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ABSTRACT 
Ten years ago, the broad consensus among researchers in constrained optimization was that 
sequential quadratic programming (SQP) methods were the methods of choice. While, in 
the long term, this position may be justified, the past ten years have exposed a number 
of difficulties with the SQP approach. Moreover, alternative methods have shown them- 
selves capable of solving large-scale problems. In this paper, we shall outline the defects 
with SQP methods, and discuss the alternatives. In particular, we shall indicate how 
our understanding of the subproblems which inevitably arise in constrained optimization 
calculations has improved. We shall also consider the impact of interior-point methods for 
inequality constrained problems, described elsewhere in this volume, and argue that these 
methods likely provide a more useful Newton model for such problems than do traditional 
SQP methods. Finally, we shall consider trust-region methods for constrained problems, 
and the impact of  automatic differentiation on algorithm design. 
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1 Introduction 

In the previous assessment of the state of  the art of constrained optimization, Powell (1987) 
presented powerful evidence that the future lay with sequential quadratic programming 
(SQP) methods. Powell's article focused on methods for problems with equality con- 
straints. Perhaps, and with hindsight, it is possible to foresee the difficulties which arise 
as soon as inequality constraints are admitted. While we may be  optimistic that SQP 
methods will still be the future methods of choice, the past decade has been a slightly 
sobering experience for those researchers working in constrained optimization, particu- 
larly for those interested in implementing algorithms. The overwhelming research thrust 
in optimization circles over the past ten years has been on interior-point methods for linear 
and, more recently, nonlinear programs. These methods offer an exciting alternative to 
the active-set methods which preceded them, but more importantly allow us to examine 
SQP methods in a new light. 

In this paper, we shall try to outline the main advances that have taken place over 
the past decade. Following a brief review, we shall start where Powell (1987) left off, 
with methods for equality constraints. We' then embark on a description of non-interior 
methods for handling inequality constraints. We caution the reader that the distinction 
between interior and non-interior methods is somewhat hazy, and we will sometimes delve 
into interior territory. Interior point methods are described elsewhere in this volume. For 
simplicity, we shall deliberately consider equality and inequality constraints separately, 
but remark that algorithms for problems with a mixture of constraints are normally a 
hybrid of those for the separate problems. 

2 SQP methods 

A thorough treatment of the history, theory and practice of SQP methods is given by 
Boggs and Tolle (1995). 

2.1 Methods for equality constraints 

We are concerned with finding the smallest value of the function f(z) of the n real variables 
x in the case where z is required to satisfy a set of rn equality constraints c(z) = 0. The 
first-order optimality or, as they are often known, Karush-Kuhn-Tucker (KKT)  conditions 
for this problem are that 

V,l(z,y) = 0,  and c(z) = 0,  (2-1) 
def where the Lagrangian function l(z,  y )  = f ( z )  - ~ ( z ) ~ y  and where the components of  the 

rn-vector y are Lagrange multipliers. 
A sequential, or recursiwe, quadratic programming (SQP) method is a method which 

seeks to improve an estimate (z,2~) of the solution to (2.1) by finding corrections (Az ,  Ay) 
by solving one (or more) quadratic programming problems. The next estimate of the 
rewired solution will be 

(2.2) 
x + azAz ( $ )  = ( Y + a g A Y ) ,  

where the nonnegative stepsizes a, and a, may or may not be equal. The prototypical 
SQP method (see Pschenichny, 1970) finds Ax as the solution of the quadratic program 

minimize ~ A x ~ H A x  + AxTV,!(z, 9 )  
AXESZ" 

(2.3a) 
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subject to A(z)Az + c(z) = 0, (2.3b) 

where A(=) is the Jacobian V,c(z), and H is a symmetric approximation to the Hessian 
of the Lagrangian function; Ay  are taken as the Lagrange multipliers for (2.3). The 
step size aX is found by requiring that $(a: + a,Ax) is sufficiently smaller than $(z) for 
some suitable merit function, and this is achieved by performing a backtracking (Armijo) 
linesearch with a unit initial stepsize. Finally a, is either set to one or to a,. The missing 
ingredients here are the choices of H and $, and it is mostly in these that the many 
proposed methods differ. 

2.1.1 Hessian approximations 

The first-order optimality conditions for (2.3) are that 

Assuming that A(z)  is of full rank, and letting Y (2)  and Z ( z )  be matrices whose columns 
span, respectively, the range and null spaces of A($),  we may write Az  = Y ( z ) A z y  + 
Z(z)Az, .  On substituting into (2.4) A z ,  is completely determined by the constraints, 
as the solution to the non-singular system 

A(z)Y(z)Azy  = -c(z), (2.5) 

while Ax, then satisfies 

HzZAzz = -ZTV,l(x, y )  - HzyAxY, (2.6) 

where H,, = Z ( X ) ~ H Z ( ~ )  and H,, = Z ( Z ) ~ H Y ( Z ) .  Returning to (2.3) and perform- 
ing the same substitution for Az  also yields (2.6), but the further requirement in (2.3) 
that a minimizer be sought suggests that the reduced Hessian H,, should be positive 
semi-definite; to make this solution unique, the requirement is normally strengthened to 
insist that the reduced Hessian be positive definite. 

Early SQP methods assumed that H was itself positive definite. This is clearly stronger 
than requiring that H,, be definite. Most importantly, second-order optimality conditions 
for the original problem suggest that the reduced Hessian of the Lagrangian should be at 
least positive semi-definite, but that there is no reason for the Hessian of the Lagrangian 
itself to be definite. Advocates of this assumption cite simplicity, and were clearly keen 
to define H via one of the positive definite secant updating formulae which had proven 
so successful in unconstrained optimization. However, in our opinion, the contortions 
that were necessary to bend the secant updates into a suitable form (see, for example, 
Powell (1978)) underline the difficulties with the approach. In mitigation, when inequality 
constraints are introduced, the dimension of Z ( z )  may change dramatically from one 
iteration to the next, and it is then certainly convenient that H is positive definite. 
Remarkably, the very first SQP method (Wilson, 1963) used the exact Hessian of the 
Lagrangian, but until recently very few authors considered this choice (see Boggs, Tolle 
and Kearsley, 1994 and also Bonnans and Launay (1995) who sometimes modify the exact 
Hessian). 

