




ABSTRACT. 

A MULTIMODE DESCRIPTION OF THE NON-LINEAR EVOLUTION OF 

MODULATlONAL INSTABILITIES IN PLASMAS 

by R Bingham and C N Lashmore-Davies• 

A general discussion of modulational instabilities in plasmas is 
given. The basic mechanism is a four wave interaction and examples 
include the Langmuir modulational instability, the oscillating two-stream 
instability and the filamentation of laser light in plasmas. The single 
envelope model which usually leads to the nonlinear Schrodinger equation 
is contrasted with the more general multimode description of this article. 
General equations for the modulation of finite amplitude, high frequency 
waves in unmagnetised plasmas are given. The stability properties of the 
linearised equations are briefly discussed and the conservation relations 
of the fully nonlinear equations are obtained. 

The filamentation of an electromagnetic wave in a plasma is discussed 
in more detail. A physical argument is given for restricting the analysis 
to the initial wave and two sidebands. This is then put on a firmer 
footing with the aid of a recent theorem of Thyagaraja on the effective 
number of modes carrying the wave energy. Finally, exact analytic 
solutions of the fully nonlinear equations are obtained, and the resulting 
filamentation length compared with experiment. 

*Theoretical Physics Division, 
Culham Laboratory, 





1.INTRODUCTION. 

The Langmuir modulational instability, Zhakharov(l972), the 

oscillating two stream instability, Nishikawa(l968), and self-modulation, 

Kaw et al(l973), of electromagnetic waves in plasmas are all examples of 

modulational instabilities. In all cases the basic mechanism is a four 

wave interaction, Bingham and Lashmore-Davies(l979a), involving two pump 

"quanta" and two sidebands. All these processes can be described Qy _the 

same general form of equations. A solution of any one of these problems 

can easily be generalized to any of the others. In this treatment we 

shall restrict ourselves to unmagnetized plasmas although similar 

processes occur in magnetized plasmas. 

In the usual treatment of this problem the nonlinear Schr~dinger 

equation is used as the model equation. This involves an averaging 

procedure over the pump and sideband amplitudes to describe the resultant 

wave envelope. This method is appropriate to cases where the sidebands 

have wave numbers close to the pump wave number and where the pump and 

sidebands belong to the same wave branch. In cases where the pump and 

sidebands belong to different wave branches or the wave numbers are 

significantly different a multimode treatment is necessary. We have 

developed a multimode nonlinear theory c.f. Bingham and Lashmore-Davies 

(l979a,b), of these processes in which the initial pump wave k generates 
-o 

pairs of sidebands k ± nk and their associated density perturbations 
-o -s 

nk , where n is an 
-s 

integer. In this treatment each high frequency wave 

is described by a separate non-linear equation. 

We have previously restricted our multimode description to an 

analysis of the pump wave and one pair of sidebands, Bingham and Lashmore­

Davies(l979a,b). The sidebands chosen were those corresponding to maximum 

growth. This allowed exact analytic solutions to be obtained. In this 

article we shall consider the justification for this approximation in much 

greater depth. First we shall give a physical argument for the procedure. 

We shall then put the method on a firmer theoretical foundation using a 

recent result of Thyagaraja [1979] which allows us to estimate the 

effective number of modes actively involved in the interaction process. 
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This result of Thyagaraja [1979] provides the mathematical justification 

for the physical argument and shows under what conditions a given physical 

situation can be approximated in this way. 

The plan of the article is as follows. In section 2, the general 

equations describing the four wave interaction for the various cases are 

derived from the two fluid model and Maxwell's equations, by expanding 

these equations about the linear~z~d solution. A linear stability 

analysis is carried out to obtain the initial growth rate as a function of 

the wavenumber of the low frequency density perturbation. In Section 3 

conservation relations are derived which illustrate the fact that the 

basic instability results from a four wave interaction. In section 4 the 

specific example of the filamentation of an electromagnetic wave in a 

plasma is considered. Finally, in section 5 exact nonlinear solutions for 

the filamentation case are obtained and the non-linear filamentation 

length is calculated and compared with experiment. 

