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The quantum Heisenberg antifmomagnet (HAF) is a p  
proached by the pure-quantum self-consistent harmonic ap- 
prozimation, that reduces it to an effective classical HAF 
model. The effective exchange, weakened by quantum fluc- 
tuations, enters the classical-like expression for thermal av- 
erages as a temperature scale, so that one can obtain in a 
simple way the quantum spin correlation length from its clas- 
sical counterpart. For any spin value S the results compare 
very well with those from experiments, quantum Monte Carlo 
simulations, and high-T expansion. The adequacy of our the- 
ory indirectly prooves that the ground state is ordered also 
for S = f ,  and supports arguments previously raised against 
the quantitative validity of the mapping of the quantum HAF 
onto the quantum nonlinear sigma model. 

The square-lattice Heisenberg antiferromagnet (HAF) 
has attracted much attention in recent years for its con- 
nection with the magnetic copper ion planes of high-Tc 
superconductors and their parent compounds [l]. The 
model Hamiltonian reads 

where the index i G (il,ia) runs over the sites of the 
square lattice, and d E (fl, fl) represents the displace- 
ments of the 4 nearest-neighbors of each site. The quan- 
tum spin operators 9, satisfy ISi la  = S(S + 1). 

The nature of the ground state of this Hamiltonian 
is a challenging problem, as the existence of an ordered 
ground state, though rigorously proven for S 2 1 [2], is 
still not certain for S = !j. Moreover, experimental in- 
vestigations of several antiferromagnetic compounds with 
different S show a spin dependence of the thermodynamic 
quantities which has not yet received a definite theoret- 
ical explanation. Most theoretical approaches are based 
on the seminal ideas of Ref. [3], where the continuum- 
limit mapping of Eq. (1) into the quantum nonlinear 
sigma model (QNLoM) is assumed to reproduce its low- 
wavevector and low-temperature behaviour, for any value 
of the spin. 

Using the renormalisation group approach the depen- 
dence of the critical behaviour on the coupling has been 
studied, on the basis of a correspondence [3,4] that gives 

the coupling parameter g in terms of the spin stiftness 
and the spin-wave velocity. From this analysis it ap- 
pears that real antiferromagnets with Hamiltonian (1) 
are always in the so called renormalued-classical regime 
at T = 0, so that a classical-like ordered ground state 
turns out to be appropriate. Unfortunately, the correla- 
tion length ((T) derived from the QNLoM [5] is not al- 
ways in agreement with the experimental data and with 
the high-temperature expansion [6] (HTE) of system (1); 
this deviation, indeed, increases when S increases, at 
variance with any semiclassical expansion. l?urtherm_ore, 
it is unclear what is the correct classical parameter S as- 
sociated with the spin length: S, or d m ,  or others 
like S +  4. 
In this letter we present a different approach, based 

on the effective Hamiltonian method [7], that maintains 
the nonuniversal lattice corrections and does not s d e r  
of uncertainty about the expansion parameter. 

The mapping onto the QNEoM (when possible) is 
quite powerful as far as one looks for the existence of fixed 
points different horn the classical one, but the decimation 
procedure cannot fnmish good values of the renormal- 
bed parameters, since it treats at the same level both 
the classical and the quantum part of the fluctuations 
of high-wavevector modes. Therefore, it is much more 
appropriate to treat within one-loop (i.e., aeif'-consistent 
gaussian) approximation the purely quantum fictwtions 
only, yielding a temperature dependent renormalization 
of the exchange interaction for a classical-like effective 
Hamiltonian which contains all the original wavevectors. 
In this way, one preserves the classical non-linearities due 
to the peculiar behaviour of classical spin variables mov- 
ing on a sphere of radius S. We then assume an ordered 
ground state, perturbatively described from the NCel one 
and determined at the one-loop level. 

