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Fill-in reduction in sparse matrix factorizations using
hypergraphs

Oguz Kaya1, Enver Kayaaslan2,3, Bora Uçar3,4, and Iain S. Duff5,6

ABSTRACT
We discuss partitioning methods using hypergraphs to produce fill-reducing orderings of
sparse matrices for Cholesky, LU and QR factorizations. For the Cholesky factorization,
we investigate a recent result on pattern-wise decomposition of sparse matrices,
generalize the result, and develop algorithmic tools to obtain more effective ordering
methods. The generalized results help us to develop fill-reducing orderings for LU
factorization in a similar way to those for Cholesky factorization, without symmetrizing
the given matrix A as |A| + |AT | or |AT ||A|. For the QR factorization, we adopt a
recently proposed technique to use hypergraph models in a fairly standard manner. The
method again does not form the possibly much denser matrix |AT ||A|. We also discuss
alternatives for LU and QR factorization where the symmetrized matrix can be used. We
provide comparisons with the most common alternatives in all three cases.

Keywords: fill-reducing orderings, Cholesky factorization, LU factorization, QR factorization,
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1 Introduction

We investigate the space requirement of Cholesky, LU and QR factorizations for sparse matrices.
The Cholesky factorization of a positive definite matrix A ∈ Rn×n is given by A = LLT , where
L ∈ Rn×n is a lower triangular matrix with positive diagonal entries. If A is square and admits an
LU-factorization, then its LU-factorization is given by A = LU, where L is lower triangular, and
U is upper triangular. Let A ∈ Rm×n be a sparse rectangular matrix, m ≥ n, with full column
rank n. The QR factorization of A is given by A = QR, where Q ∈ Rm×m is an orthogonal
matrix, and R ∈ Rm×n is an upper trapezoidal matrix. When A is sparse, these decompositions
result in L,U and R with nonzeros (called fill-ins) at positions that were originally zero in A

or ATA (for QR). Our aim is to reduce the number of nonzeros in L,U and R by permuting
the nonzero structure of A into a special form and respecting this form when performing the
reordering. In all three cases, we permute a matrix, say M which is not A, into a form called
singly bordered block diagonal form (SBBD) where the border consists of a set of columns. In
this form, the removal of the border leaves a block diagonal matrix (the diagonal blocks are not
necessarily square). Our contributions are on the definition of the matrix M for the three types of
factorization and the algorithmic tools to construct M. Once M is defined, we use a hypergraph
partitioning algorithm to permute it into an SBBD form.

In Cholesky factorization, a symmetric permutation is applied to A to reduce the number
of nonzeros in L. There are many alternatives for finding such a permutation (see Duff and
Uçar (2012, Section 2.3.1) for a recent survey). To the best of our knowledge, all existing
methods are based on the standard graph representation of a symmetric matrix, except the work
by Çatalyürek, Aykanat and Kayaaslan (2011). In this latter work, for a given A, the authors
find a sparse matrix M such that the nonzero pattern of A and MTM are identical (we use
A ≡MTM to denote this equivalence). Then the matrix M is permuted into an SBBD form by
a row and a column permutation. The column permutation of M is applied symmetrically to A.
Then, a variant of the well-known minimum degree algorithm (George and Liu 1989) is used to
finalize the ordering on A. We first discuss an algorithm for finding such an M (by using the
subroutine MC37 from the HSL Mathematical Software Library (HSL 2013) that we describe in
Section 3.1.1). This approach is a significant improvement over the existing scheme for obtaining
M, both in run time as well as the effectiveness of the resulting ordering for A. Then we show
that a similar approach can be followed if A ⊆ MTM holds pattern-wise. In other words, the
equality that was enforced in earlier work is a restriction. Without this restriction, we have more
freedom to find a suitable M. We exploit this freedom to devise another class of algorithms that
are based on detecting clique-like structures in the graph of A. This second class of algorithms
run fast and, depending on a control parameter, improve the ordering quality or the run time of
the tools that are used to find an SBBD form with respect to existing methods (Çatalyürek et al.
2011).

In LU factorization, the rows and the columns of A can be permuted nonsymmetrically to
reduce the potential fill-in. Many ordering methods for LU factorization order the matrix A

by using a column permutation, leaving the row permutation flexible for accommodating later
numerical pivoting. In a sense, these methods minimize the fill in the Cholesky factorization of
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ATA. Clearly, the fill in the Cholesky factor of PcATAP T
c is independent of any rowwise

permutation Pr of APc. Some LU factorization methods, such as SuperLU DIST (Li and
Demmel 2003), use a static pivoting scheme during numerical factorization. In these methods,
pivots are always chosen from the diagonal where very small ones are replaced by a larger value
to avoid uncontrolled growth (or even break down) during factorization at the cost of numerical
inaccuracy. When solving a linear system with such approximate factors, iterative refinement is
used to recover the lost accuracy. In such a setting, ordering only the columns of A misses the
opportunity to further reduce the fill-in, as no further pivoting will take place. We show that a
structural decomposition of the form A ≡ CTB can be used to permute A into a desirable form
by permuting both C and B into an SBBD form. We relax this relation and show that as long as
A ⊆ CTB, we can do the same, just as for the Cholesky factorization. We discuss the problem
of finding the required structural decomposition and develop algorithms to tackle this problem.

In QR factorization, if the matrix A satisfies a condition called strong Hall (whose definition
is given later in Section 2) then the fill in R can be reduced by ordering the columns of A. This
is because of the equivalence between the QR factorization of A and the Cholesky factorization
of ATA (Golub and Van Loan 2013, Theorem 5.2.2). The general approach outlined for the
Cholesky and LU factorizations can be followed to reduce the fill-in. A can be permuted to an
SBBD form, thus defining a partial order of columns, and then the final ordering can be finalized
on A using a variant of the minimum degree algorithm. We show that, within this framework,
one needs to find a matrix M so that ATA ⊆MTM, then find an SBBD form of M and finalize
the ordering on A. One way to proceed is to constrain M so that M ⊆ A, and ATA ≡MTM.
Here, we suggest the use of an algorithm from the literature (Çatalyürek et al. 2011, p. 2009).
Our contribution in ordering for QR factorization is therefore to show that certain tools from the
literature can be used in a black box manner to effectively reduce the fill in the R factor. We note
that our algorithm does not need the symmetrized matrix |AT ||A|. We share this property with
Colamd (Davis, Gilbert, Larimore and Ng 2004b), unlike graph partitioning-based approaches,
such as using MeTiS (Karypis and Kumar 1998) on ATA.

The organization of the paper is as follows. We give background material on graphs,
bipartite graphs, and hypergraphs in the following section. The ordering problem for each of
the factorizations is formulated in separate subsections of Section 3. Then, in Section 4, we
summarize some recent related work. The experimental investigations in which we compare the
proposed new approaches with state-of-the-art standard methods are presented in Section 5. We
conclude the paper by a summary in Section 6.

2 Background

2.1 Desirable matrix forms for factorization

We make use of two special forms of matrices described for an m × n sparse matrix A and an
integer K > 1:
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ADB =


A11 A1S

A22 A2S

. . .
...

