
DAG-Scheduled Linear Algebra Using Template-Based Building
Blocks

Jonathan Hogg

STFC Rutherford Appleton Laboratory

19 March 2015
GPU Technology Conference

San Jose, California

* Thanks also to Jeremy Appleyard of NVIDIA
1 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Introduction
What’s in the title?
DAG-Scheduled Similar approach to MAGMA, but more flexible.

Linear Algebra Aimed at implementing matrix algorithms-by-blocks.

Template-Based Building-Blocks Template library for BLAS-like functionality
(i.e. CUB for LA)

So what’s different to MAGMA?
I DAG handled on-device.

I Improved performance for small and medium matrices

I More flexible ⇒ allows more complex pivoting

Some things worked, some didn’t...

2 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Introduction
What’s in the title?
DAG-Scheduled Similar approach to MAGMA, but more flexible.

Linear Algebra Aimed at implementing matrix algorithms-by-blocks.

Template-Based Building-Blocks Template library for BLAS-like functionality
(i.e. CUB for LA)

So what’s different to MAGMA?
I DAG handled on-device.

I Improved performance for small and medium matrices

I More flexible ⇒ allows more complex pivoting

Some things worked, some didn’t...

2 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Introduction
What’s in the title?
DAG-Scheduled Similar approach to MAGMA, but more flexible.

Linear Algebra Aimed at implementing matrix algorithms-by-blocks.

Template-Based Building-Blocks Template library for BLAS-like functionality
(i.e. CUB for LA)

So what’s different to MAGMA?
I DAG handled on-device.

I Improved performance for small and medium matrices

I More flexible ⇒ allows more complex pivoting

Some things worked, some didn’t...

2 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



DAG-Scheduling: Overview
Aims

I Expose maximum parallelism

I Separate parallelism/scheduling from algorithm

Example: Cholesky factorization
I Split matrix up into blocks

I Divide algorithm into tasks that act on blocks.

I Represent dependencies as edges in DAG

I Typically each task is implemented by a block of threads.

3 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



DAG-Scheduling: Example

L33 = factor(A33)

L22 = factor(A22)

L11 = factor(A11)

L21 = solve(A21, L11)

A22 = update(A22, L21, L21)

A43 = update(A43, L41, L31)

L44 = factor(A44)

A33 = update(A33, L31, L31)L32 = solve(A32, L22)

L31 = solve(A31, L11)

L43 = solve(A43, L33)

A32 = update(A32, L31, L21)

A44 = update(A44, L43, L43)

A33 = update(A33, L32, L32)

A42 = update(A42, L41, L21)

L41 = solve(A41, L11)

A43 = update(A43, L42, L32)

L42 = solve(A42, L22)

A44 = update(A44, L42, L42)

A44 = update(A44, L41, L41)

4 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



DAG-Scheduling Progress: Cholesky

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000

S
p

ee
d

u
p

vs
cu

S
ol

ve
r

n

New
Magma

Host MKL

I More advanced
implicit-DAG scheme
similar to “domino”
scheme from trsv.

I Big gains on
latency-bound sizes

I Still need to address
flop-bound case by
calling cuBLAS.

I Surprisingly beat MKL
on “small” sizes

5 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Linear Algebra
Algorithms of interest

Cholesky A = LLT — proof of concept, check performance

Symmetric Indefinite A = LDLT — requires complex pivoting, (Bunch-Kaufmann
often insufficient for sparse solvers).

Cholesky
I For j = 1, . . . , n:

1. Factor diagonal block LjjL
T
jj ← Ajj

2. “Divide” column by diagonal Lij ← AijL
−T
jj , i > j

3. Update columns to right Aik ← Aik − LijL
T
kj , i ≥ k > j

6 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Linear Algebra
Algorithms of interest

Cholesky A = LLT — proof of concept, check performance

Symmetric Indefinite A = LDLT — requires complex pivoting, (Bunch-Kaufmann
often insufficient for sparse solvers).

Cholesky
I For j = 1, . . . , n:

1. Factor diagonal block LjjL
T
jj ← Ajj

2. “Divide” column by diagonal Lij ← AijL
−T
jj , i > j

3. Update columns to right Aik ← Aik − LijL
T
kj , i ≥ k > j

6 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Symmetric Indefinite with Pivoting
Symmetric Indefinite A = LDLT

I Ignoring stability, is essentially Cholesky with extra D’s.

I To ensure stability need to ensure no entry of L is too large.

I For use in sparse solver, needs to cope with rectangular matrices
⇒ Bunch-Kaufmann is unsuitable.

Traditional pivoting
I Finds largest entry in column before making pivoting decision.

– Latency-bound (global communication for each column).

– Entire (block) column may not fit in GPU (shared) memory.

7 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Symmetric Indefinite with Pivoting II
But we’re lucky!

I Numerical pre-treatment (scaling,ordering) means < 0.1% matrices need pivoting

I Allows “Try-it-and-see” approach (aka A Posteriori Pivoting)

8 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Requirements from task system
I Follow Cholesky scheme

But also...

I Apply permutations to Left

I Check pivot sizes

I Perform speculative execution...

