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THE NULL-SPACE METHOD AND ITS RELATIONSHIP WITH
MATRIX FACTORIZATIONS FOR SPARSE SADDLE POINT

SYSTEMS

TYRONE REES∗, JENNIFER SCOTT∗

Abstract. The null-space method for solving saddle point systems of equations has long been
used to transform an indefinite system into a symmetric positive definite one of smaller dimension.
A number of independent works in the literature have identified the equivalence of the null-space
method and matrix factorizations. In this report, we review these findings, highlight links between
them, and bring them into a unified framework. We also investigate the suitability of using null-space
based factorizations to derive sparse direct methods, and present numerical results for both practical
and academic problems. Finally, we explore some properties of an incomplete version of one of these
factorizations as a preconditioner and provide eigenvalue bounds.
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1. Introduction. A saddle point system is an indefinite linear system of
equations of the form [

A BT

B 0

]
︸ ︷︷ ︸

A

[
x
y

]
=

[
f
g

]
, (1.1)

where we will assume that B ∈ Rm×n (n > m) has full rank and A ∈ Rn×n is
symmetric positive definite on the null space of B. We are particularly interested in
the case where A and B are large, sparse matrices and in much of our discussion we
will focus on A symmetric and positive semi-definite.

One approach for solving (1.1) is the null-space method [3, Section 6]. Suppose
we are given a matrix Z ∈ Rn×(n−m) whose columns form a basis for the null-space
of B, i.e., BZ = 0. Suppose additionally that we have a particular solution for the
second equation, i.e., a vector x̂ such that

Bx̂ = g.

Then solving (1.1) is equivalent to solving[
A BT

B 0

] [
x̄
y

]
=

[
f −Ax̂

0

]
,

where x = x̂ + x̄. The second equation in this system is equivalent to finding a vector
z ∈ R(n−m) such that x̄ = Zz. Substituting this into the first equation we have

AZz +BTy = f −Ax̂

⇐⇒ ZTAZz = ZT (f −Ax̂) (1.2)

Therefore, by solving the reduced system (1.2), we can straight-forwardly recover x =
x̂ +Zz. We can then obtain y by solving the overdetermined system Ax +BTy = f .
This is the null-space method, which we summarise as Algorithm 1.

Null-space methods have been used in the fields of optimization (where they are
known as reduced Hessian methods), structural mechanics (where they are known
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Algorithm 1 Null-space method for solving (1.1)

Choose Z so that its columns form a basis for the null space of B.
Find x̂ such that Bx̂ = g.
Solve ZTAZz = ZT (g −Ax̂)
Set x = Zz + x̂
Find y such that BTy = f −Ax

as the ‘force’ method), fluid mechanics (where they are known as the ‘dual variable’
method) and electrical engineering (where they are known as ‘loop analysis’). For
a detailed overview and references, see Benzi, Golub and Liesen [3, Chapter 6].
Other methods for solving (1.1) include full space methods [7, 16, 32, 46] and
reduced space Schur-complement based methods [3, Chapter 5]. However, null-
space methods remain popular, particularly in the large-scale optimization literature
[4, 5, 6, 31, 33, 40]. Such methods have been used in cases where the problem is
perceived to be too large for a sparse indefinite solver to be effective, as the dimension
of the problem to be factorized is reduced from (n+m)×(n+m) to (n−m)×(n−m).
Thus null-space methods are particularly attractive when n − m is small. If A is
symmetric and positive semi-definite, then ZTAZ is symmetric positive definite and
efficient solvers can be used to solve the reduced system (1.2). Moreover, an important
feature of the saddle point systems that arise in solving a quadratic program using the
active-set method is that the successive iterations only differ in that B has one row
added or deleted. The null-space method is able to use this feature advantageously
to reduce the work involved by updating the factors.

Another way to solve large-scale linear systems is to use an iterative method, with
Krylov subspace methods being particularly popular. To be effective such methods
generally need to be applied in conjunction with an appropriate preconditioner. The
class of projected Krylov methods [23, 24], i.e. algorithms that solve (1.1) by implicitly
projecting onto the null space, are a modern version of the null-space method; these
are mathematically equivalent to applying a Krylov subspace method preconditioned
with a constraint preconditioner [32] to equation (1.2).

There has been a sizable body of work—some historical, but much recent—
that has revisited the null-space method, directly or indirectly, and put it into the
framework of a matrix factorization, e.g., [2, 12, 14, 37, 39, 44, 48, 34, 20, 22, 32, ?].
The main contribution of this report is to bring these factorizations together in a
unified framework, highlight the relationships between them (some of which do not
appear to be well known), and to compare their merits. The rest of this report is
laid out as follows. In Section 2, we discuss the matrix factorizations that result from
different choices of the null space basis. In Section 3, we explore the suitability of these
factorizations as an alternative to a standard sparse direct indefinite LDLT solver.
We test a number of different forms of the factorization on a range of problems, both
academic and practical, and report numerical results to illustrate the stability and
sparsity of the computed factors. In Section 4, we present two novel preconditioners—
together with an eigenanalysis—which are developed by considering the null-space
method as a factorization. We conclude with some final remarks in Section 5.

2. Null-space methods as a factorization. Consider again the system (1.1).
The primal variable x can be expressed in the form

x = ZxN + Y xR, (2.1)
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where Y ∈ Rn×m is chosen so that
[
Z Y

]
spans Rn. Thus

[
A BT

B 0

] [
Y Z 0
0 0 I

]xR

xN

y

 =

[
f
g

]
and hence Y T 0

ZT 0
0 I

[A BT

B 0

] [
Y Z 0
0 0 I

]xR

xN

y

 =

Y T 0
ZT 0
0 I

[f
g

]
,

and so Y TAY Y TAZ Y TBT

ZTAY ZTAZ 0
BY 0 0

xR

xN

y

 =

Y T 0
ZT 0
0 I

[f
g

]
. (2.2)

It is clear that this is a matrix representation of Algorithm 1. First, x̂ = Y xR is
found by solving the linear system BY xR = g. Then, the component xN of x in the
null space of B is found by solving the linear system

ZTAZxN = ZT (f −AY xR) = ZT (f −Ax̂).

Finally, y is recovered by solving

Y TBTy = Y T f − Y TAY xR − Y TAZxN = Y T (f −Ax).

Note that the matrix

Y T 0
ZT 0
0 I

 is square and non-singular, and so using (2.1)

and (2.2), we can rewrite (1.1) asY T 0
ZT 0
0 I

−1 Y TAY Y TAZ Y TBT

ZTAY ZTAZ 0
BY 0 0

[Y Z 0
0 0 I

]−1 [
x
y

]
=

[
f
g

]
.

