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Abstract 

We present calculations of the structure functions 32(z, Q2) and FL(z, Q2), concentrating on 

small z. After discussing the standard expansion of the structure functions in powers of a,(Q2) we 

consider a leading-order expansion in ln(l/z) and finally an expansion which is leading order in 

both In(l/z) and a,(Q2), and which we argue is the only really correct expansion scheme. Ordering 

the calculation in a renormalixation-scheme-consistent manner, there is no factorization scheme 

dependence, as there should not be in calculations of physical quantities. The calculational method 

naturally leads to the “physical anomalous dimensions” of Catani, but imposes stronger constraints 
than just the use of these effective anomalous dimensions. In particular, a relationship between 

the small-z forms of the inputs &(z, Qi) and FL(~, Qi)  is predicted. Analysis of a wide range of 

data for &(2, Q2) is performed, and a very good global fit obtained, particularly for data at small 
2. The fit allows a prediction for FL(~, Q2) to be produced, which is smaller than those produced 

by the usual NLO-in-a,(Q2) fits to &(2, Q2) and Merent in shape. 
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1. Introduction. 

The recent measurements of 3i(z,  Q2) at HERA have provided data on a structure function 

at far lower values of z than any previous experiments, and show that there is a marked rise 

in F2(z,Q2) at very small z down to rather low values of Q2 [1][2]. Indeed, the most recent 

measurements have demonstrated that the rise persists for values of Q2 as low as 1.5 GeV2. 

The qualitative result of a steep rise at small z initially led to surprise in many quarters. The 

main reason for this was that standard methods used to fit the data were based on the solution of 

the Altarelli-Parisi evolution equation [3] (along with convolution with coefficient functions) at the 

two-loop level, using flat input parton distributions at starting scales of Qi N 4GeV2 (e.g. [4]). 

This method followed the reasoning that steep behaviour can only come about from perturbative 

physics (the Domachie-Landshoff pomeron used to describe soft physics has behaviour z-0.08 [ 5 ] ,  

and we will take steep to mean any powerlike behaviour steeper than this), and that a starting 
scale for perturbative evolution should be high enough for a,(Q2) to be fairly small (6 0.3) and 

to avoid any significant corrections from “higher twist” (h&,/Q2) corrections. This procedure 

results in an effectively steep’ behaviour at small z [6], but only after a long evolution length, and 

therefore at values of Q2 >> 4GeV2. 

Thus, the data led to a degree of optimism amongst those advocating an alternative description 

of small-z structure functions, i.e. using the BFKL equation [7 ] .  This equation provides the 

unintegrated gluon Green’s function which includes the leading power of ln(l/z) for any power of 

a, (where a,  is taken to be fixed). It was traditionally solved analytically in the asymptotic limit 

z + 0, or numerically for finite 2, and predicted a powerlike behaviour of z-’-’ for the gluon 

distribution function, where X = 4ln2&, and 6, = ( 3 / ~ ) a , ,  i.e. X N 0.5 if a, N 0.2. This was 

assumed to lead to F2(z,Q2) behaving like z-’ and could be claimed to be in rough qualitative 

agreement with the data, even if X was somewhat high. It could also be seen as some justification 

for choosing powerlike inputs (with X N 0.2 - 0.3) for the parton distributions (e.g. [SI), which 

could then enable a good fit to the data using the Altarelli-Parisi equation. 

However, it was also convincingly demonstrated that it was possible to generate the observed 

steep behaviour by being a little less conservative concerning the region in which perturbative 

evolution could be applied. Gluck, Reya and Vogt had in fact predicted a sharp rise in F2(2, Q2) 
at small 2, even for Q2 N 1GeV2, by using two-loop evolution from roughly valence-like parton 

distributions at a starting scale of Qt = 0.34GeV2 [9]. This attracted criticism not only on the 

grounds that higher twist corrections should be important in the region of evolution, but also 

because a,(Q2) was as high as N 0.5 at the lower end of the range, and therefore perturbation 

’ We use the term effectively steep since the slope at any x and Q2 is a function 

2 (O.l/x), 
1 

ln(Q’ A’) h-’ than a constant, i.e. &(x, Q a )  N x - ~  where A N 0.71n( 6) 
power of x as x ---* 0. 
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theory itself should be questionable. Starting at a higher scale, Qi = 1GeV2, Ball and Forte were 

able to fit the small-z data using their double asymptotic scaling (DAS) formula [lO], which is a 

simple, but very accurate, approximation to the solution of the oneloop evolution equation with 

flat2 inputs and which is valid in the region of small 2 (z 5 0.01). They also showed that two-loop 
evolution with flat inputs starting at QX R 2GeV2 could fit the data available at that time very 

well [ll], and had a similar shape to the DAS result (as indeed it must, since both fit the data). 

This state of &airs clearly left scope for argument about the real underlying physics describing 

the small-2 behaviour of &(z, Q2). Those who used Altarelli-Parisi evolution from small scales 

could be accused firstly of working in regions where perturbation theory was questionable and, 

perhaps more importantly, of ignoring terms of higher order in a, (but also higher order in ln(l/z)), 

which seemed from the BFKL equation to have very important effects. Conversely, those who used 

the BFKL approach could be accused of ignoring all but the leading-ln(l/z) terms (and hence 

ignoring the large-2 data) and also of working in a less well-defined theoretical framework than the 

renormalization group approach based on the factorization of collinear singularities [12]. Starting 

from an input for the parton distributions with A N 0.25 at values of QX N 4GeV2 was taking 

the best of both worlds. However, this lacked a real justification for the choice of input, which 

was significantly steeper than that expected from non-perturbative physics, but rather smaller 
than that from the BFKL equation, and also ignored potentially important In(l/z) terms in the 

evolution. 

A significant step forward in the investigation of small-z structure functions was the devel- 

opment of the LT-factorization theorem [13][14]. This is the prescription for the way in which 

an off-shell photon-gluon scattering amplitude can be convoluted with the unintegrated gluon 

Green’s function calculated using the BFKL equation to provide the small-z structure functions 

themselves (once convoluted with a bare, off-shell gluon density). Hence, it enables one to find 

effective moment-space coefficient functions (or in the case of F2(2,Q2) and massless quarks, 

where dF2(z ,Q2) /d lnQ2 is calculated, a mixture of coefficient function and anomalous dimen- 

sions) within the BFKL framework. Numerical calculations performed using this method were able 
to match the available data in a qualitative manner [15], as did similar calculations [16] using a 

modification of the BFKL equation, i.e. the CCFM equation [17]. 

However, the kT-factorization formula was also shown to be very important if one insisted on 

working within the rigorous framework of the traditional renormalization group approach [18]. In 
this approach the infrared poles in the calculated coacient functions, or photon-parton scattering 

amplitudes, are removed order by order in a, and absorbed into the essentially nonperturbative 

parton distribution functions. In order to guarantee the independence of physical quantities on the 

Parton inputs behaving like z-l, as opposed to are referred to as flat, i.e. the parton density 
rescaled by z is flat. 
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factorization scale p ~ ,  the latter then evolve in In(&) according to the renormalizationgroup equa- 

tions governed by calculable perturbative anomalous dimensions. By showing how BT-factorization 
fits within the collinear factorization framework, Catani and Hautmann were able to calculate all 
the renormalization group anomalous dimensions to lowest nontrivial order in a, for each power of 

h(l/z) ,  and similarly for a number of coefficient functions. 

In order to explain this properly we digress for a moment. We may write the Altarelli-Parisi 

splitting functions as 

or taking the Mellin transform of the splitting function (weighted by 2) 

and working in moment space, 

W n 

n= 1 m=l 

where A(N) is regular as N + 0. In the normal loop expansion one solves the evolution equations 
order by order in a,. We may however write 

or in moment space, 

00 W 

t terms less singular as z + 0, 

(1.4) 

00 

n = O  m=l n= 1 

where the an(N) are regular as N + 0, but have singularities at negative integer values of N. 
When one calculates the structure function by converting back to z space (i.e. performing the 

inverse Mellin transform), these singularities lead to contributions suppressed by powers of 2, and 

so are negligible at small 2. Therefore, ignoring these contributions and expanding the an(N )  about 

N = 0 we get 

W W W 

7 (N ,a , (Q2 ) )  = C kmaT(Q2)N-" ay(Q2)7" (a8(Q2)/N),  (1.6) 
n = O  m=l -n n = O  

where the expressions are strictly convergent only for IN1 < 1. Thus, in order to include the leading 

powers in In(l/z) for the splitting function, we have to take the n = 0 part of the expression (1.6) 

for the anomalous dimension. Next to leading order (NLO) in h(l/2) is the n = 1 part, and-so on. 

3 



Using the +factorization formula Catani and Hautmaun demonstrated that within the renor- 

malization group framework Y ; ~ ( N ,  Q2 )  and yi,(N, Q2 )  were the same renormalization-scheme 

independent expressions as the effective anomalous dimensions [19] given by the BFKL equation. 

i.e. 

where $, (a8(Q2)/N)  is given by the iterative solution of 

This solution as a power series in 58(Q2)/N exists only for IN1 2 A(&(Q2) ) .  The anomalous 
dimension develops a branch point at N = A(d8(Q2)), but the series in (1.7) is analytic and 
convergent outside the circle IN1 = A(Q2). In fact, this anomalous dimension leads to the gluon 
distribution function having an asymptotic powerlike behaviour of Z-~(G:), so it does not make 
sense to talk about its Mellin transform for ReN 5 A(Qt), it simply does not exist in this region of 
moment space. However, the inverse Mellin transform may be performed by analytic continuation 
into the region ReN < A(Qi) (but IN1 2 .\(si)) from ReN 2 A(Qi), if so desired. 