At variance with previous applications [8] of the ef- 
fective Hamiltonian method to anisotropic spin systems, 
the isotropy of the problem prevents us to use the Vi- 
lain spin-boson transformation, suitable for easy-plane 
systems only. Other well known spin-boson transforma- 
tions are the Holstein-Primakoff (HP) and the Dyson- 
Maleev (DM) ones. Both of them break the symmetry 
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of the problem and at f i s t  glance they seem to have in- 
conveniences. Indeed, at finite temperatures the ordered 
ground-state is unstable against low-wavevector thermal 
fluctuations which, however, have a more and more pro- 
nounceddassical character; in other words, the symme- 
try of the isotropic twodimensional HAF, and hence the 
vanishing of the order parameter (staggered magnetiza- 
tion), is restored by essentially classical nonlinear excita- 
tions. 

It is indeed the crucial point of our approach, to keep 
separate the contribution of the purely quantum fluctua- 
tions from the classical contribution. While the former is 

Using this recipe with the DM spin operators of the 
positive sublattice (2) it is immediately found that the 
effective spin length 5 E s + P naturally appears: 

s; = (2s)) ai , 
s;- = ( 2 q - i  (25 - a;ai) a; , 

(3) 
- 

Sf=S -a :ai ;  

for the negative sublattice the weyl symbols are obtained 
by iy * -(jr)* ; we have indeed !sila = 
Stst + si's; = ga- 

evaluated in self-consistent gaussian approximation, the 
latter is fully accounted for by means of the effective clas- 
sical Hamiltonian. The symmetry of the problem can be 
eventually restored by casting it in the form of a spin 
Hamiltonian. This permits the use of the HP or the D M  
spin-boson transformations in a wide range of tempera- 
tures. 

The procedure leading to the effective Hamiltonian 
is based on the above-mentioned separation, possible 
thanks to the path-integral formalism, between classi- 
cal and purely quantum fluctuations. It is described in 
Ref. [7] and we named it pure-quantum self-consistent 
harmonic approzirnation (PQSCHA). In particular, in 
Refs. [8] it has been used for anisotropic spin systems. 
The recipe goes through the Weyl symbols [9] for the 
spin operators; while their explicit form can be deter- 
mined in the HP framework with a laborious ordering 
procedure, followed by a resummation [lO], at the one- 
loop level (which we are dealing with) D M  is equivalent 
to HP and turns out-to be formally much simpler. 

Let us consider a bipartite lattice, consisting of a pos- 
itive and a negative sublattice (for a site labeled i the 
sublattice sign (-)i = fl is defined consistently with 
this terminology). We introduce the D M  transformation 
by writing the spin operators j:, k: = if hi!@' in terms 
of boson operators (&!,hi); for those sitting on positive 
sites we transform as 

it = (2S)3 iri , 
jr = (2q-i at (2 5  - &/hi) , 
2: = s - afai ; (2) 

and on the negative sites we use the transformation ob- 
tained from the above one replacing 2; + -(i")t, 
with p = z,+ and -. Both transformations are canon- 
ical (the spin commutation relations are consequence 
of [ai,irf] = 1) and satisfy lSla = S(S + 1); further- 
more, they are normally ordered in the boson operators 
(&+,a) and their replacement in the Hamiltonian (1) gives 
rise to a normal ordered boson Hamiltonian with quar- 
tic interaction. Its normal symbol 3 1 ~ ( u * , a )  is simply 
obtained replacing the Fock operators with commuting 
holomorphic variables, (at,&) (a* ,a) .  Then, the 
Weyl symbol [7,9] W(a* ,a )  for %($,is) can be obtained 
from the normal symbol %N(a', a) using the relation [9] 
%(a*, a) = exp ( - 8,) ~ c N ( u * ,  a) . 

Consequently, the Weyl symbol of the Hamiltonian is 
readiiy found, but we prefer to express it in terms of 
the phase-space variables (pi, qi) that are the Weyl sym- 
bols for phase-space operators ( f i ,  si) corresponding to 
(a!,&), such that [&,a] = is-'. Eventually, the Weyl 
symbol of the boson Hamiltonian becomes 

where z;  5 (q; +pf)/2. Its minimum configuration is the 
Ndel one, given by {pi,o=O, qi,o=O}. 

