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THE POLARIZED TWO-LOOP SPLITTING FUNCTIONS* 

W. VOGELSANG 
Rutherford Appleton Laboratory, Chilton DIDCOT, Ozon OX11 OQX, England 

We present a brief description of the light-cone gauge calculation of the spin- 
dependent next-to-leading order splitting functions. 

It has recently become possible to perform analyses of the spin-dependent 
parton distributions of a longitudinally polarized hadron at next-teleading or- 
der (NLO) accuracy of QCD. A first such phenomenological NLO study, taking 
into account all available experimental data on polarized deepinelastic scat- 
tering has been presented in , followed by the analyses 2. An indispensable 
ingredient here are the polarized two-loop splitting functions (or anomalous 
dimensions) AI$) which appear in the NLO Q2-evolution equations for the 
spin-dependent parton densities. Results (in the MS scheme) for the AI$) 
have first been obtained in where the Operator Product Expansion (OPE) 
formalism was used. The results were afterwards confirmed in4 using the some 
what more efficient method developed in and employed in the unpolarized 
case in6~7~8, which is based on the factorization properties of mass singularities 
and on the use of the axial gauge. In this paper we give a brief description of 
our calculation '. 

To begin with, we collect all ingredients for a NLO analysis of longitudi- 
nally polarized deepinelastic scattering in terms of the spin-dependent struc- 
ture function g1(z, Q2). Beyond LO, there are two different short-distance 
cross sections, AC, and AC,, for scattering off incoming polarized quarks and 
gluons, respectively. Thus the NLO expression for g1 reads in general: 

where nj  is the number of flavors and 8 denotes the usual convolution. Here, 
the polarized parton distributions A f E fl- fl (f = q,  Q,g) are to be evolved 
in Q2 according to the NLO spin-dependent Altarelli-Parisi evolution equa- 
tions. We adopt the following perturbative expansion of the evolution kernels: 

~ ~~ 

* Invited talk presented at the 'Int. Workshop on Deep Inelastic Scattering and Related 
Phenomena' (DISM), Rome, Italy, April 15-19,1996. 
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We emphasize that neither o f  the NLO corrections, ACi and AP:), are physi- 
cal quantities since they depend on the factorization scheme adopted. Needless 
to mention that the same scheme has to be chosen in the calculation of  both in 
order to obtain a meaningful result. Conversely, once the ACi and AP:) are 
known in one scheme it is possible to perform a factorization scheme transfor- 
mation, i.e., to shift terms between them without changing a physical quantity 
like 91, hereby redefining the polarized NLO parton distributions l0 .  

Defining Aqif G Aqif Aqi one finds the following NLO evolution equations 
for the non-singlets (NS) Aq,: and Aq' - Aq;: 

d 
-(&+ - AqT) = Ap,',(t, as(Q2)) €3 (Aq; - AqT) , (3) d In Q2 

Aqf = AP;(t,as(Q2)) €3 Aqf , 
d In Q2 (4) 

where we have suppressed the obvious argument (t, Q2) in all parton densities 
and taken into account that there are two different NS splitting functions, 
AP;, beyond LO (see, e.g.,8). Defining AE G Ci(Aq, + Aqi) one has in the 
flavor singlet sector: 

) 63 ( g ) . ( 5 )  
Apqg(t, aa(Q2)) APgg(2, as(Q2)) 

dlndQ2 ( E ) = ( APgq(t, aa(Q2)) APgg(t, aa(Q2)) 

The qq-entry in the singlet matrix of  splitting functions is written as 

AP,, = APA + APA . (6) 

Thus, at NLO, we will have to derive the splitting functions APgf(l), AP;(l), 
and those involving gluons. The general strategy to do this in the method 

consists of  first expanding the squared matrix element A M  for (polar- 
ized) virtual photon-polarized quark (gluon) scattering into a ladder of  two- 
particle irreducible (2PI) kernels CO, KO, 

%We now choose the light-cone gauge by introducing a light-like vector n (n2 = 
0) with n A = 0. In this gauge the 2PI  kernels are finite as long as external 
legs are kept unintegrated, such that collinear singularities only appear when 
integrating over the lines connecting the rungs of  the ladder S .  This allows 
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for projecting out the singularities by introducing the projector onto polarized 
physical states, AP. Thus AM can be written in the factorized form 

AM = ACAI' , (8 )  

where AC = ACo/( 1 - (1 - AP) KO) is the (finite) short-distance cross section, 
whereas AI' contains all (and only) mass singularities. Working in dimensional 
regularization (d = 4 - 26) in the MS scheme one has explicitly 6 :  

where 'PP' extracts the pole part, Zj ( j  = q(g)) is the residue of the pole of the 
full.quark (gluon) propagator, and we havedefined K = Ko(l-(l-AP)Ko)-'. 
k is the momentum of the parton leaving the uppermost kernel in AI'. The 
spin-dependent projection operators onto physical states are given by 

AU, = --75f, AL, = -I/Ts ; AUg = icpwpo- 

Finally, it can be shown6 that the coefficient of the l/c pole of AI' is related 
to the splitting functions we are looking for: 

1 np k, icpwpu Ppno 
kn I 

ALg = 
2Pn 4kn 

(10) 

AI',* = . .) +O (:) (11) 

and analogously for the flavor singlet case. Explicit examples of the Feynman 
diagrams contributing to the AI'i, can be found in 6 1 4 * 8 .  