Cat& and Hautmann also derived expressions for yit (a8(Q2)/N) and yig(a8(Q2)/N) in 
certain factorization schemes (y7,(a8(Q2)/N) and yYg(a8(Q2)/N) being ~ e r o ) ,  and also for the 

aeroth-order quantities being zero except C/,o, which is unity). This facilitated calculations of 
structure functions within the normal renormalization group framework, but including much of 
what is often called the BFKL physics (i.e. the leading-ln(l/z) terms), and indeed, a number 
of calculations were performed [20]-[23], and in most cases comparisons with data made. These 
calculations used different methods of solution, made rather different assumptions and used different 
ansatze for unknown terms. Consequently different results were obtained. The conclusions which 
could be drawn regarding the inclusion of the leading-ln( 1/2) terms depended very much on which 

of the approaches was taken. However, it seemed that by including these terms it was not possible 

to improve upon the best fits for the small-2 data using one- or two-loop evolution from soft inputs 
[20][22]. Indeed, many ways of including them made the fits significantly worse, and this seemed 

to be universally true if the fits were more global, i.e. constrained by large-z data [20]. Also, 
it seemed that there was a very strong dependence on the factorization scheme used to perform 
the calculations when including the leadmg-ln(l/2) terms [20][22][24][25], and a number of new 
factorization schemes were invented, e.g. the SDIS scheme [24] and the QO scheme [25]. 

coefficient functions ca,1(a8(Q2)/N), ci,1(a8(&2)/N)I c!,l (a8(Q2)/N) and c/,1(a8(Q2)/N) (all 
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The high precision of the most recent HERA data constrains theory far more than previously, 

and has changed the above picture somewhat. The best recent global fits seem to come from those 

intermediate approaches which use NLO perturbation theory with a quite steep (and completely 

unexplained) input for the singlet quark with X N 0.2 and a similar form of small-z input for 

the gluon [26] (unless Qi is less than - 4GeV2, in which case the gluon must be flatter or even 

valence-like). Fixed order perturbation theory using flat or valence-like inputs and low QX fails 

at the lowest z values, and for fits to the small-z data alone relatively steep inputs for the singlet 
quark, i.e. X 2 0.2, seem to be absolutely necessary [27]. Moreover, approaches including the 

leading-ln(l/z) terms now seem to fail [28][29] in practically all factorization schemes. 
In this paper we will take issue with the above conclusions. In particular we will demonstrate 

that the apparent failure of approaches using the leading-ln(l/z) terms, and certainly the factoriza- 
tion scheme dependence, is due to incorrect methods of incorporating these terms. Indeed, Catani 

has already shown how to obtain factorization-scheme-invariant results in the small-z expansion 

by writing evolution equations in terms of the physical quantities, the structure functions and 
“physical anomalous dimensions”, rather than in terms of parton densities and of the usual anoma- 

lous dimensions [30]. In this paper we will go further and show that the correct leading-order, 
renormalization-scheme-consistent (RSC) calculation of the structure functions must naturally in- 

clude some leading-ln(l/z) terms in the form of these “physical anomalous dimensions” . It also 

provides limited predictive power at small z, giving justification for the input &(z, Qt). We will 

discuss this method of calculation, then make detailed comparisons to data, and demonstrate with 

the aid of the new HERA data that it leads to a very good global fit to all &(2, Q2) data. Indeed, 

the complete RSC calculation, including leading-ln(l/z) terms, is clearly preferred by the latest 
data, particularly that at small z. 

We note that a very brief presentation of the complete RSC calculation of structure functions 
has already appeared in [31].3 However, this current paper gives a complete, and very detailed 
discussion of the correct calculation of structure functions, as well as examples of commonly en- 

countered pitfalls, whereas there is only the barest outline of the full calculation in [31]. Moreover, 
there is a far more comprehensive presentation of the comparison with experimental data, and with 

alternative approaches, in the current paper. 
This paper will be structured as follows: after giving a brief outline of the different possible 

types of scheme dependence in the calculation of structure functions, we also quickly review the 

work of Catani, illustrating that it is indeed very easy to guarantee factorization-scheme-invariant 
results. We then give a very detailed description of the calculation, within moment space, of 
structure functions in various expansion schemes using the normal parton language. The first 

As in this shorter presentation, the present paper deals with the heavy quark thresholds in a rather 

naive manner, i.e. the quarks are taken to be massless, with a particular flavour becoming active only 

above a certain Q2. 
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part of this, regarding the normal loop expansion, will be largely a review, but will hi@@ 

points usually not discussed in detail, particularly the role played by the scale at which the parton 
distributions are input and the form of the inputs. The second part, discussing the leading- 

ln(l/z) expansion, will present the only correct way to perform this expansion. One finds that by 
remedying the factorization scheme dependence one is forced towards an alternative derivation of 
Catani's factorization-scheme-independent anomalous dimensions. However, we will also show 

that, in order to make an ordered calculation of quantities, more care is needed than simply 

working with a factorization-scheme-independent set of variables, and demonstrate that there 
is a certain degree of predictive power for the form of the inputs for the structure functions at 

small z. We also explain why the standard solutions using the small- expansions are strongly 
factorization scheme dependent. To conclude this section we present the argument that there 

is a unique renormalization-scheme-consistent calculation of structure functions, which applies 
to both large and small z. We present this calculation for both the currently academic case of 
the nonsinglet structure functions and for the phenomenologically important case of the singlet 
structure functions. We then discuss how we move from moment space and obtain our z-space 
solutions, and the qualitative form these solutions must take, i.e. our best attempt at predictions.. 

After this long theoretical presentation we consider the comparison with experiment. We fit the 
data for &(2, Q2) using the renormalization-scheme-consistent solutions, and compare to global 
fits at NLO using the normal loop expansion. We also comment on alternative fits to the data made 

by other groups, and on determinations of a,. We conclude that the fuJl renormalization-scheme- 

consistent calculation gives the best global fit to structure function data, particularly at small 

2. Finally we investigate the phenomenological consequences for 7 ~ ( 2 ,  Q2), and also preliminary 

indications for the charm structure function. Good measurements of either (but preferably both) 
of these quantities, particularly at small z, would help determine whether the approach developed 
in this paper, and hence the inclusion of leading-ln(l/z) terms in the calculation of structure 
functions, is indeed correct. 

2. Scheme and Scale Choices. 

For simplicity we work in moment-space for much of this paper, i.e. define the moment-space 

structure functions by the Mellin transform, i.e. 

F(N,  Q2) = 1' zN-'F(z,  Q2 )d2 .  (2.1) 

The moment-space coefficient function is defined similarly but, as with the definition of the anoma- 
lous dimension, we define the moment space expression for the parton distribution as the Mellin 
transform of a rescaled parton density i.e 
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Let us consider the most general moment-space expression for a structure function, i.e. the sum of 

the products of the expressions for hard scattering with a certain parton (the coefficient functions) 
with the corresponding, intrinsically nonperturbative parton distributions. 

p~ is a factorization scale separating the ultraviolet physics from the soft infrared physics, and on 
which the left-hand side of (2.3) is independent. p~ is the renormalization scale, i.e. the appropriate 

scale at which to define the coupling constant, and on which F(N, Q2) is again independent. 

Despite being intrinsically nonperturbative, the parton distributions evolve according to the 

perturbative renormalization group equation 

In principle there are many choices to be made when performing a perturbative calculation of 

structure functions to a finite order. However, two of the choices left open in the above expressions 
are common to all perturbative calculations in quantum field theory: the choice of renormalization 

scheme and subsequently the choice of renormalization scale. When one removes ultraviolet di- 

vergences from perturbative calculations, there is always a freedom in what type of regularization 

is used and/or how much of the finite part of a calculation is removed at the same time as the 

divergent parts. Although the all orders calculation of a physical quantity is independent of the 

convention, the renormalisation scheme used, the perturbative expansion of the quantity is not. 
Hence, neither is the definition of the expansion parameter, the running coupling constant. All 
couplings in quantum field theory satisfy a renormalization group equation, 

where p is the scale at which the coupling is defined, and the convention of the minus sign is 
introduced in order to make the /?-function for QCD positive. The solution to this equation 

depends on the coefficients b, and on a scale A. This scale, and the value of the coefficients beyond 

n = 1 are renormalization scheme dependent (bo = (11 - 2 N j / 3 ) / 4 ~  and bl = (102 - 38Nj/3)/16n2 

in all renormalization schemes which use dimensional regularization, where Nj is the number of 
quark flavours). Hence, a choice of renormalization scheme amounts to a choice of which expansion 
parameter is to be used, and consequently the form of the perturbative expansion. One would 

hope the choice would be such as to make the series converge as quickly as possible, but this is 

difficult to guarantee. Conventionally the MS renormalization scheme is used. Also the choice of 
the appropriate scale to be used in the coupling for a given process must be made. Sometimes 

this is relatively clear, but in deep inelastic scattering it is not entirely obvious. Traditiondy, the 
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simple choice p~ = p~ is taken, and indeed, the data seem to favour this choice [32]. Hence, we 
will assume this to be the case from now on. 

Having settled for a particular choice of renormalization scheme and renormalization scale the 
ambiguities due to ultraviolet re'gularization have been dealt with. Our fundamental equations 

become 

and 

where a, is defined in a particular renormalization scheme. The remaining ambiguities are due to 
the particular problems in calculating quantities in QCD, i.e separating the physical quantity into 
the perturbative coefficient function and the intrinsically nonperturbative parton distribution. To 

begin with we have the freedom of choosing the factorization scale p ~ .  As with renormalisation 
scheme dependence this does not affect the all-orders calculation, but does affect the form of the 

perturbative expansion, since it affects the scale at which the coupling in the coefficient function 
is evaluated. One might imagine that it is desirable to choose & to be large in order to make 

the expansion parameter a,(&) as small as possible, and indeed & is nearly always chosen to be 
equal to the hard scattering scale Q2. We shall also make this simple choice. 

This leaves us with our defining equations4 

and 

In principle there are now choices to be made for the scale at which to'begin the evolution of 

the parton densities, QX, and for the inputs for the partons at this scale. This question will be 

dealt with in detail later in this paper, so we will leave it for the moment. This still leaves us 

one more freedom in our calculation, i.e. how we choose to remove the infrared divergences from 
the bare coefficient functions and hence how we define our pwton distributions. Starting from 
any particular choice for the definition of parton distributions one may always choose a new set of 
parton distributions by an invertible transformation 

(2.10) 

Because we consider only massless quarks, once we set Qa = p i  the only scale dependence in the 
coefficient functions comes from a,(Qa). 
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where Uab(N, a,) has a power series expansion in a8 such that Uab(N, a,) = 6ab+O(a8) .  The struc- 

ture functions will clearly be unchanged as long as the coefficient functions obey the transformation 
rule 

(2.11) T -1  ea(N, a#) = (U )ab (N, a 8 ) C b ( N ,  

By substituting fa(N,Q2) = x b  v,-d(N,a,)fb(N,Q2) into (2.9) we easily find that the new par- 
ton densities evolve according to the standard evolution equations but with the new anomalous 

dimensions 

The matrix U must obey a number of conditions in order that physical requirements on the parton 
distributions are maintained, e.g. flavour and charge conjugation invariance, fermion number con- 

servation and longitudinal momentum conservation (see for example the second of [18]). However, 

none of these needs to be satisfied simply in order to keep the structure functions unchanged. 
The transformation defined above is called a change of factorization scheme and is constructed 

precisely so that the physical structure functions are left invariant. However, it is important to 

realize that, unlike the changes in renormalization scheme, a change in factorization scheme leaves 

the expression for the structure functions unchanged not only to all orders, but order by order in 
a,, and calculations performed carefully at a given well-defined order in one scheme will lead to 
precisely the same results for the structure functions as those in another scheme. Also, the coupling 
constant to be used depends only on the ultraviolet renormalization.' We will illustrate this point 

in $4, where we will calculate structure functions to a well-defined order in a variety of expansion 
schemes and demonstrate factorization scheme independence of our expressions. However, we will 

first illustrate Catani's recent proposal for the construction of factorization-scheme-independent 
structure functions. 

