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Abstract 

The scattering length common to the attenuation coefficient and cross-sections 

for the resonance-enhanced scattering o f  X-rays suffers fiom a dependence on a 

spectrum of  virtual, intermediate states which contain next to no useful information 

about the environment o f  the atoms. It is the dependence o f  the scattering length on 

intermediate states that sets the X-ray techniques apart fiom neutron scattering and 

other techniques which directly probe properties o f  magnetic materials, and limits the 

usefulness o f  physical intuition in the interpretation o f  empirical X-ray data. As a step 

toward a legible interpretation, in a language of standard atomic variables, an 

investigation is reported o f  a modified scattering length constructed to possess a 

structure similar to the scattering length for magnetic neutron scattering, namely, it 

has the mathematical structure o f  a spherical tensor operator, to which all Racah’s 

methods for electrons in an open valence shell can be applied. In the process o f  

reaching this goal, the influence of  the intermediate states on the scattering length is 

reduced by summing over a limited set o f  quantum numbers for the intermediate 

states. Topics covered in the investigation include the attenuation coefficient for X- 

rays passing through a foil o f  magnetic material, dichroism, and the cross-sections for 

resonance-enhanced elastic (Bragg) and inelastic scattering o f  X-rays by magnetic 

materials. The treatment o f  polarization in the primary beam admits states o f  partial 

polarization, described by a Stokes vector. Both jj-coupling and Russell-Saunders 

coupling schemes for the valence states are explored. 
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$1 Introduction 

In the past decade, experimental techniques that employ beams o f  X-rays have 

proved their worth for the study o f  the magnetic properties o f  materials (for a review 

see [l]). For the most part using beams o f  X-rays produced by particle accelerators, a 

raft o f  experiments have been successfully completed on a wide range o f  magnetic 

materials. 

Two of the techniques, absorption and scattering, are truly complementary since 

the interpretation o f  the empirical data rests on a common scattering length. In terms 

o f  the scattering length,f; the attenuation coefficient is proportional to the imaginary 

part offevaluated for the forward scattering geometry and averaged over all states of 

the target material. On the other hand, scattering experiments are interpreted in terms 

o f  a scattering cross-section which is a quadratic function o f  the scattering length. 

The cross-section for Bragg diffraction, a strictly elastic process, is proportional to 

I(f)l’ where ( f )  is the time (thermal) average o f $  Inelastic and total scattering 

experiments are properly interpreted in terms o f  a cross-section related to f . (I ’I) 

For processes involving X-ray absorption and scattering the content o f  the 

measured signal attributable to the magnetic properties o f  the sample, altogether, is 

pale and insignificant in its intensity, compared to the intensity o f  contributions to the 

signal arising from the electric charge properties of the material. At least for the 

moment, success in studying magnetic properties with X-ray beam techniques hinges 

on adopting a scheme to enhance the magnetic signal with respect to the charge 

signal. In absorption experiments one exploits the sensitivity o f  the attenuation 

coefficient to the condition o f  the polarization in the primary beam, a so-called 

dichroic effect. Use o f  circular polarization is very useful. A scheme for enhancing 

scattering signals is to tune the energy o f  the primary beam to the energy o f  a 

resonance in the magnetic atom o f  interest. Resonance-enhanced scattering, as it is 

sometimes called, has proved useful with materials which contain magnetic atoms 

from the lanthanide and actinide series in the Periodic Table. 
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Turning to the interpretation, at an atomic level o f  detail, o f  dichroic signals and 

resonance-enhanced scattering, both are related to the contribution to f generated by 

the current operator treated in the second order o f  perturbation theory. It is the energy 

denominator in this contribution to f that generates the first-order contribution to the 

attenuation coefficient. Tuning the energy of  the primary beam to a resonance means 

finding an energy at which the real part of the denominator vanishes, with a 

concomitant enhancement o f  the corresponding cross-section (elastic and inelastic 

processes can be resonance-enhanced). The resonance process entails the absorption 

o f  a photon, and ejection o f  an electron from a core state o f  the equilibrium 

configuration of  the atom to an orbital which is unoccupied. These virtual, 

intermediate states, characterized by a hole in a core state, are not states o f  the 

equilibrium configuration o f  the electrons. While necessary in the resonance process, 

o f  course, the intermediate states are an unwelcome distraction in the interpretation of 

empirical data. A full account of the intermediate states which arise in elements that 

possess open valence shells, and display magnetic properties in solids, can only be 

achieved with the resource o f  a computer program to calculate the 1 1 1  atomic 

structure. There is one exception, namely, an atom for which the open valence shell 

o f  the equilibrium configuration contains one hole; in all other cases a tried and tested 

computer program is required to enumerate the plethora of  intermediate states and 

provide their energies and wave functions (and matrix elements); see for example 

listings given in [2,3]. 

While the intermediate states cannot be entirely removed in a quantitative 

interpretation o f  empirical data, perhaps one can achieve a tolerable interpretation 

with less than the 1 1 1  information on the intermediate states. An aim of the paper is to 

report a scheme in which the intermediate states are largely eliminated fiom the 

calculation o f  the scattering length. It is argued that information, on the magnetic 

properties of the material, carried in the valence orbitals is not unduly distorted by the 

process of elimination. With the idealized scattering length, calculations o f  the 

attenuation coefficient and cross-sections, for elastic and inelastic resonance-enhanced 

scattering, are made with the standard tools o f  atomic spectroscopy. Many of  the 

quantities involved, e.g. -hcah’s unit tensor operators for equivalent electrons, are 
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widely available in analytic or tabular form. Our calculations make quite explicit the 

complementary nature o f  absorption and resonance-enhanced scattering. For a special 

case, in which the valence orbitals are represented by one atomic wave function, we 

recover results given in [l]. 

The following section contains the definition o f  the scattering length which 

describes the attenuation and resonance-enhanced scattering o f  X-rays, and the 

simplification brought to it by the neglect o f  the contribution explicit in the spin o f  the 

electrons and a treatment at a first level o f  approximation o f  the momentum o f  the 

electrons. The derivation o f  our formula, which we later call an idealized scattering 

length, in the form o f  a spherical tensor, is described in an appendix. Section 3 is 

given over to a summary o f  its properties with a view to applying it to the calculation 

o f  the attenuation coefficient and cross-sections, which are taken up in three 

subsequent sections. We conclude with a brief summary o f  our findings. 

$2. Resonant component of the scattering length 

Throughout the paper we consider the component o f  the scattering length for a 

beam o f  X-rays that arises from treating the current operator, J(q), in the second order 

o f  perturbation theory. (Other terms in the scattering length arise from contributions 

to the X-ray-matter interaction which are quadratic in the vector potential o f  the 

photons and, hence, treated in the first order o f  perturbation theory.) The resonant 

component o f  the scattering length, f ,  is characterized by an energy denominator 

whose real part is zero for a suitable energy, E, o f  the primary beam o f  X-rays. At the 

condition o f  resonance, the denominator has a magnitude set by the (decay) width in 

energy, y, o f  the intermediate states in the resonance process, labelled by q. Unlike 

the initial and final states o f  the sample, described by quantum numbers p and p’, 

respectively, the intermediate states are not from the equilibrium configuration o f  the 

sample. 

Let the wave vector and polarization vector o f  the primary photon beam be q 

and E, respectively, with q = (2dh). The corresponding quantities for the secondary 
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beam are distinguished by a prime. The resonant contribution to the scattering length 

is VI,  

where re is the classical radius o f  an electron (re = 0.282 x 10-l2 cm) and m is the 

mass o f  an electron. At the condition o f  resonance for the intermediate state qo the 

difference in energy between the intermediate and initial state o f  the target, 

(Eqo - E,,), is matched by E. For this condition the contribution to f from all other 

intermediate states is relatively small. The dimension offis length. 

The current operator contains a sum over all electrons in the target sample. We 

consider resonant processes that are specific to a particular atom in the sample. 