More recent methods have aimed at ensuring that H,, is positive definite using 
positive-definite secant updates. However, this leads one to wonder how to handle the 
other matrices H,, and H,, gf Y ( z ) ~ H Y ( z ) ,  and it is here that most of the current 
proposals vary. Murray and Wright (1978) suggested that H,,  and H,, should be set to 
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zero. This gives what is known as a reduced Hessian method. With an appropriate secant 
update formula, such a scheme is two-step superlinearly convergent method SO long as 
az = 1 (Nocedal and Overton, 1985). A related reduced Hessian method, due to  Coleman 
and Conn (1982a), replaces (2.5) by 

A(z )Y (z )Az,  = -C(Z + ZAZ,), (2.7) 

in the vicinity of a stationary point or Az, = 0 elsewhere. This method is also two-step 
superlinearly convergent. Perhaps more surprisingly, Byrd (1990) shows that the iterates 
x + ZAx, have in fact a one-step superlinear rate, and that such a rate is common for 
many SQP methods which involve the correction (2.7). Byrd and Nocedal (1991) show 
that these local results are not affected by global convergence concerns (see Section 2.1.2). 
Another possibility with the same theoretical convergence properties, proposed by Gilbert 
(1991), is to  maintain a secant approximation to  the inverse of H,,. A similar convergence 
rate is also achieved by methods which use Broyden-type secant methods to approximate 
the rectangular matrix Z ( Z ) ~ H  ( Y ( z )  Z(z ) )  (see, Nocedal and Overton, 1985, or Fonte- 
cilla, Steihaug and Tapia, 1987). Gurwitz (1994) prefers updates which treat the portions 
H,, and H,, separately while maintaining a positive definite approximation to the for- 
mer. Coleman and Fenyes (1992) propose a similar method, and also a second method 
which additionally maintains an approximation to Hy,. These methods appear to  perform 
slightly better than those which merely maintain a nonzero H,,. Finally, an interesting 
new proposal by Biegler, Nocedal and Schmid (1995) notes that (2.6) does not actually 
require H,, but rather the vector HzyAxy. They thus propose to approximate this term 
directly by either finite differences or by a Broyden update. 

And what of the Lagrange multiplier estimates? The values Ay from (2.4) satisfy 

Y ( z ) * A ( z ) ~ A ~  = YTV,t(z, y )  + NTyAz, + H,,Az,. (2.8) 

Clearly, setting H,, and H,, to zero imply that y + Ay are least-squares multiplier 
estimates evaluated at x. If included, these neglected terms would result in y + Ay being 
approximations to least-squares multiplier estimates at x + Az. Thus, rather than use 
these approximations, many authors prefer to  use the current least-squares estimates 

directly. 
Finally, although we have argued that maintaining a positive definite approximation 

to the Hessian of the Lagrangian function is unnecessarily restrictive, it is more reasonable 
when approximating the Hessian of the augmented Lagrangian. Indeed, if p is a scalar, we 
can add the term pllA(z)Az + c(z)llg to the objective function of  (2.3) without changing 
its solution. But,  the Hessian of this modified problem is H + ~ A ( z ) ~ A ( z )  which can be 
expected to be positive definite for sufficiently large p. Such a method was f i s t  proposed 
by Tapia (1977) and suitable secant update formulae for H + ~ A ( Z ) ~ A ( Z )  are discussed 
by Byrd, Tapia and Zhang (1992). 

2.1.2 Merit functions 

The role of the merit function is to ensure convergence of  the basic iteration (2.2) from 
arbitrary starting points. In unconstrained optimization, there is a natural merit func- 
tion, the objective function. When there are constraints present, the conflicting goals of 
feasibility and optimality often preclude a natural choice, and most merit functions are 
attempts to balance these goals. 
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Early globally convergent SQP methods were based upon the 11 exact penalty function 

(see Pschenichny, 1970, Han, 1977, and Powell, 1978). So long as the penalty parameter 
p is sufficiently large, the iteration (2.2) converges globally with many of the Hessian 
approximations discussed in Section 2.1.1. However, despite its simplicity, the iteration 
has one serious drawback, namely that the merit function (2.10) (or indeed any function 
of the form f ( z )  + w(c(2)) where w 3 0 and w(0) = 0) may prohibit the step a, = 1 
arbitrarily close to a KKT point. Thus the promise of a fast asymptotic rate may be denied 
by the merit function. This defect was first observed by Maratos (1978). A number of 
remedies have been proposed, falling broadly into two camps: modify the search direction 
or change the merit function. 

The Maratos “effect” arises when the curvature of the constraints is not adequately 
represented by the linearized model (2.3b). Recognizing this, Mayne and Polak (1982) 
propose adding a second-order correction to the standard SQP direction (2.4); Coleman 
and Conn (1982~) prefer to use the step (2.7) directly. Both techniques allow asymptotic 
unit steps and hence encourage superlinear convergence. A variation on this theme has 
also been suggested by Fukushima (1986). 

A variety of alternatives to (2.10) have been considered. Perhaps the simplest sug- 
gestion is that by Chamberlain, Powell, Lemarechal and Pedersen (1982) in which the 
requirement that $J~(z+ )  be smaller than $ J ~ ( z )  every iteration is replaced by the require- 
ment that this should happen at least once every t > 1 iterations. Remarkably, this is 
sufficient to ensure that, so long as a unit step is always attempted and provided the 
iterate is reset to the last “satisfactory” value if more than t iterations pass without a 
“satisfactory” reduction, a unit step will eventually be “satisfactory” at least every other 
iteration. A related recent proposal by Panier and Tits (1991) is to replace the linesearch 
requirement that $1 (z+) be sufficiently smaller than $1 (z) by the weaker requirement 
that the new value be smaller than max{1C1l(z),1C11(z-),1C11(z=)}, where x- and z= are 
the previous two iterates. They show that such a strategy does not asymptotically pre- 
vent unit steps; the use of a non-monotonic linesearch is reminiscent of the overlooked 
procedure for unconstrained minimization by Grippo, Lampariello and Lucidi (1986). 