Thus the factorization

A =

[Y T

ZT

]−1
0
0

0 I

Y TAY Y TAZ Y TBT

ZTAY ZTAZ 0
BY 0 0

[[Y Z
]−1

0
0 0 I

]
(2.3)

is an LTLT factorization, with L lower triangular and T reverse block triangular, that
is equivalent to the null-space method. Since there are infinitely many potential bases
Y , Z, this factorization is non-unique and the main difficulty of the null-space method
is choosing these bases. In the following subsections, we discuss some special cases
that have been proposed in the literature.

2.1. Schilders and related factorizations. One way of fixing Y in (2.1) is
to extend BT to an n × n non-singular matrix

[
BT V T

]
. If we choose Y and Z

satisfying [
Y T

ZT

]−1
=
[
BT V T

]
,
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then it is easy to see that BZ = 0, and BY = I. The factorization (2.3) reduces to

A =

[
BT V T 0
0 0 I

]Y TAY Y TAZ I
ZTAY ZTAZ 0
I 0 0

B 0
V 0
0 I

 .
This factorization was given by Fletcher and Johnson [18, Equation (3.6)], who
described it as ‘readily observed (but not well known)’.

2.1.1. A first null-space factorization. Suppose we have a non-singular
subset of m columns of B. We may then write, without loss of generality, B =[
B1 B2

]
, where B1 ∈ Rm×m is non-singular. If, as suggested by Fletcher and

Johnson, we make the choice of V =
[
0 I

]
, then

[
BT V T

]−1
=

[
BT

1 0
BT

2 I

]−1
=

[
B−T1 0

−BT
2 B
−T
1 I

](
=

[
Y T

ZT

])
.

This gives us the bases

Zf =

[
−B−11 B2

I

]
, Yf =

[
B−11

0

]
. (2.4)

This choice for Z is often called the fundamental basis [3, Section 6], and we
consequently label it Zf .

Substituting (2.4) into (2.3) gives the factorization

A =

BT
1 0 0

BT
2 I 0

0 0 I

B−T1 A11B
−1
1 B−T1 XT I

XB−11 N 0
I 0 0

B1 B2 0
0 I 0
0 0 I

 , (2.5)

where

N = ZT
f AZf , (2.6)

denotes the (n−m)× (n−m) null-space matrix and

A =

[
A11 A12

A21 A22

]
and X = ZT

f

[
A11

A12

]
,

with A11 ∈ Rm×m. It is easy to see that (2.5) is equivalent to

A =

 I 0 0

BT
2 B
−T
1 I 0

0 0 I


︸ ︷︷ ︸

L1

A11 XT BT
1

X N 0
B1 0 0


︸ ︷︷ ︸

T1

I B−11 B2 0
0 I 0
0 0 I


︸ ︷︷ ︸

LT
1

. (2.7)

Indeed, this LTLT factorization appeared in the survey paper by Benzi, Golub and
Liesen [3, Equation (10.35)], where it was attributed to a personal communication
from Michael Saunders and was described as being ‘related to the null-space method’.
We will refer to this decomposition as Factorization 1. The factor L1 is well-
conditioned provided B1 is chosen appropriately; this is discussed in Section 3.
Factorization 1 is then a stable factorization of the A and the diagonal blocks of
T1 (that is, B1, N and BT

1 ) accurately reflect the condition of the full system.
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In practice, once we have solved

B1B = B2, (2.8)

for B and performed a factorization of the null-space matrix N , the only additional
calculations required to generate Factorization 1 are matrix-matrix products with B,
plus some matrix additions. This is summarised in Table 2.1. Note that, in some
applications, e.g., where N is large and dense, it may not be possible to explicitly
compute N and form its factorization; in this case it is necessary to use an iterative
solver.

solve B1B = B2 for B

mat-mat

{
1 @ [( (n−m)×m )× (m×m)]

2 @ [( (n−m)×m )× ( (n−m)×m )]

mat-add

{
1 @ (n−m)×m
2 @ (n−m)× (n−m)

An (n−m)× (n−m) (possibly sparse) factorization of N

Table 2.1: Cost of forming Factorization 1 assuming B1, B2 chosen. mat-mat and mat-
add denote a sparse matrix-matrix product and sparse matrix addition, respectively.

Table 2.2 gives the costs of applying Factorization 1 to solve the system (1.1).
We give two variants: implicit and explicit. In the explicit version, we store the
off-diagonal matrices (X, B) in (2.7) — which are formed in the construction of
N — and apply them via matrix-vector products to solve (1.1). In the implicit
version, we discard the off-diagonal matrices and re-compute them as needed. This is
computationally more expensive, but saves storing the potentially dense matrices X
and B of size m × (n −m). It is clear that the implicit version is exactly equivalent
to the null-space method as presented in Algorithm 1.

The costs in Tables 2.1 and 2.2 are upper bounds, and they may be reduced in
certain circumstances. For example, as we discuss in Section 3 below, it is usual to
find B1, B2 by forming an LU factorization of BT

BT = (PLPT )(PUQ) =

(
P

[
La 0
Lb I

]
PT

)(
P

[
Ua

0

]
Q

)
,

where La is lower triangular, Ua is upper triangular, and P and Q are permutation
matrices. Then B−11 B2 = PL−Ta LT

b P
T , and so this can be calculated without

reference to Ua, although Lb is needed and is likely to be less sparse than B2.

Furthermore, in this case Z = L−TPT

[
I
0

]
, so ZTAZ can also be formed efficiently.

See, e.g., Fletcher and Johnson [18] for more details.