3. Evolution Equations for Structure Functions. 

It is, as Catani noticed [30], very simple to obtain factorization-scheme-independent expres- 
sions for the structure functions, or more precisely, factorization-scheme-independent effective 
anomalous dimensions governing the evolution of the structure functions (reflecting the fact that 
we cannot make a concrete prediction of the structure functions at a given scale using QCD, but 
only how they change with Q2). In order to obtain these effective anomalous dimensions all one 

has to do is eliminate the parton densities from the equations (2.8) and (2.9). 

' It is perfectly possible (if somewhat perverse) to choose the MS scheme to remove ultraviolet diver- 
gences, but the MS scheme to remove infrared divergences from the bare coefficient functions. In this case 
it is the MS scheme coupling constant that must be used. 
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In order to demonstrate this, let us now be a little more careful in our definition of the relevant 
structure functions. There are two independent structure functions &(N, Q’) and FL(N, Q2). In 
general we may write 

Nf  

Fi (N,Q2)  = $ ( x e : ) F ? ( N , Q 2 )  + F . ’ ( N , Q 2 )  
j=1 

( i  = 2 4 ,  

where the singlet and nonsinglet structure functions are defined by 

and 
N? 

2 NS 
F,”’(N, Q 2 )  = CyS(NI a,) e3fqj  (NI Q2) ,  

. j=1 
(3.3) 

where Nf is the number of active quark flavours, f s ( N ,  Q2)  and f t s ( N ,  Q2)  are the singlet and 
nonsinglet quark distribution functions respectively, and g(N, Q2)  is the gluon distribution. In 
any factorization scheme obeying the requirements of flavour and charge conjugation invariance 
the renormalization group equations for the singlet and nonsinglet sectors will be decoupled. The 
equations for the nonsinglet distributions will be ordinary differential equations, 

while those for the singlet sector are coupled 

Let us first consider the simple case of the nonsinglet structure function FfS (N ,Q2 ) .  Multi- 
plying both sides of (3.4) by Cj=l N? e j  2 we can clearly write 

which becomes the factorization-schemeindependent equation 

where . F ~ , N s (  N, a,) = 7NS( NI a,) + d In( Crs( N ,  a, ) ) /d  h Q 2 .  Therefore, we have an effective 
anomalous dimension governing the evolution of each of the nonsinglet structure functions, and 
clearly ryS (N ,  a,) must be a factorization-schemeindependent quantity (and is in principle mea- 
surable). The solution to this equation is trivial: 
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The situation for the singlet structure functions is more complicated. As we see from (3.5) the 

evolution equations for the singlet quark density and gluon density are coupled. However, using 
(3.2) for i = 2, L we may solve for the parton densities in terms of the two structure functions 

and the coefficient functions. Substituting these into (3.5) we then obtain the coupled evolution 

equations 

The expressions for the physical anomalous dimensions, f'22(N, a,), f 2 ~ ( N ,  a,), etc., are straight- 
forward to derive in terms of anomalous dimensions and coefficient functions in any particular 
factorization scheme using the above procedure, but result in rather cumbersome expressions. It is 
simplest first to define afactorizationscheme such that F;(N, Q2) = f s ( N ,  Q2), i.e. C,f(N, a,) = 1, 

C!(N,a,) = 0 (this is generally known as a DIS type scheme [33]'). In terms of the coefficient 
functions and anomalous dimensions in this type of scheme we have 

(3.10) 

Thus, we have a factorization-scheme-invariant set of anomalous dimensions governing the 

evolution of the structure functions. Before going any further let us remark that we believe there is 
a (purely technical) problem with the above expression. As is well known (and as we will discuss in 
the next section), FL(N, Q2) starts at an order of a, higher than F2(N, Q2). Because of this there 
is an intrinsic asymmetry in the above definitions, with f 2 ~ ( N ,  a,) beginning at zeroth order in 

a,, l?22 ( N ,  a,) and ~ L L (  N ,  a,) beginning at first order, and I ? L ~  ( N ,  a,) beginning at second order. 
The fact that one of the physical anomalous dimensions has a part at zeroth order in a, seems 
against the spirit of the perturbative approach. In practice, the result is that, if one solves the 
evolution equations order by order in a, the solutions are very Merent from those obtained from 

an order-by-order solution using the parton densities, which we know work very well for all but 

possibly the lowest values of z yet probed. (We will discuss this point rather more in $4.) 

' We call it a DIS "type" scheme because satisfying the above requirement still leaves freedom in how 
we may define the gluon density, and thus we are still considering a family of schemes. 
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A trivial modification of Catani's approach is therefore to accept that FL(N, Q 2 )  contains an 
extra power of a,, and to define the new structure function @ L ( N , Q ~ )  = F~ ( lV ,Q ' ) / (a , / (2n ) ) .  

The longitudinal coefficient functions are likewise changed to &E(N, a,) = C;(N, a, ) / (a , / (2n ) ) ,  

and the singlet evolution equations become 

where the r ( N ,  a,)'s are defined precisely as in (3.10), but in terms of of CE(N,a,) rather than 

Cg(N,a, ) .  This procedure restores the symmetry between the physical anomalous dimensions, 
and makes the order-by-order-in-a, calculations essentially the same as when using evolution of 
parton distributions. It is, of course, trivial to obtain the physical FL(N, Q 2 )  from @L (N ,  Q2).' 

Having made our redefinition of the quantities with which we work, we now have a direct 
relationship between possible calculations using the evolution equations for structure functions 
and the solutions using the parton densities. At present the parton anomalois dimensions and 

coefficient functions are known to order af. It is easy to see that this allows us to derive each of 
the r's to order a:. For example, at fist order in a, they are 

I .  

(3.12) 
where the super-subscript n, 1 denotes the (n + 1)-loop quantity. The O(a3) expressions for the 

physical anomalous dimensions are straightforward to derive, but are rather complicated. Similarly, 
from the known expansions of the parton anomalous dimensions and Coefficient functions in the form 

ay E,"==,-,, am(ar/N)m, we can calculate r tL (N ,a , )  and rt2(N,a,) ,  I ' !L(N,aa) and r!2(N,aa) 
(where both are trivially zero), and I ' iL(N,a,) and ri2(N,a, ) .  This is the same order as for the 

parton anomalous dimensions, with the longitudinal anomalous dimensions having similar structure 

to the gluon anomalous dimensions and the I'2a(N,a,)'s having similar structure to the quark 

' Similarly, it is also best to work with the rescaled nonsinglet Structure function @f"(N,Q2). Doing 
this, the analogous procedure to (3.7) and (3.8) leads to @f"(N, Qi) beginning at seroth order in a, (Qi ) ,  
as does FfS(N, 8;). 
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anomalous dimensions. The exact form of these physical anomalous dimensions may be calculated 

using the expressions for the parton anomalous dimensions and coefficient functions in the standard 

DIS scheme in [18]. The resulting expressions are relatively simple, being 

1 00 

(3.13) 

where T,;, 1 0  C{ll,o and C ~ l , l o  are the one-loop contributions to r i , (a , /N ) ,  Ci,l(a,/N) and 

C&(a,/N) respectively. We note that each of these anomalous dimensions is renormalization 

scheme invariant as well as factorization scheme invariant, as we would expect for leading-order 

physical quantities. 

Solving the evolution equations for the structure functions using any subset of the currently 
known physical anomalous dimensions guarantees a result which is factorization scheme indepen- 

dent. However, since the evolution equations are coupled, a simple expression for the solutions, such 

as (3.8), is impossible. There is, in fact, considerable freedom in how we may solve the equations. 

We could, for example, simply put all of the anomalous dimensions currently known into (3.11) and 

then find the whole solution. Alternatively, we could solve using just the order a, anomalous di- 
mensions and then try to perturb about this solution in an ordered manner. These two approaches 

would lead to rather different answers, but both would be factorization scheme independent. The 

problem of obtaining a correctly ordered solution for the structure function will be discussed in 
detail in the next section. We will initially use the familiar parton distributions and coefficient 

functions, and show that, even when using this approach, if we solve producing a well-defined 

expansion for the structure functions, we automatically avoid the problem of factorization scheme 

dependence. 

4. Ordered Calculations of Structure Functions. 

There are in principle many different expansion methods one may use when obtaining solutions 

for the structure functions. The standard one is simply solving order by order in a,. But there is 

also the expansion in leading powers of ln(l/z) for given powers in a, (or equivalently in powers 

of N-' in moment space), as we have already discussed. One can also combine the two expansion 

methods, and indeed, we will later argue that this is the correct thing to do. Nevertheless, we 

will begin by outlining the procedure for making a well-ordered calculation of structure functions 
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using the standard loop expansion. Although this is well known, we feel it is worth presenting it 

pedagogically, and making some points which are not usually highlighted, especially concerning the 
role of the starting scale. We may then discuss the more complicated cases of the expansion in 
leading powers of In(l/z) and the combined expansion. 

4.1. Loop Expansion. 

We begin by introducing some new notation. In order to solve the evolution equations for the 
parton densities order by order in a, and hence obtain expressions for F,"'(N, Q 2 )  and FF(N, Q 2 )  
we make use of equation (2.5) to rewrite the evolution equation for the nonsinglet parton density 
as 

with similar definitions for 7 j j ( N ,  a,) etc. as for ~ N S ( N ,  a,). Each of the 7's may now be written 
as 

m 

n=O 

where we also have the analogous definition 

Q) 

n=O 

for the normal anomalous dimensions.' Thus, at zeroth order the ~ ( N ) ' S  only differ from the 7(N)'s 
by the normalization factor bo. Beyond this order the differences are more complicated. 