2. THE MODEL. 

We shall consider a uniform, infinite plasma in which a small but 

finite amplitude pump wave is propagating. The initial pump wave is 

described through its electric field 

E ( x , t) = A ( x , t) exp i ( k • x - w t) 
-o- o- -o- o 

( 2. , ) 

where w amd k are related by the linear dispersion relation 
0 0 

w2 -= w2 + v 2 k 2 ( 2 • 2 ) 
0 pe 0 

where w is the plasma frequency and v represents the electron thermal 
pe 

velocity if the wave is a Lanqmuir wave or the speed of light, c, if the 

wave is a transverse electromagnetic wave. 

The plasma model we use to analyse the problem is the two-fluid 

isothermal approximation. We have chosen this model in the interests of 

simplicity. It gives an adequate description of the phenomena, at least 

for the initial stages of the non-linear behaviour. The equations are as 

follows 
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0 
~t n . + V • ( n . v . ) • 0 
V J - J-J 

( 2. 3) 

0 
KT . e . 

( ~t + v . • V) v. + __,l_ V n . + vJ. ~J· • J (! + ~J· x !) 
v -J - -J njmj - J mj 

(2.4) 

V.E l: n . q . K 0 
· E 

j J J 
0 

(2.5) 

oH 
V X E = -~0 ot 

( 2. 6) 

oE 
V X H = J + E 

0 ot 
( 2. 7) 

where J = I: n . 
J J 

q . v . , j = i , e and v . , n . , q . , m . , \1 . , and T . are , 
J -J -J J J J J J 

respectively the fluid velocity, density, charge, mass, phenomenological 
th 

damping coefficients and the temperature of the j species. E and H are 

the electric and magnetic fields and K, ~ and E are Boltzmanns constant 
0 0 

and the magnetic permeability and dielectric coefficients for a vacuum (we 

use M.K.s. units). Equations (2.3)-(2.7) are fully non-linear and contain 

all the fields and perturbations of interest. 

We now use the above set of equations to generate the non-linear 

equations describing the coupling of a high frequency pump wave (Langmuir, 

or electromagnetic) to two other high frequency sidebands which can also 

be either Langmuir or electromagnetic fields. We assume there is a low 

frequency density perturbations of frequency and wavenumber (Q, k ), which 
-s 

are as yet unspecified. This low-frequency density perturbation, which 

involves both ions and electrons, will beat with the initial pump wave to 

produce high frequency sidebands with wavenumbers k - k the Stokes wave 
-o -s 

and k + k 
-o -s 

the anti-Stokes wave. These two sidebands can couple to the 

pump wave to regenerate the initi al low frequency density perturbation at 

k 
-s 

they can also couple to each other to generate another low frequency 

density perturbation at 2k • 
-s 

This new density perturbation can beat with 

the pump to produce another pair of Stokes and anti-Stokes waves at 

k ± 2k which beat together to 
-o -s 

produce another density perturbation at 

4k which, in turn, will also generate new Stokes and anti-Stokes waves, 
-s 
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etc. A hierarchy of low frequency density perturbations together with 

higher order sidebands are thus generated. 

This process of producing higher order sidebands can be halted at the 

first two by choosing the initial density perturbation as the one 

corresponding to maximum growth k , Bingham and Lashmore-Davies 
-sm 

(1979a,b). With this choice, 2k lies outside the unstable band and 
-srn 

therefore, E and -4E are stable together with all the other higher order 
-3 

sidebands. This is the physical justification for considering only the 

first two sidebands. 

We now write the sideband waves and the density perturbation as 

E . (x,t) 
-J-

A . (x,t) e 
J -

i(k . • x-w . t) 
-J - J 

where A. is a slowly varying amplitude and j ~ 1,2 
J 

i2k .x 
-s + 

(2.8) 

( 2. 9) 

where the slow amplitude variation of the electromagnetic wave is 

determined by the linear dissipation and the non-linear interaction and 

the phase factor is due to the linear dispersion. For the density 

perturbation the time variation is dominated by the non-linear coupling. 