2.1.2. A factorization due to Lungten, Schilders and Maubach. Assume
now that A is symmetric and positive semi-definite so that N is symmetric positive
definite and a Cholesky factorization of the form N = L2L

T
2 exists, where L2 is lower

triangular. Then we can decompose the reverse triangular T1 matrix in (2.7) as

T1 =

A11 XT BT
1

X N 0
B1 0 0

 =

I 0 LA

0 L2 X
0 0 B1

−DA 0 I
0 I 0
I 0 0

 I 0 0
0 LT

2 0
LT
A XT BT

1

 ,
5



Explicit

solve

{
B1B = B2 for B 2 times

2 @ (n−m)× (n−m) (triangular solves using factors of N)

mat-vec


2 @ (n−m)×m
1 @m×m
2 @m× (n−m)

vec-add

{
4 @ (n−m)

1 @m

Implicit

As explicit† plus:
solve B1B = B2 for B 4 times

mat-vec


1 @ (n−m)×m
1 @m×m
1 @m× (n−m)

vec-add: 1× (n−m)

Table 2.2: Cost of applying Factorization 1. Here mat-vec denotes the product of a
sparse matrix with a vector, and vec-add denotes the addition of two vectors. †The
numbers of solves and matrix-vector products will be the same, but the matrices in
the matrix-vector products will generally be sparser in the implicit case.

where

A11 = LA −DA + LT
A, (2.9)

with LA a strictly lower triangular matrix and DA a diagonal matrix. Combining
the outer matrices here with the outer matrices in (2.7) yields the alternative, but
equivalent, LTLT factorization

A =

 I 0 LA

BT
2 B
−T
1 L2 K

0 0 B1


︸ ︷︷ ︸

L2

−DA 0 I
0 I 0
I 0 0


︸ ︷︷ ︸

T2

 I B−11 B2 0
0 LT

2 0
LT
A KT BT

1


︸ ︷︷ ︸

L2

, (2.10)

where K = X + BT
2 B
−T
1 LA. This factorization was recently proposed both for use

as a direct method and as the basis of a preconditioner for an iterative method by
Lungten, Schilders and Maubach [34]. We refer to it as Factorization 2, or the LSM
factorization.

Note that forming (2.10) is more expensive than (2.7), as it requires one more
matrix-matrix multiply of BT (recall (2.8)) with an m × m matrix and one more
(n − m) × m matrix addition, both coming from the formation of K. In terms of
applying (2.10) explicitly, one matrix-vector multiply with A11 is replaced by matrix-
vector multiplies with its strictly upper, lower and diagonal parts, and two extra m×m
matrix additions; there is a similar increase in cost when applying the factorization
implicitly. This suggests that, in terms of the computational cost, Factorization 1 is
preferable; we perform tests with both versions in Section 3.

Lungten et al. [34] focus on problems for which the non-singular matrix B1 is
also upper triangular (or it is easy to transform the problem into this form). In this
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case, if the factorization (2.10) is formed via an adapted Cholesky algorithm, they
show that it takes

1

3
(n3m3) +

1

2
(n2 − 7m2)− 1

6
(5n+m) + nm(n−m+ 4)

flops to factorize the saddle point matrix A.

2.1.3. The Schilders factorization. We next consider the relationship of these
factorizations to the so-called Schilders factorization. Dollar and Wathen [14] were
interested in developing constraint preconditioners for symmetric systems of the
form (1.1). Such preconditioners represent the blocks B exactly, but approximate
the (1,1) block A. Dollar and Wathen choose symmetric matrices E1 ∈ Rm×m,
E2 ∈ R(n−m)×(n−m) (E2 non-singular), together with matrices F1 ∈ Rm×m, F2 ∈
R(n−m)×(n−m) (F2 non-singular), and M ∈ R(n−m)×m. To obtain an inexpensive
preconditioner, E2, F2 are chosen so that they are easy to invert. The Schilders
factorization is then given byA11 AT

21 BT
1

A21 A22 BT
2

B1 B2 0

 =

BT
1 0 F1

BT
2 F2 M

0 0 I

E1 0 I
0 E2 0
I 0 0

B1 B2 0
0 FT

2 0
FT
1 MT I

 , (2.11)

where

A11 = F1B1 +BT
1 F

T
1 +BT

1 E1B1

A21 = BT
2 F

T
1 +MB1 +BT

2 E1B2

A22 = F2E2F
T
2 +MB2 +BT

2 M
T +BT

2 E1B2.

Note that the (1,1) block A is implicitly defined by the choices of Ei, Fi. Nevertheless,
we can use this construction to give a factorization for a given A.

One possible choice for E1, F1 is

E1 = −B−T1 DAB
−1
1 , F1 = LAB

−1
1 ,

for the DA, LA in (2.9). The matrices M , E2 and F2 are then given by the relations

M = (A21 −BT
2 F

T
1 −BT

2 E1B2)B−11 ,

F2E2F
T
2 = MB2 +BT

2 M
T +BT

2 E1B2 −A22.

With these choices, transferring a factor of the block diagonal matrix with diagonal
blocks BT

1 , I and B−11 from the left outer matrix to the central matrix in (2.11) again
gives Factorization 2.

The original Schilders factorization [48], of which the formulation (2.11) is a
generalization, was given only for matrices for which B1 is upper triangular, and
used the choice

E1 = diag(B−T1 A11B
−1
1 ), F1 = BT

1 lower(B−T1 A11B
−1
1 ),

where diag() and lower() denote the diagonal and strictly lower triangular parts
of a matrix, respectively. Again, it is straightforward to show the equivalence of
this factorization to (2.10). Generating this factorization is clearly significantly more
work than (2.7), not least because we are unable to re-use the matrix B in forming
the sub-blocks.

There are, of course, other ways of rearranging the decomposition (2.7). Dollar
et al. [13] give a list of forms the factorization can take. As already observed, their
focus was on implicit factorizations of constraint preconditioners and only five of their
factorizations are applicable in the case of an arbitrary symmetric (1,1) block.
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2.2. Relationship to the Schur complement factorization. A commonly
used block LDLT factorization for generalized saddle point systems (which have a
negative definite (2,2) block) where A is nonsingular is:[

A BT

B −C

]
=

[
I 0

BA−1 I

] [
A 0
0 −(C +BA−1BT )

] [
I A−1BT

0 I

]
, (2.12)

see, e.g., [3, Equation (3.9)]. Approximating the terms of this factorization has proved
an effective strategy for developing preconditioners for saddle point systems. It can
also be used to develop another factorization that is equivalent to the null-space
method. First, note that

A =

I 0 0
0 0 I
0 I 0

A11 BT
1 A12

B1 0 B2

A21 BT
2 A22

I 0 0
0 0 I
0 I 0

 ,
where we are again assuming, without loss of generality, that B1 is a non-singular
m×m sub-block of B. Applying (2.12) with C = A22, we obtain

A =

I 0 0
0 0 I
0 I 0

 I 0 0
0 I 0

BT
2 B
−T
1 A21B

−1
1 −BT

2 B
−T
1 A11B

−1
1 I


A11 BT

1 0
B1 0 0
0 0 S

I 0 B−11 B2

0 I B−T1 A21 −B−T1 A11B
−1
1 B2

0 0 I

I 0 0
0 0 I
0 I 0


=

 I 0 0

BT
2 B
−T
1 XB−11 I

0 I 0

A11 BT
1 0

B1 0 0
0 0 S

I B−11 B2 0

0 B−T1 XT I
0 I 0

 .
Here S denotes the Schur complement, which satisfies

S = A22 −
[
A21 BT

2

] [A11 BT
1

B1 0

]−1 [
A12

B2

]
= A22 −

[
A21 BT

2

] [ 0 B−11

B−T1 −B−T1 A11B
−1
1

] [
A12

B2

]
= A22 −BT

2 B
−T
1 A21 −A12B

−1
1 B2 +BT

2 B
−T
1 A11B

−1
1 B2

= ZT
f AZf = N.