Hence, it is appropriate to express J(q) as the combined sum over all these atoms, at 

positions in the sample denoted by {R,,}, and the sum over all electrons in the atom 

located at R,,. Given that there is no correlation between the resonant electronic 

processes at different atoms the scattering length is, 

with k = q - q’ . The spatial phase factor in (2.1) is determined by the corresponding 

quantity in the current operator, given explicitly later in this section, and the actual 

form in which the product of  current operators arises in the scattering length. In the 

expression (2.1), which is the basis o f  all our subsequent work on absorption and 

scattering, the matrix elements are calculated for the atom at site R,,; the condition o f  

an atom, in general, will depend on its position in the sample, e.g. the axes o f  

quantization will change, on account o f  the magnetic order, on moving from one atom 

to another. 
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The attenuation coefficient and cross-section for elastic (Bragg) scattering are 

calculated from the scattering length evaluated for elastic events. In this instance, one 

takes p = p' and averages the scattering length over the degeneracy of equilibrium 

states weighting them by the degeneracy factor and thermal population factor. In the 

case o f  an isolated atom the quantum numbers {p} are J and M, where J is the total 

angular momentum and A4 is the magnetic quantum number. The sum to be 

performed to obtain the scattering length for absorption and Bragg diffraction is a sum 

over the (2J + 1) values o f  A4, and the weight o f  each M-state is 1 / (2J + 1). In the 

event the degeneracy is lifted by a magnetic field (either an applied field or an 

effective field generated by neighbouring atoms) each M-state will be weighted by a 

thermal population factor = exp(A4u)E where S is the partition function. For inelastic 

scattering events, the cross-section is obtained from the absolute square off multiplied 

by a delta function which expresses the conservation o f  energy in the event. The total 

cross-section is proportional to this quantity averaged over all initial states and 

summed over all final states. 

The current operator in (2.1) is built from the operators o f  linear momentum, p, 

which is conjugate to the position vector R, and spin, s. If  the electrons in the atom, 

at the site defined by l?,, are labelled by the indexj, 

In subsequent work we set aside the spin term in J(q), on the grounds that its 

contribution to the required matrix element o f  J(q) is small relative to the 

contribution made by the momentum operator. Furthermore, we adopt the dipole 

approximation for the momentum contribution, for the moment at least. In this case, a 

matrix element of J(q) in (2.1) is independent of q, and, 
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The magnetic content o f  the matrix element in (2.2) is carried by the initial, valence 

state o f  the atom, labelled by p, and a similar comment is valid for the final state o f  

the atom, p', in the second matrix element appearing in the resonant contribution to 

the scattering length. It follows fiom (2.2) that, the magnetic features o f  the atoms in 

question are probed by electric dipole (El) transitions. 

93. Idealized scattering length 

The wave function of  the core state in the resonant contribution to the scattering 

length,f; has a relatively small radius and the binding energy o f  the state is large. In 

consequence, the properties of  the core state do not carry very much information 

about the environment o f  the atom. This situation is in strong contrast to the orbitals 

of the weakly bound electrons in the partially filled valence shell. I f  the objective o f  

the experiment, be it a measurement o f  an attenuation coefficient or a scattering cross- 

section, is to learn about the environment o f  the atom the properties o f  the valence 

orbitals, and not the core states, are the appropriate focus of attention in the 

interpretation o f  empirical data. From this standpoint, the variables for the core state 

are irrelevant variables. 

. The spectrum of the intermediate states, belonging to an excited configuration in 

which there is a hole in a core state and the ejected electron occupies a valence state, 

contains very many components. The presence of  the intermediate states in the 

scattering length make it inscrutable in terms o f  quantities and concepts central to the 

development of our understanding o f  magnetism. Of course, not all the components 

contribute to the sum over intermediate states in f because o f  the operation of 

selection rules for matrix elements o f  the dipole operator, say. Even so, the spectrum 

o f  components that contribute is complicated, for all but the simplest case o f  interest 

in which the valence shell o f  the equilibrium configuration contains a single hole, e.g. 

Yb3+. 

The two aspects o f  the intermediate states described in the preceding paragraphs 

make it clear that the possibility o f  removing the intermediate states fiom the 
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interpretation o f  the data is an attractive prospect. Should the latter step be achieved 

in a sufficiently delicate, manner the remaining information in the interpretation will 

not be adversely affected too much. We set out to reduce the influence o f  the 

intermediate states in the formula for the scattering length and, in so doing, loose a 

minimal amount o f  useful information about the environment o f  the atom which is 

carried by the valence orbitals. 

The environment influences the geometrical aspect o f  a wave function, e.g. the 

distribution o f  the magnetic quantum numbers, among other things. Hence, in 

eliminating information about the intermediate states in the scattering length we do 

not want to unduly distort the dependence o f  the product o f  matrix elements and the 

energy denominator on the magnetic quantum numbers associated with the initial and 

final states, o f  the equilibrium configuration o f  the atom. To this end, we can require 

that the magnetic quantum numbers arise in the product o f  matrix elements and the 

associated energy denominator, after largely eliminating the intermediate states, in the 

manner we find for a simple, direct probe o f  their character, with no intermediate 

states. Such a probe has an interaction operator, which contains a sum o f  atomic 

variables, that has the property o f  a spherical tensor operator. For example, in the 

scattering o f  neutrons by a magnetic atom the appropriate operator is the total angular 

momentum, in a useful approximation. Our concept, therefore, is to find the tensor 

operator which corresponds to the criteria we have set. Let the spherical tensor 

operator in question be TO", where K is the rank o f  the tensor and - K S Q K. The 

Wigner-Eckart theorem applied this operator is, . 

The 3j-symbol contains the geometrical character of the matrix element in so far as it 

contains the magnetic quantum numbers M, and M .  The remaining quantity, a 

reduced matrix element, does not depend on M, and M. Our goal, then, is to leave the 

scattering length, &er eliminating some information on the intermediate states, in a 

form where matrix elements of the scattering length satisfy (3.1). 
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Let us now set out a plausibility argument for the technical side o f  what is 

involved in deriving an idealized scattering length, and this amounts to making a 

judicious choice o f  labels in the set q over which to sum and executing the sum 

without approximation. The latter exercise is relegated to an appendix, for even 

though it uses identities familiar to students o f  nuclear shell theory and atomic 

spectroscopy the details, at fmt sight, might fog the view o f  our goal. Also in the 

appendix is a summary o f  what we need from Racah's work on handling equivalent 

particles in terms of unit tensor operators. To indicate that our goal is reachable, at a 

cost to be quantified, we recall the standard formula for the product o f  two spherical 

harmonics in which the product is expressed as a linear combination o f  single 

spherical harmonics. A dipole operator is proportional to a spherical harmonic o f  rank 

one, and the scattering length (2.1) contains a product o f  their matrix elements. 

Hence, the product formula for spherical harmonics has the structure we seek for the 

scattering length. Further encouragement is found in the formula for the reduced 

matrix element o f  a tensor operator formed from the product o f  two tensors that act on 

the same part o f  a system (in our case, the spatial part o f  wave hctions). Let the two 

tensor operators be o f  rank K, and K,, and denote the operators by Tl and T,, and their 

tensor product by T. Since the addition of  three angular momentum variables, K, Kl 

and K2, is involved in creating T from Tl and T2 the formula for the reduced matrix 

element o f  T (e.g. equation 15.23 in reference [4], and problem 1.6 in [ 5 ] )  contains a 

6j-symbol. The formula in question has the form, 

From this formula we can infer that to achieve the desired form for the scattering 

length, namely, a spherical tensor, the sum over the intermediate states, labelled q in 

(2.1), runs over the angular momentum label, j, of  the intermediate states. By 

implication, the sum in (2.1) is to include, with 7 ,  the magnetic quantum number, 

a, which removes from the scattering length the geometrical information on the 

intermediate states. (Formula (3.2) is introduced simply for the purpose in our 
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presentation o f  making plausible the outcome of  the calculation described in the 

appendix, which makes no use of  (3.2)) The price to be paid in carrying through the 

steps described is the neglect in the energy denominator o f  the dependence of  the 

transition energy on the relevant part o f  the quantum label q. The energy is now 

replaced by a mean value for the distribution of  energy levels covered by the quantum 

numbers Jand in q. 

The error in the interpretation o f  empirical data, caused by discarding in the 

scattering length the dependence of  the energy denominator on q, will be small i f  the 

spread in energy o f  the states labelled by J, A4 is sufficiently small. Here, two other 

energy scales are relevant, namely, the total decay width, r, and the resolution in 

energy available in the experiment. If the spread in energy of the 3 -states is similar 

or, better, smaller than these energies the loss of  useful information in the 

interpretation will be modest, and possibly tolerable. A related consideration refers to 

the observed relative weight of  contributions that can be labelled by the total angular 

momentum o f  the core state which participates in absorption. A good example o f  the 

dominance by one partner over the other is observed in uranium; the dichroic signal at 

the 3d3, edge is very strong relative to the signal at the 3d,, edge. 