We see from Eq. (10) that there is a new ingredient in the polarized cal- 
culation which requires extra attention: The Dirac matrix 7 5  and the Levi- 
Civita tensor E,,,,,,~ enter. A prescription for dealing with these (genuinely 
four-dimensional) quantities in d = 4 - 26 dimensions has to be adopted which 
must be free of algebraic inconsistencies. Our calculation4 was performed using 
the original definitions for 7 5  and cpwpo of l1 (HVBM scheme) which is usually 
regarded as the most reliable prescription. Here 7s retains its four-dimensional 
definition, 7 5  E i~~wP07p7w7p7,/4!, with the etensor being a genuinely four- 
dimensional object. As a consequence one finds that 

{ 7 p , 7 5 } = 0  f o r p = 0 , 1 , 2 , 3 ;  [ 7 ' , 7 ~ ] = 0  otherwise. (12) , 

Thus the matrix element squared of a graph will in general depend on scalar 
products defined in the '(d - 4)-dimensional' subspace. Special care has to be 
taken of such terms in loop and phase space integrals4. 
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Another more technical remark concerns the use of the light-cone gauge, 
which plays a crucial role in the calculation. The light-cone gauge denominator 
l / (n  I )  in the gluon propagator can give rise to additional divergencies in loop 
and phase space integrals. We follow 6371s  to use the principal value (PV) 
prescription to regulate such poles: 

The PV prescription appears to be the most convenient choice from a prac- 
tical point of view; it leads, however, to the feature that the renormalization 
'constants' depend 6i8 on the longitudinal momentum fractions z. 

We express the MS results of our calculation in the HVBM scheme in terms 
of the unpolarized NLO NS splitting functions P:'(') of and of the recent 
polarized OPE results AP:) o f 3 ,  exploiting the fact that the contributions - d ( l  - z) to the diagonal splitting functions are necessarily the same as in 
the unpolarized case since they are determined by Zj in (9). One then has: 

AP:l(l)(~) = P$(')(z) - 2/30C~(1- Z) , 

ACq(z) = AC',(z) - 4 C ~ ( 1 -  z) , 
AC,(z) = AC',(z) , 

where p(O) and k(l) denote the LO and NLO parts, respectively, of the singlet 
evolution matrix, and 

A(,) = 4 C ~ ( 1  -z) ( ) . 
In Eq. (14) we have also included the results for the short-distance cross sec- 
tions AC,, AC,. As indicated in Eq. (14), the '+' and '-' combinations of the 
NS splitting functions have interchanged their roles. Eqs. (3,14) therefore 
imply that the combination AP$(') = Pi'(') - 2/3&~(1 - z) would govern 
the Q2-evolution of, e.g., the polarized NS quark combination 

AA3(2, Q2) = (Aut - Ad') (2, Q2) . 
Since the first moment (i.e., the t-integral) of the latter corresponds to  the 
nucleon matrix element of the NS axial vector current qy"y&q which is con- 
served, it has to be Q2-independent. Keeping in mind that the integral of the 
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unpolarized Pqi8(') vanishes already due to fermion number conservation 6, i t  . 

becomes obvious that the additional term -2POcF(1 - z) in (14) spoils the 
Q2-independence of the first moment of  AA3(z,Q2). On the other hand, as 
pointed out earlier, we are free to perform a factorization scheme transforma- 
tion to the results in (14). It turns out that the scheme transformation that 
removes the term -2POCF(1 - z) from APG'(l) in Eq. (14) eliminates at  the 
same time allextra (1 --)-terms on the r.h.8. of  (14), leaving AC, unchanged. 
Thus our final results after the transformation are in complete agreement with 
those of  '. We note that the presence of the (1 - 2)-terms in our original 
HVBM scheme result (14) can be traced back to the fact that in this scheme 
the d-dimensional polarized LO quark-to-quark splitting function is no longer 
equal to its unpolarized counterpart due to the non-anticommutativity of  7 5  

(see (12)) , artificially violating helicity conservation. 
and need 

not be repeated here: We mention that compact expressions for the Mellin- 
moments of the polarized NLO splitting functions, defined by 

Our complete final results for the AP$)(z) can be found in 

as well as their analytic continuations to arbitrary complex n ,  can be found 
in To work in Mellin-n space is very convenient for a numerical analysis of 
parton distributions since the evolution equations can be solved analytically 
here. For illustration we show the entries AP$)l" of the NLO part of  the singlet 
evolution matrix as a function of  real Mellin-n in Fig. 1, comparing them to 
the unpolarized P$)"' as obtained from 13. One observes, in particular, that 
AP$)I" -+ p$)pn for n + oo (i.e., for t + 11, except 1 for A P ~ ; ) * ~ .  w e  finally 
note that the values for the first moments of  the AP$)(z) turn out to be3s41l4 

where CF = 413, NC = 3, TJ = n ~ / 2 .  
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Figure 1: Mellin-moments of the polarized and unpolarized NLO singlet splitting functions. 
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