Using our definition, the evolution equations may be solved order by order in a,. When 
doing this it is necessary to choose a starting scale QX for the perturbative evolution of the parton 
distributions (or equivalently a starting value of the coupling a, (Qi ) ) ,  and specify input parton 
distributions at this scale. Let us discuss the choice of this scale briefly. Qi  must clearly be chosen 
to be large enough that perturbative evolution should be reliable and also such that higher twist 
corrections should be very small. Traditionally evolution only takes place up from this starting 
scale. This has been both for the simple reason of convenience, and also because some form of the 
inputs has been expected at low starting scales. Until a few years ago the requirements described 
above led to a choice of Qi M 4GeV2. In the past couple of years this value has often been chosen 

We use the superscript I in order to denote that this is the standard a, expansion of the anomalous 

dimensions rather than the expansion in (1.6), i.e. the leading-ln(l/z) expansion, which will be used more 
frequently in this paper. 
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to be rather lower, due to the apparent success of evolution from lower starting scales, and also 

because much of the interesting small-z data is now at Q2 5 4GeV2. These choices have been 

accompanied by guesses for the form of the inputs at low starting scales, e.g valence-like [9], or flat 

[4][10]. However, with the quality of the most recent data, these guesses for the form of the inputs 

no longer seem to lead to good quantitative agreement with data. 

We make no assumptions of the above sort about the value of Qi .  We do require it to be high 

enough to be in the perturbative regime and to avoid higher twists, but acknowledge that there is 

no reason why Q i  cannot be chosen to be quite large; and evolution away Erom the starting scale 

performed both up and down in Q2. Taking this open-minded approach we then simply assume 

that only perturbative effects can lead to deviations from soft behaviour of the structure functions, 

and also demand that the form of our well-ordered expressions for the structure functions is as 

insensitive as possible to this choice, thus making the choice of Q i  as open as possible. We will 

see the consequences of this unusual approach to the input scale and the inputs for the structure 

functions as we progress. 

We begin by solving for the nonsinglet parton distributions, which are an easily understandable 

model. In this case the solution is particularly simple. Integrating both sides of (4.1) we obtain 

Perhaps unconventionally, we explicitly express the input f gS (N ,  Qi) as a power series in 

a,(&:). There are two reasons why this is necessary. Firstly, changes in the starting scale Q i  lead 

to a,(Qi)-dependent changes in the expression for the evolution term, which must be compensated 

for by a,(Qi)-dependent changes in the starting distribution in order to leave the whole expression 
for the parton distributions unchanged, as required.Q Let us examine this briefly by looking at the 

change of the lowest-order piece of (4.5), i.e. 

under a change in starting scale, Qi --f (1 + S)Qi, where 6 is some constant. Each of the terms in 

our expressions for the structure functions would now be written in the forms shown above, but 

as functions of (1 + 6)Qi. We may regain expressions in terms of Qi by expanding the coupling 
constant a,((l + 6)Qi) in the form 

Since the structure function is obtained by multiplying the parton distributions by the 9:-independent 
coefficient functions, the parton distributions must be 0:-independent to make the structure functions so. 
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Under this change in the input coupling constant, the evolution term in (4.6) undergoes a change 

This change in the parton distribution due to the variation in the leading term can be countered, 

up to higher orders, by a change in the order a,(Qi) input of the form 

Because changes in the evolution term due to a change in Q; begin at first order in a,(&;), and 

are therefore absorbed by terms in the input at first order and beyond, the zeroth-order input 

must be insensitive to such changes and is &:-independent: fc,$(N,Q;)  I ft ,$ (N) .  It is not 

difficult to see that higher-order changes in the parton distributions due to changes in Q: can all 

be accounted for by changes in the higher-order inputs and that in order to satisfy this constraint 

alone, it is consistent for the higher-order inputs to be equal to functions of N dependent only on 

the anomalous dimensions. Therefore, these higher-order inputs are in some sense perturbative, 

consisting of perturbative parts multiplying the fundamentally nonperturbative fc$(N). As we 

will soon discuss, there are other constraints to be satisfied, e.g. factorization scheme independence 

of the input for the structure function, and this slightly complicates the above picture, but does 

not change the main conclusions. 

Thus, we see that it is necessary to express the input as a power series in a,(&:) in order to 

make the parton distribution &:-independent , but that only one intrinsically nonperturbative input 

which is &:-independent is needed. Usually in analyses of structure functions the parton inputs are 

taken to be a single a,(&:)-independent function which is implicitly allowed to be &:-dependent. 

Phenomenologically, this is normally much the same, but we stress the formally correct expression 

for the input here since it is rather important when constructing properly ordered solutions, and 

leads to some predictive power, especially in the small z limit. 

Another reason for explicitly writing the input as a power series in a,(&:) is that it makes little 

sense to demand that the starting distribution should not have a perturbative expansion, unless 

one insists that there is something special about a particular factorization scheme. If there is not, 

then any transformation from a scheme in which the starting parton distribution is purely zeroth 

order in a,(&:) will lead to a starting distribution with a power series expansion in a,(Q:), but 

again, where there seems to be some underlying nonperturbative input fc,$(N)  which is unaltered 

by the change in factorization scheme. 

Accepting that the parton inputs should be a power series in a,(&:), and substituting our 

solution for the parton distribution into (3.3), we obtain the general expression for the nonsinglet 
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structure functions, 

(4.10) 
It is clear that this may be written as 

and that, once a choice of renormalization scheme and starting scale have been made, each of the 

FE:(N) must be invariant quantities under changes of factorization scheme in order to guarantee 

the scheme independence of the whole structure function. However, it is also clear from (4.10) that 
each of the F::(N) is potentially a function of the starting distribution, the anomalous dimension 

and the coefficient function. Any well-ordered calculation of the structure function should include 

all complete terms in (4.11) up to a given order in n and m, and no partial terms. In practice it is 

possible to work to a given order in n including all m 5 n, i.e. to expand to a given order in powers 

of a,(Q2) plus powers of a,(&:), if the 7's and Ci's are known to this order. ( I t  is impossible to 

work to a given value of m including higher values of n - m without knowledge of 9 to order n - m, 

i.e. it is impossible to expand just in powers of ad(Q2).) 
We shall briefly describe how to construct this ordered solution for the structure functions, 

working up from zeroth order, so that at each order the solution is factorization scheme dependent. 

Consider first calculating F f s ( N ,  Q2) by working to zeroth order in cys(N, a,), ~ N S ( N ,  a,) and 

the starting distribution (remembering that this is Qi-independent). To this order 

and I therefore 
Nt 

j=1 

(4.12) 

(4.13) 

Using the one-loop expression for the running coupling, as is appropriate for a lowest-order cal- 

culation, each of the quantities in this expression is factorization scheme independent and indeed, 

also renormalization scheme independent. Therefore we have a consistent leading-order (LO) ex- 

pression. 

If we calculate FfS(N, Q2), again by combining the coefficient functions with the solutions for 

the parton evolution, then working to the order n = 0 in all quantities leads to Ft:(N,Q2) = 0, 
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since the zeroth-rder coefficient function is zero. However, looking at the expressions for the 

general solutions, (4.10) and (4.11), one sees that the only contribution for n = 1 in (4.11) comes 

from working to fist order in CfS (N ,a , )  and to zeroth order in TNS(N,CY,) and the starting 

distribution. This leads to the LO expression for FfS(N, Q2) of 

(4.14) 

Again, using the one-loop expression for the running coupling, every term in this expression is both 

factorization scheme and renormalization scheme independent, giving a well-defined LO expression. 

We now consider the fist correction to these expressions. The fist-order expression for the 

renormalization group equation is 

with solution 

Multiplying ft,: by a,(Q2)C~~,(N) I ,  and adding to f::, we clearly obtain all terms in the expres- 
sion (4.11) for FFS(N,Q2)) at n = 1. Adding this to (4.13) we obtain the factorization-scheme- 

independent expression for FFs(N, Q2) up to n = 1. 

We note that this is not the same as finding the complete solution to the renormalization group 

equation including all terms in the anomalous dimension up to first order in 7 and multiplying the 

solution by the Coefficient function up to fist order. This procedure would involve the exponenti- 

ation of the anomalous dimension, and thus would include incomplete parts of the F f z ( N ) ’ s  for 

n 2 1, and would be a factorization-scheme-dependent, and hence physically ambiguous quantity. 

Similarly to FFs(N, Q2) we can obtain the NLO factorization-scheme-independent expres- 

sion for FfS(N, Q2). The expression at n = 2 is obtained by adding the product of the fist-order 

coefficient function and fc:(N,Q2) to the product of the second-order coefficient function and 

fq j  NS ,o( N,Q2 ) .  The NLO Ffs(N,Q2) is the sum of this and (4.14). When working to NLO for 

either structure function we now have expressions which are renormalization scheme dependent. 

This scheme dependence compensates for the renormalization scheme dependence of the twdoop 

coupling constant (which has a renormalization-scheme-dependent value for A g c ~ ) ,  and it is this 

expression for the coupling that we should use at this level. Doing so guarantees the renormaliza- 

tion scheme independence of the structure functions up to corrections of higher order in a,, i.e. 

o(aJ q:) ,O( 1) ). 
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It is now simple to see how to construct factorization-scheme-independent structure functions 

order by order. Defining the nth order renormalization group equation by 

(4.17) 

it is easy to prove by induction that the solution contains all terms in the full solution with a given 

sum of powers of a8(Q2) and ad(&;) multiplying the everpresent (a8(Qi)/a8(Q2))T2:(N' factor. 

Thus, defining part of (4.11) by 

FZs( N, Q 2 )  is given by 

(4.18) 

(4.19) 

The nth-order scheme-independent term in the expression for the structure functions is given 
by the product of the ?"QhQrder coefficient functions and the (n - m)th-order solutions to the 

renormalization group equation summed over m. The nth-order scheme-independent structure 

function is then the sum of these terms up to order n. We must however remember that including 
all Fc:(N, Q 2 )  up to order n is working to (n+ l ) t h  nontrivial order, and requires the (n+ 1)-loop 
coupling in order to make the expression renormalization scheme invariant up to higher orders in 

a,. Similarly, including all F$2(N,Q2) up to order n is working to nth nontrivial order, and 

requires the n-loop coupling. 

This procedure clearly provides factorization scheme independence and renormalization scheme 

independence for this method of expansion. We can also see how it relates to the discussion of the 

factorization-scheme-invariant evolution equations in terms of the structure functions. In order to 
do this let us consider the solution for the non-singlet structure function FfS(N,Q2) again. We 
may rewrite our general solution (4.10) in the form 

This way of writing FFs(N, Q 2 )  is particularly useful since it separates the solution into the value 

of the structure function at Qi (the term in square brackets), and the ratio of its value at a 
Merent Q2 with this initial value (the rest of the expression). Clearly these two quantities must 
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be separately factorization scheme independent. Also, it is clear that this solution is of exactly the 
same form as (3.8), and we can express it simply in terms of an input for F f s ( N ,  Q2) at Qi and a 
physical anomalous dimension which governs the evolution, i.e. our input and our prediction. Since 
these are both physical quantities they must be separately renormalization scheme independent. 