AKK AKS
AS1 AS2 · · · ASK ASS


(2.1)

ASB =


A11 A1S

A22 A2S

. . .
...

AKK AKS


(2.2)

The first form ADB (2.1) is called doubly bordered block-diagonal (DBBD) form. The second
one ASB (2.2) is called singly bordered block-diagonal (SBBD) form by columns.

An m × n matrix A, with m ≥ n, has strong Hall property by columns, if for every set C
of columns with |C| < n, the number of rows which have at least one nonzero in the columns
in C is at least |C| + 1. In particular, for a strong Hall matrix in SBBD form (2.2), each of the
diagonal blocks (assuming they are non-empty) should have more rows than columns.

The relevance of these forms for Cholesky and LU factorization is that, if A is in a DBBD
form, then the fill-in is confined to the nonzero blocks of A, if the pivots are chosen first from
the diagonal blocks, and then from the last block. Similarly in QR factorization, if A is in
SBBD form, then ATA is in DBBD form; hence, the fill-in is confined to the nonzero diagonal
and border blocks of ATA. We note that using the structure of ATA to control the fill-in
in A is a very well-known technique, see for example early work on sparse QR factorization
algorithms (George and Heath 1980, George, Heath and Ng 1983).

2.2 Graphs and bipartite graphs

The standard graph model G = (V,E) corresponding to an n × n pattern symmetric matrix A

has |V | = n vertices, and an edge (i, j) ∈ E for each off-diagonal nonzero pair aij 6= 0 (and
aji 6= 0) in A.

A bipartite graphG = (U ∪V,E) has two sets of vertices U and V such thatE ⊆ U×V , i.e.,
all edges connect a vertex from U with a vertex from V . A bipartite graph G can be associated
with a sparse matrix B so that bij 6= 0 if and only if (i, j) ∈ E in the bipartite graph, for ui ∈ U
and vj ∈ V .

The edge-node incidence matrix E of a graph G = (V,E), bipartite or undirected, has |E|
rows, each corresponding to a unique edge and |V | columns, each corresponding to a unique
vertex. A row r of E corresponding to the edge (u, v) has two nonzeros, one in the column
corresponding to the vertex u and another in the column corresponding to the vertex v.

2.3 Hypergraphs and hypergraph partitioning

A hypergraph H = (V ,N ) is defined as a set of vertices V and a set of nets (or hyperedges)
N . Every net nj ∈ N is a subset of vertices, i.e., nj ⊆ V . Weights can be associated with the
vertices. We use w(v) to denote the weight of the vertex v and extend this notation to a set of
vertices S as W (S) =

∑
v∈S w(v). In all hypergraph models in this paper, we use unit vertex

weights.
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Given a hypergraph H = (V ,N ), Π = {V1, . . . ,VK} is called a K-way partition of the
vertex set V if each part is nonempty, i.e., Vk 6= ∅ for 1 ≤ k ≤ K; parts are pairwise disjoint,
i.e., Vk ∩ V` = ∅ for 1 ≤ k < ` ≤ K; and the union of parts gives V , i.e.,

⋃
k Vk = V . For

a given K-way vertex partition Π, let Wavg = W (V )/K and Wmax = maxk{W (Vk)} denote
the average and the maximum weight of a part, respectively. Π is then said to be balanced for a
given ε ≥ 0, if

Wmax

Wavg

≤ (1 + ε) . (2.3)

In a partition Π of H, a net that has at least one vertex in a part is said to connect that part.
The connectivity set Λj of a net nj is defined as the set of parts connected by nj . The connectivity
λj = |Λj| of a net nj denotes the number of parts connected by nj . A net nj is said to be cut
(external) if it connects more than one part (i.e., λj > 1) and uncut (internal) otherwise (i.e.,
λj = 1). The set of external nets of a partition Π is denoted NE . The partitioning objective is
to minimize a function called cutsize defined over the cut nets. The relevant definition of the
cutsize function for our purposes in this paper is called the cut-net metric:

cutsize(Π) =
∑
nj∈NE

1 , (2.4)

In the cut-net metric (2.4), each cut net contributes one to the cutsize. Sometimes costs are
associated with the nets, in which case those costs enter as a factor into equation (2.4). For
our purposes in this paper, we do not associate costs with nets and just use the above cutsize
definition. The hypergraph partitioning problem can be defined as the task of dividing the vertices
of a hypergraph into K parts so that the cutsize is minimized, while a balance criterion (2.3) is
met for a given ε. The hypergraph partitioning problem is known to be NP-hard (Lengauer 1990).

2.4 The column-net hypergraph model

We use the column-net hypergraph model (Çatalyürek and Aykanat 1999) of sparse matrices.
The column-net hypergraph model HC = (R, C) of an m × n sparse matrix A has m vertices
and n nets. Each vertex in R corresponds to a row of A. Similarly, each net in C corresponds
to a column of A. Furthermore, for a vertex ri and net cj , ri ∈ cj if and only if aij 6= 0. Each
vertex has unit weight. A K-way partition Π = {V1, . . . ,VK} of the column-net model of a
sparse matrix A can be used to permute A into a singly-bordered form

PrAP
T
c =


A11 A1C

A22 A2C

. . . ...
AKK AKC

 , (2.5)

where Pr and Pc are permutation matrices (Aykanat, Pinar and Çatalyürek 2004). Pr permutes
the rows of A so that the rows corresponding to the vertices in part Vi come before those in
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part Vj for 1 ≤ i < j ≤ K. Pc permutes the columns corresponding to the nets internal to
part Vi before the columns corresponding to the nets internal to part Vj for 1 ≤ i < j ≤ K,
and permutes the columns corresponding to the cut nets (external nets) to the end. Clearly, the
border size is equal to the number of cut nets as measured by the cutsize function (2.4).

3 Problems and algorithms

For the three standard factorizations, we will define a suitable matrix M. The matrix M will
then be permuted to an SBBD form, using the column-net hypergraph model which will result
in a DBBD form for the matrix MTM or any subset of it, in particular for A ⊆ MTM or
ATA ⊆ MTM. Then, the final ordering on the given matrix A will be obtained by using a
suitable variant of the minimum degree algorithm.

3.1 Cholesky factorization

Let A be a pattern symmetric matrix with a zero-free diagonal, and let M be a matrix such
that A ≡ MTM holds pattern-wise. Suppose that the column-net hypergraph model of M is
partitioned to obtain MSB = PrMPc as in (2.5). Çatalyürek et al. (2011) show that Pc can be
used effectively to permute A into a DBBD form. We restate this as a theorem.

Theorem 1 (Çatalyürek et al., 2011). Let M be a matrix in a singly bordered block diagonal
form by columns. Then A ≡MTM is in doubly bordered block diagonal form.

This structural decomposition-based formulation has some advantages (Çatalyürek et al.
2011, p. 2000) over the graph partitioning-based algorithms used in current state-of-the-art
partitioning methods. In this work, we generalize the structural decomposition formulation
restated in Theorem 1 with the following theorem.