- -  

By way o f  illustrating the energies involved in the discussion we briefly 

consider data for absorption at some d-core states: 3d-4f (M4,,), 4d-4f (N4,,) and 4d-5f. 

For the lanthanides absorption at the N4,, edges occurs in the soft region o f  the X-ray 

spectrum (1 00 - 200 eV) and the spread in energy o f  the intermediate states is around 

20 eV [2,6]. The M4,, edges o f  the lanthanides are in the region 830 - 1520 eV o f  the 

X-ray spectrum. The major absorption peaks are assigned to the core states 3d,, and 

3d,, whose separation in energy increases fiom 16 eV for La to 45 eV for Tm, and the 

associated decay widths vary fiom 0.2 eV to 0.6 eV [3]. We also mention the 4d-5f 

transition in 92U, reference [7]. In this case, the separation in energy of  the core states 

is estimated to be about 40 eV, and rg 2 eV. Of course, our idealized scattering 

length incorporates a sum over the core states, so it lacks detail on a scale attributable 

to the structure in the intermediate-state spectrum created by the individual identities 

o f  the d,, and d,, core states. Lastly, we note a recent and careful investigation o f  
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circular dichroism in uranium monosulphide places a f30% uncertainty in the scaling 

o f  the measured dichroic signal [ 131. 

The formula proposed for the scattering length is derived in appendix A; 

henceforth, it is referred to as an idealized scattering length in view o f  the reduction in 

the information it contains on the intermediate states. The idealizedfhas a structure 

which can be inferred fiom the two formulae cited in the foregoing discussion, 

scilicet, it is a sum of  tensor operators o f  rank K. Referring to (3.2), for the matrix 

elements in the scattering length Kl = K, = 1 ,  and the rank o f  the tensors is correct in 

the dipole limit to the current operator given by (2.2). The coupling o f  K, Kl and K2 
obeys a triangular condition, fiom which it follow that K = 0, 1 and 2. 

Let us add a few words about the choice o f  quantum numbers o f  the 

intermediate states that are summed over in creating the idealized scattering length. 

The choice o f  7 and a appears to be the minimal set required to bring the product 

o f  matrix elements to a structure of  a spherical tensor (actually a sum o f  three 

spherical tensors labelled by their rank K). These quantum numbers are not a 

complete set, o f  course. A sum on all quantum numbers required to define the 

intermediate states can be accomplished by using the property o f  closure. In this case 

one also reaches a function for the product o f  matrix elements which is a sum of 

spherical tensors, created by spherical harmonics. However, the function contains no 

information at all about the core state, and the sum o f  spherical harmonics does not 

contain a spherical harmonic o f  rank one. As we shall presently see, the tensor o f  

rank one in the idealized scattering length carries information about the magnetic 

moment o f  the absorbing atom. We conclude that, a sum over all quantum numbers, 

accomplished by the property o f  closure, leads to a serious loss o f  useful information 

about the magnetic atom. 

Because the idealizedfis proportional to spherical tensors all the algebra for 

such tensors at our disposal is readily applied. In particular, the matrix elements of 

the idealizedffor a valence shell with two or more holes can be written down, in 

terms o f  Racah unit tensor operators, directly from a knowledge o f  the matrix element 
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for one hole in the valence shell. We provide the unit tensors for bothjj- and Russell- 

Saunders (SL-coupling) coupling schemes for spin (S) and orbital (L) angular 

momentum o f  the ground states obtained by applying Hund's rules. Here, we gather 

the essential material for the idealized scattering length with a view to using it to 

describe absorption and resonance-enhanced scattering by magnetic materials. 

Let A be a mean value for the separation in energy between the initial state, p, 

and the intermediate states, q. The corresponding quantity for the intermediate states 

and the final state, p', is A' (= E,, - E,,,). The states labelled p and p' belong to an 

equilibrium configuration o f  the atom. The primary radiation has an energy 

E = (2nftc/h), wave vector q and polarization vector E. (Cartesian components o f  E are 

purely real.) The corresponding quantities for the secondary beam carry a prime. The 

scattering vector k = q - q', and the atoms are at positions defined by vectors { %} . 

- 

For an atomic orbital the labels in the initial and final atomic state are p = OJM, 

and p' = O'J'M. The idealized scattering length appropriate for the description o f  the 

scattering o f  X-rays with an energy E close to A is, 

2 

f ( p ,  pf,) = - (F) ($) {E - A + iT 1 2}-' exp (ik R,) 2 (p; p': R,). 
Ro 

Here, 2 is created from the matrix element Y defined in (A.4); 

The idealized scattering length (3.3) is used later to discuss resonance-enhanced 

scattering. The corresponding expression for the attenuation coefficient, y, is also 

conveniently expressed in terms of 2. In this instance, though, 2 is evaluated for the 

condition o f  elastic scattering and a forward scattering geometry (q = qf). Also, the 

mean value o f  2 for this condition occurs in y averaged with respect to states o f  

12 



polarization in the primary beam. We denote the mean value o f  2 averaged with 

respect to the polarization by (a,. The appropriate formula for the attenuation 

coefficient is, 

2 

y = 2xhn0 - 6(E - A)(Z>, , (3 (3.5) 

where no is the density o f  particles in the target foil. In arriving at the formula (3.5) 

we have exercised the limit r + 0 and this creates the delta function, which is zero 

unless E = A .  The action o f  the delta function sets h = (12.40/A)A with A expressed 

in units o f  keV. 

The function Z(p;p‘) has the dimension (length)2. It is convenient to ktroduce 

quantities C, D and E which contain, respectively, the reduced matrix element o f  the 

tensors T(O), T(1) and T(2) multiplied by the other factors in (A.4), from which 

Z(p;p‘) is constructed according to its definition (3.4). The value o f  D does not 

depend explicitly on the number o f  particles in the open valence shell. In fact, all 

tensors o f  an odd rank - D is built from T(1) - have the remarkable property of 

being independent o f  the number o f  particles and diagonal with respect to the 

seniority quantum number. The value o f  D is determined solely by the quantum 

numbers which define the initial and final states in the matrix element 2. 

Specializing to the case T = 1 - 1, and using results presented in appendix A, we 

find: 

Russell-Saunders coupling; 1” configuration, nh = 2(21+1) - n, and 8 = vSL where 

v is the seniority quantum number. 
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J' L S 
L J 1  

( L I I L I I L )  [(2J + 1)(2J' + 1)11/2 (- l)'+s+J+L { } (2IRIZ - 1>2 , D = D(eJ;evI) = 6e,w 
2( 22 + 1) 

An extensive tabulation o f  3j- and 6j-symbols is found in reference [15]. Table 1 

contains values o f  the unit tensor operator V(2) needed to calculate the reduced matrix 

element o f  T(2). 

jj-coupling; in configuration, nh = (2j+l) - n. Some applications o f  jj-coupling to 

describe magnetic properties o f  rare earth atoms are found in reference [ 101, where the 

main thrust is the theory o f  elastic and inelastic scattering o f  neutrons, and reference 

171. 

andfor 2 1 n ,  ~ ( 2 j - 1 ) ,  

D = D( vJ; v'J') = 6j,jt6 v,vt (JIIJIIJ) (2 - g)(ZlR(Z - 1)2, 
2(21 +l) (3.7) 

where g is the Land6 factor. For n, = 1 and nh = 2j the quantity D is obtained from 

(6.4) using for the reduced matrix element the value given in (AS), which is 

appropriate for one particle. Note in (3.7) that both C and D are diagonal with respect 

to J and v. The quantity E is the same as for the SL - coupling with the reduced 

matrix element o f  T(2) replaced by (vJIIT(2)l(vfJ') ; see table 1 .  For the particular 

case J = J' , which applies, at a first level o f  approximation, in the interpretation o f  
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the attenuation coefficient and elastic scattering cross-section, the quantity D has the 

same structure in the two coupling schemes we employ. 

At this juncture we can usefully summarize the properties o f  the scattering 

length when the number o f  holes in the valence shell is assigned its boundary values. 

For ?+, = 0 the quantities C, D and E are zero, and so is the resonance-enhanced 

scattering length, i.e. i f  the valence shell in question is fully occupied by electrons the 

envisaged resonance process, involving a transfer o f  a hole from an equilibrium 

configuration o f  the valence shell to a core state, is forbidden. The conjugate state 

n h  = ( 2 j  + 1) , or 2(21+1), is characterized by the values D = E = 0 ,  while C attains 

its maximum value. Hence, as it is physically obvious, when there are no electrons in 

the valence shell there is no information in the experiments in question, other than the 

total number of holes in the valence shell. 