More recently, Fletcher’s (1970) differentiable exact penalty function 

$ d ( 4  = f (4  - c ( 4 T y ( 4  + PIIC(40;, (2.11) 

where 
A(4A(4*9(4 = A(z)Vzf(z) ,  (2.12) 

has been considered as a merit function by Powell and Yuan (1986). The main theoretical 
drawbacks with this function are the expense of computing its derivatives as well as the 
danger that the multiplier function y(z) is not uniquely defined whenever A(z)  is less 
than full rank. To circumvent the former problem, Powell and Yuan (1986) show that it 
is possible to replace y(z  + a,Az) in the linesearch by the interpolant y(z)  + a,(y(z + 
Az) - y(z)) while ensuring global convergence at a superlinear rate. Fletcher (1973) 
prefers the variant 

$f(4 = f ( 4  - C ( 4 T v ( 4  + P C ( 4 *  (A(4A(4T)-1 44 (2.13) 

of (2.11), which he shows can be rewritten as 

$f(4 = f ( 4  - c ( 4 T w  (2.14) 
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where 
A(=) = arg min 311AT(z)A - V,f(z)IIi + pATc(z). (2.15) 

Because of  the expense of inverting A(= + o,Az)A(z + ~ , A z ) ~  at trial points, Boggs 
and Tolle (1989) propose using a variant of  (2.13) in which this term is approximated in 
the linesearch by A ( z ) A ( z ) ~ .  Further generalizations of (2.11) are possible, and most are 
covered by the function 

x 

$&) = f (4  - c ( 4 T 4 4  + Pllc(z)lI;/a(z>, (2.16) 

where 
( A ( + W T  + 7 1 )  44 = A(=)Vzf(=) (2.17) 

and 0 < a(=) 5 a, for some a > 0 and y 2 0. Facchinei and Lucidi (1994) show that this 
merit function does not impede the quadratic convergence of SQP methods for which the 
exact derivatives H = VZ2!(z, u(z) )  are used. 

One issue we have not considered so far is that the linearized constraints (2.3b) may 
be inconsistent. Fletcher (1981, Section 14.4) provides a useful alternative in which the 
model problem (2.3) is replaced by the problem of minimizing 

(2.18) ml(Az) def = @ x ~ H A x  + Az*VJ(z) + pllc(z) + A(z)AzIli 

of the merit function (2.10). The problem of minimizing (2.18) may be reformulated as 
a quadratic programming problem, and has the desirable property that the subproblem 
is always consistent (this is also implicit in the algorithm of Coleman and Conn, 19823). 
Nonetheless, Fletcher (1982) and Yuan (19850) observe that the Maratos “effect” may 
still occur if the search direction is computed by minimizing (2.18) but can be prevented 
if a second-order correction of the form (2.7) is made. Fast local convergence properties of 
such a method are examined by Womersley (1985) and Yuan (1985b), while Wright (1987, 
19893) shows that it is not necessary to minimize (2.18) to full accuracy to achieve fast 
convergence. 

2.2 Trust region methods 

Linesearch methods aim a posteriori to control a bad choice of  step Az by comparing 
$(a: + oAz) with $(z). Trust-region methods, on the other hand, aim 0 priori to ensure 
that the step is adequate by imposing extra restrictions on the model from which the step 
is derived. The simplest example would be to consider the model problem (2.3) but to 
require additionally that 

IlAzll I A (2.19) 

for some scalar A > 0. The extra constraint (2.19) is known as the Rust-region constraint 
and the scalar A is the trust-region r0dius. The size of the radius is controlled by comparing 
the actual reduction in the merit function when the step is taken with the value predicted 
by a model of this function for which Az is a good step. Normally A will be increased if  
there is good agreement and the trust-region constraint is active, and decreased when the 
agreement is poor. The introduction of  a trust region allows considerable extra freedom 
when specifying H as (2.19) stops inappropriate choices of H leading to unbounded steps. 

Fletcher (1982) includes a trust-region constraint when minimizing the model function 
(2.18) of (2.10). It is particularly convenient in this case to  choose the infinity norm for 
(2.19) as the resulting model problem may then still be posed as a quadratic program. 
There are a number of problems however if we try to impose a trust region on (2.3). 

5 



Firstly, the linear constraints (2.3b) and the trust-region (2.19) may have no common 
feasible point. A number of attempts have been made to overcome this defect. Vardi 
(1985) and Byrd, Schnabel and Schultz (1987) suggests replacing (2.3b) by constraints of 
the form 

A ( = ) A ~  + ec(=c> = 0 ,  (2.20) 

where 8 E (0,1] is chosen so that the new constraints and the trust region have a common 
feasible point. (A similar device was proposed by Powell, 1978, to handle inconsistent 
constraints in the basic subproblem (2.3).) Another possibility is to replace (2.3b) by 

where 8 is chosen so that the intersection of (2.19) and (2.21) has a solution. (Once again, 
a similar device was proposed by Burke and Han (1989) to handle inconsistent constraints 
in the basic subproblem (2.3).) Celis, Dennis and Tapia (1985) choose 

(2.22) 

while Powell and Yuan (1990) prefer 

min IIA(z)d + c(x)ll 5 8 5 min (IA(z)d + c(z)l l ,  (2.23) 
I l d l l l P l A  lldll.sPz A 

where 0 < 02 I 01 < 1. Both sets of authors suggest particular choices of 8 which satisfy 
their restrictions when the two-norm is used. It is important to note that it often suffices 
to obtain an approximate solution to the given model problem, and a general theory 
which covers this possibility is given by Dennis, El-Alem and Maciel (1992). Burke (1992) 
studies methods of this sort in a very general setting, and allows for the possibility that 
the original problem may be infeasible by showing convergence to a “nearest” infeasible 
KKT point. 

Secondly it is not clear what model of the merit function should be used. The most 
common approach is to model the merit function by taking first or second-order approxi- 
mations of constituent terms. Both El-Alem (1995), for the subproblem based on (2.20), 
and El-Alem (1991) and Powell and Yuan (1990), for that based on (2.21), use the merit 
function (2.11) and model this by 

where AZn is the orthogonal projection of Ax into the null-space of A(z) .  The authors 
provide schemes for automatically adjusting the penalty parameter p and establish global 
and locally superlinear convergence. 