Theorem 2. LetAn×n and Mn×n be two matrices where A is pattern symmetric and A ⊆
MTM. Let Pr and Pc be two permutation matrices such that MSB = PrMP T

c is in singly
bordered block diagonal form by columns. Then PcAP T

c is in doubly bordered block diagonal
form.

Proof. Since the nonzero pattern of A is a subset of MTM, for permutation matrices Pc and Pr
it holds that PcAP T

c ⊆ PcM
TMP T

c = PcM
TP T

r PrMP T
c = MT

SBMSB. Theorem 1 implies
that MT

SBMSB is in DBBD form. Hence, PcAP T
c is also in DBBD form since PcAP T

c ⊆
MT

SBMSB.

The theorem essentially says that for a given A, we can find an M that is different from a
matrix resulting from an exact structural decomposition of A. Our aim is to exploit this freedom
to reduce the cost of the hypergraph partitioning algorithm. This can be achieved by having a
small number of rows and a small number of nonzeros in M. However, we need to ensure that
MTM is not very far from A; for example, one condition may be that MTM \ A should not
contain many entries. We now discuss some methods for constructing M.
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3.1.1 Existing solutions.

First, we could choose M to be the edge-node incidence matrix of the graph of A. This implies
that MTM\A = ∅. However, M will have nnz(tril(A))−n rows and twice as many nonzeros
as A. Thus, even if the algorithm to create the edge-node incidence matrix M from A can be
done in O(n+ τ) time, one cannot expect much from this formulation.

Çatalyürek et al. (2011) present algorithms to construct an M for a given (pattern symmetric)
A. Their objective is to minimize the number of rows in M while having MTM \A = ∅. They
show that this is equivalent to finding a minimum edge clique cover of a graph, which is an
NP-complete problem. In order to develop efficient algorithms, they restrict the cliques to be of
maximum size ` for some ` ≥ 3, where ` = 2 corresponds to using the edge-node incidence
matrix. The algorithm requires O(n∆`) time and O(n∆`−1) space, and creates cliques of size
2-to-`, where ∆ is the maximum degree of a vertex. Çatalyürek et al. (2011) recommend ` = 3

or ` = 4 for practical problems.
We propose the use of MC37 from HSL (HSL 2013) as an alternative method. In MC37,

a rowwise representation of the lower triangular part of the matrix is first formed, with column
indices in order within the rows. MC37 then proceeds greedily. It visits the rows of this sorted
matrix in reverse order. At a row, the nonzero entries that are not already covered by the existing
cliques are traversed. Any nonzero entry either adds the corresponding column to the current
clique, or starts a new clique (with the current row). This way MC37 builds as large cliques as
it can. When the cliques covering the nonzeros in a row are constructed, the nonzero entries
(in other rows) contained in those cliques are marked as covered. At the end, the rows of M
correspond to the cliques that are identified, where the nonzeros in a row of M correspond to
the vertices in the associated clique. MC37 guarantees that MTM \A = ∅. The algorithm runs
in O(

∑
r2i ) where ri is the number of nonzeros in the ith row of the lower triangular part of A.

MC37 can find larger cliques than the algorithm of Çatalyürek et al. (2011).

3.1.2 Proposed method: Covering with quasi-cliques.

The algorithm we propose is a generalization of the algorithm implemented in MC37. Instead of
finding cliques, we find sets of vertices that are close to being a clique to cover the edges of the
standard undirected graph model of A. More formally, for a given β > 0, a set of vertices S ⊆ V

is called a β-quasi-clique (or β-clique for short) of a graph G = (V,E), if |S×S∩E|
|S|(|S|−1)/2 ≥ β. Once

the quasi-cliques are found, the matrix M can be constructed as before (its rows correspond to
quasi-cliques and its columns correspond to vertices in those cliques). Our aim is to cover the
nonzeros with the minimum number of β-cliques. The optimization problem that we pose is
the following, where a nomenclature common in the computer science literature is used, see for
example Ausiello, Crescenzi, Kann, Marchetti-Sp, Gambosi and Spaccamela (1999).

MINIMUM QUASI-CLIQUE COVER (MQCC)
Instance: An undirected graph G = (V,E) and a fixed real number β such that 0 < β < 1.
Solution: A β-quasi-clique cover C = {C1, C2, . . . , Ck}, where each Ci is a β-quasi-clique.
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Measure: Cardinality k of the cover, i.e., the number of β-quasi-cliques Ci.

Kaya, Kayaaslan and Uçar (2013) show that the Minimum Quasi-Clique Cover problem is
NP-complete. We therefore propose a heuristic algorithm, shown in Algorithm 1.

Algorithm 1 QCC(G, β)

Require: An undirected graph G = (V,E)

Ensure: C = {C1, C2, . . . , Ck}: a β-quasi clique cover C with k elements
C ← ∅; i← 1; score(v)← 0 for all v ∈ V {initialization}
while E 6= ∅ do
v ← a node with maximum degree {v is the seed of a clique}
Ci ← ∅
B ← ∅ {vertices having a neighbour in quasi-clique Ci}
repeat
Ci ← Ci ∪ {v}
for each u ∈ adj(v), u /∈ Ci do

score(u)← score(u) + 1

B ← B ∪ u {u is not added twice to B}
end for
v ← a vertex from B with maximum score

until 2 |E(Ci)|+score(v)
|Ci|(|Ci|+1)

< β

C ← C ∪ {Ci}
E ← E \ Ci × Ci {purge also the adjacency list of vertices in Ci}
score(v)← 0 for all v ∈ B
i← i+ 1

end while

The proposed heuristic QCC performs a number of iterations (the while loop). At each
iteration the algorithm grows a quasi-clique (the repeat-until loop) using uncovered edges in
the graph as long as the edge density of the current quasi-clique is above the given number
β. After a quasi-clique is formed, covered edges are removed from the graph before starting
the next iteration. At each step of greedily growing the current quasi-clique, a vertex with the
maximum score (which is the number of neighbours in the current quasi-clique) is added to the
quasi-clique. We use the following two tie-breaking strategies if more than one vertex has the
maximum score. The first strategy picks the vertex with the smallest degree (denoted by SF).
The motivation behind this strategy is that it is relatively harder for a small degree vertex to have
a high connectivity to a quasi-clique. Therefore, whenever a tie occurs, to avoid having to cover
the edges incident on such a vertex with small quasi-cliques, it might be preferable to cover
these edges by adding the small degree vertex to the quasi-clique. The second strategy breaks
the ties by picking the vertex with the largest degree (denoted by LF) in order to maximize the
connectivity of the potential vertex candidates for the current quasi-clique. Thereby, it aims to
form larger quasi-cliques.
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The run time of the proposed QCC heuristic is O(
∑
d2i ) where di is the degree of the vertex

vi. This is a pessimistic estimate and is based on the following observation. A vertex vi can be
added to di quasi-cliques and updating the score of its neighbours with respect to the most recent
quasi-clique requires O(di) time. Summing over all vertices yields the desired result. This will
rarely be attained in practice as once a quasi-clique is formed, many of the neighbours of a vertex
will appear in that clique and the cardinality of the edge set will reduce significantly. On the other
hand, the formula suggests that we should be careful when there are some high degree vertices.
In that case, many of the cliques containing those vertices will be small in size and the repeated
score updates will increase the run time. We therefore handle high degree vertices separately in
our practical algorithm for matrix ordering (by removing those vertices from the graph of A so
that the quasi-clique cover algorithms do not need to cover the incident edges). Depending on β,
the number of quasi-cliques (i.e., the number of rows of M) found by the proposed heuristic is
more likely to be less than the number of cliques found by MC37. Similarly, the total size of the
quasi-cliques (i.e., the number of nonzeros in M) is more likely to be less than the total size of
the cliques found by MC37.

