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We present a method for the analytic solution of small x structure functions. The 

essential small x logarithms are summed to all orders in the anomalous dimensions and 

coefficient functions . Although we work at leading logarithmic accuracy, the method is 

general enough to allow the systematic inclusion of sub-leading logarithms. Results and 

predictions are presented for the gluon density, and the structure functions F2(x, Q2
) 

and FL(x, Q 2
). We find that corrections to the simple double logarithmic calculation are 

important in the HERA range and obtain good fits to all available data. 





As a result of the recent work of Catani and Hautmann [1], it is now possible to include 

the dominant small x dynamics encompassed by the formalism of Balitsky, Fadin, Kuraev and 

Lipatov (BFKL) [2] within the framework of the renormalisation group and collinear factorisa­

tion, and some (mostly numerical) studies have already been performed [3, 4]. In this paper, we 

wish to present an analytic solution to the relevant evolution equations and their convolution 

with the appropriate coefficient functions. Throughout we work in the high energy limit, i.e. 

we sum all terms in the perturbative expansion of the cross section which are 

where s is the relevant centre-of-mass energy and Q2 characterises the typical short distances 

involved. We shall focus on deep inelastic scattering at the DESY ep collider, HERA. In which 

case, ys is the 'YP centre-of-mass energy and -Q2 is the photon virtuality, i.e. the Bjorken-x 

variable, x ~ Q2 / s. Our approach is quite general and it will be clear how to extend it beyond 

the leading logarithmic accuracy. 

Altarelli-Parisi Evolution at small x and the gluon density 

Recall the Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP) equations for the parton 

distribution functions [5]: 

afJv( Q
2
) =" ijfj (Q2) 

alnQ2 ~INN · 
J 

(1) 

fJv( Q2) is the Nth moment of the momentum distribution for partons of type i and~~ is the 

anomalous dimension matrix, i.e. 

ij 
lN 

fol dx xN-1 fi(x, Q2), 

fo
1 

dxxNPij(x). 

Our notation is such that the important gluon anomalous dimension, 

gg- as as - (- )4 
IN - N + 2((3) N + .... 

and as= 3asf1r. 

(2) 

(3) 

These equations are solved given the boundary conditions, fJv(Q5), i.e. they allow the 

Q2-dependence of the parton distribution functions to be determined but not their absolute 

normalisation. 
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In the high energy (i.e. small x) limit, we keep only those terms in the anomalous dimension 

matrix which are f'.J ( o:. 8 / N)n, i.e. the leading logarithmic terms in the splitting functions. In 

this case, evolution is driven by rJI, which satisfies [2, 6] 

1 = ~X('YJ!), (4) 

where 

x(r) = 27/1(1) -7/l(r)- 7/1(1- 1) (5) 

and 7/1( 1) is the Euler-gamma function. The first two non-zero terms in the series expansion 

are written in eq.(3). The DGLAP equations then have the simple solution: 

!Jv( Q2) !Jv( Q~), 

ff.r(Q2) - [!J.r(Q~) + ~!Jv(Q~)] exp (h~2 d~2 rJ!) - ~!Jv(Q~). (6) 

The singlet quark density is f!v( Q2) = Ei !Jv( Q2) where the sum runs over all quarks and 

anti-quarks. Since we work in the small x region, we expect the gluon density to be dominant 

and subsequently drop all reference to the singlet density (except implicitly in the input to 

F2(x, Q2)). We have explicitly checked that this makes very little quantitative difference to our 

results. 

In order to construct a sensible gluon structure function, we do not merely invert the N­

space solution above. It is more natural to define the gluon structure function to be that 

object which would be observed if we had a coloured current available as our probe. In which 

case there are important contributions which arise, not only from the QCD evolution but also 

from the coefficient function. One can think of such corrections as arising from graphs which 

should not be exponentiated via the renormalisation group and so contain no explicit strong 

ordering of the rung momenta. These graphs are essential for a sensible defintion of the gluon 

density (e.g. as the object which is closely related to the structure function FL(x, Q2)) and 

for consistency with the gluon density which is constructed by integrating the 'unintegrated 

gluon density', :F(x, k2
), obtained by solving the BFKL equation. To see this, we start from 

the BFKL defintion of the gluon density, i.e. 