The corresponding effective Hamiltonian is easily 
found to be 

sinh f k  - V=  N J S ~  - 
2 '  

+ T C l n  - - 
k f k  

(5) 

The renormalisation parameter ea E 1 - V/2 represents 
the effect of pure-quantum fluctuations, 

where ^fir = (cos k, + cos k y ) / 2 ,  and depends on the fre- 
quency spectrum through fk  = wk/(&). We recall [7] 
that in order to  manage with the PQSCHA in a system 
with many degrees of freedom we must also apply the 
so-called 'low-coupling approximation'. The low- and in- 
termediate temperature calculation of the pure-quantum 
renormalisation parameters deserves a more accurate ap- 
proach, since we are dealing with a system with strong 
classical anharmonicity. In this temperature range we 
have to take the fully renormalised ( i . e . ,  including the 
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classical contribution) frequency spectrum. At higher 
temperatures, 2) decreases and is less dependent on the 
frequency spectrum as f k  tends to vanish. Therefore we 
have the self-consistent definition 

(7) 

where t E T / (  Jg2) is the reduced temperature; the fre- 
quency renormalization parameter e(t) is e(t) = e2(t)  
for t -+ 00, while at low temperature e(t) = n'(t) E 
1 - (D + D,1)/2 = 8' - D,1/2, with 

For increasing temperature, due to the lack of long- 
range-order, only spin waves with wavelength X 5 2( (( 
is the spin correlation length) survive in the system. Ne- 
glecting this, the well-known instability of the frequency 
renormalization n2 is found for t = 04. This unphysi- 
cal feature can be washed out by inserting a correlative 
cutoff (in the antiferromagnetic Brillouin zone) in calcu- 
lating Dclr thus smoothly connecting with the high tem- 
perature regime. 

By rescaling the classical phase-space variables as 
(pi,qi) + (epi,Oqi) the effective Hamiltonian can be 
cast in the same form of Eq. (4), multiplied by the factor 
a4, plus uniform terms. Then, using the classical coun- 
terpart of the DM transformation (2) for spins of length 
e's', we transform to classical spin variables 02s'e, such 
that 181 = 1. We eventually have 

The term G( t )  = tN-1CkIn[sinhf~/(82f~)] - 26% is 
uniform and does not play any role in calculating thermal 
averages. In this Hamiltonian the effects of quantum 
fluctuations are given by: 
i) the log-term that transform the spin-wave contribution 
to the free energy from classical to quantum; 
ii) the renormalized exchange integral J + J.E = tJ4 J, 
that depends on the temperature t and on the spin quan- 
tum number S; 
iii) the appearance of the factor s' = S + f as the classi- 
cal spin-length for the semiclassical renormalization a p  
proach; this is a direct consequence of the PQSCHA 
recipe, without any empirical observation. 

At lowest temperature %,ff reproduces all the results 
of the self-consistent harmonic approximation (SCHA), 
giving the one-loop renormalization effect as long as the 
self-consistent equation (8) for na admits a positive so- 
lution. At t = 0, na = ea gives the one-loop quantum 
correction to the spin stiffness, and decreases with de- 
creasing s; the instability value f12 = 0 is not reached 
using physical values of S. At high temperature 31,s 
approaches the classical situation. At intermediate tem- 
perature there is an interval, whose width is larger the 

smaller is S, where nonlinear quantum effects (due to 
higher order terms in the coupling) are significant; this 
fact could be interpreted as the presence of the so called 
quantum-critical regime [3,4] (QCR). 

The parameter e"(S,t) gives the temperature depen- 
dent effects of the quantum fluctuations on the inten- 
sity of the exchange for different values of the spin. The 
PQSCHA expression of the spin-spin correlation func- 
tion in terms of a classical-like average-with the effective 

and (8ia8i+r)eff appears to be equal to the classical-limit 
average, but at the temperature t , ~  = t/e"(S,t). 