3.2 LU factorization

Consider an LU factorization of a (pattern) unsymmetric matrix A with a static pivoting strategy.
In this case again, it is desirable to put A into doubly bordered block diagonal form to confine
the fill-in to the nonzero blocks. Since A is unsymmetric, the structural decomposition schemes
described in Theorems 1 and 2 are not relevant. The required decomposition is described by the
following theorem.

Theorem 3. Let An×n, Bm×n and Cm×n be three matrices so that A ≡ CTB holds. Let
M ≡ B+C be the union of nonzero patterns of B and C. Also, let Pr and Pc be two permutation
matrices such that PrMP T

c is in singly bordered block diagonal form. Then, PcAP T
c is in doubly

bordered block diagonal form.

Proof. Clearly, CTB ⊆ MTM, since the nonzero structure of M is the union of that of B and
C. Theorem 1 implies that if PrMP T

c is in SBBD form, then PcMTMP T
c is in DBBD form.

Since A ≡ BTC ⊆MTM, Theorem 2 implies that PcAP T
c is in DBBD form.

Notice that Theorem 3 is a generalization of Theorem 1. In particular, for a symmetric A,
one can take B ≡ C and recover Theorem 1. However, by only requiring that CTB = BTC,
other kinds of structural decompositions for a symmetric matrix can be devised — we have not
investigated this possibility yet.

As we did before, we can relax the equivalence constraint in the above theorem. We state
this as a theorem.

Theorem 4. Let An×n, Bm×n and Cm×n be three matrices such that A ⊆ CTB. Let Pr and Pc
be two permutation matrices such that PrMP T

c where M ≡ B + C is in singly bordered block
diagonal form by columns. Then PcAP T

c is in doubly bordered block diagonal form.
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Proof. Since A ⊆ CTB ⊆MTM, Theorem 2 implies that any permutation matrix Pc that puts
PrMP T

c in SBBD form also puts PcAP T
c in DBBD form.

Theorem 4 again highlights the freedom available for finding the matrices B and C. After
discussing some existing solutions for the decomposition in Theorem 3, we will propose two
methods which take advantage of the inequality in Theorem 4.

3.2.1 Existing solutions.

First, consider the A ≡ CTB case. Here we want to construct such a C and a B that the ith
column of C has nonempty inner products with those columns of B which are indexed by the
nonzero columns in the ith row of A. This can be best understood with the help of bipartite
graphs, which we discuss below.

A biclique (R,C) in a bipartite graph GB = (U ∪ V,E) contains two sets of vertices R ⊆ U

and C ⊆ V such that for all r ∈ R and c ∈ C, we have the edge (r, c) in E. If we have a set of
bicliques B covering all edges of the bipartite graph of a square matrix A, then we can construct
the matrices C and B both with |B| rows and n columns as follows. For each biclique (R,C),
we have a row in C containing nonzeros in the columns corresponding to those rows of A in
R, and we have a corresponding row in B containing nonzeros in the columns corresponding to
those columns of A in C.

Clearly, such a structural decomposition exists, as we can take C ≡ I and set B ≡ A. In
order to see the relationship with the bipartite graph GB = (U ∪ V,E) and its bicliques, we note
that the decomposition C ≡ I and B ≡ A corresponds to using a biclique containing a single
column vertex with all of its neighbouring row vertices. In general, however, one should search
for a smaller number of bicliques. The underlying problem is known as the minimum biclique
cover (MBC) problem which is NP-hard (Orlin 1977) and can be stated as follows.

MINIMUM BICLIQUE COVER (MBC)
Instance: A bipartite graph G = (U ∪ V,E).
Solution: A biclique cover C = {C1, C2, . . . , Ck}, where each Ci induces a biclique.
Measure: Cardinality k of the cover, i.e., the number of bicliques Ci.

Ene, Horne, Milosavljevic, Rao, Schreiber and Tarjan (2008) propose an exponential time
exact algorithm for MBC problem which turns out to be practical for their problems. They also
propose a polynomial time greedy algorithm. The greedy algorithm constructs one biclique at
a time by choosing a row vertex r and all of its neighbours adj(r), and then adds all other row
vertices that are adjacent to all column vertices in adj(r) to the biclique. A number of criteria
are used to select the first vertex r: fewest uncovered incident edges, most uncovered incident
edges, and a random available vertex (that has some uncovered incident edges). Ene et al. found
that the first criterion is better than the others.
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3.2.2 Proposed methods I: Covering with quasi-bicliques.

The above solutions are applicable for Theorem 3. We formalize the underlying problem for
Theorem 4, based on quasi-bicliques that are analogous to quasi-cliques in undirected graphs.

MINIMUM QUASI-BICLIQUE COVER (MQBC)
Instance: A bipartite graph G = (U ∪ V,E) and a fixed real number β such that 0 < β < 1.
Solution: A β-quasi-biclique cover C = {C1, C2, . . . , Ck}, where each Ci is a β-quasi-biclique.
Measure: Cardinality k of the cover, i.e., the number of β-quasi-bicliques Ci.

Once the β-cliques are found, the matrices B and C can be constructed as before. The
MQBC problem seems to be as hard as the MQCC problem. We therefore propose a heuristic
algorithm for the MQBC problem. The algorithm is similar in structure to the proposed QCC
algorithm and grows one β-quasi-biclique at a time. Since the underlying graph is bipartite we
need to adapt Algorithm 1 in the following ways: (i) the boundary vertex set of a biclique is also
bipartite; (ii) the score is updated for one set (row or column vertices) of boundary vertices; (ii)
the clique density formula in the repeat-until loop depends on the type of the vertex with the
maximum score (a column vertex c which has a smaller score than a row vertex r can result in a
denser biclique than r does). These differences necessitate keeping the row and column vertices
separately. As in the QCC algorithm, each vertex vi in the bipartite graph with a degree di can
appear at most di times in a quasi-biclique, and each time O(di) time can be spent in updating
the scores of its neighbours, yielding a worst-case run time complexity of O(

∑
d2i ).

3.2.3 Proposed methods II: Exploiting symmetrization.

Our second proposal is to make use of the methods discussed in Section 3.1.1. Consider the
structural decomposition of the symmetrized matrix A+AT ≡MTM using any of the methods
discussed in Section 3.1.1. For such an M, we can find C and B such that M ≡ C + B, and
A ⊆ CTB (in particular we can take C ≡ B ≡ M). Since we do not need the individual
matrices B and C, but their sum, having M is enough for fill-reducing purposes. That is, the
structural decomposition methods used in the Cholesky case when applied to A + AT compute
a matrix M ≡ C + B such that A ⊆ MTM, without finding the individual matrices B and C

described in Theorem 4.