It follows that the null-space matrix (2.6) is the Schur complement for an alternative
blocking of the matrix, and we have the factorization

A =

 I 0 0

BT
2 B
−T
1 XB−11 I

0 I 0

A11 BT
1 0

B1 0 0
0 0 N

I B−11 B2 0

0 B−T1 XT I
0 I 0

 . (2.13)

Again, this can be derived from equation (2.7) by simply noting that the reverse
triangular matrix T1 is equal to the product

T =

I 0 0
0 XB−11 I
0 I 0

A11 BT
1 0

B1 0 0
0 0 N

I 0 0

0 B−T1 XT I
0 I 0

 .
8



This factorization is therefore not ‘new’ — and it is significantly more expensive
to form than (2.7) — but it highlights the connection between Schur complement
methods and null-space factorizations. In particular, given the success in finding
approximations to the Schur complement using techniques from functional analysis
(see, e.g., Mardel and Winther [35]) it is hoped that viewing the null-space matrix this
way could yield alternative preconditioners for certain classes of saddle point systems;
this is developed further in Section 4.

2.3. Connection with Cholesky decomposition. Schilders developed his
original factorization and the subsequent variant (2.10), by considering what he terms
a micro-factorization. In this formulation, the matrix (1.1) is reordered by pairing
every entry on the diagonal of the (1,1) block A with a corresponding non-zero entry
in the constraint block B, so that, after permutations, the entries on the diagonal form
micro saddle point systems. This is known as a tiling in the optimization community.
Below is an illustrative example of this ordering for n = 3, m = 2:

PT
1 AP1 = Ã =



a11 b11 a12 b21 a13 b31 a14 a15
b11 0 b12 0 b13 0 b14 b15
a21 b12 a22 b22 a23 b32 a24 a25
b21 0 b22 0 b23 0 b24 b25
a31 b13 a32 b23 a33 b33 a34 a35
b31 0 b32 0 b33 0 b34 b35
a41 b14 a42 b24 a43 b34 a44 a54
a51 b15 a52 b25 a53 b35 a45 a55


Note that there is no requirement for aij to be combined with bij and bji; instead,
a suitable pairing that preserves sparsity and is numerically stable should be chosen
— see Section 3 for further discussion. This is an example of a constrained ordering
[8, 49, 50].

Since the entries on the (block-)diagonal are now mini saddle point systems,
that are chosen to be non-singular, a modified sparse Cholesky code can be used to
solve this system, and it is guaranteed (at least in exact arithmetic) that this will

not break down [48, Section 3]. By this process, a factorization Ã = LDLT can be
computed, where D has 1×1 and 2×2 blocks on the diagonal in the appropriate places.
Furthermore, uniqueness results in, e.g., [39], show that the factors generated by the
Cholesky process will be equivalent to those generated by the (macro) factorizations
described earlier in this section.

In addition to the work by Schilders et al. [39, 48, 34], this approach has
been considered by Forsgren and Murray [19] (whose focus was on inertia control),
Gould [22] and de Niet and Wubs [12]; each of these works, to varying degrees, made
the connection between the micro-factorization and the null-space method.

2.4. The antitriangular factorization. An alternative matrix factorization
can be obtained by assuming we have a QR factorization

BT =
[
Q1 Q2

] [R
0

]
, (2.14)

where Q =
[
Q1 Q2

]
is n× n orthogonal and R is m×m upper triangular and non-

singular. Then Q1 spans the range of BT and Q2 spans the null space of B. We can
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therefore substitute Y = Q1 and Z = Q2 into the factorization (2.3) to obtain

A =

[
Q1 Q2 0
0 0 I

]
︸ ︷︷ ︸

L3

QT
1 AQ1 QT

1 AQ2 R
QT

2 AQ1 QT
2 AQ2 0

RT 0 0


︸ ︷︷ ︸

T3

QT
1 0

QT
2 0

0 I


︸ ︷︷ ︸

L3

. (2.15)

We refer to this as Factorization 3, or the AT (for antitriangular) factorization.
The reverse triangular matrix T3 in (2.15) appeared in the proof of Theorem 2.1 in

Keller, Gould and Wathen [32], which established eigenvalue bounds for systems (1.1)
preconditioned with a constraint preconditioner, although the link to a factorization of
A does not appear to have been made there. Very recently, Pestana and Wathen [44]
derived Factorization 3 in the case A is symmetric and B is of full rank, and showed
that it is (up to a permutation) the representation of the antitriangular factorization
of Mastronardi and van Dooren [37] applied to a saddle point system. They also gave
a flop-count for forming the factorization in the dense case. The work is dominated
by performing the QR factorization (2.14), with additional work being two n × n
matrix-matrix products and a subsequent factorization of QT

2 AQ2.
It is clear from the above formulation that — provided a rank-revealing QR is

applied — Factorization 3 is well defined for a B with linearly dependent rows, and
also for non-symmetric A.

An advantage of having an orthogonal null basis is that the reduced system (2.2)
is guaranteed to be well conditioned if A is. However, even for sparse problems,
Q1 and Q2 may be rather dense. The explicit version of the factorization requires
storing Q1, Q2, Q

T
1 AQ2 and the lower triangular part of QT

1 AQ1 in addition to keeping
the factors of QT

2 AQ2. For large systems this incurs prohibitive storage costs; see
Section 3. Many sparse QR routines — e.g., SuiteSparseQR [11] – allow the user to
compute the action of Qi with a vector using the stored Householder reflectors, and
using this product form of the factorization with this facility is the preferred option
here.

Pestana and Wathen [44] give a complexity analysis of the factorization (2.15) in
the dense case, and show that the number of flops required is

8mn2 − 2m2 − 2

3
m3.

An alternative way of obtaining factorization (2.15), which again focused on the dense
case, is given by Mastronardi and van Dooren [38], and the number of flops there is
dependent on the size of m relative to n; see [44, Table 2.1]. Details of an efficient
implementation which uses Level 3 BLAS are given by Bujanović and Kressner [9].

