

different baryons such as the A-hyperon, not just the nucleons2 • 

In section 2 we recall the structure of the effective QCD Lagrangian. Then in section 3 we 

write the system of equations, which describes the evolution of the spin dependent structure 

functions in this case. The numerical results of the solution is discussed in section 4. 

In the conclusion (section 5) we show that the same model also succeeds in explaining the 

Gottfried sum rule violation (due to charged pion exchange). Also, since the model includes 

the q2 evolution explicitly, it allows the possibility of the data of E142 [8] and SMC [9], which 

differ from each other, to be made consistent since they are measured at different values of 

Q2
• For the E142 data the Q2 is rather small "" 2 Ge V2 which limits the region of our (pion) 

evolution. Thus the E142 results are closer to the SU(6) prediction. 

2 

In order to consider the pion (kaon, 'T}-meson) contribution to the evolution of the initial con­

stituent quarks we use the Lagrangian 

(3) 

Here 1ra is an octet of pseudoscalar mesons. Such a Lagrangian was obtained, for example3 

in ref.[lO], after spontaneous breaking of chiral symmetry in the instanton QCD vacuum, but 

actually it has a much wider context[ll]. One may consider eq.(3) as the quark Lagrangian 

coupled to the pseudoscalar mesons in the presence of the (OiqqiO) condensate, which provides 

2 An approach, which is very close to ours has been discussed recently by Ball and Forte [7] but they considered 

only the evolution of the Gottfried sum rule. 
3In the case of SU(2)F flavour symmetry. 
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rather large ("' 300-500 Me V) constituent quark masses M for the u, d, s-quarks. The diagonal 

matrix M in eq.(3) denotes the quark masses coming mainly from the (OiqqiO) condensates4 . 

Let us make one simple comment in connection with eq.(3). It may seem that there is 

double counting of the degrees of freedom in eq.(3) where we use at the same time the quark 

and the meson fields. This is not true, however. When the chiral symmetry is unbroken the 

theory is invariant under chiral rotation of quarks (we neglect the small current quark masses): 

q ---+ exp( i-y5.A a?ra )q. In this case the chiral phases of the quarks, as shown in eq. ( 3), play the 

same role as the phase of a charged scalar field cp(x) = p(x) exp[ia(x )] in the case of unbroken 

QED. The variable a(x) is known not to be an appropriate degree of freedom, since it has no 

well-defined kinetic energy. When the chiral symmetry is broken the chiral quark phases which 

are nothing but pseudoscalar mesons in eq.(3), become the relevant degrees of freedom 5 . There 

is no double counting of the degrees of freedom since the definition of the chiral phases of the 

quark fields, entering eq.(3), is fixed by the requirement that (qq) -:/= 0 while (qi-y5.Aaq) = 0. (In 

the case of QED the requirement corresponds to the condition that the v.e.v. of the scalar field 

is real). Hence, one has to add these phases back explicitly to the second term of eq.(3) in the 

form of the new matrix U = eirs (>.a1ra)l 2fp, where _A a are the well known Gell-Mann matrices 

and the constant JP compensates the dimension of the pseudoscalar field 1ra U1r = 93 MeV) 6 • 

The Lagrangian of eq.(3) leads to the eight conserved non-singlet axial currents, which now 

explicitly contain the meson fields. In the linear approximation in 1ra: 

J;p, = L qAa/5/p,q- 2jp8p,1ra. 
q 

(4) 

However the singlet axial current J2P. is still not conserved since we do not include here the 

singlet pseudoscalar meson r/, which is much heavier than the octet of the Goldstone mesons 

1ra, due to the axial anomaly and the mixing with the Gp,vGp,v gluon operator. Thus the model 

reflects the existence of Adler-Bell-Jackiw anomaly for the singlet axial current. It means that 

one can use the effective Lagrangian eq.(3) up to the virtualities q2 of the order of the r/ mass 

("' 1 Ge V2
). Then "71 should appear and the nonconservation of the singlet axial current should 

4In the appendix we will discuss this point in more detail. 
5 The same is true for the case of the spontaneously broken QED when (p) = v since now the Goldstone field 

a(x) = va(x) has the normal kinetic energy. 
6 There is no explicit kinetic energy terms for the pseudoscalar mesons in the Lagrangian eq.(3); they arise 

only from the quark loops when one integrates (3) over the quark fields. It means that the pseudoscalar mesons 

introduced in eq.(l) are, in fact, the composite fields. 
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be described directly in terms of gluon fields (8JLJgJL "'GC). 