3.3 QR factorization

Consider the QR factorization of anm×nmatrix A withm ≥ n having the strong Hall property
by columns. The R-factor R is equal to the Cholesky factor of ATA. One can permute A

into an SBBD form by columns (so that ATA is in doubly bordered form) to restrict the fill-
in to certain regions and finalize the ordering within blocks using a variant of the minimum
degree heuristic. As discussed before, A can be permuted into SBBD form using hypergraph
partitioning methods (Aykanat et al. 2004). In this case also we can find a better matrix M to
permute A into SBBD form. We first start with a corollary describing one such M.
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Corollary 1 (to Theorem 1). Let Am×n and Mp×n be two matrices such that ATA ≡MTM. Let
Pr and Pc be two permutation matrices such that PrMP T

c is in singly bordered block diagonal
form by columns. Then PcATAP T

c is in doubly bordered block diagonal form.

The corollary is easy to establish using Theorem 1 by considering the matrix B ≡ ATA and
its structural decomposition B ≡ MTM. As we have done before, the equivalence constraint
can be relaxed. We state this as a corollary to Theorem 2.

Corollary 2 (to Theorem 2). Let Am×n and Mp×n be two matrices such that ATA ⊆MTM. Let
Pr and Pc be two permutation matrices such that PrMP T

c is in singly bordered block diagonal
form by columns. Then PcATAP T

c is in doubly bordered block diagonal form.

The proof of the corollary can again be obtained by considering the matrix B ≡ ATA and
its super set B ⊆MTM as in Theorem 2.

It can be seen that A can be permuted into singly bordered block diagonal form using the
column permutation Pc and a row permutation. In the singly bordered form ASB, each diagonal
block should have at least as many rows as columns for the QR factorization to respect the
predicted fill-in correctly. Since we assumed the strong Hall property by columns, this condition
is satisfied a priori.

As before, a good M should have a small number of rows and a small number of nonzeros,
and MTM should not be far from ATA. One way to guarantee this is to consider the set
of matrices whose sparsity pattern is a subset of that of A. Çatalyürek et al. (2011) propose
a method called sparsification to find a matrix M by deleting nonzeros from A (they use
sparsification for Cholesky factorization). The essential idea is to check nonzeros in each column
j one by one to see if they are necessary to have MTM ≡ ATA, and if so to copy those entries
to M. This is done by considering the vertices in all cliques containing the given column j. If
the vertices in a clique, say i corresponding to row i, appear in other cliques containing j, the
membership of j in the first one can be discarded by not copying the nonzero entry aij to M.
At a column, the discarded entries should be taken into account while processing nonzeros. The
overall complexity of the algorithm is O(

∑
i |ri|2), where |ri| denotes the number of nonzeros

in row i of A. A similar algorithm is discussed elsewhere (Ennis, Fayle and Ennis 2012, Section
4).

4 Some related work on the nested dissection ordering

As we said earlier, our theoretical findings generalize those of Çatalyürek et al. (2011) for the
Cholesky factorization. We now summarize some other recent related work based on the nested
dissection ordering and highlight our contributions with respect to them.

Brainman and Toledo (2002) discuss a nested dissection based method to minimize fill-in in
the LU factorization with partial pivoting. They find a column ordering Q for A which reduces
the fill-in in the Cholesky factor of QTATAQ. This way they exploit the fact that the effect of
any row permutation on the fill-in is accounted for. The proposed method does not form ATA.
First a separator is found for the graph of A + AT using standard tools (such as MeTiS). The
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separator is then modified to be a separator for ATA. Our approach in finding a singly bordered
form for A is similar in the sense that the size of the separator in ATA is reduced without ever
forming the product ATA. Our approach is more direct in the sense that the objective of the
partitioning is to reduce the size of the border (in other words, the size of the separator in ATA).

Aykanat et al. (2004) discuss methods to obtain singly bordered block diagonal forms for
arbitrary matrices. Their motivation is for load balancing in parallel factorization, where the
size of the border corresponds to the size of the serial subproblem. They use hypergraphs where
the hypergraph partitioning function corresponds to the size of the border. We show that this
approach is also useful in reducing fill-in.

Hu and Scott (2005) obtain a singly bordered block diagonal form for square matrices by
finding vertex separators in the graph of A + AT by combining earlier ideas (Brainman and
Toledo 2002, Hu, Maguire and Blake 2000). Duff and Scott (2004) exploit such forms to develop
an efficient parallel unsymmetric LU factorization based solver.

Grigori, Boman, Donfack and Davis (2010) discuss hypergraph partitioning models in the
spirit of Brainman and Toledo’s approach. That is, they obtain a singly bordered block diagonal
form for A which corresponds to a doubly bordered block diagonal form for ATA. We show
that, in this case, sparsification helps to reduce the run time and also reduces the cutsize.

Fagginger Auer and Bisseling (2011) use geometric information associated with a matrix
(or create that information automatically) to permute a given square matrix into doubly bordered
block diagonal form with two diagonal blocks (and a border). Then each diagonal block is
recursively partitioned into two. The overall approach is geared towards GPU-like systems
having many-cores with shared memory.

The proposed ordering methods for LU or indeed any ordering methods based solely on
matrix structure are particularly suitable when performing LU factorization with static pivoting.
This is the numerical factorization scheme used for example by SuperLU DIST (Li and Demmel
2003). In such LU factorization methods, a column permutation is first found (e.g., MC64’s
maximum product algorithm) so that the resulting matrix has large entries on its diagonal; then
the diagonal entries are used as pivots during factorization (no further pivoting will take place).
In this case, permuting A to doubly bordered block diagonal form so as to confine the fill-in
to the nonzero blocks is a good way to control it. Methods based on singly bordered form, or
in general those that are based on the pattern of ATA, would in general result in much more
fill-in when performing LU factorization with static pivoting. Of course, the proposed ordering
methods can be used with LU factorization methods that perform pivoting. However, in this case
the effectiveness of the proposed methods cannot be easily evaluated.

5 Experiments

We present the experimental results in three subsections, each concerned with one of the
factorizations. We summarize the findings in a final subsection. The experimental set up and
data sets are different for the three factorizations and therefore are described in the corresponding
subsection. Some parts of the set up are common. We use PaToH (Çatalyürek and Aykanat
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1999) through its Matlab interface (Uçar, Çatalyürek and Aykanat 2010, Uçar, Çatalyürek and
Aykanat 2009) for hypergraph partitioning. All matrices are from the UFL collection (Davis
and Hu 2011). Since PaToH uses randomized algorithms, we run each ordering algorithm
(that uses PaToH as a partitioner) five times and report the average values in the following.
In all our experiments, we use PaToH with the setting “quality”. This setting improves the
quality of PaToH’s results although with increased run time. This way we demonstrate better
the effectiveness of the structural decomposition methods and the importance of partitioning.
In preliminary experiments (Duff, Kaya, Kayaaslan and Uçar 2013), we used PaToH with the
setting “default”. The “quality” setting improved the resulting fill-in uniformly in all experiments
by around 3% for all our structural decomposition methods.