Since the parameter e + 1 as r = Irl increases, 
this means that the temperature behaviour of the quan- 
tum correlation length (( t )  is connected with its classical 
counterpart tC1(t) by the equality 

Hamiltonian iS (-)'(ki * bi+p) = (-).S2e(8i di+r)& 

€(t) = €Cl(tCI) , t C l  = t/@(t)) 1 (10) 

i .e .  (( t )  can be obtained for any spin length starting 
from the classical &,(I!). Values for the latter in the range 
1 5 ( 5 8 have been obtained by Monte Carlo simulation 
[ll] and by high-temperature expansion [6] (HTE). 

We ourselves have performed some Monte Carlo sim- 
ulations in order to extend this data range: using a 
256x256 lattice the classical values we have determined 
are: ((0.70) = 7.8 f 0.1, ((0.65) = 13.2 f 0.3, ((0.60) = 
27.3 f 0.5, and ((0.57) = 52.0 f 1.0 . All the available 
classical data sets agree with each other, so we have used 
the data of Ref. [6] and ours, and fitted them by a (poly- 
nomial x exponential) curve in the range 1 5 ( 5 50. 

The quantum counterparts of this classical curve, ob- 
tained by renormalbation of the temperature scale for 
the spin length values S = f ,  1, and i, are plotted in 
Fig. 1 together with the HTE results [6]. 
In Fig. 2 we report our result for (( t )  at spin S = 

together with experimental data for Sr2CuO2Cla [12,13], 
for LaaCu04 [14,15] and with quantum Monte Carlo re- 
sults [16]. The region where non linear quantum effects 
are relevant ranges from t 2 0.5 to t 5 0.75, which agrees 
with the range of QCR predicted in Ref. [4]. 
In Fig. 3 we compare our curve at spin S = 1 with ex- 

perimental data for LazNiO4 [17] and for KaNiF4 [13]. 
For this spin value, the quantum effect are less rele- 
vant and quantum non linear effects are reduced within 
a shorter interval. 

Our results appear to explain all the experimental data 
[12-15,17,13] for different values of S without any fitting 
parameters. They also agree with the HTE.results of 
Ref. [6], thus confirming the inadequacy of the approach 
by mapping the quantum HAF onto the QNLuM. Most 
importantly, however, we can move to much lower tem- 
peratures where significant experimental data are avail- 
able. On the other hand, the good agreement we still 
find for S = f is an indirect proof that the ground state 
is ordered and that for nearest-neighbor interaction the 
critical value of S is smaller than any physical spin value. 
Finally, we approach with continuity the high-T region, 
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also owing to the presence of the effective spin length 3 
unambiguously determined by the theory itself. 
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T/ J (S+1/2)* 
FIG. 1. Correlation length ( ( t )  vs. reduced temperature 

t = T / J z z ,  for spin S = 00 (classical), 5,  1, and 3. The 
continuous lines are the low- and high-temperature results 
of our theory, and the dashed line represents the applica- 
tion of the cutoff condition for long-wavelength spin waves. 
The filled circles are the classical and quantum results from 
high-temperature expansion [6]; the open circles are our new 
Monte Carlo simulation results. The dash-dotted line is a fit 
to the classical data. 

p4s-1/2 
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FIG. 2. Correlation length ( ( t )  for spin S = fr. Squares: 
experimental data [12,13] for SrzCuOzClz; triangles and dia- 
monds: data for LazCuOd from neutron scattering [15] and 
from '3Cu NQR relaxation [14] experiments, respectively; 
crosses: quantum Monte Carlo results [16]. Lines as in Fig. 1. 
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FIG. 3. Correlation length for spin S = 1. Triangles: ex- 
perimental data [17] for LazNiOd; squares: experimental data 
[13] for K1NiF4. Lines as in Fig. 1. 
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