In the present analysis we will consider the dominant force which drives 

the density perturbation to be due to the ponderomotive force. Other 

mechanisms, such as relativistic and thermal effects result in similar 

equations. 

We now use a perturbation procedure to obtain the equation for the 

pump wave, sidebands and the density perturbation. The details are given 

elsewhere, Bingham and Lashmore-Davies (l979a,b). The method consists in 

expanding the equations for the high frequency waves about their linear 

so l utions ( w . , k . ) , j = 0, 1, 2 • • where 
J J 
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-
We also assume perfect ~-matching of the interacting waves but allow a 

small frequency mis-match such that 

k • k ± k 1 
-o -1,2 -s 

and w • w , n • 1,2 ••• 
o n 

• • etc. 

The equations for the pump wave, the first two sidebands and the 

density perturbation are 

(.2.... + 0 
w2 io

1
t w2 * i62t 

+ y )A (x,t) . ( 1 2 
~·ox = -l.C - N s1A1e + Ns1A2e ) ot 0 0- so w w 

(2.10) 
0 0 

(Q_ + 0 
w2 

* 
-i6 t w2 

+ y 1 )A 1 (~,t) 
(~ 1 2 * 

!, • ox = -ic Ns1Aoe + Ns2A2) ot so w1 w1 
(2.11) 

(~ + !2·~ + y2)A2(~,t) 
w2 -i6 t w2 

. ( 0 
Ns 1Aoe 

2 ....1 N 
2

A
1

) = -l.C - + 
so w

2 
w

2 
s 

(2.12) 

~ + 0 + k2c2 )N 
1 
(x,t) 

* -io 1t * io2t 

(ot 2 Ys ot = - c 01 (w0w1A0A;e +w
0

w2A0A
2

e ) (2 . 13) 
s s s -

o2 .Q_ * 
-i(6 -6 )t 

+ 4k 2c2)N 
2

(x,t) 
1 2 

("bt2 + Ys = -4c01 w1w
2 

A1A
2

E (2.14) 
ot s s s -

where c
50

, c
01

, are coupling coefficients which are determined by the 

particular interaction process under consideration, 6
1

,
2
= w -w are the 

0 , , 2 
frequency mismatch terms and v

0
, v

1
, v

2
, cs are the group velocities and 

ion sound speed respectively. 

In order to solve equations (2.10) - (2.14) we follow other authors, 

e.g. Zhakharov (1972) in making the static approximation. Thus assuming 
o o2 

that y ~' ot2 << k~ c~ we can obtain expressions for Ns 1 and Ns 2 
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directly. 

(2.15) 

(2.16) 

Substituting these expressions for N , N into equations (2.10)-(2.13) 
s1 s2 

leads to the following three equations for A
0

, A
1 

and A
2 

(~t+ v .~ + y )A (x,t) ~ ir [w1
3A /A1 /

2 
+ w3A /A /2 

+ 
u -o uX o o - o o 2 o 2 

(2. 17) 

(2.18) 

+ w31 A 12A 31 A 12 J o o 2 + a, w, 1 A2 (2.19) 

where the coupling coefficients r and r for the different types of 
0 , 

modulational instabilities are as follows 

Langmuir Modulational Instability 

- ~ -

Bn y KT w2 
o e e pe 

a, = 1. 



Fil~u~;·, t.-:a tiv;-, and Self-
Modulation of E.M. 

Oscillating Two stream 
Instability 

where a ""' 1 

e2w2 

r 
pe -Waves 0 B 2 '+ memiw0w1 

Bm 2 2 
tn .c w wow, el.spe 

and 

w2 w'+ 

r1= ro 
1 0 

1 a • 
w2 1 w'+ 

0 1 

The above equations appear somewhat more complicated than they are in each 

of the above specific cases because they have been written in a general 

form. For any of the above cases the equations take on a more symmetric 

form. Note that for filamentation and the oscillating two stream 

instability w, a w2. 