G(x, Q2) =~a= d~21I dzz 8(1- x/ z)8( Q2- k2):F(z, k2). (7) 

The hard scatter cross section which is to be convoluted with :F(x, k2 ) is thus 

(8) 
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Now, in the formalism of Catani and Hautmann[1], 

(9) 

1.e. 

(10) 

The important factor, RN, is given by 

(11) 

Solution in x-space 

Let us now show how to invert the solution for GN(Q2 ) back into x-space. We must perform 

the integral 

(12) 

where the integral is over a contour to the right of all singlarities, and 

( = ln(a8 (Q~)/as(Q2 )), 72 = 12/(30 and, for consistency with the standard approach, we run 

the coupling at the scale k2 (in the anomalous dimension integral). However, we note that at 

the leading logarithmic accuracy this is an essentially free choice. The coefficients an define the 

series expansion of the gluon anomalous dimension: 

(14) 

We write the factor RN also as a series expansion: 

oo ( 1 )n 
RN = ~Cn N , (15) 
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and we note that RN= 1 + ~((3)(a81N)3 + .... 
We choose the boundary condition, 

jf.;(x, Q~) = .A!e(xo- x), 

which becomes jf.;( Q~) = .A! IN in moment space if we choose xI x0 as the conjugate variable 

to N. This starting distribution is a good approximation to the expected"' (1- x )5 behaviour 

if x 0 "' 0.1, and leads to reliable results for x ~ 0.01. The choice of a fiat starting distribution 

(at small x) is motivated by the known behaviour of total cross sections at high energies, i.e. 

the 'soft' pomeron is known to have intercept close to 1 [7]. It is the small x behaviour one 

would expect in the absence of any perturbative QCD corrections. 

We can now perform theN-plane integral by making the particular choice of contour to be 

the line from r- ioo tor+ ioo plus a circle with centre at the origin and radius r > 4a 6 ( Q~) ln 2 

(to ensure the analyticity of the integrand along the contour [4]). The value of the integral is 

now equal to that over the circle, and putting N = rei8 we obtain in a straightforward manner: 

(16) 

where~= ln(x0 lx). We note that exactly the same method could be used if we were to choose a 

powerlike input, or even the (1- x)5 behaviour. One simply finds the moment space expression 

for the input and expands in powers of N. We also note that for small x the result obtained using 

the saddle-point method to evaluate eq.(12) does not give a good approximation and provides 

misleading results. This failure occurs essentially because, along the contour of steepest decent, 

the integrand does not fall quickly enough for values of N far from the saddle-point. 

Let us now discuss our solution. Firstly, we see explicitly the double log result, 

which arises when only the leading order (in a 8 ) terms are kept. Going beyond this first term, 

the inverse factorials associated with the Bessel functions ensure that the summations in our 

expression converge for all x, despite the fact that the expansions of 1JJ and RN diverge for 
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N < 4a8 ln 2. This effect of convergence in x-space was pointed out using a similar, but slightly 

less direct, argument in [3]. Using the first sum in eq.(16) we can recover the power behaviour 

of the structure function at small enough x. It arises after taking the small argument expansion 

of the Bessel function (which is appropriate for large order Bessel functions) and using the fact 

that Cn+l/cn = 4a8 ln2 for asymptotically large n, i.e. the general term in the sum over i is 

A similar power behaviour is generated by the other terms in eq.(16), I.e. due to the Q2-

evolution, but they are not important for all practical values of x. The same qualitative 

conclusion has been reached in ref.[3], where a sum of Bessel functions was presented as an 

approximate solution for JY(x, Q 2 ). In other words, the dominant corrections to the double log 

result are due to the presence of the RN factor, i.e. the corrections to the evolution are small 

(due to the relatively small size of the coefficients in the expansion of the gluon anomalous 

dimension), only becoming dominant at very large Q2 and/or very small x. Up to logarithms 

in Q2 (which arise due to the running of the coupling in RN), one can interpret RNJJ.,(Q5) as 

the input gluon distribution, i.e. the BFKL corrections essentially 'renormalise' the starting 

gluon density. 