2.5. Other bases and converting between factorizations. Consider again
the general factorization (2.3). As already observed, the basis matrices Z and Y are
not unique. Let G ∈ R(n−m)×(n−m) be a non-singular matrix. Then, given some basis
matrix Z, another factorization that is equivalent to (2.3) — and hence Algorithm 1
— is

A =

[ Ŷ T

ZTGT

]−1
0
0

0 I


 Ŷ TAŶ Ŷ TAZG Ŷ TBT

GTZTAŶ GTZTAZG 0

BŶ 0 0

[[Ŷ ZG
]−1

0

0 0 I

]
,

(2.16)
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where Ŷ is a matrix such that
[
Ŷ GZ

]
spans Rn.

For example, suppose we take the fundamental basis Zf as (2.4), and assume we
have its ‘skinny’ QR factorization Zf = Q2R2. Then, taking G = R−12 , we obtain
ZfG = Q2. Now, let BT = Q1R1 be the ‘skinny’ QR factorization of BT . Since B is
assumed to be of full rank, we have that

[
Q1 Q2

]
spans Rn. Substituting this into

(2.16), we see that these choices transform Factorization 1 (2.7) into Factorization 3
(2.15). Note that this construction is not advisable in practice, but we include it as a
demonstration of how the different factorizations relate to each other.

3. Stability and sparsity. In this section, we assess the viability of the
factorizations described in Section 2 as the basis of a sparse direct solver. Here we
concentrate on the solution of a single problem (1.1) and do not exploit the advantages
the null space factorizations can offer over a general indefinite solver in terms of
updating the factors after a row is added to or removed from A. For a factorization
to be effective for solving sparse linear systems, it must be stable in the classical sense
[28] and the factors should be as sparse as possible. We discuss these issues below.

To motivate the discussion, we present results using Factorizations 1, 2 and 3—i.e,
equations (2.7), (2.10) and (2.15), respectively—as the basis of a direct method. We
perform tests using MATLAB Version R2014a. We factorize the matrix N using
cholmod [10] and use the SuiteSparseQR algorithm [11], both from Tim Davis’
SuiteSparse package and applied via a MATLAB interface. For comparison, results for
the MATLAB command ldl (with default settings) are also given. ldl employs the
package MA57 [15] from the HSL mathematical software library [30]. MA57 is a sparse
direct solver that is designed to efficiently and robustly solve symmetric indefinite
sparse linear systems. While it was not exclusively intended for saddle point systems,
it was at least partly designed with such systems in mind and is extensively used for
their solution. To ensure a fair comparison, in all the tests we pre-scale the matrix
using the scaling calculated by ldl.

In our experiments, we report the scaled backwards error for (1.1) given by

‖Aw − b‖2/‖b‖2, (3.1)

where w =

[
x
y

]
and b =

[
f
g

]
. For the explicit methods, the measure of fill we use to

measure sparsity of the factorization is

fill =
nnz(Li) + nnz(Ti)

nnz(A)
, (3.2)

where nnz(·) denotes the number of non-zeros required to store the matrix, Li is
the leftmost matrix in Factorization i, and Ti is the central matrix. For symmetric
matrices, this is the number of non-zeros in the lower triangular part. Where we need
to solve for blocks in the factorization — e.g., with B1 and N in (2.7) — we replace
the number of non-zeros in the original block with the number of non-zeros in an LU
or Cholesky decomposition, as appropriate. For implicit methods, we only store the
number of non-zeros needed by the factorizations of blocks we need to solve for; we
assume that we have access to the original matrix, and do not count entries that can
be obtained from there.
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3.1. An Academic example. We start by considering some small academic
matrices. We form a system of the form (1.1) using the MATLAB commands:

A = sprandsym(n,0.1,1e-1,2);

B = sprand(m,n,0.1);

B(1:m,1:m) = B(1:m,1:m) + 10*diag(rand(m,1));

b = [A B’; B sparse(m,m)]*rand(n+m,1);

We take n = 1024, and m = {100, 512, 900} and construct the matrices so that the
leading m columns of B form a non-singular sub-matrix; these can be used without
permutation for B1.

(a) Backwards error (3.1), without iterative refinement.

(b) Fill, as defined in (3.2).

Fig. 3.1: Measures of stability and sparsity for various factorizations. The results are
averaged over ten runs with random matrices.

12



Figure 3.1 presents plots showing the backward error and fill. We see that,
choosing B1 to be the leading columns of B gives relatively sparse factors for
Factorizations 1 and 2 but they are numerically unstable. If we perform an LU
factorization on BT (incorporating pivoting to ensure the L factor of BT is well
conditioned) and use this to obtain B1, then BT

2 B
−T
1 is bounded and Li (i = 1, 2) is

well-conditioned [18, 21]. In our tests, we use the package LUSOL [47] with partial
pivoting (with a pivot tolerance of 1.9, as suggested for basis repair by the LUSOL
documentation) to perform the sparse factorization of BT . LUSOL is called via a
MATLAB interface [27]. The resulting factorizations of (1.1) are stable.

Our results for the academic problems indicate that Factorization 3 (the
antitriangular factorization) is the most numerically stable of the null-space
factorizations, while exhibiting the worst sparsity properties (Figure 3.1b). The
antitriangular factorization was shown to be backward stable by Mastronardi and
van Dooren [37]. This is a consequence of the fact that the only calculation needed
is a stable QR factorization; see also Gill and Murray [20]. On the other hand, even
when using a sparse QR factorization routine, as expected, the Q matrices can fill in
significantly.

Consider again the Factorizations 1 and 2, that require the identification of a non-
singular sub-block B1 of B. By using a factorization of this form we are essentially
pre-determining an ordering that may or may not produce sparser factors than that
used by a standard sparse direct solver. A weakness of a direct solver such as MA57

for solving saddle point systems is that the fill in the computed factors may be
significantly higher than is predicted for the chosen ordering on the basis of the sparsity
pattern of the matrix alone. This is because numerical stability considerations may
require the ordering to be modified during the factorization. This pivoting not only
leads to a higher operation count and denser factors but also prohibits the exploitation
of parallelism and significantly complicates the code development. The fact that the
null space approach can give a direct method with a predictable level of fill without
pivoting (other than to find B1) may be an attractive feature.

Using a sparse direct LU solver to choose B1 adds a computational overhead
and can lead to a poor basis choice in terms of sparsity. It is possible to choose
B1 so that Zf is sparse, for example, by ensuring B−11 is sparse. Pinar, Chow
and Pothen [45] describe several ways to do this using methods based on graph
matchings and hypergraph partitioning. However, such approaches are reportedly
time consuming, and no results about the stability of the resulting decomposition
are given. Murray [42] describes a method for picking Z so that ZTAZ is diagonal.
However, to quote Fletcher [17, Section 10.1], this ‘may be doubtful in terms of
stability’.