In carrying out the sum over the components o f  the polarization vectors in the 

definition o f  2, equation (3.4), we profit from a compact notation based on a spherical 

tensor, 

In (3.8) we use a standard definition o f  a tensor formed using a Clebsch-Gordan 

coefficient. A summary o f  the properties o f  X r )  used in this paper is provided in 

table 2. Here we note that, X i )  can be expressed as a linear combination o f  the 

Cartesian components o f  the vector product o f  the polarization vectors. No such 

simple interpretation exists for x:). 

In the setting of  (3.4) the components o f  (E' x E) and X r )  are with respect to 

the axes o f  the magnetic atom at the site defined by the vector R,,. Hence, as 

indicated in (3.4), the matrix element 2 depends on R,,, although we may not always 

display it. In general, the axes will change on moving from one atom to another, in a 
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manner that depends on the order adopted by the magnetic atoms, e.g. 

antiferromagnetic, spiral, etc. The Cartesian components o f  a vector in the axes o f  

quantization for the magnetic atom are labelled (U, b, c). 

For some purposes, it is perspicacious to have a symmetric and compact 

notation for the matrix element 2. To this end we introduce another tensor I@) with 

K = 1 and 2 whose reduced matrix element is one. The scalar product o f  I and X i s  

defined, for all K, by, 

I .  x = (- l)qIqX-q , (3.9) 

where -K 5 q I K . For K = 1 the definition (3.9) is identical to the conventional 

scalar product o f  two vectors. With this notation we arrive, directly from (3.4), (3.8), 

and (A.4), at, 

This formula for Z is one o f  our key results. The three parts o f  Z have direct physical 

interpretations, as it will emerge in subsequent applications to various problems. 

Anticipating these applications, to some extent, we remark now that the first part o f  2 

on the right hand side o f  (3.10) is an isotropic term with no magnetic content. The 

second and third parts have magnetic content, related, respectively, to the magnetic 

and quadrupole moment o f  the atom. In the particular case J = J' it is useful to use 

operator equivalents for I, i.e. represent I with Xas defined in table 2 and use for t and 

U the total angular momentum operator. We have more to say on this topic in 

subsequent sections. 

While the representation o f  our result used in (3.10) has much to recommend it, 

particularly in applications to events pertaining to one J-manifold, there are occasions 
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when a more explicit representation o f  Z(8JMY8’J’M‘) is useful. It can be written as 

the sum o f  the following terms, labelled by the value of m,. 

m, = 0: 

J 1 J’ J 2 J’ 

- M m ,  J 2  M - m ,  J’ ]E&X!z}. (3.11) 
- M m ,  M - m ,  

J 2 J’ 
-A4 mo M - m ,  

The term with m, = 0 in (3.1 l), which is consistent with a cylindrical symmetry 

o f  the valence shell wave function, is exactly the quantity used in references [ 1,9]. In 

the latter works, the quantities C, D, and E, for one hole in the valence shell, are given 

as a sum over the total angular momentum quantum number, which labels the 

intermediate states, o f  the product o f  two reduced matrix elements o f  the dipole 

operator. Here, the sum over the product o f  nj-symbols is carried out, using the 

method described in the appendix, and gives the values for C, D, and E quoted in (3.6) 

and (3.7). 

94 Attenuation coefficient 

The attenuation coefficient is calculated from formula (3.5). At a first level o f  

approximation, the thermal average value o f  Z which enters (3.5) is derived from 

(3.1 1) evaluated for 8 = 8‘ and J = J’ . The wave functions are linear combinations 
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o f  several states within the J-manifold, with coefficients determined by the physical 

and chemical properties o f  the absorbing atom. 

In general, the ground state configuration is not a state with a unique 8 and J. 

Spin-orbit magnetic interactions and electron-electron Coulomb interactions mix 

states o f  different 8 and J into the state determined by Hund’s rules. The formulae 

given in the previous section, for the quantities C, D, and E, permit a treatment o f  a 

general case. As might be anticipated, the physical interpretation o f  results for the 

idealized scattering length in the general case is not as simple and elegant as for a pure 

8 and J state. To see this look at D(8J;e’J’) for Russell-Saunders coupling. This 

quantity is diagonal with respect to 8 and not diagonal in J and J <  and for J‘ = J & 1 

one does not have a nice result like D proportional to (2 - g). Having sounded this 

note o f  caution about the likely structure o f  a realistic ground state, we continue in 

this, and the next section, by way o f  an illustration, to consider a ground state o f  the 

absorbing atom built from a J-manifold and a unique value o f  8. 

Within a J-manifold we can adopt the familiar practice o f  using operator 

equivalents, for I(’) and I(2), based on the operators o f  total angular momentum [8]. It 

seems natural to choose J to represent the operator I(’), and, since this operator has 

been defined to have a reduced matrix element equal to one we need, I(’) = J/(JIIJIIJ), 
where (JIIJIIJ) = {J(J+l)(W+l)}’n. It is convenient to represent I(2) by an operator, 

denoted by Q, constructed in accord with the tensor o f  rank 2 whose elements are 

listed in table 2, i.e. Q has the same structure as the combination o f  polarization 

vectors in X(2) which is defined by (3.8). A straightforward calculation gives, 

It is to be noted that, the reduced matrix element o f  Q vanishes for J = 1/2, as 

expected in the light o f  the fact that for this value o f  Jthe operator J,‘ = 1 / 4 . 

Our expression for (Z), to be used in (3.5) is ( T  = I - 1) , 
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. (4.1) 
I 

Here, 6 is a unit vector in the direction of  propagation of  the beam and, 

(2 ry Eo(8J) = &E(W W) 1 (JI I Ql I J) , 

and B(8J;W) is obtained from (3.6). 

Let us comment on each term on the right hand side o f  (4.1). The first term , 
often described as the isotropic term (apart from a factor 3), stems directly fiom 

C(8J;e.I). The value o f  (&’.E) for a forward geometry is independent o f  the state o f  

polarization in the primary beam, and has the value one; this and other combinations 

o f  polarization vectors needed to construct (4.1) are gathered in table 3. As with the 

other two terms in (4. l), we have factored out in (4.1) the square o f  the radial integral 

contained in C. The second term in (4.1), proportional to the mean helicity in the 

primary beam o f  X-rays, P2, is derived from D(8J; 8J) and the relation L = (2 - g)J, 

where g is the LandC factor. The first two terms in (4.1) are the same for the ij- 

coupling and Russell-Saunders coupling schemes. (For a given configuration o f  the 

valence electrons, the numerical value of  g depends on the coupling scheme 

employed.) The similarity in results for the two coupling schemes falters i f  the 

ground state wave function contains more than one value o f  J and the values include J 

and J f l ,  for then there are off-diagonal contributions in D in Russell-Saunders 

coupling and the gyromagnetic factor is not given by the formula o f  LandC. 

In the third, and last, term Eo(8J) has a value which depends on the coupling 

scheme. A notation o f  vertical double bars around X(2) denotes an average o f  the 

polarization vectors with respect to the o f  polarization in the primary beam, described 

by a Stokes vector P = (0, &,e); our definition follows the one used in reference [l]. 

Referring to table 3 we find that llX(2)ll does not depend on.the mean helicity. The full 
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expression required in (4. l), written in terms o f  Cartesian components o f  E, E‘ and J in 

the set o f  axes labelled (a,b,c) is, 

The angular momentum operators in (4.2) arise in combinations which are Hermitian, 

so the thermal average values are purely real quantities. Values o f  the combinations 

o f  polarization vectors in (4.2) averaged over states o f  the primary polarization, P, are 

listed in table 3 where they are expressed in terms o f  Euler angles that relate the axes 

attached to the experimental geometry (xJ , ~ )  and the quantization axes (a,b,c); 

relevant details about the Euler angles are listed in table 4. After averaging over all 

possible directions o f  the axis o f  quantization for the magnetic state o f  the atom, to 

create a condition o f  spherical symmetry, all terms in X(2) vanish, as does the 

corresponding average o f  X“), o f  course. By way o f  another example, consider the 

case p = 0 ,  for which the axes z and c coincide and the rotation o f  a and b relative to x 

and y is the angle (a + y ) = 6 ,  say. In this special case, we find from (4.2) and entries 

in table 3,  

(Q).II X(2)11 = $ [(J: - f J ( J  + 1)) (1 + 34) (4.3) 

It is interesting to note from (4.3) that, for p = 0 and 4 = 1 it is not possible to 

observe the terms which describe departures from cylindrical symmetry about the c- 

axis. A second example o f  interest is to align the axis o f  quantization and the 

direction o f  propagation o f  the beam o f  X-rays, achieved on setting a = p = (7c / 2). 