The fraction of G(x, Q 2 ) which arises solely from the double log graphs (i.e. the 10 Bessel 

function) is presented in the contour plot shown in fig.(1). It can be seen that the high energy 

(BFKL) corrections are significant over the HERA range despite the fact that the coefficients c1 

and c2 vanish. We note that the contribution from the BFKL corrections to the evolution (i.e. 

those terms involving the bi coefficients) are almost entirely negligible, in fact they contribute 

less than 4% over the x-Q2 range probed at HERA. In fig.(2), we show the x dependence of 

G(x, Q2
) at different Q2 values and compare to the double log contribution. In all of our plots, 

we choose x0 = 0.1 and takeN= 1.1 and Q~ = 2.0. Nand Q5 are the only parameters for 

the gluon, and are fixed by fitting F2 (x, Q2
) to the HERA data (see the following section for a 

discussion of this procedure). Note that our approach does not permit a flat gluon structure 

function, even though our input density was flat. This is in keeping with the standard BFKL 

result developed by direct solution of the BFKL equation. The scale Q0 is to be understood 

as the scale below which we cannot use the perturbative approach. As such, we are unable to 

make any definite statements regarding the eventual saturation and flattening off of the small 

x structure functions (as Q2 falls below Q~) since this procedure is governed by physics beyond 
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that which is considered here. (However, we do see a hint of the breakdown of our approach, 

as we will discuss in the next section.) Indeed, we shall find that the quality of our fits to 

F2(x, Q2) is largely insensitive to the choice of Q5 once it is above~ 1 GeV2
• Our approach 

should be contrasted to that which attempts to evolve from some, typically quite low, value of 

Q5 with a flat (or valencelike) starting distribution to higher Q2 [8, 9]. 

Deep inelastic structure functions 

In the previous section we concentrated on the gluon structure function, G(x, Q2
). It involves 

no new techniques to extend the formalism to the case of the deep inelastic structure functions, 

F2(x, Q2) and FL(x, Q2). Eq.(10), which defines the gluon structure function, is merely a specific 

form of the more general expression for the dimensionless cross section, F(x, Q2
): 

(17) 

where J.L~ is the factorisation scale (chosen to equal Q2) and CN( Q2 / J.L~) is the coefficient 

function (equal to RN in the case of the gluon structure function). 

Catani and Hautmann have shown that the coefficient function can be factorised into a 

product of the process independent (but factorisation scheme dependent) factor, RN, and a 

process dependent factor, hN(TJJ), where (1] 

(18) 

The hard subprocess cross section, uN(k2 jQ 2), is the lowest order (in a 8 ) cross section for 

scattering off-shell gluons (off the virtual photon in the case of deep inelastic scattering). 

Thus, for the structure function, FL(x, Q2
) 

(19) 

with 

(20) 

and where (e~) is the mean quark charge squared. So, in order to evaluate FL(x, Q2), we 

merely replace the Cn coefficients in eq.(16) by the corresponding coefficients in the expansion 

of hL,N(Tf.J) RN. 
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Similarly, 
2 + 31-3/2 

h2,N(I') = 2(1 -I) hL,N 

determines the Q2-dependence of F2(x, Q2), i.e. 

- (e~}(c;~k(as(Q2 )1Kf + 2nt11J)f/.;(q2
) 

- (e~) h2,N(I'Kf) RN f/.;(Q 2
), 

to formally leading order. 

(21) 

(22) 

In fig.(3), using the same choice of parameters (no more are needed) as in the discus­

sion of G(x, Q2) previously, we present our predictions for the longitudinal structure function, 

FL(x, Q2
). As well as the full solution, we show the double log contribution. The largeness of 

the corrections to the double log calculation (in comparison to case of G(x, Q2)), can be traced 

back to the fact that the second and third coefficients in the expansion of hL,NRN are no longer 

zero. Also shown in fig.(3) is the result of re-fitting the HERA data on F2(x, Q2), while keeping 

only the double log Bessel function. In order unambiguously to establish the existence of the 

high energy corrections, it is ultimately necessary to expose deviations from the double log 

approach (or more precisely approaches which do not sum the infinity of high order corrections 

0( a 8 / N)) and so this is the reason for our comparison. As seen, the prediction from the double 

log approach is mostly larger than that for the full expression, but flatter with x. This largeness 

comes about mainly because the starting scale is much lower, and hence there has been more 

time for evolution to take place. 