3 

In the interval of our interest q2 < m~,, the dimensionless quark-meson coupling constant is 

given by the ratio M I fp· It should be stressed that the ratio M 2 I J'; ex: 11 Ne is small[10] in the 

large Ne (number of colours) limit. Thanks to this small parameter one can justify from the 

formal point of view the validity of the evolution equation in the leading log approximation. 

Numerically, typical values of the constant 16~2
2

# are < 0.1- 0.2 (for our case with Ne = 3) is 

small indeed. 

Thus the evolution equations in the low q2 region take the form: 

8qi!(x, q2
) 

8lnq2 

8qil(x, q2) 

8lnq2 

1:"' {yJ.' [q,!J(z)q;r (~,q') + ~q,,.(z)1r" ('~,q')] 
dzM

2 
} 

x ---; fi - l.piqi!(x, q
2

) 

- 1L2 { Y J.' [ q,l}(z)q;) (';, q') + ~ q,,.(z)?r" (~, q') l 
dzM

2 
} 

X ---; r; - l.piqil(x, q2) 

plus the same equations for iJii and iJi! as the first two, and 

l:1r2 { Y J q,•i (z) [ q;r G• q') + q;! (~, q') + <li! + <li!] 

X 
dz M2 a 2 } ---; fi - i.p 1ra(x, q ) . (5) 

Here the arrows indicate the helicities of the initial and final quarks. The kernels <I> H = <I>+T 
•J •J 

correspond to the emission of the pseudoscalar particles. Of course they change the helicity of 

the quark. Kernel <I> Jf is as follows 7 : 

(6) 

with 

7The evolution equation for the "(5 theory was written for the first time in ref.[12] 
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The terms h11 and h~ reflect the "' exchange. In the case of unbroken flavour SU(3) (without 

the 1J- 1]1 mixing) h11 = 1/6 and h~ = 2/3 (so 2h11 + h~ = 1). The kernels q>ai describe the 

emission of the 1r, K, rJ-mesons. They are 

- 2Naiz 

Nai = 1 for the charged 7r±, K± and K 0 , K 0 mesons; 

Nai = ~ for 1r0-meson ( i = u, d) and 

NTJi = h11 (or h~) for rJ-meson and i = u, d (or s) quark. 

' 

Generation of quarks by the pseudoscalar parton are given by the <Pia kernels 

with the same Nai factors as in eq.(7). 

(7) 

(8) 

Finally the constants <pi and <pa reflect the conservation of the number of partons. After the 

interaction (emission of new particle) a parton which carries a momentum fraction x produces 

a new parton with momentum fraction x · z, but simultaneously the initial parton (with the 

fraction x) disappears. Thus one has to add to the r.h.s. of eqs.(5) the negative terms with 

{1 M2 M2 
<pi = '2; Jo <I>]j(z)dz ! 2 = 2; Nij ! 2 

J 0 p J p 

and 

lo
l M2 .M2 

<pa = '2; <I>ia(z)dz-J2 = '2; 2Nat_J2 . 
l 0 p l p 

(From the Feynman graphs point of view this contribution corresponds to the self-energy dia-

grams). 

It will be very interesting to solve the system of eqs.(5) explicitly starting from reasonable 

initial distributions of the valence quarks (as was done for example for the GRV [13] structure 

functions of the nonpolarized nucleon) and then continue the evolution within the conventional 

perturbative QCD. However we do not intend to discuss the form of the initial spin dependent 

distributions but instead consider the combination of integrated distributions given by 

The additive quark model (AQM) SU(6) wave function leads to the initial conditions: 

1 4 
D.dAQM =D. do= -3; D.uo = 3; D. so= 0. 
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The evolution equations for ~ q are much more simple. First of all, the contributions coming 

from the pseudoscalar partons densities 1ra(x, q2 ) cancel in the difference qr(x, q2
)- qt(x, q2

). 

Next, after the integration over dx the equations take the algebraic form 

(9) 

where 
-Mz {1 i! 
--2- Jo cpij (z)dz- 8ij'Pi· 

!p 0 
(10) 

The negative sign in the first term of the rhs of eq.(10) is due to the spin flip nature of the cpJf 

kernel. The arrows in the l.h.s. and in the first lines of the r.h.s. of eqs.(5) have an opposite 

directions. Hence, one gets the minus in front of the cpJf term in eq.(10). 