One finds, 
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For the experimental geometry to which (4.4) applies, the attenuation coefficient is 

independent o f  the linear polarization described by P3 i f  the atom has a cylindrical, or 

higher, magnetic symmetry. 

The thermal average values o f  the operators in (4.1) - (4.4) are evaluated for the 

appropriate magnetic state o f  the absorbing atom. In the paramagnetic phase (J) = 0. 

The corresponding values o f  products o f  Cartesian components o f  J, in (4.2), (4.3) 

and (4.4), can have trivial values, e.g. in a truly isotropic environment all cross 

products, e.g. (J,J,), are zero, and the diagonal terms are all equal and have the 

value J(J + 1) / 3 .  Using these results in (4.2) one finds that all terms vanish. Hence, 

for a spatially isotropic environment the only contribution to (Z)o which does not 

vanish is the first term on the right hand side o f  (4.1), proportional to the number o f  

holes in the valence shell. Another simple case is when the environment has 

cylindrical symmetry about the c-axis. In this case all terms in (4.2) vanish apart from 

(J: - J(J + 1) / 3). If the c-axis is singled out by a magnetic energy = -B(JC)’, the 

result, 

B 1  
T 45 

(J: - f J(J + 1)) = (-) - J(J + 1)(2J - 1)(2J + 3) , 

is correct to first order in (BIT), where T is the temperature in units o f  Boltzmann’s 

constant. Magnetic order is induced by a Heisenberg interaction between the spin 

moments ( g  - l)J(Ro) . I f  this interaction is isotropic and treated within the mean- 

field approximation one finds (J:) = J2 at T = 0, and (J:) decreases with increasing 

temperature to the value J(J + 1) / 3 at the ordering temperature. More results for a 

molecular field model are found in reference [ 11. 
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As a final topic in this section, we consider so-called sum rules for the dichroic 

signal. If we integrate the attenuation coefficient (3.5) with respect to E in the vicinity 

o f  A the signal so obtained is proportional to (Z), which carries all available 

information about the physical properties o f  the absorbing atom. Ratios o f  (Z), for 

different settings o f  the polarization in the primary beam of X-rays are called 

normalized sum-rules o f  the dichroic signal. In P = (O,pZ, 4) keep the magnitudes o f  

P, and P3 fixed and reverse the sign o f  P,, the mean helicity. The difference in the 

signals is, 

(z(Pz)), -(Z(-p2)), = -  (ZIRIq2p2 i.(L)/(2Z+l) . (4.5) 

which, apart from some constants, is a result given in [9]. The expression for the 

difference signal is quite simple and has a strong physical appeal. However, this 

expression is derived from the mean value o f  2 within a single J-manifold which is 

not likely to be strictly accurate. Thole et al. [l 13 normalized the difference signal by 

the isotropic signal, defined to be three times the isotropic contribution to (Z), given 

by (4. l), and their normalized sum rule, for circular dichroism, is thus, 

Note that our derivation o f  the sum rule holds for both jj-coupling and Russell- 

Saunders coupling schemes. The result (4.6) has been obtained by a number of 

authors, using various mathematical methods o f  varying degrees o f  opacity; see 

[1,12], and references therein. In the present setting, the point to note is that the 

derivation of the normalized sum rule reported in [ l l ]  is also made without 

approximations, for a n  atomic model o f  the kind employed here. So, we deduce that 

the idealized scattering length we put forward embodies the same physical picture as 

the one used by Thole et al. To summarize, our idealized scattering length gives the 

correct value for the normalized, circular dichroic sum-rule, and, as a bonus, the truth 

22 



o f  the sum-rule is almost obvious to the eye. Set against this, the idealized scattering 

length, and the value for (Z), obtained fiom it, cannot answer questions about 

integrated signals associated with partners to a core edge [ 123. 

$5 Resonance-enhanced Bragg diffraction 

The value of the scattering length which describes Bragg difiaction is its mean 

value, averaged with respect to all atomic variables. We denote this scattering length 

by ( f )  , where, as in previous sections, angular brackets denote a thermal average is 

made of the enclosed quantity. The cross-section for Bragg diffraction is proportional 

to, 

where the double vertical bars denote an average with respect to the states o f  

polarization in the primary beam. While a realistic wave h c t i o n  for the ground state 

o f  an open valence shell is likely to contain various contributions, with different 

values of 8 and J, by way of  orientation, we evaluate the mean scattering length for a 

pure state which contains one set of values for 8 and J, and possibly several values o f  

the magnetic quantum number. For this very special type o f  ground state, we can use 

ithe operator equivalents introduced in the previous section. 

From (3.3) evaluated for E = A, one finds, 

The result, 
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I (L).(E' x E) - nh -(E'. E) + i 
3 (21+1) 2(21+ 1) 

follows directly from (3.11). The function Eo appears also in (4.1) and it is 

proportional to E(8J;OJ). The explicit form of  the coefficient o f  Eo in (5.3) is 

readily deduced from (4.2). The dependence o f  (2) on the position o f  the atom, R,,, 

arises from the dependence o f  the atomic variables (L) and (Q) on the axes o f  

quantization (a, b, c) used to calculate the magnetic properties o f  the atom at site R,,. 

The condition on k for Bragg diffraction arises from translational invariance of 

(Z) in a crystal. Let there be N unit cells, and denote the magnetic reciprocal lattice 

vectors by [ T} ; then, 

Here, the Kronecker delta function is unity i f  k = z and zero otherwise, and the 

magnetic unit cell structure factor, 

F( T) = exp( iz. d) (Z( p; p: d)) , 
d 

in which the r atoms in the cell are at positions defined by (r - 1) non-null vectors 

{a}. Work in [ 141 addresses the calculation of the unit cell structure factor for a 

variety o f  states o f  magnetic order. 

Possibly the biggest headache in calculating the cross-section (5.1) is 

performing the average over the states of  polarization in the primary beam o f  X-rays. 

At least, this is the case for a ferromagnet since, in this instance, all components in 

(2) add coherently. In other examples o f  magnetic ordering the magnetic and non- 

magnetic components o f  (2) might not add coherently and, in consequence, the 
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intensity o f  Bragg peaks can be assigned to pure magnetic or pure chemical order in 

the crystal. 

To illustrate the structure which is possible in the cross-section for Bragg 

diffraction we consider a ferromagnetic component to F ( z ) ,  and reduce the 

complexity o f  (2) to one consistent with magnetic cylindrical symmetry. The form 

o f  F(z )  is taken to be, 

F(z )  = A,(&‘.&)+ iA,m.(&’ x E)+ A,(&’.m)(&.m) , 

where m is a unit vector that defines the preferred magnetic axis. The coefficient A, is 

simply read off by inspection of  (5.3), and it is proportional to I(L)I. On the other 

hand, A , is a sum o f  the isotropic contribution to (2) and the part o f  the coefficient o f  

( Q c )  proportional to (E‘. E), and A, is the remaining part o f  this contribution, cf. (4.2). 

In the following expression for the average of  the absolute square o f  (5.6), with 

respect to states o f  polarization described by a Stokes vector P = (O,pZ, 4), we use 

the coordinate system for the geometry o f  the diffraction experiment which is the 

subject o f  entries in table 4. (The coordinate system we use is the same as the one 

described in reference [l], to which the reader is referred for details o f  the technique, 

based on a density matrix representation, for executing the average over states o f  

polarization.) One obtains, for the unit cell structure factor (5.6), the result, 

Here, mx, my, and m, are the components o f  the unit vector m along the axes (x,  y, z) , 

and A,, A,, and A, are taken to be purely real quantities. The foregoing result can be 
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manipulated to a variety o f  equivalent forms. The form chosen in (5.7) has the 

advantage o f  clearly displaying the simplification which occurs at a diffractometer on 

a source o f  X-rays produced by a particle accelerator where p2 E 0 and 4 z 1 , to a 

good approximation, is the standard setting. 

A few features o f  the result (5.7) merit comment. I f  4 = -1  (NB p2, + p,‘ 21) 

and the beam is deflected through 8 = (n / 2) the cross-section is independent o f  A,. 

