
CLRC 

Technical Report 
RAL-TR-96-058 

Quantum Effects in Two-Dimensional 
Magnetic Systems 

A Cuccoli V Tognetti R Vaia and P Verrucchi 

July 1996 

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS 



0 Council for the Central Laboratory of the Research Councils 1996 

Enquiries about copyright, reproduction and requests for 
additional copies of this report should be addressed to: 

The Central Laboratory of the Research Councils 
Library and Information Services 
Rutherford Appleton Laboratory 
C h i I ton 
Didcot 
Oxfordshire 
OX1 1 OQX 
Tel: 01 235 445384 
E-mail libraryQrl.ac.uk 

Fox: 01 235 446403 

ISSN 1358-6254 

Neither the Council nor the Laboratory accept any responsibility for loss or 
damage arising from the use of information contained in any of their 
reports or in any communication about their tests or investigations. 



Quantum Effects 
in two-dimensional Magnetic Systems 

A. Cuccoli+, V. Tognetti+, R.Vaiat, and P.Verrucchi*. 

largo E. Fermi 2, 1-50125 Firenze, Italy. 
t Istituto d i  Elettronica Quantistica - CNR, 

via Panciatichi 56/30, I-501 27 Firenze, Italy. 
* ISIS Facility, Rutherford Appleton Laboratory, 

Chilton, Oxfordshire, OX1 1 OQX, U.K. 

Dipartirnento d i  Fisica dell ’Universitci di Firenze, and INFM, 

Abstract 

The main features of the application of the pure-quantum self-consistent 
harmonic appmzimation (PQSCHA) to the study of tw+dimensional (2d) 
magnetic systems are briefly reviewed; particular attention is given to how 
the symmetry of the system affects the actual implementation of the method. 
Detailed results for the 2d Heisenberg antiferrornagnet (HAF) are shown and 
compared with experimental data and theoretical results from different a p  
proaches. 

1 Introduction 
We consider the class of models described by the Hamiltonian 

where i and j run over the sites of a two-dimensional squarelattice, and the sum is 
over nearest-neighbours. The quantum mechanical operators S; satisfy [sol, 3!] = 
6;jP”3’ and = S(S+l). 

Eq. (1) describes systems whose behaviour can be utterly different depending on 
the value of the exchange anisotropy X as well as on the sign of the exchange integral 
J .  Both ferro- (J<O) and antiferromagnets (J>O) can be classified as easy-plane 
(O<X<l), easy-asis (X>1) or isotropic (X=l) ;  models belonging to different classes, 
i.e. with different symmetries, may require a differentiated treatment even though 
studied by the same method. This is also the case of the PQSCHA method, as the 
spin-boson transformation which constitutes the first step towards the evaluation of 
the effective Hamiltonian (see Ref. [l]), must be carefully chosen in order to sensibly 
implement the method itself. 

1 



But where does this choice turn out to be fundamental? We know that, in order 
to carry out the complete PQSCHA renormalization of the Hamiltonian, the Weyl 
symbol of its bosonic form has to be a well behaved function in the whole phase- 
space. Spin-boson transformations, on the other hand, can introduce singularities 
(in the derivatives), as a straightforward consequence of the topological difficulties 
in mapping a spherical phase-space into a flat one. The choice of the transformation 
has then to be made trying to let the singularities to occur only when thelsystem is in 
those configurations which are not thermodynamically relevant , so to make possible 
a physically sound approximation when using the transformation itself. Most of 
the methods for studying magnetic systems at finite temperature do in fact share 
this problem with the PQSCHA; what makes the difference is that by using the 
PQSCHA one separates the classical from the pure-quantum contribution to the 
thermal fluctuations, and the approximation only regards the latter, as the former 
is exactly considered as far as one can cast the effective Hamiltonian in the final 
form of a classical spin Hamiltonian. This is indeed a crucial point, as we will see 
in the specific application to the 2d-HAF. 