Thirdly, even when the constraints are consistent, the resulting subproblem may not 
be easy to solve. When the infinity norm is used, the resulting subproblem is inevitably 
a quadratic program. When the two-norm is used, Yuan (1990) gives an algorithm for 
solving the subproblem involving (2.19) and (2.21), that is of minimizing a quadratic 
function in a region defined by the intersection of two balls. Zhang (1992) simplifies 
this scheme in the case where H,, is positive semi-definite, while Heinkenschloss (1994) 
does the same in the general case. Finally, recent work by Mor6 (1993) and Stern and 
Wolkowicz (1995) has generalized this to the case where (2.19) is replaced by the condition 
AI 5 AzTCAa: 5 A2 and where C may be indefinite. 
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When a reduced Hessian method is used, the obvious trust-region generalization is to 
choose the step Az, by solving a subproblem of the form 

(2.25) minimize +A~TH,,Az,  + Az, T T  2 Vx!(z, t/). 

IIA~rlllA 

Such a scheme is proposed by Zhang and Zhu (1990), while methods which allow approx- 
imate solutions of (2.25) are considered by Zhang, Zhu and Fan (1993). 

2.3 Methods for inequality constraints 

Nonlinear programming problems rarely exclusively involve equality constraints, but t y p  
ically involve a mixture of equations and inequalities. We thus turn to  the inequality 
constrained problem. The Karush-Kuhn-Tucker (first-order optimality) conditions for the 
inequality problem 

minimize f ( z )  subject to c (z )  2 0 (2.26) 
XERR" 

are that 
(2.27) 

where the Lagrangian function !(z, A) = f (z )  - c(z)*X. 
At the time of the last conference, algorithms for (2.26) were primarily of the active-set 

variety. An active set method is a method which aims to  solve (2.26) by predicting which 
of the inequalities will be active (ie, which of the q(z) = 0) and which are inactive (ie, 
q(z) > 0) at the solution. Once these sets are known, the problem can be solved as if it 
involves only equality constraints, namely those deemed to be active at the solution. The 
main justification, therefore for much of the work described in Section 2.1 is as a tool for 
analyzing act ive-set met hods. 

The principal differences between active set methods is in the way that the active set is 
assigned. In inequality-(constrained) quadratic programming (IQP) methods, no a priori 
choice of the active set is made when choosing the correction Az, rather Ax is obtained 
by solving the quadratic programming problem of minimizing (2.3a) subject to  a linear ap- 
proximation A(z)Az + c(z) 2 0 of all of the constraints. The active set for this problem 
is taken as a prediction of  that for (2.26). Robinson (1974) provides theoretical justi- 
fication for such an approach. In equality-(constrained) quadratic programming (EQP) 
methods, the active set is assigned prior to the selection of Az (primarily on the basis of 
inequalities which are close to being active and whose Lagrange multiplier estimates are 
positive) and Az is found directly by solving (2.3a) subject to the linear equality con- 
straints A(z)AAz + CA(=) = 0,  where the subscript A denotes those constraints which 
are considered to be active. Which strategy is preferable is a matter for some debate (see, 
for example, Murray and Wright, 1982). 

The merit function must also account for inequality constraints. Normally, this is 
merely a matter of replacing the term(s) which handle equality constraints with a similar 
term for the inequalities. For instance, the analog of (2.10) for the problem (2.26) is the 
function 

fb) + P l lC ( ~ ) - l I l 1  (2.28) 

where c- gives, componentwise, the smaller of q and zero. Pantoja and Mayne (1991) 
and Heinz and Spellucci (1994) prefer the infinity to the one-norm in (2.28), and propose 
a line-search method based on the model problem 

V,!(z,X) = 0, c (z )  2 0,  X 2 0, and c ( ~ ) ~ X  = 0, 

minimize +AzTHAz + AzTV,f(z) + pll(c(z) + A(z)Az)-ll,. (2.29) 
AzER" 
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Yuan (1995) analyses a similar method in which a trust region (2.19) is imposed on the 
model (2.29). 

Generalizations of the functions (2.11) or (2.13) are more interesting. Fletcher (1973) 
gives a simple generalization of the function (2.13) in the inequality case by replacing 
(2.15) with 

X(z) = arg min illAT(z)A - V,f(z)lli + pXTc(z). (2.30) 

Boggs, Tolle and Kearsley (1991) prefer to introduce extra slack variables s in order to 
replace the inequality constraints with the equations q(z) - as; = 0. Introducing these 
variables into (2.13) and setting .zi = as; 2 0, they propose the merit function 

,420 

f(z) - (c(s) - z ) ~ T ( z )  + p(c (z )  - z ) ~  ( A ( ~ ) A ( z ) ~  + Z)-l (c(z) - z ) ,  (2.31) 

where 2 is the diagonal matrix with entries zi and 

( A ( z ) A ( z ) ~  + Z)T(Z)  = A(z)V,f(z) .  (2.32) 

It is straightforward to design updates for z which ensure that z 2 0. A version of (2.16) 
appropriate for inequality constraints is given by Di Pillo, Facchinei and Grippo (1992). 

2.4 Difficulties 

Having surveyed the main developments in SQP methods, we now consider the difficulties 
with the approach. Many of the difficulties are directly attributable to a lack of coherence 
between the step calculation and the merit function. In unconstrained optimization, there 
is a direct relationship between the merit function - in this case, invariably the objective 
function - and the calculation of the step. The prototypical method, Newton’s method, 
may be viewed both as a method which attempts to satisfy the first-order optimality 
conditions and as a method which aims to reduce the merit function through a Taylor’s 
series approximation. In the constrained case, while the SQP direction (2.3) may be viewed 
as an attempt to satisfy the KKT conditions, it is not directly related to any of the merit 
functions that have been proposed, although it does often provide a descent direction for 
them. Perhaps the only satisfactory methods from the point of consistency are those which 
directly attempt to link the merit function and the step. Fletcher’s (1982) and Coleman 
and Conn’s (1982b) methods based on (2.10) and (2.18) and their generalizations are in 
this class, but, as we have noted, even these have disadvantages. 