With this setting, the cross-section depends on A, and A,, and in the paramagnetic 

phase A, = 0 ,  and A3 = 0 for an isotropic environment. The term containing P,, the 

mean helicity, is linear in A,, as expected. If the components A, and A,, and A, do not 

add coherently for the chosen value of  z then one has either to set in (5.7) 

A, = A, = 0 or A, = 0. For an isotropic paramagnet A, = A, = 0 ,  and the right hand 

side o f  (5.7) reduces to the result obtained for Thomson scattering. For random 

orientations o f  m, 

Note that (5.8) does not depend on P, or the sign o f  A,, which is to be expected, o f  

course. Lastly, we choose for the Stokes parameters the extreme values pZ = 0 and 

p3 = 1 , which describes a state of  complete polarization perpendicular to the plane o f  

scattering; 

It is interesting to note that there is an interference between the components A, and A,, 

o f  the structure factor, which vanishes i f  the moment lies in the plane of scattering, 

and m, = O .  
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86 Resonance-enhanced inelastic scattering 

The differential cross-section for resonance-enhanced inelastic scattering by one 

atom is, 

This result is independent o f  the scattering wave vector. We have defined 

Ao = E - E’ , and the conservation o f  energy leads to E‘ = A’ for E = A. Hence, the 

scattering length to appear in (6. l), at the condition o f  resonance, is, 

In (6.1) there is a sum over all fmal states, and an average over all the initial states 

weighted by p ,  , and the sum overp, is normalized to unity. 

The features o f  inelastic events depend on the coupling scheme for angular 

momenta. Let us start by considering thejj-coupling scheme. For n,, = 1 and nh = 2j 

one replaces T by t whose reduced matrix element is given by (AS). Inelastic 

transitions are between states with total angular momentum j andj’, and proceed via 

the tensors with K = 1 and 2 in D and E, respectively. The appropriate expression for 

D is (6.4), whereas (3.7) applies to elastic events (j = j J  for n,, = 1 and nh = 2j, and 

elastic and inelastic events for n,, equivalent holes and 2 I n,, I (2j - 1). The quantity 

E is obtained from the expression given in (3.6) evaluated with the appropriate value 

o f  the reduced matrix element of T(2), i.e. the result in (AS) and K = 2. 

Non-equivalent particles are handled by techniques described in reference [4]. 

Here, we consider the case o f  two particles, which is o f  interest in studies o f  some 
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actinide atoms. Let the states j 2  and on have total angular momentum J, and S, 

respectively, and set j z j '  . The allowed J are restricted to the even integer values 

0,2, ...( 2j - l),  cf. (A.9), whereas J' merely satisfies the triangle conditions 

( j -  j ' l I J ' I ( j +  j ' )  and, as we will see, I J - K I I J ' I ( J + K ) .  The reduced 

matrix element o f  T(K) needed in (A.4) is, 

_- . 

The phase factor in (6.3) is for a state VJ) with angular momentum J: and it is 

different for the state ordered dij'). Also, for j # j '  the event j 2  + j r 2  is forbidden 

with a one particle operator. The value for E is obtained by using (6.3) in the 

expression given in (3.6). However, the value for D is, 

which reduces to the expression for two or more equivalent holes given in (3.7) when 

the appropriate value is taken for the reduced matrix element, viz. (A.lO) and (A.12). 

For non-equivalent particles the quantity D is not diagonal with respect to J, and 

J' = J and J' = J f 1. (NB The same conditions hold for nh = 1 and n,, = 2j, with J =  

j and J '= j ! )  

Returning to the case of n equivalent particles, it remains to consider the case 

2 I nh I ( 2 j  - 1). Inspection o f  the results for C and D in (3.7) show that they are 

diagonal with respect to J. So, in thejj-coupling scheme, transitions between states 

with J z J' can only proceed via E, and the selection rule is J' = J f 1, and 

J' = J f 2 ,  As we noted, transitions via D, in addition to E, are allowed for nh = 1 or 

nh = 2j. 

28 



In the Russell-Saunders scheme D is diagonal with respect to 0 E vSL . Hence, 

this term contributes to transitions with J' = J k 1 provided the initial and final states 

of the valence shell are in the same multiplet. Looking at E one finds it is diagonal 

with respect to S, and the selection rule on transitions is J' = J f 1, and J' = J f 2 .  

By way o f  an orientation to the magnitude of  inelastic events in resonance- 

enhanced scattering we consider transitions between two states each completely 

described by one set o f  labels 8 J .  In addition, we assume the spread in energy of  

states with respect to the magnetic quantum numbers is too small to resolve in an 

experiment. The appropriate cross-section is proportional to l~(p; p')I2, with 

p = 0JM and p' = WJ'M', summed over M; and summed over Mwith a degeneracy 

factor 1/(2J+l). If J # J' there is no contribution to the cross-section from C, since 

it is diagonal in this quantum number. We obtain the result, ' 

2 
Note that there is no term in DE. Also, IX(')l = +(E' x E). (E' x E), and i f  we set aside 

the influence o f  a partial polarization o f  the primary beam, 

together with, 

In these two expressions, 8 is the angle through which the secondary beam is 

deflected relative to the direction ofthe primary beam. The value o f  IX(')l averaged 

with respect to states of partial polarization in the primary beam is found in reference 

2 

[11. 
- 
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Turning to the question o f  the magnitude of  inelastic events we first consider a 

few numbers for a codigurationf” and a Russell-Saunders ground state ’H,, which is 

a zeroth-order model for thulium. Both D and E contribute in the transition to ’H5, and 

we find, 

D(’H,;’H,) = - 0.235 (rlRll)’ , 

E(’H,:H,) = - 0.096 (@)I)’ . 

Relative to the weight o f  the elastic event the inelastic contribution from D is quite 

significant, namely, 

Transitions to ’H, and 3F, can only proceed through E, and we find, 

E(’H,:H,) = - 0.132 E(3H,;3H,) , 

and, 

E(’H,:F,) = 0.266 (ZlRlf)’ . 

To conclude, we give some o f  the corresponding values for f ’ treated within the ij- 

coupling scheme. For j = $ and J =  4, the elastic value of the quantity D is, 

D(4;4) = 1.095 , 

which is now compared to values for D and E calculated for transitions to the states of  

,the configuration (+ , $) , and derived from (6.3) We choose J’= 4 and find, 
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D(j24;j74) = - 0.102 (Zplq* , 

and, 

E(j24;j74) = - 0.104 (ZlRB)2 . 

So, once more, the weight available for inelastic transitions is only an order o f  

magnitude smaller than for 'the elastic contribution. Transitions within a j* 

configuration can only be made via E, since C and D are diagonal with respect to J, 
and transitions between the j = 512 and 712 states o f  equivalent electrons are 

forbidden. 

97 Summary 

A formulation o f  the absorption and resonance-enhanced scattering of X-rays by 

a magnetic material is put forward. Its main virtue is seen to lie in the possibility for 

greater use to be made of  physical intuition at an atomic level o f  detail. The scattering 

length, common to absorption and resonance-enhanced scattering, in the proposed 

interpretation is built o f  quantities related to the equilibrium configuration o f  the 

atoms, and also obtainable from the interpretation o f  empirical data gathered using 

other techniques, f m l y  established as valuable quantitative tools o f  investigation, e.g. 

NMR, Mossbauer spectroscopy and the scattering of  beams o f  neutrons. 

The formulation which is proposed lies between two extreme approaches to the 

calculation o f  the scattering length. On the one hand, all variables relating to the 

virtual, intermediate states in the scattering length can be removed by completely 

ignoring the structure in the energy spectrum o f  the intermediate states followed by 

the use o f  the closure relation for the states. In this extreme, the scattering length is 

independent o f  the magnetic moment o f  the atom; all the magnetic information that 
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remains relates to eyen-order moments o f  the valence electrons. The other extreme is 

to calculate all the wave functions and energies o f  the intermediate states and the 

matrix elements which appear in the scattering length. This task demands the 

resource o f  a tried and tested computer program for atomic structure, for all but the 

simplest case o f  one hole in the valence shell. Most importantly, though, it is difficult 

in this case to directly relate the calculated scattering length to quantities o f  interest, to 

wit, quantities which arise in the interpretation o f  potentially complementary 

experiments and theoretical developments in magnetism. In this framework o f  

reasoning, the scattering length we have proposed imposes a coarsened resolution to 

the structure in the spectrum o f  intermediate states, and does not discriminate 

between spin-orbit split partners in an absorption edge. Set against this, with the less 

than perfect resolution applied to the intermediate states, the scattering length is still 

sensitive to the magnetic moment and this, and all other atomic contributions, are 

immediately recognizable in the formulation. Whether or not the coarsening can be 

tolerated in applications depends on several factors, among them being the objectives 

in the experimental investigation, the indigenous broadening o f  the level structure o f  

the intermediate states, and the resolution applied in the experiments. 