4 

It is more convenient, for the numerical calculations we are going to consider below, to introduce 

the new effective constants: a11", ak and a., corresponding to the 1r, K or 17-meson exchanges 

during the evolution eq.(9) instead of the factors aij· 

For instance a11" = aud/167r2 = 16
1 

2 M
12

2 
ln §. ,.,_, 0.178. For the numerical estimate we have 11" rr qo 

chosen the constituent mass M = 345 MeV (as in ref. [10]) J1r = 93 MeV; q0 = M and 

qm =m.,, = 958 MeV. 

To get a numerical estimation one has to diagonalize the aij matrix in eq.(9) and to solve 

the differential equation explicitly. In the case of unbroken flavour SU(3)F group (when we put 

a~;; = 6a11 = 3/2 a~ = a11") the eigenvectors which diagonalize the system eq.(9) are: 

~ 0 = ~ :E = ~ u + ~ d + .6. s, .6. 3 = .6. u- .6. d and .6. 8 = .6. u + .6. d- 2.6. s. 

After the evolution up to the q2 = m~, the initial values (.6.in) of these eigenvectors reduce 

by the factors: 

_6.0 

_6.8 (11) 
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In other words for the polarized proton we expect 

~u = 0.789, ~d = -0.311, ~ s = -0.091 (~ ~ = 0.39), (12) 

while for the A-hyperon the analogous calculation gives: 

~u = ~d = -0.09; ~s=0.57. (13) 

Finally, the perturbative QCD evolution (say in the interval of q2 from 1 to 5 GeV2 ) reduces 

~~by 1.67%. Thus for the nucleon 

~u = 0.787, ~ d = -0.313, ~ s = -0.093. (14) 

Coming back to eq.(11) we would like to stress that we get nontrivial evolution not only 

for ~ 0 but for ~ 3 (and ~ 8 ) also. It does not contradict the J5ll current conservation as the 

conserved current eq.(4) also contains the second term -2f/Jil1fa. The divergence of the total 

current 

should be equal to zero; and it does indeed vanish. 

In the nucleon (or quark) brackets, the term < q>.akll/5/llq >= 2m < ij>.aq > while in the 

second term, where J5ll interacts with the pion 1ra, the factor k 2 cancels the pion propagator 

and one gets 2fp < ij1raq >. As we know, the vertex < ij1raq >= m/ JP is proportional to the 

constituent quark mass8 m. Thus the second term in the divergence of the current cancels the 

first one exactly. It is nothing else but the usual Goldberger-Treiman relation which reflects 

the axial currents conservation. Therefore the evolution of the value ~ 3 = ~u - ~d does not 

violate any symmetry and is in agreement with the statement that the current J5ll is conserved. 

Unfortunately the flavour SU(3)F group is broken. On the other hand the available interval 

of the logarithmic evolution is not too large (ln~ "' 2). To demonstrate that these facts do 
qo 

not change crucially the scale of the effect (i.e. the ~q evolution eq.(11,12)) let us consider the 

first iteration of eq.(9) taking into account the smaller values of ak, a.,, a~. Due to the larger 

lower limit qo = mK (or q0 =m.,= 549MeV) we get ak = 0.115 and a.,= 0.016; a~= 0.065. 

In these terms the first iteration of eq.(9) gives 

8Recall that within the effective Lagrangian eq.(3) we deal with "heavy" constituent quarks (after the 

spontaneous breaking of the chiral symmetry). 
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!::l.s (15) 

and thus for the proton 

!::l.u = 0.72; !::l. d = -0.40; !::l. s = -0.115. (16) 

So the total spin !::l. E = !::l. u + !::l. d + !::l. s carried by the quarks is equal to !::l. E = 0.20. 

The same calculation for the A-hyperon gives 

!::l. u = !::l. d = -ak = -0.115 and !::l. s = 0.64 (i.e. !::l. E = 0.41). (17) 

The estimates presented above demonstrate that the effect indeed may be large and after the 

emission of pseudoscalar mesons the fraction of the initial baryon spin still carried by the quarks 

becomes rather small (of the order of 20%). 