The input and the evolution will mix with each other if we make a change in the starting 

scale, however, as with the parton distribution. Examining the effects of such a change for the full 
physical quantity gives us information about the form of the input. As we have already seen, at . 

lowest order the nonsinglet structure function is just the sum of the charge weighted nonsinglet 
parton distributions. So the lowest-order input is just 

(4.21) 
j= 1 

Making the change of starting scale and consequently of a,(Qi) already considered, the change in 
the lowest-order evolution is as in (4.8), and this leads to a change in the lowest-order structure 
function which is of higher order, and which can be absorbed by a change in the NLO input for 
the structure function of 

h terms of parton distributions and coefficient functions 

(4.23) 

We chose the change in fc:(N,Qi) in (4.9) so that the structure function would be independent 

of si, and it is clear that that is consistent with (4.22) and (4.23). However, we can now say 
more about the form of f$:(N, QX). Because it is the leading term in the expression for the input 
which depends on a, (Qi ) ,  FGs(N,Qi) must be renormalization scheme independent. However, 
CztI( N) is renormalization scheme dependent, so fz,: (N, Qi) must also be renormalization scheme 
dependent in a way such as to cancel this. Hence, fc , f (N,Qi )  must not only have a part like 
h(Qg)yYs(N)fC,Z(N) in order to maintain Qi-independence of the structure function, but also a 
part like - C ~ ~ l ( N ) f t , ~ ( N )  in order to maintain renormalization scheme independence, i.e. 

where ANS is some unknown scale parameter. So we see that 

It is clear that this does not spoil our argument that f t , f (N ,  Qi) consists of perturbatively calcula- 
ble quantities multiplying the fundamentally nonperturbative f t $ (N ) .  It is also clear that all the 
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higher-order inputs may be chosen to be perturbative functions multiplying this nonperturbative 

input, and therefore that the input for the structure function is a perturbative power series (depend- 

ing on the physical anomalous dimension) multiplying the single nonperturbative factor f t : ( N ) ,  
which from (4.21) may be interpreted as a fundamentally nonperturbative input for the structure 

function Ffis(N). Hence, demanding invariance of our expression for the structure function under 

changes in Qi leads us to a power series expression for the input, but with only one (for each 

quark) really nonperturbative factor for this input. We also see that if Qi = ANS, the first-order 

perturbative correction to FpS(N, Qi) vanishes. Hence, we might expect ANS to be some scale 

typical of the transition between perturbative and nonperturbative physics, i.e ANS ,S 1GeV. 

Separating the expression for the structure function into a definite input and evolution part 

also enables us to view the loop expansion in an alternative manner. We see that when expanding 

out to nth order in the loop expansion we are including all terms where the order of the input part 

for the structure function added to the order of the evolution part of the structure function is less 

than or equal to n. This is clearly the same as including all powers of a, in the expression for the 

structure function up to nth order, but gives us some additional physical interpretation. 

Writing the solution as in (4.20) does, however, also illustrate that demanding factorization 

scheme invariance does not on its own force us into the strictly defined loop expansion. It is clear 

that we could, if we wished, expand the input and evolution term out to Merent orders in a,, 

still maintaining factorization scheme independence. However, this is not a sensible approach for 

reasons of renormalization scheme dependence. If we were to expand out the input and evolution 

terms to different orders in a, we should really use a, itself calculated to a Werent order in each 

case, surely a perverse thing to do. Also, when using the resulting expression to evaluate the 

structure function at some Q2 away from Qi we would only have a subset of the terms at some 

given power of a, (where a, may represent a,(Qi) or a,(Q2)). Each of these terms is presumably 

of similar magnitude, which is rather importantly equal to, or greater than, the magnitude of the 

uncertainty due to renormalization scheme dependence. This is even the case even if we simply use 

the product of the input specified to nth order and the evolution calculated to nth order. In this 

case there is no problem in what definition of a, to use: we simply use the n-loop expression for 

the input and evolution and hence the n-loop coupling for both. However, the resulting expression 

contains, for example, a term like aY-'(Qi)(aY-'(Qi) - a:-'(Q2))FFt(N,Q2), but none like 
an-l 8 -m (Q:)(CX;-~+~(Q~) - aY-1+m(Q2))F.&s(N,Q2) which should be of the same size. One only 

has a complete set of terms of order af up to le = n - 1. Moreover, this type of term is higher 

order than the overall uncertainty in the expression due to the renormalization scheme dependence, 

which is of order a:F.(N,Q2). Exponentiating the solution for the evolution part, once it is 

found to a given order, is also redundant, since that would introduce only a subset of the terms at 

higher orders in a, for the evolution, and these terms would be renormalization scheme dependent. 
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Thus, all ways of obtaining factorization-schemeinvariant expressions other than the loop 

expansion contain terms which are essentially redundant using this expansion method, i.e. those 

beyond the order where all complete parts of the loop expansion exist. These other terms in the 

expansion are the same order as uncertainties due to renormalization scheme dependence. The 

loop expansion gives the minimum expression which is totally factorization scheme independent, 

and moreover, renormalization scheme consistent (forgetting complications due to powers of N-' 

for the present) to a given order. If solving using the factorization-schemeinvariant equations in 

terms of physical variables it is useful to bear this in mind." 

The solution for the longitudinal structure function is much the same as for F . ' ( N ,  Q2). We 

may write FfS(N, Q2) as 

(4.26) 

So as with FfS(N,Q2) the full solution in terms of parton densities, anomalous dimensions and 

coefficient functions is easily separated into its input" and evolution parts and therefore directly 

compared with the solution using the effective physical anomalous dimensions (where if we solve 

using the f's, the solution is expressed in terms of an input and evolution part once we write the 

overall power of a , ( ~ ~ )  multiplying Pfs(~, Q ~ )  in the form a , ( ~ i )  x (a8(Q2)/a,(&;)).) Once 

again, from (4.26) we see that the loop expansion multiplies orders in the input by orders in the 

evolution in a systematic manner. 

The situation for the singlet structure function is similar to that for the nonsinglet, but is 

complicated by the fact that we now have coupled evolution equations for the quark and gluon 

distributions. This makes it impossible to write a closed form for the solution to the renormalization 

group equations in the way we did for the nonsinglet case in (4.20) and (4.26), but the equations 

may be solved order by order in the same way. 

l0 It is also true that, when solving using the parton model, other ways of obtaining factorization- 

scheme-invariant expressions other than the loop expansion would need, in comparison, more complicated 

prescriptions. 

l1 Comparing (4.26) with (4.20) we see that there are no new fundamentally nonperturbative parts in 
the input. Hence, the complete expression may be interpreted as a perturbative part multiplying the 

nonperturbative factor which is F,'1T,S(N). It is only the perturbative factor which is Merent in the two 

nonsinglet structure fnnctions. 
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The lowest-order solution to (4.2) is 

where y:'(N) and y?'( N) are the eigenvalues of the zeroth-order matrix for the y's, and f;'+( N) t 
f;l- (N) = $(N) and g$(N) + g i ( N )  = go(N). Similarly to the nonsinglet case, the lowest- 

order factorization-scheme- and renormalization-scheme-independent expressions for the structure 

functions are 

J':(N, Q 2 )  = f t ( N ,  Q2),  (4.28) 

Under a change in starting scale, the change of the input for F:(N, Q2) begins at order a,(&:), and 

that for F f ( N ,  Q2) begins at order a:(&;). Therefore, as with the nonsinglet quark distributions, 

the lowest-order inputs for the partons are Qi-independent. Also, if we expect any powerlike 

behaviour to come only from perturbative effects, then these Qi-independent inputs for the quark 

and gluon are analytic for N > 0. 

Again in clear analogy to the nonsinglet case, the fbst-order expression for the renormalization 

group equations is 

and the solution is 

(4.31) 
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This is clearly of the same form as (4.16) and, as in the nonsinglet case, the n = 1 term in the 
factorization-schemeindependent expression for F . ( N ,  Q2), including all single powers of a,(Q2) 
or aa(QX) multiplying (aa(QX)/aa(Q 2 )) ?:,l-(N), is 

In the same manner the n = 2 term in the factorization-scheme-independent expression for the 
longitudinal structure function is 

a6(Q2)(c!,1(N)ff(N1 Q2) +C!,i(N)gi(N, Q2)) +d(Q2)(C!,2(N)fc?(N, Q2) +C ; , ~ (N )SO (N ,  &'I). 
(4.33) 

As for the singlet structure function, there is a simple prescription for calculating Rh-Order 
factorization-scheme-independent structure functions. Defining the rnth-order solution to the 
renormalization group equation as the solution to 

the nth-order term in the expression for the structure functions is given by 

n 

FiS,(N, Q2) = aY(Q2)(C{m(N)f,S_,(N, Q2) + C:m(N)gn-m(N, Q2),) (4.35) 
m=O 

and the nth-order structure function is the sum of all such terms up to n. The comments concerning 
the order of the renormalization scheme independence and the order of the coupling constant to 
be used for Ft (N,Q2)  and Fi (N,Q2)  for the singlet case apply in exactly the same way as for 
the nonsinglet case. Once again, the loop expansion is a well-ordered way to expand the structure 
functions. 

We may now discuss the relationship to the solutions using the evolution equations for the 
structure functions. First, we can explain in more detail why we feel it is appropriate to take out 
the power of aa(Q2) from the longitudinal structure function when using this approach. Using the 
parton model the lowest-order expression for F.(N, Q2) consists of two Q2-independent factors, 
the inputs for the structure function, multiplying (aa(Q8)/aa(Q2))?$01-. Similarly, we may think of 
the lowest-order expression for Fj(N, Q2) as being two inputs for the structure function multiplying 
the Q2-dependent factors (aa(Q~)/aa(Q2)))?:,'--', with the extra power of a,(&') coming from the 
coefficient function. So, at lowest non-trivial order the Q2 evolution of the two structure functions 
is Merent. If we were to solve the evolution equations for the structure functions themselves at 
lowest order, then we would do it in the same way as for the parton distributions: obtaining the 
Q2-dependence fiom the eigenvalues of the lowest-order anomalous dimension matrix, and the 
inputs multiplying the two evolution terms from F:(N, QX) and F;(N, Qi) and the eigenvectors of 
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the matrix. Thus, the terms governing Q 2  evolution would have to be the same for both structure 
functions, which is clearly in contradiction with our lowest-order result using the parton model 
(also, the lowest-order input for F: (N ,Q2 )  would be zero). This leads to the solutions for the 
structure functions being built up in a very different way using this method of solution from that 

using the parton model. 
Hence, we choose not to forget the success of the parton model, and let the longitudinal 

structure function be multiplied by an overall power of a,(Q2), as discussed earlier. Working with 
the r ( N ,  a8)'s in (3.12) and solving the lowest-order evolution equations, one then obtains precisely 
the same lowest-order solution for the structure functions as above. It is not difficult to see that, 

although the roil's are not identical to the 7°0"s, the eigenvalues of the anomalous dimension matrix 
are the same. Thus, we obtain the factors of (a8(Qi)/a8(Q2)) ':b1- in these solutions as we would 
hope, and get the extra factor of ( a8 (Q2 ) /a8 (Q i ) )  in the expression for Fi(N, Q 2 )  from the overall 
power of a, (Q2 )  multiplying the solution (and simultaneously get the extra power of a, (Qi )  in the 
input). The eigenvectors are different from those in the parton model, of course, but this takes 
account of the fact that the inputs are now those for the structure functions themselves, rather than, 
in the case of F;(N, Q 2 ) ,  the parton densities weighted by coefficient functions. Working beyond 
this lowest order and finding the nth-order solutions to the evolution equations for the structure 
functions, in the same way as those for the parton densities, as outlined above, leads to all powers 

of a, up to power n multiplying the factors of ( a8 (Q ~ ) / a8 (Q 2 ) ) ' ~ s ' -  for F: (N ,Q2 ) ,  and powers of 
a, up to power n + 1 multiplying (a8(Qi)/a8(Q2)) ':81--1 for F; (N ,Q2 ) .  Thus, it produces the 
same result as the nth-order solution using the parton distributions and the loop expansion. 