The new theory has been investigated using both jj-coupling and Russell- 

Saunders coupling schemes. Measurable quantities calculated are the attenuation 

coefficient, and cross-sections for resonance-enhanced Bragg diffraction and inelastic 

scattering, including their dependence on states o f  partial polarization in the primary 

beam. 
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Appendix A 

In the derivation o f  the idealized scattering length for a multi-electron 

occupation o f  a valence shell with angular momentum Z we start from an exact 

formula for the product o f  matrix elements in the scattering length, (2.1) together with 

(2.2), which is correct for one particle in the valence shell. We work with the dipole 

approximation to the current operator. However, the method we describe can be 

applied to higher-order multipole operators; the h a l  formulae are even more 

cumbersome than for dipole-allowed transitions, as might be anticipated. 

The dipole operator for one particle R, = RCi(R) where q = -1, 0, +1 labels 

spherical components o f  the position variable, and Ci(R) is a spherical harmonic o f  

rank one, normalized in the manner proposed by Racah. A matrix element o f  4 
satisfies the Wigner-Eckart theorem (3.1). The reduced matrix element o f  4 involves 

the coupling o f  three angular momenta and the appearance o f  a 6j-symbol is thus 

anticipated. The result is, 

(4lRllrJ) = (-l)3'2-J+'(Z~R~f)(Z~~C(l)~~~) [(2J + 1)(2J + 1)]112 { 7 :}. (A.l) 

Here, 



and the 3j-symbol vanishes i f  1 + 1 + i is an odd integer. The latter result and the 

triangular condition leads to the dipole selection rule; all terms which do not satisfy 

= 1 f 1 are zero. In (A.l) there is also the radial matrix element o f  order one for the 

valence and core wave functions. As an illustration o f  the value o f  this matrix 

element we refer to the values for 4d-4f absorption in the lanthanides given in 

reference [6], where it is found that the average for the charge states 63 through to 67 

is - 0.63 in units o f  the Bohr radius. 

The product o f  matrix elements which appears, together with other quantities, in 

the formula for our idealized scattering length is, 

Each matrix element is obtained from the Wigner-Eckart theorem (3.1) and (A.1). 

Hence, the nub o f  the calculation we face is to perform the sum over 7 and o f  a 

product o f  four nj-symbols; two 3j-symbols, which come from the Wigner-Eckart 

theorem and contain both Jand in their arguments, and two 6j-symbols which 

depend on 1. A method o f  performing the sum over 7 and is to use an identity 

for the product o f  two 6j-symbols that expresses them as a sum o f  the product of three 

6j-symbols, a step forward because 7 occurs in just one o f  the three 6j-symbols. The 

calculation, then, requires the sum over 7 and o f  the product o f  two 3j-symbols 

and one 6j-symbol; the answer is a product o f  two 3j-symbols, one o f  which has as 

arguments the quantities demanded by the Wigner-Eckart theorem. The two identities 

we have referred to in the outline o f  the calculation defined in (A.3) can be found in 

the book by Rotenberg et al. [ 151, equations (2.8) and (2.19). 

The physical process we need to describe is the transfer o f  one hole from the 

valence shell to a core state full o f  electrons. O f  course, the occupation o f  the valence 

shell, in its ground state configuration, strongly influences the process. An extreme is 
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a valence shell full o f  electrons, and no holes, n,, = 0. In this case, the process o f  

interest is forbidden. Our result, just described, for the quantity defined in (A.3), 

correctly describes the process for a valence shell whose ground state configuration 

contains one hole, n,, = 1 .  It is now generalized to a configuration nh > 1 by a 

straightforward application o f  the method, due to Racah, which uses fractional 

,parentage coefficients to describe a state o f  nh equivalent particles. It is necessary to 

give some thought to the use o f  the method to a configuration o f  holes, in contrast to 

the more familiar example o f  electrons; not surprisingly, answers to the relevant 

points o f  concern are given by Racah; see $6 of  reference [ 161. 

All the formulae we need for fractional parentage coefficients, for JJ- and 

Russell-Saunders coupling, are contained in the book by de-Shalit and Talmi [4]. (NB 

the identity in Rotenberg et al. numbered (2.19) is reproduced by de-Shalit and Talmi, 

equation (15.14), but the printed formula contains a misprint.) The result for (A.3) 

that applies for n,, 1 1 equivalent holes we denote by Y and its value is, 

The matrix element o f  the tensor Tt satisfies (3. l), and rn, = M - M = q + q'. The 

triangular condition on K limits its values to 0 , l  and 2. The label 6, about which we 

have more to say later in the appendix, is a composite label that denotes all the 

quantum numbers required to uniquely define a state over and above the labels 

(quantum numbers) J and M. All quantities in (A.4) are dimensionless apart from the 

radial integral, and Y has the dimension o f  (length)'. No approximation is made in 

reaching the result (A.4) for the quantity defined by (A.3), as hopellly, is clear from 

the derivation which is described. 

The value o f  the reduced matrix element o f  T which arises in (A.4) on 

application o f  the Wigner-Eckart theorem (3.1) depends on the coupling scheme. We 
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start with thejj-coupling scheme. For this scheme, 8 is the seniority quantum number 

[4];  it is often denoted by v and we henceforth comply with this convention. For one 

particle T = t and a building block in the reduced matrix element o f  T for nh 2 2 

particles is the reduced matrix element oft.  Let j = 1 k %; one finds, 

The phase factor in (AS) is for the scheme in which spin is coupled to orbital angular 

momentum, i.e. the Clebsch-Gordan coefficient in the coupling is (% rn, ZrnJjrnj). (If 

the spin and orbital angular momentum labels are reversed in the Clebsch-Gordan 

coefficient a different phase factor is obtained in the corresponding reduced matrix 

element oft .  Two well-known texts on atomic theory use different coupling schemes. 

Judd [17] and the present work concur and use the SL-scheme, adopted by Racah, and 

Cowan [18]  uses the LS-scheme. In their book on nuclear shell theory, de-Shalit and 

Talmi [4] use the SL-scheme.) For the configuration o f  nh equivalent particles, j n h  , T 

is the sum o f  nh ts and the reduced matrix element is, 

It is noted in (A.6) that on the right hand side the reduced matrix element o f  t is 

evaluated for j = j !  The reduced matrix element of V is compiled from fractional 

parentage coefficients and 6j-symbols; our definition o f  the reduced matrix element 

and various properties o f  magnetic atoms described by ajj-coupling scheme, are 

found in [lO]. Table l a  lists values o f  interest in the study o f  magnetic materials. The 

following properties o f  the reduced matrix elements o f  Vare to be noted. 

For K = 0, the reduced matrix element o f  Vvanishes unless J = J' and v = v': 
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Reduced matrix elements with K odd have the remarkable property o f  being 

independent o f  the numbers o f  particles, and diagonal with respect to the seniority 

number. For our purposes we need only one case, namely, 

where (jlJjlJj]2 = j ( j  + 1)(2j + 1). For nh = 2 the reduced matrix element vanishes unless 

J and S are even integers, in which case, for all K, 

( V J p ( K j l V ' J ' )  = 26,,,, [ (2J+  1)(2K+ 1)(2J' + 1)]'12 (-l)2J+K {; 7 ;}. (A.9) 

For K = even integer, K 1 2, and v = v': 

For K = even integer, K 2 2, and v' = v - 2: 

(n - v + 2)(2j + 3 - n - v) 
2 (2 j  + 3 - 2v) ( j " V J p ( K g j " V  - 2J ' )  = ( 

It is interesting to observe that the coefficients in these two results for K an even 

integer are obtained from corresponding €)-basis relations, to be given, by using, 

j + 21 +1/ 2 ,  i.e. 2 j  + 1 H 2(22 +l). 

The state j, and its conjugate state j 2 J +  ' - " have the same quantum numbers, 

including the seniority. From the foregoing it is evident that, for the conjugate state: 
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0 an odd tensor has the same sign and magnitude as the state jnh , 

and, 
0 an even tensor (K 2 2) for 

v = v’: has same magnitude and opposite sign 

v‘ = v - 2: has same magnitude and sign. 