I ...backtrack if things go wrong

I In case where pivots fail, need to update to Left as well as Right

Still writing this...
...but don’t forsee major problems

9 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Requirements from task system
I Follow Cholesky scheme

But also...

I Apply permutations to Left

I Check pivot sizes

I Perform speculative execution...

I ...backtrack if things go wrong

I In case where pivots fail, need to update to Left as well as Right

Still writing this...
...but don’t forsee major problems

9 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Unoptimized results

0

5

10

15

20

25

30

1000 10000

T
im

e
/

T
im

e(
cu

S
ol

ve
r

C
h

ol
es

ky
)

n

Magma (unpivoted)
cuSolver

Host MKL
Prelim code

10 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



DAG-Scheduling: Vs MAGMA
Implementation in MAGMA
+ Performs ”straight-forward” tasks on GPU (e.g. GEMM)

+ More complicated tasks on CPU (e.g. pivoting kernels)

+ High asymptotic performance (because GEMM)

– Tasks must be certain minimum size to be efficient.

– CPU↔GPU latency limits performance on small matrices.

– Can’t easily handle speculative execution and backtracking.

– Doesn’t work well on lots of simultaneous small matrices.

– Can’t (easily) dynamically modify task DAG based on pivoting decisions.

11 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



DAG-Scheduling: Vs MAGMA
Implementation in MAGMA
+ Performs ”straight-forward” tasks on GPU (e.g. GEMM)

+ More complicated tasks on CPU (e.g. pivoting kernels)

+ High asymptotic performance (because GEMM)

– Tasks must be certain minimum size to be efficient.

– CPU↔GPU latency limits performance on small matrices.

– Can’t easily handle speculative execution and backtracking.

– Doesn’t work well on lots of simultaneous small matrices.

– Can’t (easily) dynamically modify task DAG based on pivoting decisions.

11 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Template Library
What is it?

I Similar in concept to CUDA Unbound (CUB) library

I Provide efficient BLAS-like functionality as templates: “BLAS Unbound”

I Warp, Block and Device-level constructs

I Facilitate auto-tuning

Why do we need it?
I For our DAG-library, all tasks performed in same kernel

I So all get same shared memory, number of threads etc.

I Pick best parameters for GEMM operation where most flops are

I Everything else has to live within that envelope

12 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



The good, the bad and the ugly
Problems

I Combinatorial complexity / Manpower intensive

I Often need to break warp/block separation for performance

I Lots of performance optimization needed

I Can’t even come close to cuBLAS GEMM performance (70% vs 90% of peak)

Wins
I Easy to play around with alternatives

I Test-driven development allows increased confidence in correctness

I Non-traditional features added using template parameters may be reused in other
scenarios

13 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Tricks for fast Cholesky

Warp-level
I Each thread handle multiple consecutive columns

I Hide DFMA in communication latency

I Can’t hide in RSQRT latency — PTXAS issue?

I Use of SHFL requires a lot more unrolling — Instruction Cache Size issues

I Explicit hand/template based unrolling as NVCC tries to be too clever

I warpSize not a square number makes things messy

I Break block/warp separation by leaving 1√
dii

on diagonal not
√
dii .

14 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Tricks for fast Cholesky II
Block-level

I Use different data layout for warps factoring diagonal vs off-diagonal

I Trsm (in Potrf): Each thread holds one entire vector ⇒ no communication

I Work lower triangle of 4× 4 blocks with only 8 warps — need “warp stealing”.

I BlockTrsm: Stage Dii into shmem by hand, double buffering

I BlockTrsm: Good SHFL use is fiddly

I Post progress after each diagonal block for device-level algorithm to pick up

0

1

2

3

4

5

6

7

8 9

15 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Cholesky: 4 blocks

16 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Cholesky: 16 blocks

17 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Tricks for fast Cholesky III
Device-level

I Overlap as much as possible

I Consolidate work and avoid synchronization

I Small calls to CUBLAS infeasible: launch overhead >> single block update

I Need to identify larger blocks to call CUBLAS on

I Will need more complicated scheme:

18 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Tricks for fast Cholesky III
Device-level

I Overlap as much as possible

I Consolidate work and avoid synchronization

I Small calls to CUBLAS infeasible: launch overhead >> single block update

I Need to identify larger blocks to call CUBLAS on

I Will need more complicated scheme:

18 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Conclusions

I On-device DAG-scheduling good for latency bound kernels

I Significant improvements in Cholesky for n ≤ 2000

I New a posteriori pivoting techniques for LDLT

I BLAS/LAPACK-like template library is a lot of work

I ... so only limited subset will be brought up to release quality

I If you want the rest, email me.

I Code will ultimately be used for Sparse solver SPRAL SSIDS v2

jonathan.hogg@stfc.ac.uk

19 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory



Thanks for listening!

Questions?

jonathan.hogg@stfc.ac.uk

http://www.numerical.rl.ac.uk/spral

20 / 20
DAG-Scheduled Linear Algebra Using Template-Based Building Blocks
Jonathan Hogg, STFC Rutherford Appleton Laboratory

http://www.numerical.rl.ac.uk/spral