Other non-linear terms which could be included in equations (2.17)-(2.19) 

are the self energy terms 1Ajj
2

Aj which in the present analysis could only 

arise from second harmonic terms. These terms are very much smaller than 

the terms derived from the ponderornotive force. If the dominant non­

linear term is due to relativistic effects where the amplitude of the wave 

is so large that the oscillating velocity of electrons in the wave field 

approaches c, the velocity of light, the non-linear coupling involves only 

high frequency modes and the self-interaction term is comparable to the 

other terms and cannot be neglected. The equations describing 

modulational instabilities due to relativistic effects (cf. Bingharn 
2 

(1983)) thus include the self interaction terms jAjl Aj on the right 

hand side. In this case the equations resemble more closely those 

describing the modulation of deep water waves [cf. Benjamin and Feir 

( 1967) J. 

Equations (2.17)-(2.19), although similar in appearance to equations 

(11) - (13) in Bingharn and Lashmore-Davies (1979a,b) now contain the 

additional non-linear terms i r w~ IA212A1+ i r w; ,A,, 2A2. These two new 

terms are generated in the following manner. The two sideband waves at 

~± ~' beat together to excite the density perturbation at 2~s which in 
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turn beats with each sideband wave to produce the other. 

Before considering the non-linear solutions of equations (2.17) -

(2.19) let us first obtain the initial behaviour of the perturbation& 
• assuming the pump wave amplitude A

0 
remains constant. Using A

1
exp(-i6

1
t), 

A
2
exp(i6

2
t) as the amplitude variables, equations (2.18) - (2.19) become a 

set of linear differential equations with constant coefficients and can be 

solved in the usual way assuming a variation exp i(px-Ot). The resulting 

dispersion relation is a quadratic in Q. If we also take p c 0 then the 

dispersion relation for 0 reduces to the simpler form 

0 (2.20) 

where K "" 

Solving this equation we obtain the following threshold for instability: 

K = (2.21) 

where D. = 
, 
2 

(6
1 

+ 6
2

), i.e. we have instability only when D.< o. 

However, from the definitions of 6
1 

and 6
2 

given by 

-k2v2 

6 "" ±k .v -1,2 -s -o 2w 
0 

s ·-we find that D. and so D. is negative definite. When the threshold 

is exceeded, the real part of 0 is given by 

k .k v 2 
1 

62) 
-s-o 

(2.22) ReO = 2< 6,- = w 
0 

ReO is the frequency of oscillation of the low-frequency density 

perturbation. In the limit of an infinite wavelength pump wave or a 

transverse perturbation k l k , the density perturbation is purely 
-s -o 

growing. In the case of a longitudinal perturbation k n k the 
-s -o 

instability excites a low-frequency wave of frequency given by (22) and 



two high frequency sideband waves whose frequencies are shifted from their 

unperturbed values w1,
2 

to w
0 

+ t<w 1- w
2

). For a transverse perturbation 

k 1 k the frequency of density perturbation is zero and the frequencies 
-s -o 
of the sidebands are all equal and locked to the pump frequency w • 

0 

The growth rate resulting from (20) can be expressed as 

y 

w 
0 

r 1 2 
112 

- - + K (K - K ) 
w s s 

0 

(2.23) 

where Ks "" 

k V 
s 

12 w and we have assumed y
1 

= y
2

• The relation (23) gives 
0 

the growth ( y) versus k2 stability diagram, known in fluid mechanics as 
s 

the Benjamin-Feir (1967) stability diagram. We can see from the 

expression for the growth rate that there will be a wavenumber k -srn 
which the growth is a maximum. 

l/2 
K = (K/2) 

sm 
and is given by 

L 
2 

l 
w 

0 

The maximum growth rate occurs for 

at 

(2.24) 

We also note that the condition for the growth rate to be a maximum is 

also the condition for the instability threshold to be a minimum. 