Let us now turn to the structure function, F2(x, Q2 ) and its comparison with the HERA 

data [10). We start by considering the expression of eq.(22). In order to construct F2(x, Q2
), 

we must integrate over Q2 and invoke an input distribution, F2(x, Q6). We choose this to be 

of the form A+ Bx->.. We see no reason to believe that the input form of F2(x, Q2) should 

be purely flat since, as demonstrated, the gluon structure function always has some powerlike 

behaviour due to the coefficient function. Indeed, we are not able to obtain a very good fit 

with a completely flat input. We could simply choose Bx->., and are indeed able to obtain 

a comparable fit with such an input. However, our aim is not simply to obtain the best fit 

with the least number of parameters, but to determine the behaviour of the structure function 

as accurately as possible, and we believe the chosen input is the best way to do this. This 

introduces three extra parameters. The values of our 5 parameters ( Q0 , the normalisation of 

the input gluon density and the three parameters in F2(x, Q6)) are then obtained by fitting to 
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the HERA data. Throughout, we work with 4 quark flavours and AQcD = 115 Me V. Agreement 

with the data is very good, i.e. x2 = 48 for the 92 data points which have x < 0.01. 

Although we obtain very good agreement with the available HERA data, we expect our 

results to be subject to important corrections. Let us now explain why. In the leading log 

approximation, the structure function F2(x, Q2
) can be written in the form 

2nf 

F2,N(Q2) = (e~)C!~(as(Q2 ))JK,(Q2 ) + (C~~ + C~~k(as(Q2 )) :~::::e~ Jjy(Q~) 
i=l 

+ 2 ( 2)C(o) ( (Q2)) {Q2 dq2 qgfg ( 2) 
nf eq q,N as jQ~ q2 "'fN N q · (23) 

The superscript on the coefficient functions specifies the order (in a 8 ) of the contribution, i.e. 

Ci,N =En cf,'JJ. At the Born level, C!~k = 0 and C!~k = 1. 

Taking the derivative of this expression leads to eq.(22), but only after neglecting the higher 

order terms which are induced by differentating the coefficient functions. Such terms are for­

mally sub-leading since 
8 2 f3o 8 

---=-a--
8ln Q2 8 411" 8a8 • 

However, they are not sub-leading once eq.(22) is integrated to form the structure function, 

F2(x, Q2
). 

To see how important these corrections are expected to be, we expand the coefficient function 

(1) _ ~ _ (iis)n 
Cg,N - f;:o Pn as N (24) 

The ratio of the term"' ii8 (a 8 1N)m in 8C!~kllnQ2 to the corresponding term in the series 

expansion of c;~ 'YJ! is thus 

(25) 

Since an+l I an = 4ln 2 for large n and, assuming a similar relation for the Pn coefficients, it 

follows that this ratio becomes 
f3oas 1 

"'----
411" A 

where an ::::::: A (4ln2)n-l. Since A « 1 we cannot ignore such contributions. We should 

emphasise that Pn+l I Pn cannot exceed 4ln 2 (since we know the dominant singularity arises at 

N = 4asln 2) and that assuming any Pn+d Pn < 4ln 2 leads to an even stronger enhancement 

of the derivative terms (e.g. by a factor of m for Pn+liPn « 4ln2). All the evidence from the 
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calculation of the series expansion of the coefficient function is that Pn+l / Pn is indeed "' 4ln 2 

for large n. 

Although these corrections are formally sub-leading, we believe it is unlikely that they 

will cancel with higher order graphs and as such it is safe (and indeed more appropriate) to 

include them in this order of the calculation. Since they lead to a negative contribution to 

8F2 (x, Q2 )/81n Q2
, we therefore expect a reduction in 8F2 (x, Q2)/8ln Q2 as x falls at fixed Q2 

(or Q2 falls at fixed and small x). 