Unlike the nonsinglet case it is rather dif'Ecult to see how to express the solution in terms of 
factorized inputs and evolution parts; the evolution parts will not be simple exponentials, as in 
(4.20). However, the solution for the structure functions can be written as a series of terms each 
of which can be factored into a part dependent only on a, (Qi )  and one depending on both a, (&; )  

and a, (Q2 ) ,  the latter either vanishing at Q 2  = Q i ,  or being equal to (a8(Qi)/a8(Q2)) ':,*- ( - ' '  

and thus equal to unity at Q 2  = Qi .  For each of these terms the former part may be interpreted 
as an input and the latter part may be interpreted as the evolution. Within the loop expansion we 
then include all terms where the order of the input part plus the order of the evolution part sums 

to less than or equal to some integer n. 
By  examining the form of the inputs under a change in starting scale, as with the nonsinglet 

structure functions, we find that the only fundamentally nonperturbative parts of the inputs are 
the zeroth-order parts, F{o(N) and F f , o ( N ) ,  with all other inputs being in principle expressed as 
perturbative functions of the physical anomalous dimensions multiplying one of these nonperturba- 
tive components. If we wished to stay within the language of partons then we would equivalently 
have the two nonperturbative parton inputs f: (N) and go(N) ,  where the link between the two 

pairs of nonperturbative inputs is 
F;o(N) = fOs(Nh (4.36) 
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and 
(4.37) 

We choose to think of the expressions for the structure functions as the real nonperturbative 

functions, since they are, of course, the physically relevant quantities." This is consistent with the 

reasoning that go(N) is Qi-independent because the invariance of the physical quantity Fi(N, Q2) 

under a change in starting scale leads to Fi ,o (N )  being Qi-independent, which then, using (4.37), 

leads to go (N) being Qi-independent . 
The extra complexity of the solution in the singlet case, when compared to the nonsinglet case, 

also means it is far from obvious how to express the physical anomalous dimensions in terms of the 

parton anomalous dimensions and coefficient functions simply by comparing the forms of the solu- 

tions in the partonic language and purely in terms of structure functions. However, the expressions 

for the physical anomalous dimensions can be found at each order using Catani's expressions (3.10). 

One could then solve for the structure functions in a manner different from the loop expansion. 

An example would be to calculate the solution to the whole evolution equation for the structure 

functions using the physical anomalous dimensions up to a given order. This would be by definition 

factorization scheme invariant, but would only be renormalization scheme invariant up to the same 

order in the solution as the order of the anomalous dimensions. The rest of the solution would 

contain only a subset of the possible terms of a given form obtained from the full calculation, and 

would therefore still have no real sipficance. Hence, we conclude that the evolution equations in 

terms of structure functions do nothing to alter the strict ordering of the solution using this method 

of expansion, but do make finding this ordered solution somewhat easier. 

This whole discussion of the order-by-order-in-a, expansion scheme is perhaps a little aca- 

demic since the errors invoked in performing the calculations without paying strict heed to the 

formally correct procedures are rather small. For example, let us consider factorization scheme de- 

pendence. When using this standard method of expansion only two different factorization schemes 

are generally considered, the MS scheme and the DIS scheme. The f ist  of these simply involves 

calculating the coefficient functions using standard techniques and using the MS scheme to remove 

both the the infrared and ultraviolet divergences and hence provide the anomalous dimensions. 

The second makes a change of parton distributions, so that the singlet quark distribution is equal 

to the singlet structure function. It is clear from the above discussion that, if a calculation is made 

in one scheme to a well-defined order (usually next to leading order), and then a transformation 

to the other scheme made correctly, precisely the same result will be obtained. In practice, small 

l2 We could, if we wished, make a change in factorization scheme where the zeroth-order part of the 
matrix U was not the unit matrix, but a function of N. This changes no physical result, but does change 

the reroth-order parton inputs. 
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differences are sometimes noticed between calculations using different schemes within the loop ex- 

pansion to NLO, but these come fiom well-understood sources. One common source is that the 
starting distributions in both schemes are described by a simple functional form, e.g. 

(4.38) 

rather than the formally correct expression of a power series in a,(&;) with essentially perturba- 

tive coefficients convoluted with a Q;-independent nonperturbative function of 2. If the starting 

distribution is of the form above in one scheme, then the starting distribution in the other scheme 

will not be modelled precisely by a function of the same form. However, the error is in general 

small. Alternatively, if the calculations are not done in a well-ordered manner, e.g. simply solving 

the whole evolution equation using the two-loop anomalous dimensions, then differences between 

the calculation done in the two schemes, or between this type of calculation and the correct NLO 

calculation, will be of NNLO. Again this usually results in only small differences.13 Similarly, small 

differences would be obtained by working in two different renormalization schemes, and of course, 
there is nothing which can be done about this. 

There are a couple of points we wish to make here. Firstly concerning the form of the input in 

(4.38) we note that, if one considers the input to be consistent with the loop expansion, e.g. NLO- 

order evolution should be accompanied by a NLO input, the power of X(Qi) should not correspond 

to parton distributions much steeper than flat for the singlet quark or gluon at this order. This is 

because the first-order-in-a,(Q;) input should be accompanied by no more than a single power of 

ln(l/z), this being all that is required to absorb the change in the zeroth-order evolution under a 

change in starting scale at this order in a,(Q;). Jn practice restricting X(Qi) in this way is rather 

important for the fits to the low 2 data, and would mean that NLO fits to small-z data would be 

very poor. The only way to avoid this is to let X(Q;) be an artificial free parameter, in which case, 

if (4.38) describes the singlet quark density, it must be N 0.2 - 0.3 for practically any Q;. This 

value is totally unjustified, and the need for this steepness in the input for the quark is a clear sign 

of the limited usefulness of the NLO-in-a, calculation at small 2. We will see that the situation is 

more more satisfactory when using the correct expansion method. 

Ignoring this problem with the inputs, there is another reason for being concerned about the 

validity of the loop expansion at small 2. The main reason for the smallness of the differences 
between inaccurately performed NLO calculations noted above, even at small 2, is that the mer- 

ences between these calculations do not contain terms which are any more leading in h( l/z)  than 

l3 For a comparison of calculations done at NLO using Merent  methods see [34]. One sees here that 

starting with the same input parton distributions the Merent  calculations agree to better than 5% except 

for very small 2 and large Q', where the discrepancy can approach 10%. The differences observed can be 
compensated for almost completely by small changes in inputs. 
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the NLO calculation itself. Hence they are genuinely an order of a# down on the NLO calculation, 

with no smd-z enhancement. This is also true for calculations done in Merent renormalization 

schemes (or at Merent renormalization scales). The real NNLO contribution will be higher order 

in a, but will also contain terms at higher order in h(l/z), and will therefore be potentially large 

at small 2. We therefore stress that the relative insensitivity of structure functions to changes in 

renormalization or factorization scheme for calculations which are not carefully ordered is no par- 

antee that genuine higher-order corrections will be small at small z when using the loop expansion. 

Indeed we would naively expect them to be large. This is a point to which we shall return. 

In contrast to the insensitivity when using the loop expansion, when using the leading-h( 1/z) 

expansion very large differences between calculations done in a large number of Merent factoriza- 

tion schemes have been noted. This is an obvious sign that the calculations are not being done 

in a well-ordered manner, and that the ambiguity introduced by lack of care in the calculations is 

greater in this method of expansion than the standard loop expansion. We will now demonstrate 

that this is indeed the case. 

4.2. The Leading-ln(l/z) Expansion: Parton Distributions. 

It should clearly be possible to define a well-ordered, and hence, factorization scheme indepen- 

dent expansion in leading powers of h(l/z), or equivalently, in leading powers of 1/N in moment 

space. We will now demonstrate that this is indeed the case. As in the loop expansion, we will first 

work in terms of the traditional parton distribution functions and coe-flicient functions, and see how 

this results in expressions containing the physical anomalous dimensions. Doing this enables us to 

see how large factorization scheme dependence can arise when calculating less carefully within this 

expansion scheme. 

First we must set up our notation and qualify the statements made in the introduction con- 

cerning the leading-ln(l/z) expansion. We stated that the anomalous dimensions could be written 

in the form (1.6), and this means that using the form (4.1) and (4.2) for the evolution equations 

we may write, 

W W 

(4.39) 
n=O m=l-n n=O 

So, the 7"s only M e r  fiom the ye's by the normalization factor of bo, but at higher orders the 

relationship is more complicated. In particular, in the MS renormalization and factorization scheme 

(4.40) 
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where the series expansion for -7i8(a8/N) is known to all orders (all the coefficients being positive). 

This expression for Ti,(a,/N) is renormalization scheme independent since any change in renormal- 

ization scheme can only bring about a change in the coupling at O(aS), and this does not require a 
change in T;,(a,/N) to keep physical quantities invariant at leading order in this expansion scheme, 

as we will soon see. T;,(a,/iV) is of course renormalization scheme dependent, since it must change 

to absorb part of the effect of the O(at) change in the coupling on 7i8(a8/N). The renormalization 

scheme independence is also true for $,(a, /N),  which obeys (1.7), and also for $,(a, /N)  and 
?;,( a, /N )  which are both zero. There is also a renormalization-scheme-independent relationship 

between j ; , (a , /N)  and Tj,(a, /N),  which tells us that 

(4.41) 

where the second term in the brackets is the one-loop contribution to Tj,(a,/N). It is also known 

that the nonsinglet anomalous dimension has no poles at N = 0,  and neither does the nonsinglet 

coefficient function. Hence, the nonsinglet sector makes very little contribution to the structure 

function at small 2, and as such we will ignore it for the remainder of this section. 