3. CONSERVATION RELATIONS. 

Conservation relations for the wave energy density can be obtained 

from equations (17) - (19) taking into account the fact that the 

sideband wave frequencies are shifted by the interaction from w
1

,
2 

to 

w
0 

+ ~(w2-w 1 ). When this is done the expression for the total energy 

density for the sideband waves becomes 

J (3.25) 
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for electromagnetic waves and 

E w2 
o lE 12 -.!.t.2 ( E1,2 • 2 1,2 wl 

pe 
( 3. 26 ) 

for Langmuir waves. Using these new expressions for the wave energy 

density the conservation of wave energy density for electromagnetic waves 

becomes 

(3.27) 

where the aj,s(j = 0,1,2) are normalized so that lajl2 is the total 

energy density. Using (27) we can obtain the equation for conservation of 

wave action density, 

la 12 61+62 la 12 
1 ( 1 - (.__..;..~) ) + 2 ( 1 - ( 

2w , 
o w

2 

))} = 0 (3.28) 

w;, w; are the perturbed frequencies defined above. Equation (3.28) is 

analogous to the Manley-Rowe relations for a three wave interaction . We 

see clearly from this equation that the basic mechanism of modulational 

instabilities is a four wave interaction in which two pump "quanta" create 

two excited wave "quanta" or vice versa. 

It is worth noting that in the conservation relations the unperturbed 

energy density for the pump wave appears. This is due to the fact that 

the Stokes, anti-Stokes and density perturbations drive the pump wave 

resonantly whereas the sideband waves are driven off resonance resulting 

in their frequency shift. 

- 10 -
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4. FILAMENTATION . 

In order to obtain non-linear solutions to equations (2.17)-(2.19) we 

shall consider the particular case of electromagnetic filamentation. In 

this case the equations can be written as 

where r corresponding to filamentation is given below equ . (2.19). Note 

also that o
1 

= o
2 

= o for this case. 

We have presented above a physically intuitive reason for restricting 

the analysis to a few modes. However, a recent theorem due to Thyagaraja 

(1979) provides the mathematical justification for this approximation. In 

order to make full use of the theorem we first need to formulate the 

problem in terms of the non-linear Schrodinger equation which for a plane 

polarized electro-magnetic wave in a homogeneous plasma is 

w oA 
0 0 

2i- -- + 
2 ot 

c 
= - KT 

e 
A 

0 
{4.32) 

where we have assumed a plane wave initially which becomes modulated in 

the direction transverse to its propagation direction 

i.e. E (x,y ,t) 
0 

i{k X - W t) = Re A (y,t) e o o and 
0 

w2 = w2 + c2k2 • Transforming to the dimensionless space and time 
o pe o 

coordinates ~ and ~ given by 
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• 

- X 
L 

where L is a scale length determined by the plasma conditions, equation 

(4.32) becomes 

~A ~2A 

~~Aol 2 i 
0 0 A (4.33) 

~'t - -w 0 

n e 4 1J. L2 
0 0 

where IJ. a= 
2w 2m 2KTe 

0 e 

The non-linear Schrodinger equation describes a continuous wave field 

which formally possesses an infinite number of modes. Thyagaraja (1979) 

has obtained the remarkable result that for certain dynamical systems 

there is an effective number of modes N which actively participate in the 
E 

motion of the system. The non-linear Schrodinger equation represents one 

such system. 

Applying the theorem of Thyagaraja, in the case where ~ > 0, to the 

non-linear Schrodinger equation results in the following expression for 

the number of modes (NE) carrying the wave energy. 