A second drawback is that so few of the suggestions we have considered are appropriate 
if the number of variables is large. In particular, unless function values are expensive, the 
dominant cost of the methods tends to be in solving linear systems; for inequality problems 
this may be particularly acute as each subproblem may require the solution of a sequence 
of such systems. If n is large, there is little hope unless either the required systems are 
small or sparse. There are two important cases where this is so. Firstly, if the number 
of equality or active constraints is close to n, reduced Hessian methods, such as those 
proposed by Coleman and Conn (1982a), Gilbert (1991), and Biegler et al. (1995)) which 
maintain the matrix H,, but ignore H,, and Hyy, may be successful. The only systems 
which need to be solved involve H,, (small) and A(z)Y(z)  and its transpose (sparse, we 
hope). Secondly, if the matrix H is sparse, sparse methods for linear systems (when an 
EQP method is used) or quadratic programming (for IQP methods) may be employed. 
This will often be the case if H is chosen as the Hessian of the Lagrangian function, or 
from a structured or sparse secant updating formula (see, for example, Toint, 1977, Conn, 
Gould and Toint, 1990, and Fletcher, 1995). 



Finally, one of  the main advances in methods for the unconstrained minimization of 
large problems was the recognition that a Newton-like direction need not computed very 
accurately when far from a stationary point (see Dembo, Eisenstat and Steihaug, 1982). 
Clearly, when equality constraints are present a similar result would be valuable, but there 
has been remarkably little work on this topic. For equality constrained problems involving 
relatively few constraints, Fontecilla (1990) notes that (2.5) and (2.9) are small systems, 
and the only large system is (2.6). He thus proposes a method which initially solves (2.6) 
to low accuracy. Alas, for fast asymptotic convergence (2.6) must eventually be solved 
to high accuracy which limits the effectiveness of this proposal. When the constraints 
are inequalities and an active-set IQP method is used, Murray and Prieto (1995) show 
that it is possible to stop the solution of the QP subproblem at the first stationary point 
encountered rather than solving the problem to completion. 

3 Optimality-condition based methods 

Since the mid 1980s there has been a revolution in the way in which the optimality con- 
ditions (2.27) have been viewed. In essence, active set methods ultimately aim to satisfy 
the dual feasibility requirement V,l?(z, A) = 0, while ensuring that the remaining feasi- 
bility requirements, c(z )  2 0 and X 2 0, and complementarity condition, c ( z ) ~ X  = 0, 
are always (effectively) satisfied. This is achieved by the simple combinatorial expedient 
of ensuring that, for each constraint, either ~ ( z )  = 0 or Xi = 0, but suggests that in 
the worst case, all combinations may be examined. By contrast, the newer interior-point 
methods try for optimality by ensuring that the feasibility requirements are always (effec- 
tively) satisfied while aiming ultimately to satisfy the complementarity condition. If we 
consider, for a moment, the case where (2.26) is a linear or quadratic program, the feasibil- 
ity requirements are linear while the complementarity condition is nonlinear (quadratic). 
Thus the active set methods may be viewed as trying to hide this nonlinearity within a 
combinatorial problem, while the interior-point methods confront the nonlinearity directly. 
Significantly, the interior-point approach has been shown to have strong complexity ad- 
vantages on many classes of convex problems (see Nesterov and Nemirovskii, 1994), and 
there is some evidence that these advantages transfer to improved practical performance 
(see, for instance, Jarre and Saunders, 1995). Gill, Murray, Saunders, Tomlin and Wright 
(1986) were quick to make the connection between the new-looking interior-point meth- 
ods and the long-discarded barrier-function methods, and thus lead the community to 
re-examine barrier methods in this new light. Clearly, IQP based methods are already 
able to take advantage of interior-point technology as the quadratic subproblems are often 
convex. It remains to be seen whether the same is true of E Q P  based methods. 

While barrier function and other interior-point methods are discussed elsewhere in 
this volume, we briefly mention a couple of other possibilities. Friedlander, Martinez and 
Santos (1994) propose a method for solving linearly-constrained problems by minimizing 

T 2  Il Wb, Wll; + (44 
over the feasible set c(a) 2 0. They show that this formulation does not introduce 
unnecessary local minimizers when f is convex. 

Kanzow and Kleinmichel (1995) observe that the optimality conditions (2.27) may be 
replaced by the nonlinear system 

V , ~ ( Z , X )  = 0, and +(Q(z ) ,X~)  = 0, ( 3 4  

+(u,v) = 0 if and only if  U 2 0, 2 0 and uv = 0. (3.2) 

where 4 is any function for which 
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A simple example is the function 4(u, v) = d m - u - v .  Their proposal is now to apply 
Newton’s method to (3.1), and they provide a local analysis of such a method. However, 
the Jacobian of such a system will be singular whenever the solution is degenerate. Pang 
(1991, 1994) prefers the choice +(u,v) = min{u,v}, and shows that this choice may be 
made the basis of a globally convergent method using the merit function 

4 Other methods for nonlinear constraints 

Now that barrier functions are back in fashion, it is worth evaluating the status of other 
methods which SQP algorithms were supposed to have succeeded. One of the earliest 
methods for solving equality constrained problems was to minimize the quadratic penalty 
function 

for asequence of scalars p approaching infinity. Although this method was dismissed in the 
1970s, it has been seen in a more favourable light since then. Firstly, perceived difficulties 
with ill-conditioning were shown to be benign provided sufficient care is taken (Broyden 
and Attia, 1984, Gould, 1986, Coleman and Hempel, 1990). Secondly, the requirement that 
(4.1) be minimized is easily relaxed. Moreover, Gould (1989) shows that asymptotically 
at most two Newton-like steps are required for each value of p and that this results in 
a globally and (two-step) superlinearly convergent method. This result is generalized by 
Dussault (1995) to problems involving both equations and inequalities. 

These methods and the succeeding augmented Lagrangian methods have three signif- 
icant advantages over most SQP methods. Firstly, the choice of the correction Az is 
normally intimately connected to the merit function - it is usually obtained by mini- 
mizing a second-order model of the function. Secondly, the second derivative matrices 
of these functions can normally be expected to be positive (semi-)definite in some neigh- 
bourhood of the solution, and thus it is reasonable to approximate these derivatives via 
positive-definite secant formulae. Thirdly, the Newton-like systems which arise are usually 
easier to handle when n is large and the problem sparse than for SQP methods - this is 
a consequence of the matrices being (relatively) sparse and definite. It is this third point 
which may explain why many of the currently most successful codes for large-scale nonlin- 
ear programming are based on these methods (see Section 7). However, these methods do 
have some drawbacks, namely that a sequence of problems has to be solved, the iterates 
will often initially move away from the solution, and, significantly, no advantage is taken 
of linear or other simple constraints. 