5.1 Cholesky factorization

The matrices used in our experiments are chosen to satisfy the following properties. They are
square, of order greater than 70000, have at least 2.5 nonzeros per row on average, and have
at most 20 million nonzeros. These properties ensure that the matrices are not too small, and
are not close to being diagonal, but are small enough to be run using Matlab. The properties
enable an automatic selection of a set of matrices from diverse application domains without
having to specify each individually. Because the current UFL index does not contain much fill-
in information for matrices, we used an older index of the collection which had 2328 matrices.
222 of these matrices have the properties that we just described. For matrices with unsymmetric
patterns, we used the symmetrized matrix A+AT . We made the diagonal of A zero-free. After
this preprocessing, some of the matrices were reducible, and there were some with the same
pattern. We discarded the reducible ones and kept only one matrix from a set of duplicates.
There were then a total of 119 matrices. As is common practice with ordering methods, we
identify dense rows/columns (similarly to Colamd (Davis et al. 2004b), we identify dense rows
as rows/columns having more than 10

√
n nonzeros, for a matrix of size n) at the outset and apply

the ordering methods to the remaining rows/columns. The final ordering on the matrix A is then
obtained by putting the dense rows/columns at the end.

We try β ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for the algorithm QCC (Algorithm 1). We present
three sets of experiments. In the first set (Section 5.1.1), we identify the best tie-breaking
mechanism in QCC. In the second set (Section 5.1.2), we try to find a β that strikes a good
balance between partitioning run time and ordering quality. In the third set of experiments
(Section 5.1.3), we compare the proposed ordering approaches with the hypergraphs created
by QCC(β) and MC37, which are denoted as HQCC(β) and HMC37, with three alternatives: (i)
using the clique-covers CC to create hypergraphs (Çatalyürek et al. 2011), denoted as HCC ; (ii)
AMD (Amestoy, Davis and Duff 1996); and (iii) MeTiS (Karypis and Kumar 1998).

5.1.1 Tie-breaking in QCC.

We investigate the tie-breaking mechanisms of QCC in order to choose the best strategy. For each
β, we run the algorithm with the tie-breaking mechanism of favouring the nodes with smaller

13



mM nnz(M)

β LF SF LF SF
0.5 10 112 20 102
0.6 14 108 25 96
0.7 34 113 34 112
0.8 37 112 38 111
0.9 40 110 44 106
1.0 65 85 75 75

Table 5.1: The number of matrices (each cell can be at most 119) in which a tie-breaking
mechanism, smaller first (SF) or largest first (LF), was the best for differing β.

degrees first (SF) for expanding cliques and with the one favouring the nodes with larger degrees
first (LF). We then counted how many times each mechanism was better (in the case of ties, the
scores of both are incremented) with respect to the number mM of rows in M and the number
nnz(M) of nonzeros in M. The scores are shown in Table 5.1. As seen from this table, SF
obtained a better score than LF in both metrics for all β in the test set. As β increases, the
difference is less marked with often the same values for SF and LF. We see this because the
scores add up to a number larger than the number of matrices, 119. For β = 0.5 there are
only three such cases; this number increases with increasing β and is 31 for β = 1.0. From
these experiments, we identify the tie-breaking mechanism of favouring the nodes with smaller
degrees first as preferable, especially when β is small, as this yields fewer rows and nonzeros in
M.

5.1.2 The parameter β in QCC.

The parameter β affects (i) the run time of the algorithm QCC; (ii) the number of rows of
the approximate structural factor M (this also affects the number of nonzeros of M); (iii) the
partitioning time (of the hypergraph partitioning tools applied to M); and (iv) the quality of the
final ordering on the matrix A. It is expected that the smaller β is, the faster the QCC algorithm
and the smaller the number of rows in the structural factor M, as there will be less quasi-cliques.
The quality of the final ordering on the matrix A is expected to increase when increasing β, since
the approximation becomes better. We now observe this expected outcome on the data set.

We present some statistics for all matrices in our data set for differing β in Table 5.2. In
this table, we compare the effect of different structural decomposition methods for creating
hypergraphs. As seen in this table, the number of rows of M, i.e., the number of quasi-cliques,
increases with increasing β (and also the number of nonzeros of M increases). Increasing β
results in an improved ordering quality with HQCC(β). This however increases the run time for
the structural decomposition algorithm QCC and the run time for PaToH, where QCC is always
much faster. The β values {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} resulted in the most fill-in for 78, 23, 8, 0,
4, and 6 cases, respectively. Given these results, we identify 0.7 ≤ β ≤ 0.8 as a good choice:
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time (s.)
method nrows(M)

nrows(A)
nnz(M)
nnz(A)

StrDcp PaToH |L|
|L|β=0.5

HQCC(0.5) 0.44 0.20 0.29 15.75 1.00
HQCC(0.6) 0.81 0.25 0.37 19.51 0.98
HQCC(0.7) 2.10 0.37 0.53 29.82 0.92
HQCC(0.8) 2.29 0.40 0.59 32.94 0.90
HQCC(0.9) 3.09 0.49 0.76 42.31 0.89
HQCC(1.0) 3.58 0.56 0.98 51.19 0.89

HCC 3.36 0.65 0.98 42.77 0.90
HMC37 2.01 0.47 0.69 27.76 0.88

Table 5.2: Geometric mean over all matrices. The column StrDcp gives the geometric mean
of the run time of different structural decomposition algorithms. The column |L|

|L|β=0.5
is the

geometric mean of the fill-in with respect to that of β = 0.5.

β values larger than 0.8 offer little improvement in the fill-in with increased run time for the
partitioning. For comparison, we also present results with HCC , using the clique cover (CC)
method (Çatalyürek et al. 2011), and also with the proposed HMC37. As seen from the results,
among the two exact structural decomposition methods, MC37 is preferable to CC. The sizes of
the resulting hypergraphs are smaller for MC37 than when using CC, and the resulting fill-in is
less when MC37 is used to obtain an ordering. We defer further comparison of the structural
decomposition methods in terms of fill-in to the next subsection.

5.1.3 Fill-in comparison with other methods.

The structural decomposition method should not be applied to all matrices for fill-reducing
purposes. Consider, for example, the model problem which corresponds to the 5-point
discretization of a 2D domain. In the corresponding graph, the maximum cliques are of size 2,
and the best clique cover corresponds to the node-edge incidence matrix. This would create too
many cliques. We prefer a small number of cliques or quasi-cliques (with respect to the number
of vertices). Furthermore, if quasi-cliques are used, the pattern of MTM should preferably be
close to that of A. One way to use structural decomposition methods is to develop some criteria
as to when to use them (and to use the state of the art methods, such as MeTiS, in the remaining
cases). In preliminary investigations (Duff et al. 2013), we proposed such recipes for HCC ,
HQCC(0.8) and HMC37 where approximately a 2.5% improvement over MeTiS was obtained for
each method. The “quality” setting of PaToH tries many algorithms in the multi-level framework
to obtain improved results. This makes the quest for finding a recipe difficult. Therefore, our
recipe for the use of a structural decomposition method is the ideal recipe: run MeTiS and
the proposed method, and then choose the better result. Such ideal recipes are used in actual
solvers (Chen, Davis, Hager and Rajamanickam 2008, Duff and Scott 2006) as poly-algorithms.