= ~0 [ 

4n 

, 
4n 

(4.34) 

I and J (defined by Thyagaraja (1979)) are constants of the motion 
0 0 

for the system and therefore can be determined from the initial 

state of the electric field amplitude A (~,0). Since the initial state 
0 

was assumed to be a plane wave in the x-direction (i.e. no 

they direction) A (~,0) is independent of~ i.e. A (~,0) 
0 0 

= 0. I and J can now be easily obtained 
0 0 

= = 

- 12 -
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Using these expressions in equation (4.34) we obtain 

N c 
E 

(4.35) 

where v is the quiver velocity (v s 
0 0 

and vte is the electron 

thermal velocity. From equation (7) that the number of modes 

carrying the wave energy increases with increasing pump strength and also 

as L increases. These results are what one would expect physically since 

with a larger pump more energy is available to be shared out among the 

different modes (the unstable band of wavenumbers increases) and the 

number of modes increases as the physical size of the system increases . 

For small values of k (<<k ), where k is the wavenumber 
-s sm sm 

corresponding to the maximum growth rate, many modes become unstable as a 

result of the generation of higher order density perturbations. For 

larger values of k (~k ) only a few sideband modes become unstable. 
s sm 

There is also a lower limit to the value of k set by 
-s 

a) the physical dimensions of the plasma 

b) 

and c) 

the spot size of the laser beam 

the threshold condition i.e. 161 = 

Which of these provide the long wevelength limit depends on which is 

smallest in a given physical situation. The more difficult question is 

how do we justify th~ neglect of shorter wavelength modes, which fit more 

and more easily into the system? On physical grounds we have argued that 

k is the high wave-number cut-off since harmonics of this wavenumber 
sm 

will be stable. It then makes sense to concentrate on k since longer 
sm 

wavelengths will tend to generate these faster growing modes, whereas, for 

the reason given above, these modes will not generate shorter wavelengths 

(because these shorter wavelength modes are stable). This physical 

argument can be justified with the aid of Thyagaraja's theorem in the 

following way. Equation (4.35) gives the effective number of degrees of 

freedom for a given value of the initial wave amplitude as a function of 

the scale length. As already noted, NE decreases as the scale length 

decreases. If we now substitute for the scale length L the wavelength 

- 13 -



_, 
A (N.B. A aE ) of the density perturbation corresponding to maximum 

sm sm o 
growth we obtain the result 

N ., 
E 2n 

In other words, Thyagaraja's theorem provides the mathematical 

justification for treating k as the high wavenumber cut-off. For any 
sm 

given application, the effective number of modes will be given by the 

number of wavelengths A corresponding to maximum growth that will fit 
sm 

into the dimension L. 

5. NON-LINEAR SOLUTIONS. 

The method of solving equations (4.29-4.31) has already been 

described in detail elsewhere, Bingham and Lashmore-Davies (1979a,b). 

There are two types of solution (a) time dependent, spatially independent 

case with and without damping; (b) spatially dependent case, stationary 

solutions. For the time dependent case we find two solutions whereas 

before we only had one solution. These are periodic and phase jump 

solutions which were obtained by Bingham and Lashmore-Davies(l979a,b), and 

will not be discussed here since we are more interested in the case which 

provides a closer link with experiment i.e., the spatially dependent case. 

Following the analysis already outlined in the above references, we 

obtain the following equation 

where w = 

dw 
dt: 

2f 
± 

4w
1
v

1 
w

1
v

1 
4w

1
v

1 1 
ow

1 
~ = W V { -z;v ( m2 - m 1 ) - A - w V N ( W - r - 2NA} , 

0 0 0 0 0 0 

- 14 -
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4w
1 
V 

1 
4w

1 
v

1 
'Y • A2 - A(m - m ) - N( A+ wv wv 2 1 

0 0 0 0 

(W 1 
ow, 

- 2NA) J2, - r 

A2 
, 6w1 

(m2 - m
1

) - 2N A) (A+ T) .. -2(W --r 
6w V Nw V 

(A + 
0 0 0 0 

A2) ' £ .. 
2rv

1 
A+ 

2w
1 

V 
1 

2w
1
v 

1 
w 2v 

(m + m,), 1 + 
0 0 

A = N "" 4w2 V 0 wV 
0 0 1 , 

6w V 
0 0 

2I'V 1 
A+ 

6w V 
0 0 

2rv
1 

A + 

( 1 -

wV 
N o o A2 -
2w

1 
V 

1 

N w V 
0 0 

A2 ) I 
2w

1 
V 

1 

w 2v 
0 0 

2w 2v 
1 1 

and m0 , m1 and m2 are the values of 1Anl2 at '= 0 where n = 0, 1 or 2. 