Augmented Lagrangian methods solve the equality constrained problem by minimizing 
a sequence of problems of the form 

$ 2 ( 4  = f (4  + PllC(z)l l ;, ( 4 4  

$)ab> = f (4  - C(& + Pllc(4ll;, (4.2) 

where y are estimates of the Lagrange multipliers and p a positive penalty parameter 
(see, Hestenes, 1969, and Powell, 1970). Convergence is assured by adjusting y and p, 
and it is not necessary for p to approach infinity. When first-order multiplier updates 
are used, the minimizers of (4.2) converge linearly, the rate being proportional to l/p. 
Faster rates are possible using higher-order multiplier updates, but first-order updates are 
convenient and effective for large-scale problems. Bartholomew-Biggs (1987) notes that 
the Newton equations for (4.2) may be reformulated as a quadratic programming problem, 
and this problem is a perturbation of (2.3). The method is easily generalized for inequality 
constraints (see, Rockafellar, 1974). 
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Realistic nonlinear programming problems often involve a mixture of  linear and non- 
linear constraints. Conn, Gould and Toint (1991) consider the case where there are simple 
bounds 2 5 z 5 U on the variables in addition to equality constraints. Their algorithm 
finds a sequence of minimizers of (4.2) where the simple bounds are explicitly enforced and 
only approximate minimizations are performed. The convergence results obtained match 
that for the case without simple bounds. Inequality constraints are handled by introducing 
slack variables, but Conn, Gould and Toint (1994) show that these slack variables need 
not affect the linear algebra costs. More significantly, Conn, Gould and Toint (1992b) 
show that a single Newton-like step eventually suffices in the approximate minimization, 
and thus the iterates are globally convergent at a (fast) linear rate. This strategy is gen- 
eralized by Conn, Gould, Sartenaer and Toint (1995) for the case where the constraint 
set is a mixture of equality and linear inequality constraints; a sequence of approximate 
minimizers of (4.2) subject to the linear constraints are sought. This theory also allows 
for independent penalty parameters for each of the penalized constraints. 

Another class of important methods, the direct ancestors of SQP methods, are the 
sequential linear programming (SLP) methods (see Griffith and Stewart, 1961) in which 
linear approximations are taken of both objective and constraint functions. The resulting 
linear program may then be solved using either simplex or interior point methods. Modern 
versions are based on linear approximations of the merit function (2.10) (see, for example, 
Zhang, Kim and Lasdon, 1985), while Fletcher and Sainz de la Maza (1989) propose 
a hybrid method which tries a Newton-like (Coleman and Conn, 1982a) step for (2.10) 
but falls back on the SLP correction whenever the Newton step is unsuccessful. Clearly, 
unless some form of second-order acceleration is used the convergence of these methods 
will typically be rather slow, but the mature state of linear programming algorithms means 
that the subproblems can be solved efficiently. 

At the other extreme, Maany (1987) proposes a method in which quadratic approx- 
imations are taken of both objective and constraints. Such an approach is appropriate 
for highly-curved constraints, but has the disadvantage that the subproblems are hard to 
solve. 

Finally, an interesting class of feasible-point SQP methods have been developed by 
Panier and Tits (1987, 1993) and Bonnans, Panier, Tits  and Zhou (1992) for inequality 
constrained problems. As the iterates are feasible, the objective function may be used as a 
merit function. The methods require the solution of two linear or quadratic programming 
problems at each iteration to generate corrections; a backtracking linesearch is performed 
along a quadratic arc defined by these directions, and the first step which sufficiently 
reduces f and satisfies the constraints is accepted. The methods are shown to be globally 
and two-step superlinearly convergent. 

5 Linear and convex constraints 

We have seen that most methods for nonlinear constraints solve a sequence of  subprob- 
lems involving simpler constraints. For instance, SLP and SQP methods solve linear and 
quadratic programs, while other methods differentiate between “difficult” constraints (nor- 
mally the nonlinear ones) and “easy” ones (normally the linear or convex ones), treating 
the easy constraints directly in the subproblem. In this section, we consider methods 
specifically designed for problems involving linear or convex constraints; we exclude a 
discussion of interior-point methods as they are covered elsewhere in this volume. 

1 1  



5.1 

Two classes of problems have attracted attention here, those for which the objective func- 
tion is a quadratic and those with a general objective. Standard active-set methods for 
linearly constrained optimization problems typically refine the active set slowly, perhaps 
one constraint leaving or entering the active set at each iteration. When the constraint 
set only involves simple bounds, however, it is far easier to add or delete many constraints 
at each iteration, and the best mechanism for achieving this is the gradient projection 
algorithm. 

The grudient projection algorithm (Levitin and Polyak, 1966) simply chooses iterates 
according to 

where R is the set of feasible points, Pn[-u] is the projection of v into R and a, is a 
suitable stepsize (see, for instance, Bertsekas, 1976, or Dunn, 1981). When the constraints 
are simple bounds, R = {z : Z 5 z 5 U } ,  and the projection is easily computed as 
Pn[v] = mid@, 21, U ) ,  where mid denotes the vector whose components are the medians of 
li ,  wi and ui. However, as the gradient projection algorithm is just a constrained variant 
of the method of steepest descent, it is clear that some form of acceleration is needed if 
the method is to be practical. 

Mord and Toraldo (1991) propose that the active sets for consecutive iterates be com- 
pared, and if the sets are identical, or if little progress is being made on the “face” defined 
by the current set, the current face should be explored using a higher-order method. To 
this end, the authors propose that the conjugate-gradient method should be used to find 
an approximate stationary point zc on the face, and then a linesearch performed on the 
piecewise-linear arc Pn[z + a,(zc - z)].  