We have computed the series expansions of the gluon coefficient function, c;~1, and the 

anomalous dimension, 1J.!, in the MS scheme to 18th order (we will shortly have more to 

say on the choice of scheme). As mentioned, we neglect the O(a 8 ) contribution to the quark 

coefficient function (since the input quark density is small in comparison to the evolved gluon 

density and the quark coefficient function is smaller than that for the gluon). As a result, we 

are able to compute F2(x, Q2
) including those corrections which were neglected when eq.(22) 

was integrated over Q2 . The solid line in fig.(4) shows the result of a new fit to the HERA 

data and improvement in the x2 of the fit is found, i.e. x2 = 45 for the 92 data points. A 

considerable improvement in the insensitivity to the value of Q~ is also found. For our best 

fit Q~ = 2.0 and N = 1.1, and these are the parameters used to determine our predictions for 

G(x, Q2 ) and FL(x, Q2 ). We also find the input to F2(x, Q2 ) to be 0.15 + 0.035x-o.4. 

From our results we conclude that our choice of a 8-function form of the gluon input is 

appropriate. Also, it is significant that the x2 only significantly worsens once Q~ ~ 1 Ge V2 • 

This is consistent with idea that the scale at which we define our input should be essentially 

arbitrary, providing it is large enough for the perturbative expansion to apply, and not too large 

to fill the available phase space. The dotted line in the figure shows the previously discussed 

best fit for F2(x, Q2), i.e. ignoring the derivatives of the coefficient function. The dashed line 

shows the best fit taking only the leading term in the Bessel function expansion, i.e. the double 

log result, and flat inputs for the gluon and for F2(x, Q2). This also has a very good x2 of 44 for 

the 92 points, but high sensitivity to Q~. It is clear from the plots that the differences between 

the full leading log calculation of F2(x, Q2 ) and the dotted (and dashed) line are consistent 

with our expectations. In particular, from the lowest Q2 and lowest x bins of the Hl data, we 

tentatively suggest that our predicition of a flatter (in Q2 ) F2(x, Q2) is quite possibly supported 

by the data. 

As a slight word of caution we must note that for low enough x, 8F2(x,Q 2)/8lnQ2 even-
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tually becomes negative, and F2(x, Q2
) rises for falling Q2

• It is this region of negative ln Q2 

derivative where our calculation starts to become untrustworthy. However, the effect only sets 

in for x"' 10-4 at Q2 = Q5, and the value of x at which 8F2(x, Q2)/8ln Q 2 = 0 falls very rapidly 

as Q2 increases. Similarly, we feel that the predictions for the gluon and FL(x, Q2
) should be 

viewed with a little caution at extremely low x and small Q2 • Nevertheless, it is reassuring 

that the region of breakdown is where we would expect physics beyond that considered in our 

approach to become important. 

It is also important to comment on our choice of scheme. We could just as well have 

computed F2(x, Q2) in the DIS scheme (and obtained precisely the same results as in MS). This 

is true providing we take care to include the sub-leading corrections to 11J which contribute 

in the leading order to F2(x, Q2). These terms are those neglected in eq.(5.27) of Catani and 

Hautmann when transforming to DIS scheme. 

It has recently been suggested that higher order corrections in the evolution may well be 

very important, i.e. due to the exponentiation of the 11J anomalous dimension. We suggest 

that this may not be the case. The conclusions of Ellis et al [4) are based upon the fact that, in 

the DIS scheme, the coefficients of the a 8 0( a 8 / N) contributions to 11J are large (in comparison 

to the corresponding coefficients in the leading order expansion of 'YJ.i). At the leading order, 

11$ occurs only in the 'coefficient function' of 8F2,N(Q2 )/8lnQ2
• Indeed in the DIS scheme it 

completely determines the 'coefficient function', i.e. 

(26) 

(where we should, of course, also include the terms from the derivative of the MS coefficient 

function). Now, if we interpret the factor RN as before, i.e. not to be associated with the 

renormalisation group exponentiation, then we anticipate two things. Firstly, in the MS scheme, 

the coefficients of /qg should be much smaller than the corresponding ones in the DIS scheme. 