2 Spin-boson transformations 

Consider now the case O < A < l :  the easy-plane character of the mode1,suggests to 
make use, for each spin operator, of the Villain transformation 

- 
to canonically conjugate operators [ G , j ]  = i , with S E S + 1. this transformation 
keeps the O(2) symmetry in the easy-plane, meanwhile allowing to deal with the 
square root in terms of a physically sensible small-j approximation. 

In the easy-axis case (A  > 1) it makes no sense to use Eqs. (2),  as the expectation 
value of the z-component of each spin is now substantially different from zero. On 
the other hand, the Holstein-Primakoff (HP), 
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and Dyson-Maleev (DM), 

with i2 E (G2 + ?j2)/2, do both suggest the z-component to be privileged for align- 
ment, thus fitting nicely to the easy-axis case. A few words have to be spent to 
clarify the relation between the HP and the DM transformation before considering 
the isotropic case, where both of them can be used. Eqs. (3) contains a square root 
that we cannot deal with unless introducing an approximation of small i2. After 
having checked whether or not such an approximation is reasonable (which is the 
case for the easy-axis models), we still have to face ordering problems so to find 
the explicit expression of the Weyl symbol of the Hamiltonian, as requested by the 
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PQSCHA according to Ref. [l]. The Dyson-Maleev transformation seems much sim- 
pler, as it is normally ordered and does not contain square roots; as a counterpart 
to these nice properties, however, Eqs. (4) do not represent a hermitean transfor- 
mation and do not take into account the kinematic interaction, allowing 9 to be 
smaller than -S. To avoid considering unphysical states, one can make use of a 
proper projection operator [4] whose insertion does actually bring back, though in 
a slightly different form, the very same problems affecting the HP. ‘ 

3 Isotropic model. 
When X = l  Eq. (1) can be written in the isotropic form of the two-dimensional 
Heisenberg model 

Like in the easy axis case, it makes no sense to use the Villain transformation 
for an isotropic model; at variance with the easy-axis case, however, also the HP 
and DM transformations seem to be unsuitable now, as they both break the full 
SU(2) symmetry of Eq. ( 5 ) .  At T=O this is not a problem, as the ground state is 
ordered by spontaneous symmetry breaking (though the case S = !j, J > 0 is not 
yet fully understood). At finite temperature the ordered ground state is unstable 
against low-wavevector thermal excitations which are indeed responsible for the 
symmetry restoration, i . e .  the vanishing of the (staggered) magnetization of the 2d 
Heisenberg (anti)ferromagnet. As T increases, these excitations’ character becomes 
more and more classical, which means, as pointed out in the previous section, that 
the PQSCHA takes them into account more and more accurately, no matter what 
transformation has been used or what further approximation introduced to deal with 
the transformation itself. This means, as we eventually reconstruct the effective 
Hamiltonian in the form of a spin-Hamiltonian, that we can safely use the HP or 
DM transformations for any value of temperature. 

Making use of the DM transformation and following the procedure described in 
[l] and [2], we find the effective Hamiltonian to be 

.., 
where S E S + is the ‘classical spin length’ (11 and 8; are unit vectors; the 
term G( t )  = tN-’ & ln[sinh fk/(02fk)] - 202D only depends upon the dimensionless 
temperature t T / J S 2 ,  and O2 3 1 - 2)/2 embodies the effect of purequantum 
fluctuations through the parameter 

2) = (NS)-’  ck (cothfi - f; ’ )  , (7) 