An alternative approach is to apply Factorizations 1 and 2 to permuted matrices
that will guarantee a stable factorization. Forsgren and Murray [19] — thinking in
terms of a micro-factorization — describe a pivoting strategy to do this. Their method
was refined further by Gould [22]. The disadvantage of these approaches is that the
ordering is selected on the basis of stability, normally at the expense of sparsity,
leading to the null-space matrix N being dense.

3.2. Optimization examples. We next consider examples from the
optimization community; namely, a selection of relatively small quadratic programs
from the CUTEst [25] test collection. In particular, the problems are taken from
the Maros and Meszaros quadratic programming test set, and are solved without
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consideration for any inequality constraints. These are of the form

min
1

2
xTAx− fTx

s.t. Bx = g.

We chose the subset of problems for which A is symmetric positive semi-definite, has
at least n−m non-zeros on the diagonal, and where n > m. Our test problems, and
the relative sizes of their sub-matrices, are listed in Table 3.1.

Problem m n (n−m)/(n+m) Problem m n (n−m)/(n+m)
LISWET1 10000 10002 9.999e-05 DPKLO1 77 133 2.667e-01
LISWET10 10000 10002 9.999e-05 STCQP2 2052 4097 3.326e-01
LISWET11 10000 10002 9.999e-05 CVXQP1 M 500 1000 3.333e-01
LISWET12 10000 10002 9.999e-05 CVXQP1 S 50 100 3.333e-01
LISWET2 10000 10002 9.999e-05 HS21 1 2 3.333e-01
LISWET3 10000 10002 9.999e-05 TAME 1 2 3.333e-01
LISWET4 10000 10002 9.999e-05 GOULDQP3 349 699 3.334e-01
LISWET5 10000 10002 9.999e-05 AUG2D 10000 20200 3.378e-01
LISWET6 10000 10002 9.999e-05 AUG2DC 10000 20200 3.378e-01
LISWET7 10000 10002 9.999e-05 AUG2DCQP 10000 20200 3.378e-01
LISWET8 10000 10002 9.999e-05 HS35 1 3 5.000e-01
LISWET9 10000 10002 9.999e-05 HS35MOD 1 3 5.000e-01
YAO 2000 2002 4.998e-04 MOSARQP1 700 2500 5.625e-01
LASER 1000 1002 9.990e-04 PRIMAL1 85 325 5.854e-01

CONT-300 90298 90597 1.653e-03 AUG3DC 1000 3873 5.896e-01
CONT-201 40198 40397 2.469e-03 AUG3DCQP 1000 3873 5.896e-01
CONT-101 10098 10197 4.878e-03 CVXQP2 M 250 1000 6.000e-01
CONT-200 39601 40397 9.950e-03 CVXQP2 S 25 100 6.000e-01
CONT-100 9801 10197 1.980e-02 PRIMAL3 111 745 7.407e-01
CONT-050 2401 2597 3.922e-02 PRIMAL2 96 649 7.423e-01
GENHS28 8 10 1.111e-01 PRIMAL4 75 1489 9.041e-01
QPCSTAIR 356 467 1.349e-01 PRIMALC1 9 230 9.247e-01
CVXQP3 M 750 1000 1.429e-01 PRIMALC2 7 231 9.412e-01
CVXQP3 S 75 100 1.429e-01 PRIMALC5 8 287 9.458e-01
HS76 3 4 1.429e-01 PRIMALC8 8 520 9.697e-01

MOSARQP2 600 900 2.000e-01 DUAL4 1 75 9.737e-01
DTOC3 9998 14999 2.001e-01 DUAL1 1 85 9.767e-01
HS51 3 5 2.500e-01 DUAL2 1 96 9.794e-01
HS52 3 5 2.500e-01 DUAL3 1 111 9.821e-01
HS53 3 5 2.500e-01 HUES-MOD 2 10000 9.996e-01

LOTSCHD 7 12 2.631e-01 HUESTIS 2 10000 9.996e-01

Table 3.1: The CUTEst test matrices.

We again select the basis B1 using LUSOL with partial pivoting. We do not
compare the antitriangular factorization here, as the cost of doing a QR factorization
proved to be excessive (both in terms of timing and storage) for many of these
problems.
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The results are shown in Figures 3.2 and 3.3. First we consider the stability results
from Figure 3.2. Both the null-space factorizations and the factorization formed
by ldl give similar performance. The null-space factorizations give slightly better
accuracy on the CONT-xxx problems, which are known to be difficult for direct solvers.
If we apply one step of iterative refinement (as is usual in practical applications) then,
as we see in Figure 3.2b, all methods behave comparably.

In Figure 3.3 we compare the sparsity of the factors. Factorizations 1 and 2 behave
similarly, and, with a few exceptions, give denser factors than ldl. As expected, the
implicit version of Factorization 1 requires less storage than the full version (at the
cost of more computation). The implicit version of Factorization 1 needs the least
storage overall for 46 problems, whereas ldl performs best for 19 problems (and the
difference is negligible for the four DUALx problems). In particular, ldl does better for
the AUGxx and PRIMALxx families of problems. The implicit version of Factorization 1
sometimes makes significant savings compared with the other methods. For example,
for the CONT-xxx family it requires about a third of the storage needed by the next
most effective method (ldl). However, in the cases where ldl give sparser factors,
it often does so emphatically; about one hundred times more storage is required by
Factorization 1 (implicit) compared to ldl for some of the AUGxx problems, and over
fifteen hundred times the storage is needed for HUES-MOD and HUESTIS. Note that the
cases where the null-space factorizations require significantly more storage tend to be
where n−m is large (in an absolute sense).

We do not report timings, as we cannot give a fair comparison between our proof-
of-concept MATLAB code and the compiled ldl command, but we observed the null-
space factorizations to be significantly slower. They do, however, potentially offer
more scope for parallelization, as the bulk of the work in forming the factorization
is in forming and factorizing N . The columns of N can be formed in parallel and,
since the Cholesky factorization does not require pivoting, it can be parallelized more
effectively than an indefinite sparse solver (see, for example, Hogg, Reid and Scott
[29]). However, it is still necessary to factorize the non-square matrix BT .

3.3. F-matrices. Favourable sparsity and stability properties are possible for
certain classes of matrices A. de Niet and Wubs [12] show this for F−matrices. An
F−matrix is a saddle point matrix (1.1) in which A is symmetric positive definite and
B is a gradient matrix, that is, B has at most two entries per row, and if there are
two entries their sum is zero. Such matrices appear naturally in certain formulations
of fluid flow problems, e.g. [1], and also in electronic simulations, where they arise as
the incidence matrix of the graph representing the circuit [52]. The original Schilders
factorization [48] was developed specifically for solving systems with this structure.