The justification for such a scheme is that the gradient projection algorithm is guar- 
anteed to determine the optimal active set for nondegenerate problems in a finite number 
of iterations (see Bertsekas, 1976). Calamai and Mord (1987) improve this considerably 
by noticing that the result is true for any algorithm for which the projected gradient 
converges to zero; the projected gradient is 

Simple bounds, gradient projection and projected gradients 

x+ = Pn[z - Q,V, f (41 ,  ( 5 4  

where the tangent cone T ( z )  is the closure of the cone of all feasible directions at 2. While 
the projected gradient may be difficult to calculate in general, for simple bounds it is given 
(componentwise) by , 

min{V,f(z)i,O} if xi = Zi I max{V,f(z)i,O} if xi = ui 
V,f  ( 4 2  if li < xi < ui (5.3) V n f ( e ) i  = 

This result has subsequently been generalized. Dunn (1987) and Burke and MorC (1988) 
relax the non-degeneracy assumption to one of requiring that there is a set of strictly 
complementary Lagrange multipliers while Burke and MorC (1994) obtain similar results in 
a more general geometric setting. De Angelis and Toraldo (1993) show that the simplified 
gradient projection scheme of Dem’yanov and Rubinov (1970), in which (5.1) is replaced 
by an iteration of the form z+ = 2 + a,(Pn[z - qV,f(z)] - z) for some q, inherits the 
active-constraint identification property of its predecessor. Burke (1990) generalizes the 
previous analysis for nonconvex problems, and shows that projected gradient of a suitable 
linearization of the problem correctly identifies the optimal active set. This result, and a 
similar analysis by Wright (19894, suggests why E Q P  strategies for SQP and linearizations 
of (2.28) are successful. 
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More and Toraldo (1991) show that their algorithm for quadratic objectives is neces- 
sarily finite under a nondegeneracy assumption. F’riedlander and Martinez (1994) provide 
a mechanism for leaving an unpromising face and ensuring that their algorithm will not 
return to the face unless a substantial improvement in the value of  the objective is possible. 

An interesting observation drives the method of Coleman and Hulbert (1993). They 
note that the optimality conditions may be expressed as 

V z f ( z )  (z - g(Z + U )  + +(U - 1) . sign (V,f(z))) = 0,  (5.4) 

where sign(v)i is -1 if wi 5 0 and 1 otherwise, and ‘U . t u  is the vector whose components 
are v p i .  They then derive a Newton-like correction for the nonlinear system (5.4), while 
recognizing that the function is non-differentiable whenever a component of  0,f (z)) is 
zero. A related merit function is provided, and they are able to show global and superlinear 
convergence under a suitable nondegeneracy assumption. 

For general objective functions, Conn, Gould and Toint (1988) provide a class of trust- 
region methods in which a quadratic model is minimized within a region defined by the 
intersection of the simple bounds and a trust region. An approximate solution of the 
model problem is found, of which only a local minimizer of the model along the arc 

z(a> = ps2n{y:lly-~ll<A}[z - aV5f(z)1 (5-5) 

is required for global convergence. Convergence is accelerated by continuing the model 
minimization using conjugate gradients in the face determined by the solution to  (5.5). 
As before, so long as the problem is non-degenerate, the active set at the solution is 
identified by that of (5.5) after a finite number of iterations, and thus the speed of conver- 
gence is determined by the accuracy required in the conjugate-gradient step. Lescrenier 
(1991) shows that the non-degeneracy assumption is unnecessary. Byrd, Lu, Nocedal and 
Zhu (1995) give a line-search variant of Conn et al.’s (1988) algorithm, using an efficient 
limited-memory Hessian approximation. Finally, Toint (1988) shows that the frameworks 
of Calamai and More (1987) and Conn et al. (1988) may be extended to cover infinite- 
dimensional problems in a general Hilbert-space setting. 

5.2 

One of the earliest active set methods for linearly constrained minimization was Rosen’s 
(1960) gradient projection algorithm (not to  be confused with the method (5.1) of the 
same name). At each stage of this prototypical feasible-point active-set method, a step is 
taken in the direction of the gradient projected orthogonally into the null-space of  those 
constraints which are currently considered active. When this projected gradient is small 
compared to the largest of the least-squares multiplier estimate (2.9)) the step may leave 
the current face. Although the method was succeeded long ago by SQP and other methods 
which incorporate curvature, remarkably the method has only recently been shown to be 
globally convergent (Du and Zhang, 1986, 1989). 

Many active-set methods have been proposed for convex quadratic programming, most 
of which differ in their linear algebra requirements rather than in the iterates they generate 
(Best, 1984). There have been relatively fewer methods for non-convex problems. Fletcher 
(1987) assessed the state of the art ten years ago. The only real advances since then, 
aside from those with interior-point methods, are for large-scale problems. Gill, Murray, 
Saunders and Wright (1990, 1991) and Gould (1991) consider versions of  Fletcher’s (1971) 
method for non-convex problems which are able to exploit sparsity. Boggs, Domich and 
Rogers (1995) suggest investigating a low-dimensional subspace of “interesting” directions 

General linear and convex constraints 
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at each iteration. This reduction in dimension means that the subproblems are small and 
can thus be tackled with any of the good algorithms for small problems. 

Concerns over the past decade for general linearly constrained problems have focused 
on how to cope with problems which involve considerably more inequality constraints than 
variables. Powell (1989)) wishing to avoid the increase in dimensionality which would occur 
if  slack variables were added to the inequalities, prefers to treat the inequalities directly. 
He proposes that constraints which are “close” to active are not allowed to approach the 
constraint boundaries until absolutely necessary, and this allows larger steps to be taken 
in early iterations than would be possible in a conventional active set method. The state 
of the art for large-scale linearly constrained minimization has changed very little, the 
method proposed by Murtagh and Saunders (1978) still being pre-eminent. 

One of the main difficulties which arises in active-set methods for linearly constrained 
optimization may occur when the constraint gradients in the active set at z are linearly 
dependent. The correction Az will normally be chosen orthogonal to  a linearly indepen- 
dent subset of the the active constraints, but in the degenerate case a nonzero step along 
Ax may not be possible because of the remaining active constraints. In the worst case this 
can cause an algorithm to cycle infinitely through subsets of the active constraints. Thus 
finding a Az which is capable of moving away from z is crucial, especially as degenerate 
.active sets are extremely common in practice. Of late, attention has focused on methods 
which are capable of dealing with this situation when floating-point computations are per- 
‘formed, and the methods of Fletcher (1988), Ryan and Osborne (1988)) Dax (1989) and 
Gill, Murray, Saunders and Wright (1989) have all proved effective in practice. 

Burke, More and Toraldo (1990) and Conn, Gould, Sartenaer and Toint (1993) give 
.a general theory of trust-region methods for problems involving convex constraints. As 
solving the trust-region problem may now be an expensive calculation, Conn et al. (1993) 
show that an approximate solution suffices, and provide an algorithm which delivers such 
an approximation. Sartenaer (1995) indicates that this approach is effective in the case of 
network constraints. Martinez and Santos (1995) extend this class of methods to handle 
general, nonconvex domains. 