Table 5.3 compares different methods with AMD and MeTiS. In this table, the number of
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AMD HCC HMC37 HQCC(β) with different β
0.5 0.6 0.7 0.8 0.9 1.0

num 22 39 50 21 24 33 42 41 41
min 0.11 0.10 0.10 0.11 0.11 0.10 0.10 0.10 0.10
gmean 0.77 0.86 0.87 0.79 0.80 0.83 0.86 0.85 0.85
overall improvement 0.04 0.05 0.06 0.04 0.04 0.05 0.05 0.05 0.05

Table 5.3: Performance of different algorithms with respect to MeTiS in terms of fill-in for
Cholesky factorization. The rows “num”, “min”, and “gmean” concern the cases where each
method obtains strictly smaller fill-in than MeTiS. The last row shows the improvement in all
119 matrices where the method is used only in the matrices in which it was better than MeTiS,
and MeTiS is used in the rest.

matrices (among 119) in which a method obtained better fill-in than MeTiS is given in the row
“num”. The minimum ratio and the geometric mean of fill-in with respect to that of MeTiS is
given in the next two rows (for the matrices in which better results than those of MeTiS are
obtained). By looking at the geometric means (the row gmean in the table), one notices at least
13% improvement with respect to MeTiS with the proposed methods. However, this should be
put into perspective by using all the matrices in the data set (this was our aim in choosing a
large set of matrices automatically). To do so, we give the overall improvement over the whole
data set in the final row of the table. The overall improvement of a method is computed by
using the method when it gives a better result than MeTiS and by using MeTiS on other cases.
For example, if HMC37 is used in 50 matrices from the data set (where it obtains better results
than MeTiS) and MeTiS is used in the other 69 matrices, we obtain an improvement of 6% with
respect to using MeTiS only. As seen in the table, with a good choice of pattern factorization
method, improvements of 4% to 6% in the fill-in are possible with respect to MeTiS. Also as seen
in the table, the minimum ratio achieved by all methods with respect to MeTiS is around 0.10
(always on the matrix Sandia/ASIC 680k). Removing this matrix from the data set yields
2% overall improvement withHQCC(0.5), 3% overall improvement with AMD,HCC ,HQCC(0.6),
HQCC(0.7),HQCC(1.0), and 4% overall improvement withHMC37,HQCC(0.8), andHQCC(0.9).

5.2 LU factorization

We used matrices satisfying the following properties. They are real, square, of order greater
than 10000, have at least 4 nonzeros per row on average, have at most 20 million nonzeros
and, as reported in the UFL collection, have a numerical symmetry smaller than 0.85. We
exclude matrices recorded as “graph” in the UFL collection, because most of these matrices
have nonzeros from a small set of integers (for example {−1, 1}) and are reducible. Again,
these properties are used for automatically selecting a set of matrices from diverse application
domains. There were a total of 41 matrices in the UFL collection satisfying these properties.
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AMD HMC37

num 9 23
min 0.61 0.62
geomean 0.85 0.92
overall improvement 0.04 0.05

Table 5.4: Performance of different algorithms with respect to MeTiS (with A + AT ) in terms
of fill-in for LU factorization on the matrices where the method obtains strictly less fill-in than
MeTiS. The last row shows the improvement over all instances where the method is used only in
the cases in which it was better than MeTiS and MeTiS is used in the rest. There are 37 matrices
in total.

On four of those matrices (with ids 898, 2260, 2265, and 2267) LU factorization took too much
time with some of the ordering methods. We removed these matrices and experimented with 37
matrices in total. We first permuted the matrices columnwise with MC64 (Duff and Koster 2001)
to have the main diagonal corresponding to a maximum product matching and scaled the matrices
such that the diagonal entries were one, and the others no larger than one in magnitude. We then
added a diagonal shift (equal to the order of a matrix) to the matrices to ensure strong diagonal
dominance. The matrices are then ordered with AMD (Amestoy et al. 1996) (run on A + AT ),
Colamd, Hund (Grigori et al. 2010) (on A), and MeTiS (on A+AT ) and the resulting matrix was
factorized with SuperLU (Demmel, Eisenstat, Gilbert, Li and Liu 1999, Li, Demmel, Gilbert,
Grigori, Shao and Yamazaki 1999). On any given matrix, the fill-in resulting from orderings
returned by Colamd was always much worse than the others (this is expected as Colamd reduces
a bound on the fill-in that could result from any row interchanges). This was also true for Hund
for the same reason (the geometric mean of the ratio of the fill-in due to Hund to that due to
MeTiS was 1.88 on the aforementioned data set). We therefore do not include the results with
Colamd or with Hund and exclude these two ordering methods from the remaining discussion.

Given the success of HMC37 for the Cholesky factorization, we used MC37 on A + AT to
get a structural factor as proposed in Section 3.2.3. This turned out to be better than our bi-quasi-
clique cover based heuristics. We therefore present results only with hypergraph partitioning
based ordering where MC37 is used to obtain the hypergraphs. The overall algorithm is again
denoted byHMC37.

As was done in the previous subsection, we examine the potential of using the structural
decomposition in Table 5.4. In this table, the number of cases in which a method has obtained
better fill-in than MeTiS is given in the row “num”. The minimum ratio and the geometric mean
of fill-in with respect to that of MeTiS is given in the next two rows. The final row gives the
improvement over the whole data set, where a method is used when it gives a better result than
MeTiS (that is, for example, HMC37 is used in 23 matrices and MeTiS is used in the other 14
matrices). As seen in the table, with a good choice of a structural decomposition method, an
overall improvement of 4% to 5% in the ordering is possible. We note that if HMC37 is used for
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MeTiS Hs HMC37

min 0.48 0.55 0.49
max 1.14 1.08 0.98
gmean 0.78 0.89 0.77
min 0.66 0.68 0.67
max 1.13 1.02 1.14
gmean 0.93 0.91 0.90

Table 5.5: Performance of different algorithms with respect to Colamd in terms of fill-in for QR
factorization on general rectangular matrices (top half of the table) and on the LPnetlib matrices
(in the bottom half of the table).

all 37 matrices, the geometric mean of the ratio to MeTiS is 0.98. In comparison, the geometric
mean of the ratio of AMD to MeTiS is 1.16 if we include all 37 matrices.

5.3 QR factorization

We chose a set of 15 rectangular matrices (with ids 261, 799, 981, 1332, 1870, 1871, 1872, 1964,
2025, 2032, 2069, 2112, 2128, 2129, 2134) from the UFL collection. We added to the data set
all nine matrices from the LPnetlib collection having more than 9000 rows and columns. On the
LP matrices, earlier work by Çatalyürek et al. (2011, Table 5.4) indicate that better results are to
be expected. We have experimented within the context of Corollary 2. That is, we consider an
M for a given A such that ATA ≡MTM holds.