De Niet and Wubs essentially find the basis B1 implicitly by considering a micro-
factorization (recall Section 2.3). They pair entries in A with entries in B in such a
way as to ensure the stability of the factorization. Moreover, de Niet and Wubs show
that the number of non-zeros in the symbolic factorization of F (A)∪F (BBT ) (where
F (·) denotes the sparsity pattern) ‘provides a reasonable estimate’ of the number of
non-zeros in the factorization.

We give two examples below; one from resistor networks, and one from fluid flow.
In the former the (1,1) block is a diagonal matrix, whereas we have a non-diagonal,
but symmetric positive definite, (1,1) block in the latter.

3.3.1. Resistor networks. An important problem arising from the electronics
industry is to find the voltage, V , and current, I, of a network of resistors. The
current and voltages are related by the equation AI +BV = 0, where A is a diagonal
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(a) Backwards error (3.1), no iterative refinement.

(b) Backwards error (3.1), one step of iterative refinement.

Fig. 3.2: Stability results for matrices from the CUTEst test set.

matrix containing the values of the resistors, and B is the incidence matrix of the
network. From Kirchhoff’s law, we also have BT I = 0.

One node is usually grounded (algebraically, we remove a column of B) so that
B has full rank. It is clear that putting these two equations together we get a system
of the form (1.1) that is also an F−matrix.

We run tests on these systems with n = 1024 resistors, joined at m =
{100, 250, 512} nodes at random (while forming a complete network). The resistor
values are chosen at random from a uniform distribution between 0 and 10−2. Plots
showing backward errors and fill are given in Figure 3.4. A property of matrices of
this type is that it is possible to permute B to make it upper trapezoidal, and so a
well conditioned, easy to invert, block B1 is possible to achieve without arithmetic
(see [3, Chapter 6] for a discussion and references).

The results illustrate that the null-space factorizations are stable (as predicted
by the theory in [12]); indeed, they produce smaller backward errors than ldl

(without iterative refinement). The most stable factorization appears to be the
implicit variant of Factorization 1. In terms of sparsity, the antitriangular factorization
(Factorization 3) is again the poorest while Factorization 1 gives the sparsest factors.
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(a) Fill, as defined in (3.2).

(b) Detail from Figure 3.3a.

(c) Detail from Figure 3.3b.

Fig. 3.3: Sparsity results for matrices from the CUTEst test set.
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(a) Backwards error (3.1), no iterative refinement.

(b) Fill, as defined in (3.2).

Fig. 3.4: Stability and sparsity results for the resistor network problem, as described
in Section 3.3.1. 18



As we do not need to factorize a block of B, the fill for the factorizations based on
the fundamental basis is negligible.

3.3.2. Fluid flow problems. Another source of F−matrices is in fluid flow
problems. In particular, we test some matrices derived from the mixed-hybrid finite
element approximation of Darcy’s law and the continuity equation, which describes
fluid flow through porous media [36]. The test matrices we use1 are described in
Table 3.2; the same examples were used as test cases by, e.g., Tůma [51] and de Neit
and Wubs [12].

Figure 3.5 shows sparsity and stability results for these matrices.

Problem m n (n−m)/(n+m)
S3P 207 270 0.13208
M3P 1584 2160 0.15385
L3P 12384 17280 0.16505
DORT 9607 13360 0.16341
DORT2 5477 7515 0.15687
dan2 46661 63750 0.15478

Table 3.2: F−matrices from a problem in fluid flow

(a) Backwards error (3.1), no
iterative refinement.

(b) Fill, as defined in (3.2).

Fig. 3.5: Stability and sparsity results for F−matrices from a problem in fluid flow,
as described in Section 3.3.2.

For these real-word problems—especially the larger problems—the null-space
factorizations perform markedly worse than ldl. Figure 3.5a shows that the
backwards error is larger for the null-space factorizations than for ldl, although
further tests showed that one step of iterative refinement is enough to make all the

1We thank Miroslav Tůma for providing us with these matrices.
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backwards errors comparable (and of order machine precision). In terms of storage,
the null-space factorizations can take over twenty times the storage that ldl needs.

4. As a preconditioner. As we saw in Section 2.1, the null-space method can
be thought of as a Schur-complement factorization (2.13), incomplete versions of which
have proved effective for preconditioning saddle point systems. Motivated by this, we
present some eigenvalue bounds for incomplete versions of the factorization (2.13).
Note that, due to the indefiniteness of the (1,1) block, the standard Murphy, Golub
and Wathen [41] results are not applicable here. While convergence is not prescribed
completely by the eigenvalue bounds for non-symmetric systems [26] they are often
seen to be indicative of the convergence behaviour [43], and indeed that has been our
experience here.

4.1. The central matrix. First, we consider the preconditioner formed by
taking (a permutation of) the central matrix in the factorization (2.13),

P1 =

A11 0 BT
1

0 N 0
B1 0 0

 .
This would correspond to the block diagonal preconditioner in the Schur complement
decomposition (2.12). First, we give an eigen-analysis of the preconditioned system.

Theorem 4.1. The generalized eigenvalues such thatA11 A12 BT
1

A21 A22 BT
2

B1 B2 0

x1

x2

y

 = λ

A11 0 BT
1

0 N 0
B1 0 0

x1

x2

y

 , (4.1)

where N = ZT
f AZf , satisfy λ = 1 or

1 + σmin ±
√
σ2
min + 2σmin − 3

2
≤ λ ≤

1 + σmax ±
√
σ2
max + 2σmax − 3

2
,

where σmin and σmax are the smallest and largest eigenvalues of N−1A22 .
Proof. First, the last equation in (4.1) gives

B1x1 +B2x2 = λB1x1,⇒ (1− λ)B1x1 = −B2x2.

Then, either λ = 1 (and hence B2x2 = 0), or

x1 =
−1

1− λ
B−11 B2x2. (4.2)

Now, the first equation in (4.1) gives

(1− λ)A11x1 +A12x2 = (λ− 1)BT
1 y,

and re-arranging and substituting in (4.2) gives

1

1− λ
A11B

−1
1 B2x2 −

1

1− λ
A12x2 = BT

1 y

1

1− λ
BT

2 B
−T
1 A11B

−1
1 B2x2 −

1

1− λ
BT

2 B
−T
1 A12x2 = BT

2 y. (4.3)
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We now turn our attention to the second equation in (4.1):

A21x1 +A22x2 +BT
2 y = λNx2.