A general change in factorization scheme may be expressed by writing an element of the 
transformation matrix U as 

m m m 

with condition on the u,nbm such that U obeys U a b  = 6ab+O(a8). This flexibility in the factorization 
scheme means that all the above results on the low-order Ljl's are in principle factorization scheme 

dependent. In particular, the expressions for the 7's in (4.39) may be insufficient in general, and 
should be replaced by 

m m 

(4.43) 
n=-k m=l -n 

However, this is only necessary if one makes a change of scheme away from a standard scheme, 

such as the scheme, using a matrix U containing terms such as aY(Q2)N-m where m > 
n. For simplicity and because, of course, all physical results are ultimately factorization scheme 

independent by definition using any expansion, we will forbid such singular changes of scheme and 

demand that k = 0 in (4.42). 

into the Tzb(a,/N)'S. Using (2.12) we see that 

However, a change of factorization scheme with k = 0 can still introduce scheme dependence 

(4.44) 
c d  
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Insisting that Y;&a,/N), f i j ( a , / N ) ,  Y! j (a , /N)  and $&a,/N) are unaltered by scheme changes 

leads to the requirement, 

(4.45) 
u;j(a,/N) = $(U;&,/N) - 1). 

n= 1 

' This requirement also preserves the relationship (4.41) between 7; j ( a , / N )  and 7i8 (a, /N ) .  Again 
for simplicity, and due to factorization scheme invariance of physical quantities, we will only consider 

factorization scheme changes away from scheme of the type (4.45). The Uzb(a,/N) for n > 0 

will have no restrictions." 

Restricting ourselves to these schemes we may now write 

00 00 

and all other coefficient hct ions as 

00 00 00 

(4.47) 
n=l n= 1 

All the C&( a, /N)  are both renormalization-scheme- and factorization-schemedependent quan- 

tities. Indeed, all of the Cfn," are renormalization scheme and factorization scheme dependent, 

except for the Ci,*L,l --n, which come from the oneloop longitudinal coefficient functions which, as 

we saw in the previous subsection, are totally scheme independent. There are also two renormaliza- 

tion and factorization scheme (with our restrictions) independent relationships between coefficient 

(4.48) 

where the second term in brackets is the oneloop contribution to C,"l,(a,/N), which is itselfrenor- 
malization scheme and factorization scheme dependent (being equal to (N f /6 r )  in MS scheme); 
and 

(4.49) 

where the second terms in the brackets are the one-loop contributions to C;,, (a,/N) and 

C& (a , /N ) ,  both of which are renormalization and factorization scheme independent. 

l4 To our knowledge, no-one has yet bothered considering the effects of any transformations of the type 
we have forbidden (of course, there is no point, since physical quantities are factorization scheme invariant). 
A number of the type described above with U;#(N,a,) # 0 have been considered (however, once again, 
physical quantities are invariant under such scheme changes). 
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Working in an arbitrary factorization scheme (up to the above restrictions) and using the 
general expressions for the 7's and coefficient functions, we may find expressions for the structure 

functions. The first step towards this is solving the renormalization group equations for the parton 
distributions. The lowest-order part of the equation is, 

This may easily be solved to give 

(4.51) 

This is analogous to the lowest-order solution witbin the loop expansion and contains two 

factors, one of which must appear in all the higher terms in the expansion: instead of 

(a#(Q;)/a.9(& 1) 9:9'-(N), corresponding to the two eigenvalues of yov'(N) in the loop expansion, we 

have exp [ J ~ [ ~ $ ~ - d a , ( q 2 ) ]  and 1, corresponding to the two eigenvalues of T0(a, /N) 

in the leading-ln(l/z) expansion, i.e. 7i8 (a, /N )  and 0. In particular we notice that f'(N, Q2) is 

Q 2-independent. 
Let us briefly digress in order to discuss the form of the inputs for the parton distributions. 

In particular, we examine how the terms in our expression change under the change in input scale 

Q ;  --t (1 + S)Qi, leading to the change in coupling at the starting scale (4.7). Rather trivially, our 

expression for f t ( N ,  Q2) E #(N,  Qb) is unchanged by the change in the coupling at the starting 

scale, and as such can be chosen to be independent of Qi. Hence, as for the lowest order input in 
the loop expansion we may write $(N, Q2) E f t ( N ,  Q;) f t ( N ) .  The expression for the gluon 

involves a little more work. The change in the evolution term under a change in starting scale is 

and using (4.7) we find that 

+higher order in a, and/or N. 
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We choose go(N,Qi) so that the change in exp a.(Q:)?' ( a ,  (*a )/N) d a,(q2 )] 

for by a change in go(N,Qi) up to corrections of higher order. Hence, the 

written as 

J",(Qa) a:(qa)  
can be compensated 

gluon input may be 

The change in go(N,Qi) under a change in starting scale necessary to make go(N,Q2) invariant 

under changes of Qi up to higher orders may easily be calculated from (4.53), and is equal to 

in the limit of small 5. Thus, an appropriate expression for the input which satisfies this condition 

is given by 

(4.56) 

where A,, is an unknown scale. The series E,"==, jo,m(a,(Qi)/N)'" is at yet undetermined, but is 

potentially renormalization and factorization scheme dependent. It will only be determined when 

we come to construct the structure functions themselves. 

We also consider the form of the N-dependence of our inputs. If we take the point of view 

that any steep behaviour in the parton distributions only comes about due to perturbative effects, 

then we assume that f: (N) and go(N) are both soft, i.e. either flat or even dence-like when 

the transform to z-space is performed (or at most going like a finite, small power of h(l/z)) .  

This requires that they both be analytic for N > 0. We also note that the soft parts of the input 

are cornon for the whole of the gluon input, as shown in (4.54), i.e. ijo(N, Qi )  is just the soft 

(go(N) + $ f t ( N ) )  multiplied by a series of the form E,"=, ~ , ( a , ( & i ) / N ) ~ .  Thus, as in the loop 

expansion, we may think of go(N), and f t ( N )  as fundamentally soft, nonperturbative parts of the 

input. The parts multiplying these are then really determined by perturbation theory. Since we 

are meant to be expanding our solution for the structure functions in powers of both a, and N, it 
might be argued that we should expand f t ( N )  and go(N) in powers of N. We feel this is not really 

appropriate since it is the perturbative part of the solution for which we are able to solve, and thus 
~ 

l6 Of course, we should be trying to find fundamentally nonperturbative inputs for the structure functions 
rather than the partons, as discussed for the loop expansion. However, in this expansion scheme f i ( N )  
and go(N) are trivially related to Fz,o(N) and @=,o(N) as we will see in the next subsection. 
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which we are able to order correctly, and in the expressions for the structure functions the whole 

of the nonperturbative inputs should multiply the well-ordered perturbative parts of the solution. 

Before using our solutions for the parton densities to construct expressions for the structure 
functions we will solve higher-order renormalisation group equations in order to determine the 

general form of the solutions for the parton distributions. This is made easier by the fact that 

$r(a8/N) and $,(ad/N) are both zero, and hence, 

All of the above quantities on the right-hand side are in principle already known. Thus, we have 

an expression for ( d f : ( N ,  Q 2 ) / d a 8 ( Q 2 ) )  which can be written in the simple form 

2 -1 = - a,(& ) Y f Q ( a 8 / N ) ( % ( N )  $ f t ( N )  -k jo(N, &i))X 
d f ? ( N ,  Q 2 )  

a:(Q2) da8(Q2) 

(4.58) 

where (4.41) has been used. Thus, a26(Q2)dff(N,Q2)/da,(Q2) is simply a sum of two power 
series of the form a, a,(a,/N)m multiplying input densities and our eigenvalue determined 

evolution factors (the second series rather trivially having a, = 0, rn 2 0). Thus, all terms in the 
expression are of  the same order in this expansion scheme. 

Integrating (4.58) we get 

(4.59) 

We may express the last term differently by integrating by parts. This gives 

(4.60) 
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a.(s~ , (a , /N) /s~ , (a , /N))  is a power series of the form NC:=, Q ~ ( Q , / N ) ~ .  The inte- 

gration by parts may be repeated indefinitely, producing power series which behave like 

Na;(Q2) E:=-, Qm(a, (Q2) /N ) " ,  with le increasing by one at each integration. Hence, the solu- 

tion to the next-to-leading-order renormalization group equation for f s ( N ,  Q2) is not of a single 

consistent order in this expansion scheme. We may write it as 

4 2Nf + f f (  N, Q;) - a In (#) f,"( N) + higher order in a, and/or N. 

(4.61) 

Let us examine the form of our solution for f.(N,Q2). No part of it is of the same 

form as the zeroth-order parton distributions, i.e. either just a constant soft distribution or 

such a constant soft distribution multiplied by powers of a,(Q;)/N and the evolution term 

exp [1..(4').*da,(q2)]. a.(Q:)4' ( a . ( qz ) /W Thus, the lowest-order corrections to this zeroth-order solu- 

tion are given by the lowest-order parts of (4.61). 

In the same manner as for the zeroth-order gluon distribution we can determine the general 

form of our input, in this case f.(N,Q;), by considering a change of starting scale. Under the 

change of scale leading to the change of a,(Q;) in (4.7) each of the a,(&;)-dependent terms in 

(4.61) will change. The change of Bo(N,Q;) has already been chosen to cancel (at leading order) 

the change due to exp Ja,'(Q3) a (Q?dT0 w d a , ( q 2 ) ] ,  ( a d q z ) / W  and hence the first term in (4.61) is stable to 

the change in starting scale. The last explicit term in (4.61) is also stable since the change induced 

in the In(a,(Q;)) term is of higher order in a,(Q;). The second term does however vary; the 

change due to the variation of (z. (QX)si, (a, (Q; ) /N)/s~, (a8(Q; ) /N) is of higher order in a,(Qi), 

but jo(N,Q;) changes as prescribed in (4.55), and hence the second term changes by an amount 

of the same order as itself, i.e. by a series of the type a,(Q;) E, ~,(a,(Qi)lN)". In order to keep 

the whole of (4.61) unchanged at this order, f?(N,Q;) must change under a change in QX in a 

[ 

manner which compensates this change in the second term. Hence, we choose 

(4.62) 

The change of fCm(Q;) under a change in Q; may easily be calculated using the known change in 

Bo(N, Q;), i.e. 
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in the limit of small 5. Rather obviously, the simplest choice which satisfies the requirement is 

(4.64) 
However, as when deriving the 0 (a8 (Q ; ) )  input for the nonsinglet structure function within the 

loop expansion (4.22), the invariance of the parton distribution under changes in Qi is not the sole 

consideration. We also require that at lowest order the expression for the input for the structure 

function is renormalisation scheme independent, and that at all orders it is factorization scheme 

independent. Also, we think of the scale A,, (or ANS etc.) as the value of Qi where the input for 

the structure function becomes just the nonperturbative input, so ff(N, Qi)  should be consistent 

with this. If we add a series of the form 

(4.65) 

to (4.64) then the resulting expression still satisfies (4.63), but gives us the flexibility to satisfy the 

other requirements above. Thus, similarly to (4.24) we write 

as the appropriate input, where j f ( N ,  Qi) is potentially renormalization and factorization scheme 

dependent , and is not yet determined. 