When necessary, we transposed the matrices so thatm ≥ n. We computed ATA and ordered
the resulting matrix with MeTiS. In order to get a reasonable ordering and execution time when
the matrices have dense rows or columns, we ordered only the non-dense rows/columns of ATA

with MeTiS and appended the dense rows to the end of the permutation (as done for AMD
and variants). We sparsified the m × n input matrix A to obtain M (so that ATA ≡ MTM)
and applied PaToH to partition this matrix rowwise into K = max(2, bn/500c) parts. We then
used an SBBD form as the constraint in Ccolamd (Davis et al. 2004b, Chen et al. 2008, Davis,
Gilbert, Larimore and Ng 2004a) to find a column ordering for A. This approach is denoted by
Hs. We also used MC37 on ATA to obtain M, which is methodologically more comparable to
MeTiS in requirements (both require the pattern of ATA). This approach is denoted byHMC37.
We used the Matlab function symbfact(A, ’col’, ’lower’) to compute the number of
nonzeros in R symbolically. Using symbfact and the Colamd results from the UFL collection
(available in the data field amd rnz), we compare Hs and HMC37 with MeTiS below. Since on
LP matrices we expect a better result, we give results for the two different data sets separately so
that we do not skew the results in favour of the proposed methods.

As seen from the top half of Table 5.5, MeTiS is 22% better than Colamd on general
rectangular matrices. Using Hs and HMC37 in combination with Ccolamd greatly improves
results. MeTiS is only 11% better than Hs which can be seen as Ccolamd with special
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constraints, and it is slightly worse than HMC37, which can again be seen as Ccolamd with
another set of constraints. The situation improves for the LPnetlib matrices as expected in favour
of Colamd,Hs andHMC37. This time, MeTiS is better than Colamd by about 7%. Hypergraph
partitioning based methodsHs andHMC37 are better than MeTiS by 2% and 3%, respectively.

The advantage of Colamd (with an SBBD form usingHs or without) with respect to MeTiS
andHMC37 is that the product ATA is not needed at all. Even if there is no dense rows in A, the
product is denser than A and forming and storing the product creates a non-negligible overhead.

We now briefly discuss what we gained by using sparsification to realize Corollary 1.
Performing sparsification did not cause us to lose any quality (the geometric mean of the fill-
in resulting from using the sparsified matrices to that resulting from using the original matrices
was 1.01). The geometric mean of the ratio of the execution time of the hypergraph partitioning
tool with the sparsified matrices to the original ones was 0.65. When the time spent in the
sparsification routine was added before taking the ratios, the geometric mean became 0.68.
Therefore, we conclude that with the sparsification method, we gain 32% in run time over the
hypergraph partitioning tool without losing the quality of the resulting ordering.

5.4 Evaluation of the results

The tools for obtaining fill-reducing orderings for Cholesky factorization are well developed.
In particular, local ordering methods (such as the approximate minimum degree algorithm and
its variants), and using graph partitioning based methods to set up constraints in the local
ordering methods are well tested and improved over the years. Using hypergraph partitioning
methods to obtain desirable forms to define the constraints is a recent approach, promising some
advantages over the graph partitioning based method (discussed elsewhere (Çatalyürek et al.
2011, Section 2.5)). Our methods were demonstrated to be better than the existing hypergraph
partitioning based ordering methods. However, they are not consistently better than other
existing methods. To us, it is very improbable to obtain consistently better results than the
well established tools with a single method. Therefore, we think that it is necessary to try to
combine all approaches in a poly-algorithm to obtain the best results. With such an approach,
we demonstrated improvements of about 5% and 6% in the Cholesky and LU factorization,
indicating that the proposed approaches would be a very useful component in a poly-algorithm.

For QR factorization, the picture is much clearer. Using a hypergraph partitioning method
to obtain constraints for Ccolamd helps greatly. Using sparsification helps to reduce run time
for the hypergraph partitioning tool. The best identified hypergraph partitioning based ordering
method obtains better results than MeTiS (while having the same inconvenience of forming and
storing ATA while building a structural factor using MC37). This seems to be avoidable by
applying MC37’s algorithm on an implicitly stored matrix, instead of ATA. On a special set of
matrices, where a structural factorization already exists, the proposed method using MC37 and
the simpler one, which does not form ATA, obtain better results than MeTiS. These observations
suggest the following: (i) the proposed hypergraph partitioning based ordering methods would
again be very useful in a poly-algorithm; (ii) the hypergraph partitioning based ordering that
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does not need ATA is the method of choice (preferable to Colamd) when computing ATA is
prohibitive.

6 Conclusion

We have discussed fill-reducing ordering methods for sparse Cholesky, LU, and QR factorization.
Our approach is based on an (approximate) structural decomposition of the given input matrix,
where the structural factor is expressed as a hypergraph. The proposed approach generalizes
a previous study (Çatalyürek et al. 2011) in finding proper structural factors for Cholesky, and
extends the results to the LU factorization. We have argued that for QR factorization, similar
methods are applicable, where the overall scheme hinges on the fact that the R factor is the
Cholesky factor of ATA.

In all three factorizations, we reported results that are better than MeTiS on some non-
negligible number of matrices. Combining with MeTiS, the final averages are improved over
4% for Cholesky and LU factorization with respect to using MeTiS only. In QR factorization,
one of the proposed methods based on the graph of ATA obtains results comparable to or better
than MeTiS. In QR factorization of a class of matrices, where a structural decomposition already
exists, the other proposed method, which never forms ATA, obtains better results than MeTiS.
In all three factorizations, a structural decomposition or sparsification of A are demonstrated to
lead to a better quality ordering than one based on standard hypergraph partitioning approaches.

The structural decomposition of symmetric matrices with MC37 led to better results than
most of the proposed structural decomposition methods. This was especially useful in the case
of QR factorization. This encourages us to investigate adapting the algorithm to work on an
implicitly stored ATA.
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Kaya, O., Kayaaslan, E. and Uçar, B. (2013), On the minimum edge cover and vertex partition
by quasi-cliques problems, Technical report RR-8255, INRIA, Lyon, France.

Lengauer, T. (1990), Combinatorial Algorithms for Integrated Circuit Layout, Wiley–Teubner,
Chichester, U.K.

Li, X. S. and Demmel, J. W. (2003), ‘SuperLU DIST: A scalable distributed-memory sparse
direct solver or unsymmetric linear systems’, ACM Trans. Math. Softw. 29(2), 110–140.

Li, X. S., Demmel, J. W., Gilbert, J. R., Grigori, L., Shao, M. and Yamazaki, I. (1999), SuperLU
Users’ Guide, Technical Report LBNL-44289, Lawrence Berkeley National Laboratory.

Orlin, J. (1977), ‘Contentment in graph theory: Covering graphs with cliques’, Indagationes
Mathematicae (Proceedings) 80(5), 406–424.
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