Substituting in (4.2) and (4.3) gives

−1

1− λ
A21B

−1
1 B2x2+A22x2+

1

1− λ
BT

2 B
−T
1 A11B

−1
1 B2x2−

1

1− λ
BT

2 B
−T
1 A12x2 = λNx2.

Rearranging and using the definition of N , we get

1

1− λ
Nx2 +

(
1− 1

1− λ

)
A22x2 = λNx2

(1− λ+ λ2)Nx2 = λA22x2. (4.4)

Now if we pre-multiply by xT
2 and rearrange we obtain

(1− λ+ λ2) = λ
xT
2 A22x2

xT
2Nx2

= λσ,

where σ := xT
2 A22x2/x

T
2Nx2. It follows that

λ =
1 + σ ±

√
σ2 + 2σ − 3

2
. (4.5)

Note that, since σ is a Rayleigh quotient, we have that

0 < λmin(N−1A22) ≤ σ ≤ λmax(N−1A22).

The result follows.
If the smallest eigenvalue of N−1A22 is greater than unity, the eigenvalues λ of

(4.1) are all real. Since the eigenvalues of N−1A22 are positive, the real part of λ
must be bounded below by 1

2 .
This approach is particularly attractive if A22 is zero, as we then have three

distinct eigenvalues, {1, 1±
√
3i

2 }. An example of where this structure arises naturally
would be in the interior point method for linear programs [53], where A22 approaches
zero at convergence.

We can say something about the quality of this preconditioner if N is replaced
by an approximation, Ñ .

Corollary 4.2. Let Ñ be a symmetric positive definite approximation to N
such that

λ(Ñ−1N) ∈ [µmin, µmax] .

Then the generalized eigenvalues satisfyingA11 A12 BT
1

A21 A22 BT
2

B1 B2 0

x1

x2

y

 = λ

A11 0 BT
1

0 Ñ 0
B1 0 0

x1

x2

y

 , (4.6)

are such that λ = 1 or

λ ∈
[(

1 + σmin/µmin ±
√

(σmin/µmin)2 + (2σmin − 4)/µmin + 1

)
/2,(

1 + σmax/µmax ±
√

(σmax/µmax)2 + (2σmax − 4)/µmax + 1
)
/2
]
.
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Proof. The proof of Theorem 4.1 goes through until (4.4), which here becomes

Nx2 − λA22x2 = λ(1− λ)Ñx2.

Pre-multiplying by xT
2 and setting µ := xT Ñx2

xTNx2
we get

xT
2Nx2 − λxT

2 A22x2 = λ(1− λ)µxT
2Nx2,

and hence

λ2 − (1 + σ/µ)λ+ 1/µ = 0,

and the result follows as in the proof of Theorem 4.1.

4.2. An alternative preconditioner. Now we consider the preconditioner
formed from the second and third terms in the factorization (2.13),

P2 :=

A11 A12 BT
1

0 Ñ 0
B1 B2 0

 .
This corresponds to the block upper-triangular preconditioner in the standard
factorizations. We have the following result about the eigenvalues:

Theorem 4.3. Let Ñ be an approximation to N = ZT
f AZf . Consider the

generalized eigenvalue problemA11 A12 BT
1

A21 A22 BT
2

B1 B2 0

x1

x2

y

 = λ

A11 A12 BT
1

0 Ñ 0
B1 B2 0

x1

x2

y

 . (4.7)

Then either λ = 1, or λ satisfies Nx = λÑx.
Proof. Taking the last equation in (4.7) and rearranging we get that either λ = 1,

or

x1 = −B−11 B2x2. (4.8)

Substituting this into the first equation of (4.7) and rearranging gives

y = B−T1 (A11B
−1
1 B2 −A12)x2. (4.9)

Finally, taking the second equation of (4.7), rearranging, and substituting in (4.8)
and (4.9) we have

−A21B
−1
1 B2x2 +A22x2 +BT

2 B
−1
1 A11B

−1
1 B2x2 −BT

2 B
−1
1 A12x2 = λÑx2

The coefficient matrices on the left hand side are equal to N , giving the result.

4.3. Discussion. The two preconditioners described above are the result of
thinking about the null-space method in terms of a matrix factorization. The
preconditioner P2 is particularly promising. It has the drawback that it is a non-
symmetric preconditioner for a symmetric problem, but it only requires two more
matrix-vector products to apply compared with P1, and for that we get eigenvalue
clustering that is as good as possible.
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For all preconditioners derived from a null-space factorization it is necessary
to find a well-conditioned non-singular block, B1. This approach is therefore
most promising for systems where such a block is easy to find—e.g., when solving
F−matrices, or PDE-constrained optimization problems. If we have to do a
factorization of BT to find B1, then such a preconditioner may offer an advantage in
fields where many systems have to be solved with the same B block, with A changing;
an important example that generates linear systems with this structure is the interior
point method in optimization [53].

It may also be of interest for problems in, e.g., optimization that naturally lend
themselves to the null-space method, but for which forming the exact reduced Hessian
is prohibitive; a perfect example would be PDE-constrained optimization. With both
P1 and P2 there is no need to use an inexact matrix-vector multiply with N , as is
often done when solving systems with N using a Krylov method, and more accurate
solutions could be obtained.

5. Conclusion. The null-space method for solving systems of the form (1.1) can
be thought of in terms of matrix factorizations. We have described a number of such
factorizations, and have highlighted relationships between them.

A direct solver based on such a factorization is potentially attractive as it avoids
the need for numerical pivoting and facilitates the exploitation of parallelism. In the
case of a symmetric, positive semi-definite (1, 1) block, provided we have a good basis
for the null-space of B, a Cholesky solver can be used on a reduced (but possibly dense)
system. In Section 3, we investigated the stability and sparsity properties of various
null-space factorizations using a number of academic and practical applications.
Our results suggest that these factorizations — particularly the form (2.7) — have
the potential to be competitive with a sparse symmetric indefinite solver; further
experiments on more and larger systems using efficient implementations are required
to better understand where to recommend a null-space factorization. For the special
case of F−matrices, there is theory to justify stability of the factorization and the B1

matrix can be found trivially.

Finally, we have proposed two preconditioners based on incomplete versions of
the null-space factorization, and presented eigenvalue bounds. The clustering of the
eigenvalues of P−12 A depends entirely and simply on the quality of the approximation
to the null-space matrix N . A preconditioner of this form would seem ideally suited
to applications in optimization, and this will be the subject of future work.
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