Let us note that after the first iteration the total quark spin !::l. :E = 0.2 is even smaller than the 

previous result (eq.(12)), as the second term (of the order of ari) has the opposite sign. Thus, 

we consider the estimate (12) as more realistic 9
. 

5 

(a) 

The numbers obtained are close to experiment. The integral 

1~ 1 (4 1 1 ) 
JP= lo 9I(x)dx = 2 g!::l.u+g!::l.d+g!::l.s = 0.152 

and r = -0.031 (i.e. for the deuteron Jd = 0.06) while SMC [9] gives JP = 0.136 ± 0.016. All 

the proton data lead to JP= 0.142 ± 0.014 and r = -0.028 ± 0.006 at Q2 = 5GeV2 [2] . 

If one uses the results of the first iteration only (eq.(16)) then JP= 0.131 and In= -0.055. 

The SLAC data[8] taken at smaller Q2 '"'-' 2 GeV2 needed an additional comment. In the 

leading log evolution equation the essential values of virtuality should be much less than Q2
. 

Putting the usual scale q2 = Q2 /4 and finishing our pseudoscalar meson emission at q2 = 0.5 

GeV2 one gets a11" = 0.125. Therefore for the proton we expect instead of eq. (14), 

!::l.u = 0.918; !::l.d = -0.327; !::l.s = -0.078, 

9 We prefer to underestimate rather than to overestimate the effect. That way, our logarithmic integration 

starts from the largest mass in the vertex. 

8 



I.e. JP = 0.181 and r = -0.026 which agree well with the E142 values JP = 0.172 ± 0.009, 

r = -o.o22 ± o.on. 
It should be mentioned that the decrease in the spin carried by the quarks comes mainly 

from the small x region. Indeed, in the case of small x, one has a larger interval of z integration 

in eqs.(5) and hence a larger probability to flip the initial spin of the valence quark. This fact 

is also in qualitative agreement with the present experimental data on g1 ( x ). 

(b) 

Let us demonstrate now that our simple model can also explain the Gottfried sum rule 

violation. After the emission of a charged pion the u-quark converts into the d quark, changing 

its electrical charge. Of course it transfers this charge to the pion, but for 7r+ and 7r- the F2 

structure functions are equal to each other ( F:{+ = F:{-). So the difference 

to be compared with the NMC measurement of 0.236 ± 0.016 [14]. 

(c) 

It is harder to check the last predictions for the A-hyperon. We have no A target. Nev­

ertheless the polarization of A can be measured in e+ e- annihilation. Thanks to the famous 

Gribov-Lipatov relation [15] the structure functions of deep inelastic scattering (DIS) and 

e+e- annihilation are closely related, Fe+c(w, q2
) = ~FDrs (~, q2

) , where w = (2pq)/(-q2
). It 

should be stressed that the same relation is valid also for the spin dependent structure function. 

As we see from the original paper [16], the Altarelli-Parisi splitting kernels are the same for 

DIS and e+ e- annihilation even for the polarized particles 10 . So the polarization properties of 

the fast A-hyperon produced in e+ e- -annihilation should be the same as in DIS. Indeed, the 

vertex for polarized A decay into the quark +X is exactly the same as the vertex for the decay 

of a polarized quark into A+ X (in e+e- case) . The only difference is the integration over the 

available phase space of the final system, but it is cancelled when one considers the polariza­

tions and divides the cross section corresponding to the process with definite helicities by the 

unpolarized one. Thus we can expect to check the predicted spin structure of the A-hyperon 

in DIS or in e+ e- -annihilation experiments. 

10 At least for not too small x which is interesting for us. 
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We expect that the polarization of A produced in the s-quark jet should be equal to the 57% 

(see eq.(13)) of the s-quark polarization (in the jet thrust direction (i.e. helicity)) or -9% for 

the A produced in the u-quark current jet in DIS. Of course 57% (or -9%) are average values 

but it is better to select the leading fast A-hyperons (with z > .5 for example) in order to avoid 

the contributions coming from resonance decay polarization. To ensure that we are dealing 

with an s-quark jet one may detect a K+ -meson in the fragmentation (large z) region of the 

jet moving away in the opposite side in e+ e- annihilation (or the K+ in the proton hemisphere 

in the case of the s-quark current jet from the DIS). If one detects the A coming from the u(d) 

current jet, then in DIS one has to observe the K+(K0 ) meson close to the A in the same jet. 