with r k  = (cos kz + cos kv)/2, and f k  = 4 ( 2 S ” t ) .  Our last step is now to evaluate 
the frequencies wk; we recall that, as we are dealing with a system with many de- 
grees of freedom, in order to solve the self-consistent equations eventually leading 
to the renormalization coefficients, we have to introduce a further Low Coupling 
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Approximation (LCA) to avoid the PQSCHA frequencies uk(p,q) to depend on 
(p, q )  [l]; the usual LCA is obtained by assuming ukeuk(pO, qo) where (po, qo) is 
the minimum configuration of Itleff, i .e .  the configuration of (anti)aligned spins. In 
the specific case of the isotropic model, however, low energy excitations destabilize 
the minimum as soon as the temperature is switched on, so that a more refined LCA 
can be essential for a better description of the low and intermediate temperature 
regime. As suggested in [3], one could take uk~(uk(p,q))eff, where ( . - - ) e f f  is the 
classical-like average defined by the effective Hamiltonian, but, whenever an ana- 
lytical expression for (uk(p, q))efi is not available, the solution of the self-consistent 
equations prescribed by the PQSCHA remains an almost impossible task. Never- 
theless, we can evaluate (uk(p,q))eff in the framework of a classical SCHA, and, as 
we know that the classical SCHA on a system whose hamiltonian is is nothing 
but the full quantum SCHA on the original system [3], we obtain, in the HAF case 
we are interested in, 

wk = 4rc2 Jq , tc2 = 1 - (2NS")-' Ck Ja coth[uk/(2S"t)] , (8) 
where tc2 is the well-known SCHA renormalization coefficient. In the ferromagnetic 
case 4- should be replaced by (1  - ~ k ) ,  also in Eq. (7). Eqs. (8) can be 
self-consistently solved for tc2 and the frequencies, and hence the pure-quantum 
renormalization coefficient O2 is calculated via Eq. (7). 

Though giving much better results at low and intermediate temperatures, this 
type of LCA transfers to the PQSCHA an instability at t = 04, which is indeed typ- 
ical of the SCHA, where the self-consistent solution becomes complex. This comes 
from having considered all possible spin-waves, including those with wavelength 
X > 25 (5 is the spin correlation length) which do not actually survive in the system 
because of the lack of long-range-order. The instability is then avoided by not taking 
into account the unphysical spin-waves, i.e. introducing a cut off llcl 2 T / (  over the 
(antiferromagnetic) Brillouin zone. Furthermore, by writing tc2 as 

Ic2 = 1 - (D + Dc1)/2 , DcI = (NS")--l dm fil , 
we see that the above mentioned instability comes from the classical component DCl 
of tc2, as the pure-quantum D is decreasing with t and takes contributions from the 
highest frequencies (as a consequence of representing only the short-ranged pure- 
quantum fluctuations). This suggests to insert the cut-off just in the evaluation of 
Del, so that for t + 00, DC1 vanishes as ( + 0 and we find the very same results 
that would have been obtained by the usual LCA. 

As for the correlation functions, they can be easily evaluated, as shown in Refs. [l] 
and [2]; their expressions, together with the form of the effective Hamiltonian Eq. (6 ) ,  
tell us that the quantum correlation length ( at temperature t takes the same value 
that the classical Scl has at a higher temperature tc l=t /04(t) ,  being [ ( t )= (c l ( t / 04 ( t ) ) .  
In this way, by knowing the classical &(t), we can obtain the quantum results for 
any value of the spin. 

In Fig. 1 we show [ ( t )  for a S = 3 2d-HAF as obtained by the PQSCHA (lines), 
compared with experimental data, quantum Monte Carlo (QMC) and high-T ex- 
pansion results. The continuous lines are the low- and high-T results of our theory, 

4 



i.e. those obtained by the refined LCA described above and the usual one, respec- 
tively; the dashed line, which is obtained by applying the cut-off, smoothly connects 
them. The classical (S = 00) correlation length is also shown and the open circles 
are new results from classical Monte Carlo simulations that we have performed (the 
dash-dotted line is a fit to the classical data). Remarkably, such a good agreement 
is obtained without any best-fit parameter; this really gives us confidence to draw 
out conclusions about the physics of the 2d-HAF out of the PQSCHA results. 
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Figure 1: ( ( t )  as a function o f t  = T/(Jg2) (see text). Squares, triangles (neutron 
scattering for Sr2Cu02C12 and LazCu04), diamonds (NQR relaxation for La2CuO4), 
crosses (QMC) and filled circles (high-T expansion), in the order, from Refs. [5]. 
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