6 Other topics 

In this short survey, we naturally have to be selective on what to include and what to leave 
out. One trend that has been noticeable over the past ten years has been the increasing 
cross-fertilization between nonlinear optimization and other branches of numerical analysis 
and applied mathematics. In this section, we briefly mention a few topics we feel deserve 
more attention from the numerical analysis community. 

The promise of automatic differentiation, that is the automatic accumulation of deriva- 
tives directly from codes which provide function values (see Griewank, 1989)) has been a 
long time coming. Dixon (1991) argues that automatic differentiation will revitalize second 
derivative methods, as there is then little reason to rely on secant approximations. This has 
profound implications as, for example, many SQP methods depend upon properties which 
do not hold for exact derivatives (see Section 2.1.1). The main drawback in the past was the 
lack of efficient software for automatic differentiation, but that has dramatically changed 
over the past five years (see the W W W  page http://www.mcs.anl.gov/Projects/autodiff 
/AD-Tools for details of currently available packages). A number of optimization packages 
now make direct use of automatic derivatives. 

A fundamental issue when using optimization algorithms is how important it is that 
function and derivative information is accurate. Kupferschmid and Ecker (1987) compare 
the Ellipsoid and SQP algorithms when function values and gradients are inaccurate, and 
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observe that the former is much less susceptible to  inaccuracies. Toint (1988) and Carter 
(1991) examine the convergence of trust-region methods when the gradient is inaccurate, 
while Conn et al. (1993) do the same for inaccurate function and gradient values. 

An important class of problems not covered above are those for which derivatives may 
not exist but for which it is possible to calculate subgradients. These non-differentiable 
problems are frequently solved by methods which build local piecewise &ne models of 
the functions concerned. For instance, each convex function f ( z )  may be modelled as 
maxf(zk) + gl(z - zk), where the zi are (not necessarily distinct) previous iterates and 
sk is a subgradient evaluated at zk. Modelling each function in this way, we may then 
obtain a new trial iterate by minimizing the modelled objective subject to the modelled 
constraints and a stabilizing trust region (or sometimes a penalty on the objective). The set 
of previous values (zk, 8k) which are included is known as a bundle and the determination 
of consecutive bundles is fundamental to the success of the method. An introduction to 
such methods is provided by Kiwiel (1989), Hiriart-Urruty and Lemardchal (1993) and 
Lemarkchal and Zowe (1994), while numerical evidence that they are effective is given by 
Schramm and Zowe (1992). 

Finally, we have said very little about infinite-dimensional proble-is. We particularly 
regret having no space to mention the significant advances in algorithms for network 
optimization, optimal control, and parallel optimization, but merely ‘point to Bertsekas 
(1991), Hager (1990) and Schnabel (1994) as “tasters” for progress in these fields. 

7 Software 

We should not forget that the main reason for designing and analyzing algorithms is to en- 
able others to solve “real” optimization problems, and one of the best ways of  doing this is 
for researchers to provide quality software which implements their ideas. Frankly, we were 
surprised when researching this paper quite how few papers contained numerical results 
which justified their author’s optimistic analytic assessments, or indeed any numerical 
results at all! Fortunately, there is a fair amount of good software available particularly 
for small problems. Major sources are the Harwell, Hatfield, NAG, and Visual Numerics 
(formerly IMSL) subroutine libraries. The book by Mord and Wright (1993) provides a 
thorough assessment of the state and scope of optimization software. 

Possibly the biggest change over the past ten years has been the size of nonlinear 
problems that can be, and are now being, solved. It was rare to find results for problems 
involving, say, more than 50 unknowns at the time of the last conference, but now highly 
nonlinear problems involving, say, 20,000 unknowns and similar numbers of constraints 
can be solved in reasonable times on current desktop computers. Of  current codes capa- 
ble of handling such problems CONOPT (Drud, 1985) and LSGRG2 (Smith and Lasdon, 
1992) are generalized reduced gradient methods, MINOS (Murtagh and Saunders, 1982) 
and LANCELOT (Conn, Gould and Toint, 1992e) are based on augmented Lagrangian 
functions, ETR (Lalee, Nocedal and Plantega, 1993) is an SQP method for equality con- 
straints, while that by Boggs et al. (1994) is a general SQP method. 

8 Conclusion 

The past ten years in nonlinear optimization have been a time of consolidation rather than 
inspiration. The energy that has been devoted to interior-point methods - particularly 
for linear programs - have left the community slightly exhausted when the challenges 
of nonlinearity arise. However, we certainly have a better understanding of when and 
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why the methods we considered ten years ago work. Furthermore, we are now capable 
of solving far larger problems than before, primarily because of our better exploitation of 
problem structure. 

It is not difficult to see how the field will develop in the short term. Interior-point 
methods will be extended to handle nonlinear and nonconvex problems, and many of 
the subproblems currently solved using active set methods will be tackled with interior 
methods. Moreover, the wider availability of second (and higher order) derivatives must 
result in a reappraisal of our current “favourite” approaches. 

Some areas remain vastly understudied. The global effect of strong nonlinearity on 
algorithms has not been considered in any depth, most algorithms retreating to tiny steps 
and/or variants of (constrained) steepest descent under these circumstances. Little is really 
known about how modern algorithms compare, especially on large or highly nonlinear 
problems. We have many preconceptions but, as the resurrection of barrier methods shows, 
folklore should not necessarily be trusted. Another area which deserves more attention is 
the effects of noise on minimization algorithms, particularly as so many industrial problems 
involve noisy functions. Yet further topics which have only recently received attention are 
nonlinear mixed integer and global optimization problems. And finally, we tend to rely 
heavily on matrix factorization as a tool, but there are many classes of large problems 
for which this impossible. We must concern ourselves more in the future on methods for 
which approximate solutions to model problems are sought. 

In our experience a considerable number of users want to solve large problems, while 
perfectly adequate methods are now available for small problems so long as derivatives are 
available. So we end with a plea to the optimization research community: if the “new” 
method you are considering is not applicable to large problems, consider seriously whether 
it really is worth investigating. Perhaps, in this way, in ten years time, we shall be able to 
report a narrowing of the gap between the needs of the user community and the provisions 
of researchers. 
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