Indeed we find this to be so: the corresponding terms differing by an order of magnitude at 

large orders. Secondly, in a complete next to leading order calculation using the DIS scheme 

there should be large cancellations which reduce the impact of the large 11J as calculated in 

the DIS scheme. Since this higher order calculation relies upon higher order corrections to 1J.! 
as far as the evolution is concerned, and on the coefficients of the a~O( a8 / N) expansion of 11J 

for the 'coefficient function', neither of which has yet been evaluated, we believe it is premature 

to draw such strong conclusions regarding the role of sub-leading corrections in the evolution 

of the parton densities. 
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Conclusions 

We have presented an analytic approach to the evaluation of small x cross sections and studied 

the behaviour of the gluon structure function, defined in a way which is consistent with the 

previous studies based upon the direct solution to the BFKL equation. In particular the 

solution in x-space is obtained exactly, and explicitly reveals the extreme limits of the double 

leading log result and the power behaviour expected from the BFKL approach. In addition, we 

examined the deep inelastic structure functions F2(x, Q2) and FL(x, Q2) and demonstrated that 

the high energy corrections (to the double log calculation) are significant in the HERA region. 

Consistency with the data on F2(x, Q2
) is found. The structure function FL(x, Q2 ) and the Q2 

dependence of F2(x, Q2 ) should be able to provide sensitive tests of the small x dynamics; in 

particular deviations from the traditional approach (expansion in a 8 ) may well be observable. 

We have not discussed the process of heavy quark production (in deep inelastic scattering or 

in photoproduction), although this process also ought to shed important light on the essential 

dynamics [11]. Also, the recent measurement by the ZEUS collaboration of the dijet cross 

section in photoproduction [12] could be confronted with theory using the techniques presented 

here [13]. Finally, we wish to make available the expansion (in a 8 /N) ofthe coefficient function, 

RN, and the MS scheme expansions of the quark anomalous dimension 1J! and the gluon 

coefficient function c;~1. These are displayed in the following table. 
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Table 

Values of the first 18 coefficients in series expansions: 

qg(MS) _ aB!~ qg (aB)n 
'YN - 2 3 L.J an N 1 

7r n=O 

c(l)(MS) _ as ! ~ - (aB)n 
g,N - 2 n/3 L.JPn N 1 

7r n=O 

R(MS) _ ~- (as)n 
N -L.JCn N ' 

n=O 

i.e. Pn = EPn (see eqn.(24)) and Cn&sn = Cn (see eqn.(15)). 

n aqg n Pn Cn 

0 1.00 1.00 1.00 

1 1.67 1.49 0.00 

2 1.56 9.71 0.00 

3 3.42 1.64x 101 3.21 

4 5.51 3.91x101 -0.811 

5 7.88 1.29x 102 4.56 

6 2.57x101 2.41 X 102 3.27x 101 

7 4.42x101 6.53x102 -2.95 

8 8.77x101 1.93 X 103 1.08x 102 

9 2.83x102 4.01x103 4.00x 102 

10 5.11x102 1.14x 104 1.33x 102 

11 1.24x103 3.17x104 2.10x 103 

12 3.68x103 7.18x104 5.51x103 

13 7.17x103 2.07x105 5.30x103 

14 1.91 X 104 5.52xl05 3.85x104 

15 5.29x104 1.33x 106 8.49x104 

16 1.12x 105 3.82x106 1.40x 105 

17 3.11x105 l.OOx 107 6.95x105 
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Figure Captions 

[1] Contour plot exhibiting the contribution to the full gluon structure function made by the 

double leading log term. 

[2] Gluon structure function G(x, Q2) as a function of x plotted for a range of Q2 values. 

Contribution made by double leading log approximation shown by dot-dashed line. 

[3] Prediction of longitudinal structure function FL(x, Q2 ) as a function of x plotted for a 

variety of Q2 values. Contribution made by double leading log term shown by dot-dashed 

line. Also shown by dashed line is the prediction made using the best fit for F2(x, Q2) 

while keeping only the double log term. 

[4] Comparison of theoretical predictions with the small x (i.e. x < 0.005) data from the 

(a) ZEUS collaboration (renormalised up 2%) and the (b) Hl collaboration (renormalised 

down 4%). The dotted line corresponds to the best fit for this expression minus the 

formally subleading terms coming from the derivative of the coefficient function and the 

dashed line to the best fit for the double leading log approximation. 
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Zeus (x1.02) comparison at small X 
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