v
0

, v
1

, A, W have already been defined in Bingham and Lashmore-Davies 

(1979a). Equation (5.36) now differs significantly from the one obtained 

in the above reference. It is exactly the same as equation (60) of 

Bingham and Lashmore-Davies (1979b) where it was found that different 

solutions existed depending on the sign of a. A full discussion of the 

different types of solution is contained in this reference. We will 

only consider the case of physical interest i.e., the one that allows us 

to calculate the filamentation length. This case corresponds to the one 

where we have a solitary wave solution given by 

IAo 1
2 ab sech2 (G~) 

= 
tanh2 (G') a-b (5.37) 

wow, 1 
w2 w m 

where G 
1-Z 0 0 0 

b ~I z = ;r-+ , = ml z 4 2w1 ml 0 1 

m
1 

(a 2 l 2m (a2 ) 2m 
and a 

o max ( ,_ 0 )! [ o max ( ,_ (~) ) - m, J where = (;2) m m 
0 o max 0 o max 

• 
m is the maximum intensity of the Stokes wave, m is the minimum 

1 0 
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intensity of the pump wave and (a2) is its maximum value. The 
o max 

condition for the above solitary wave solution to exist is 

1 WO 
m + 2 m - (a2) • 0 

2 w
1 

1 o o max 
(5.38) 

If we assume that A
1 

and A
2 

grow to the same order as (A ) then the 
o max 

pump minimum will be small compared with its maximum and our theory 

describes a large intensity difference inside and outside the filament. 

Using equations (5.37) and (5.38) we can calculate the filamentation 

length. We define this as the distance required for the Stokes and anti­

Stokes wave intensities to increase from a value determined by the thermal 

noise to their maximum value. With this definition we obtain the 

following expression for the filamentation length l 

2m 

~G ln [ ( 1 - ( a 3) 
0 max 

(5.39) 

where t
0

E
1 

is the energy in the Stokes (or anti-Stokes) wave in thermal 

equilibrium and G has been defined below equation (5.37) (for m >> m , G 
1 0 

= 3k ). 
0 

Using the experimental values 

(1976) i.e. E E2/n KT = 102~m-3, 
obtained by Donaldson and Spalding 

fixes the value of (a2) 
0 0 0 

enables us to calculate l for different 
o max 

values of (a2) /m • 
o max o 

shows the dependence of l as a function of (a 2) /m • 
o max o 

Table 1. 

(a 2) /m 
o max o 

4 10 100 

28 18 17 

which then 

Table (1) 

1000 

It is clear that the filamentation length is no longer very sensitive to 
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the parameter (a2) /m • The values of ~ are all the correct order of 
o max o 

magnitude as observed experimentally. (a2) /m • 103 corresponds to 
om~ o 

the case when the pump falls to a minimum value given by the minimum 

threshold condition for the instability. If we take the focal spot size 

of the laser beam as a value of L, eq. (5.39) allows us to calculate the 

effective number of modes involved in the interaction. For Donaldson and 

Spalding's (1976) experiment NE • 1, suggesting that there really are only 

a few modes involved for a real experiment. We can also calculate the 

width of a filament using the expression for the wavenumber of the density 
W V 

k (= pe ~) corresponding to maximum growth rate. 
~ 2c v 

te 
perturbation 

value for the filament width for Donaldson and Spalding's (1976) 

experiment is - 100 ~ which is in very good agreement with the 

experimental value. 
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