In conclusion, we are encouraged by the good agreement with data. It is not evident that 

the model described above is crucially different from the models based on the instanton induced 

quark-quark t'Hooft interaction or from the bag models 11 ([17], for example). However it is a 

very simple model and solves simultaneously two problems: the spin-crisis and Gottfried sum 

rule violation. Thus we hope that more detailed calculations, including the x-dependence of 

the spin dependent structure functions, may allow more precise comparison with the data. 
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Appendix 

Let us discuss the possibility of introducing simultaneously the degrees of freedom which 

at first glance seem to be complementary to each other, namely, quarks and pions (or eight 

Goldstone bosons). The problem is not new, it was first discussed in[ll]. The authors ofref.[ll} 

made an assumption that the effective chiral Lagrangian can be used up to the mass scale of 

order 1 GeV, larger than the scale of the confinement which is crucial for the use of the quark 

and gluon degrees of freedom. We shall discuss the problem from a slightly different point of 

v1ew. 

When the chiral symmetry is unbroken the appropriate degrees of freedom are, of course, 

quarks and gluons, and the QCD Lagrangian (for the case of two flavours) has a standard form: 

L = qi!pq - ijmq, 

q = (u, d) , 

A(l) 

where JP = /p,Dp,; Dp, is the covariant derivative containing the gluon field; mu , md are the 

current quark masses. 

If the chiral symmetry is sponteneously broken the "chiral phases" of the quarks become 

the relevant degrees of freedom. We define new fields Q(x) and 1ra(x) by 

i'l'r'a(:~:) a 

q(x) = e- 2J" '-rsQ(x)' 

A(2) 

very much in the same way as we do for a Higgs doublet c/Y( x) for the case of weak interactions: 

A(3) 

We should now fix the chiral phases of Q(x) in analogy to eq.A(3) where it is explicitly stated 

that the upper component of the doublet in the right-hand side of the equation is zero and 

the lower component is real. To do that for the case of eq.A(2) we recall that the chiral 

transformation of quarks, 

11 



A(4) 

induces the subgroup of 0(4) rotations of the four-vector constructed from the quark fields 

A(5) 

One can check immediately that under the transformation A(4) 

J _. a (c 2waWb. zW)_. b Wa. (-) 
a = q1/'(5T q -+ Uab - --z;2Szn 2 q~{5T q - -:;;sznw qq = 

= Dab · Jb + Oa4 · J4 

A(6) 

w = .;:;f 
It is obvious from these equations that three transformations A( 4) are actually rotations in 

the planes (4,1), (4,2), (4,3). Using these three rotations one can make three components of 

Ja vanish. The chiral phases of the fields Q(x) in eq.A(2) will be fixed if one imposes the 

conditions: 

A(7) 

Thus in the parametrization eq.A(2), we introduce three new fields 1ra (pions) and impose three 

constraints on the fields Q(x), eq.A(7). 

In terms of these new degrees of freedom the Lagrangian A(1) has the form: 

A(8) 

Here _Aa(x) are the Lagrange multipliers providing the vanishing of Qi{5raQ = 0. The sponta­

neous breaking of the chiral symmetry means that the vacuum expectation value: 

< QQ > = -(250MeV)3 =/= 0. 
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A(9) 

One should formulate this condition in terms of the fields Q(x), not q(x), since for the fields 

Q(x) the equations A(7) fixes the chiral phases in an appropriate way (analogously, for the 

case of weak interactions the vacuum expectation value of p(x) is real, < p >= v). The main 

consequence of eq.A(9) is that the quarks Q acquire a constituent mass M which is the same 

for both flavours. After one integrates out the gluon fields in the Lagrangian A(8) the effective 

Lagrangian can be approximated by: 

A(lO) 

Note the difference between the constituent and the current quark mass: while the former 

contains no pion phases the latter does. This difference has been explicitly derived in the 

ref.[lO]. In ref.(18] the form A(lO) has been used to discuss the last term of this equation, i.e. 

the dependence of the energy on the pion phases (not their derivatives given by the second 

term of A(lO) ) and the violation of the isotopic invariance. 

It is sometimes useful to come back in eq.A(lO) to the fields q(x). We then get 

A(ll) 

In this paper we use this last equation and neglect the current masses, putting m= 0. 
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