It is interesting to observe that the scattering o f  neutrons by a magnetic atom is 

described entirely by reduced matrix elements o f  V ( Q  with K = 1,3, . . . [ 101. 

The matrix elements for configurations o f  non-equivalent holes are provided by 

de-Shalit and Talmi [4]. We give one example in $6. 

Let us survey the behaviour o f  the reduced matrix element o f  V(K) as a function 

o f  the number o f  particles (holes) nh. For nh = 0 the reduced matrix element for all 

values o f  K has the value zero. This statement is obviously correct for K = 0 because 

the matrix element (A.7) is proportional to nh. For other values o f  K the reduced 

matrix element is zero when the quantum numbers are given values appropriate for 

nh = 0 ,  namely, L = L’ = S = S’ = J = J’ = 0 .  By the same argument, all the 

reduced matrix elements for K > 0 are zero for the maximum number o f  holes, 

nh = ( 2 j  + 1) .  The physical content o f  this result is that, for nh = ( 2 j  + 1) the valence 

shell is spherically symmetric and, hence, unable to carry information about the 

environment. By definition, for nh = 1 , 

(vjll V(K)II vj) = (2K + l)I’2 ; all K. 

The corresponding result for the conjugate state, nh = 2 j ,  applies for K > 0 - .the 

result for K = 0 is (A.7) - and it is, 

(vjll V(K)II vj) = (-1)’+y2K + l)I’* . 
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The other coupling scheme o f  interest in the study o f  magnetic materials is the 

SL-coupling, or Russell-Saunders scheme. In this scheme, 8 is an abbreviation for 

the three quantum numbers v, S, and L. For the reduced matrix element of T one 

finds, 

(A. 10) 

Like its counterpart in jj-coupling, the reduced matrix element (ellV(K)lle') is 

constructed from fractional parentage coefficients and 6j - symbols; our definition is 

identical with the one adopted by Judd [17], equation (7.52), however the author does 

not considerjj-coupling. In reference [4] both coupling schemes are considered. An 

extensive tabulation o f  reduced matrix elements is found in reference [19], part o f  

which is here reproduced in table 1 b. 

Special cases o f  interest are, 

For K = even integer and v = v', 

(A. 1 1) 

e 

(A. 12) 
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)1’2(z~vSL~~V(K-)~~z~v - 2,S’L’) , 1 (n - v + 2)(41+4 - n -v) 
(21+ 2 - v) (I”VSL~~V(K-)~~Z”V - 2,S‘L’) = -( 2 

The seniority selection rule is v -v ’= 0, k 2. 

Matrix elements for a given state and its conjugate are the same for odd rank 

tensors, and o f  equal magnitude and opposite sign for even tensors. 

The properties o f  the reduced matrix elements o f  V(K) for nh = 0 and 1 and the 

conjugate states that we noted earlier in thejj-coupling scheme have their counterparts 

in the Russell-Saunders coupling scheme. For nh = 0 and nh = 2(21+ I) ,  the reduced 

matrix elements with K > 0 are zero. For nh = 1, 

- _  

and for nh = (41 + 1 ) ,  and K> 0, 

(111 V(K)II I )  = (-1)’+“(2K + 1y2 . 

Values for K = 0 and all nh are obtained from (A. 12). 

In the problem o f  describing the scattering of  neutrons by a magnetic atom, with 

states represented in the SL-scheme, the interaction mediated by the current (often 

called the orbital interaction) is expressed in terms o f  the reduced matrix elements of 

V with an odd order. The second part o f  the interaction, arising from the dipolar 

interaction between the (spin) moment of  the electron and the magnetic moment o f  the 

neutron, can not be expressed in terms of  V , see reference [20]. In this respect, the 

description o f  neutron scattering by a magnetic atom depends on the type o f  coupling 

scheme used to classify its states, I ” .  
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Table l a  

J-coupling scheme: 

Total angular momentum and seniority numbers for the Hund's-rule ground states o f  

tripositive lanthanides together with the number o f  electrons n = 2j + 1 - nh. The last 

column gives the reduced matrix element o f  V(2) for the ground state. Our definition 

o f  the reduced matrix element, in terms o f  fractional parentage coefficients, is given in 

reference [lO]. All even rank tensors are zero for a half-filled closed shell, and for 

nh =1 the value o f  the reduced matrix element for all K is (2K+1)"2 ,  and for 

nh = 2 j it has the same magnitude and opposite sign. In the first (second) shell 

j = $(+) and the Land6 factor g = f ( f ) .  The moment (do') in reference [7] is 

simply (2 - g)J  / I ,  and the same formula applies for the Russell-Saunders coupling 

using the appropriate value for g.  

Configuration 

j = 5/21 

Ce3+ f' 

P? f 2  

Nd3+ f 3  

pm3+ f4  

Sm3+ fS 

Eu3+ f6 

j = 712: 

Gd3' f' 

Tb3+ f8 

Dy3' f9 

HO~+ f l0 

E? f" 

Tm3+ f'' 

y b 3 +  f l 3  

J 

f 
4 

P 
4 

f 
0 

1 
6 

Y 

Y 
8 

6 

3. 

n V 
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Table l b  

Russell-Saunders coupling scheme: 

The value o f  the reduced matrix element o f  V(2) for the ground state configuration o f  

tripositive lanthanides derived fiom Hund’s rules. The values for V(2) are obtained 

fiom the tabulation o f  the reduced matrix elements of U(2) found in reference [19] 

and the relation V(K) = (2K + 1)”* U(K )  . The reduced matrix element o f  V(K) for a 

number o f  holes = (14 - nh) has the same magnitude and opposite sign to the value 

listed for the value n,,. For nh = 0 and nh = 14 the reduced matrix element o f  V(2) is 

zero. The Land6 factor is obtained fiom formula (2.83) in reference [l]. 

Ground state 

*F 

3H 

41  

51 

6H 

’F 

3 

4 

nh 

1 

2 

5 

6 

7 
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Table 2 

Components of  the tensor Xc ’  defined by equation (3.8) on taking E‘ = t and E = U. 

Here, (t . U) and (t x U) denote the conventional scalar and vector products, 

respectively, of two vectors of rank one. 

1 
- - - -(t .u) h Xo’o’ 

XO“’ - 

Xl:’ = T (tou*1 - t*1 U01 

1 I Jz (t x U), - 

1 

1 
Xi2’ - - 3 (3to U0 - t . U) 

1 3 ( to  U* 1 + t* 1 Uo) 
- X:;’ - 

Xi;’ - - 
t * 1  4 1  

Definitions in terms of  Cartesian components labelled (a, b, c): 

I 1 
t+, =- (t, + itb), to = t,, t-, = - (t, -ifb) J2 

X,=+(( txu) ,Ti ( t  x U),) 

1 
I f t = u = J , w i t h i J = J x  J a n d J . J = J ( J + l ) ,  then X(’) = --.Jk1. 

* l  45 
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Table 3 

Combinations o f  polarization vectors in the attenuation coefficient averaged with 

respect to states o f  polarization in the primary beam described by P = (0, &,e); a 

method for performing the average over states o f  polarization is described in reference 

[l]. In the forward scattering geometry q = q’. 

The angles a$ and y define the axes (u,b,c) relative to (x8,z) using the Euler angles 

defined in reference [SI. 
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Table 4 

Axes (xyj) defined with respect to the geometry o f  the experiment, in which the 

primary beam, travelling in a direction defined by the unit vector $, is deflected 

through an angle 8 to a direction defined by 4' . 

Axes (a,b,c) for an atom at a site labelled by the vector &. Euler angles a,p and y are 

defined following the scheme used in reference [5 ] .  

ii = % ( cosacos~cosy  -sinasiny)+f (sinacospcosy +cosasiny) 

- 2 sinpcosy 
CL 

b = %  (-cosacospsiny -sinacosy)+f (-sinacospsiny +cosacosy) 

+ Z sinpsiny 

C = %  cosasinp+f sinasinp+Z cosp 

Polarization vectors, which describe pure o and n: polarizations; o polarization is 

perpendicular to the plane of scattering, defined by q and q', and n: polarization lies in 

the plane. With reference to the axes (xyg); 

E, = E; = (0,0,1) 

E:, = s 2) - 9 sin(e 2) 

E, = 2 cos(0 / 2) + f sin@ / 2) 
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