Therefore, the leading correction to the zeroth-order input f t ( N )  is a series of the 

form N C , ” = = , ( C Y , ( Q ~ ) / N ) ~  multiplying (go(N) + % f t ( N ) ) .  The lowest-order parts of the 

Q2-dependent expression for f s ( N ,  Q2) are a series of the form N CZ=o(a8(Q2)/N)m mul- 

tiplying exp [s,.(Q2, u ’ (Q~ ) ~ r0~ (u ’ ( q~ / ’N )da8 ( e2 ) ) 1  al(q and a zeroth-order input, and also a logarithm of 

(a , (Q i ) /a8 (Q2 ) )  multiplying the other common factor of unity and a zeroth-order input. 
f F ( N , Q 2 )  then contains other terms which are subleading, i.e. of higher order in a8 and/or 

NI to these. 

Hence, this solution for the next-to-leading evolution equation for the singlet quark distribu- 

tion clearly demonstrates that we will not obtain well-ordered, factorization-scheme-independent 

expressions in the leading&( l/z) expansion in as straightforward a manner as when using the loop 

expansion. 
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In order to investigate this further, we now consider the NLO renormalization group equation 

for g1(N, Q 2 ) .  This is a little more complicated that that for f ( N ,  Q2 ) :  

+ 7i,(a#/N)ff(Nl Q 2 )  + 7ig(a,/N)gi (N, Q 2 ) )  - 
(4.67) 

This may be solved, and integrating some of the resulting terms by parts, we obtain 

4 f S ( N ) 4 2 N ’ l n ( f l )  +higher order in a, and/or N. - 5  0 96nb0 a8(Q2) 

(4.68) 
The integral in the first term gives a series of the form a,(a,/N)m plus a term of 

the sort h(a8(&8) /a, (Q2) ) .  So those terms explicitly shown above are the lowest-order terms 

in g1(N,Q2). The input gl (N ,Qi )  is present in order to compensate for the change in 

a , ( Q ~ ) ( 4 : , ( Q . ( q a ) / ~ ) + ~ T ~ ~ ( a . ( q a ) / ~ ) )  da,(q2) under a change in Qi.  However, this means it is a 

series of the form a,(Qi)  E,, a,(a, (Qi ) /N)n, and as such is higher order than the other terms 

present, and may be dropped. We see that the solution for gl(N, Q 2 )  contains terms of the same 

apparent order as the zeroth-order solutions for the parton distributions. Therefore go(N, Q 2 )  

seems to be only part of the lowest-order expression for the gluon distribution, and the terms 

shown above appear to be on the same footing. These are of a similar form to the leading parts of 

f t ( N , Q 2 ) ,  with one term being a logarithm of (a , (Qi ) /a , (Q2) )  multiplying f : (N,Qi ) ,  but the 

sa. (0 J 1 Q , ( Q 2 )  

series multiplying exp s Q , ( Q J , . w c i a , ( q 2 ) ]  as(Q:)To ( a s ( q J ) / W  is a power of N, or equivalently of a,, lower [ 
than the corresponding series in the case of f t ( N , Q 2 ) .  

So we have the rather undesirable situation that solutions to the NLO renormalization group 

equations for both the quark and gluon distribution functions result in solutions which are of mixed 

order, but fortunately, ones from which we can clearly extract the leading-ln(l/z) behaviour. 

However, the situation gets worse, as may be seen by solving the NNLO renormalization group 

equations. For the quark distribution function this is 
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As with the equation for ff(N, Q2) all terms on the right are already known in principle (it is clear 
that this will be true for the equations for all the f z ( N , Q 2 ) ) .  Moreover, part of the right-hand 
side of (4.69) is of the same order as the right-hand side of (4.57), as is seen by inserting the leading 
parts of ff(N, Q2) and gI(N, Q2), i.e. 

(4.70) 

Solving (4.69) we find that 7it(a,/N) and 4i8(a8/N) play no role as far as the leading part of the 
solution is concerned, and 

2 
+ -  -- 2Nt f t ( N )  + higher order in a, and/or N. 

(4.71) 
2 (9 67& .(m)) 

Thus, the leading part of f f ( N ,  Q2) has terms of the same order as the leading part of f t ( N ,  Q2), 

i.e. a sum of the form N E:=, a,(a,/N)m multiplying exp /a , (s l )  a, (Qi )To (a* (qa ) /N )da, (q2 ) ]  a ; ( q a )  and soft [ 
inputs. We also explicitly include above the parts of f f ( N , Q 2 )  which have terms of the form 
In(a,(Q:)/a,(Q2)) directly multiplying f t ( N ) ,  even though these are not of the same form as 
in f ( N , Q 2 ) .  We will take these terms to be part of the lowest-order parton distribution since 

they are not a power of a, or N higher than any terms already produced. However, we ignore 

terms of the form h ( a , ( Q ~ ) / a , ( Q 2 ) )  multiplying series of the form N E:=, a,(a,/N)'", such as 
f ( N , Q : ) ,  because they are clearly of higher order in N than the term consisting of logarithms 
multiplying f t ( ~ ) .  

Similarly, for the gluon the presence of lowest-order terms is not limited to g1(N,  Q2), but is 
also seen in g2(N, Q2): 

2 

+ $ f , f ( N ) ~ ( ~ ~ h ( ~ ) )  thigherorderina,  and/orN. 
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This phenomenon persists to all orders, but is independent of the 7"'s for n 2 1. It can be proved 

by induction in a straightforward manner that the leading part of the solutions to the nth-order 

renormaliration group equations are 

for n 2 2, and 

for n 2 0. One can therefore find well-ordered parts of the full solutions for f s ( N ,  Q2) and g (N ,  Q2) 

by summing al l  such terms, leading to 

(4.75) 

-4% 
9 6 -  0 

4 f S ( N ) ( q )  - 5  0 +higher order in a, and/or N. 
an(Q 1 
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We may also write the expression for the rate of change of the quark distribution 

(4.77) 
This last expression will be important since at leading order a2,(Q2)(dF2(N,Q2)/da,(Q2)) is di- 
rectly related to dF2(N,Q2) /dhQ2 which we will wish to study as well as F2(N,Q2). 

4.3. The Leading&( l / z )  Expansion: Structure Functions. 

It is now possible to examine the form of the solutions for the structure functions. We can 
construct the leading part of the full solutions by combining our leading solutions for the parton 
distributions with the zeroth- and first-order coefficient functions. This gives 

. .  

where (4.49) has been used. Also 

(4.78) 

We can also write 

-8% 
- a,(Q2) - - fo  42Nf s ( N ) ( q )  + higher order in a, and/or N. 

(4.80) 
9 6 ~ b o  4 9  
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In each case, since we only consider the singlet structure functions in this expansion scheme, we 

drop the superscript S for the structure functions for the rest of this subsection. 

It is clear that each of these expressions will be factorization scheme independent since 

each represents the expression for a physical quantity up to corrections of a form different from 

the terms explicitly appearing and which we have deemed to be higher order in our expansion 

scheme. (a:(Q2)(dF2(N,Q2)/da6(Q2)) has as much right to be considered as a physical quan- 

tity as F2(N,Q2), since at leading order it is proportional to (dF2(N,Q2)/dlnQ2). However, we 

would like to find out if each of these expressions may itself be more rigorously ordered and, as 

a by-product, split into factorization-scheme invariant pieces. This would be desirable from a 

theoretical point of view, since the current expressions will soon be seen to be incompatible with 

renormalization scheme consistency. Also, from the practical point of view we do not know all 

of the terms appearing in the explicit parts of these expressions in any factorization scheme, i.e. 

Tt8(aa(Q2) /N )  is not at present known, and we would clearly like to have some sort of scheme- 

independent expression for the structure functions involving terms we already know. 

In order to see if we can obtain scheme-independent and thus physically relevant subsets of 

the solutions (4.78)-(4.80), we shall examine in detail the form of these solutions. Since it is the 

least complicated, and because we will find it useful, we begin with the expression (4.78) for the 

longitudinal structure function. Since this expression contains two terms of rather different form, 

i.e. the first depending on the factor exp [ J a , ( Q 2 ) v d a a ( q 2 ) ]  a.(Q:)q0 (aa(q2)/W and the second having an 

evolution unenhanced by leading-ln(l/z) terms, it would be surprising if these terms were not 

separately factorization scheme invariant. It is simple to check that this is indeed the case. 

Beginning with the second term, it is clear that this is factorization scheme independent. 

The power of ( a6 (Q i ) /aa (Q2 ) )  comes from the one-loop contribution to j.;, (a,/N) which is both 

factorization scheme and renormalization scheme invariant and which we have already written in 

its actual numerical form. a6(Q2 )  and f ,f (N )  are both clearly renormalization and factorization 

scheme dependent, and the one-loop contributions to the longitudinal coefficient functions are 

also, i.e. C;, I ,  = (2 /3n)  and C ~ , l l o  = ( 2 N f / 6 n )  in all schemes. Hence the whole term is both 

factorization scheme and renormalization scheme independent, as it must be, depending only on 

leading-order quantities. 

The first term is not as simple to deal with. It must be factorization scheme independent; 

however, many of the pieces appearing in the term are clearly not, e.g. j ;&a, /N )  and CiIl(aa/N). 

So, to a certain extent it must be the interplay between the Y’s, the coefficient function and 

the parton inputs which leads to a factorization-scheme-independent result. Remembering our 

discussion of the solutions for the structure function in the loop expansion, we see that there is at 
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least one way of writing this term as the product of two factorization-schemeindependent pieces, 

i.e. 

a8(Q2)G!,i(a#(Q2)/N)(go(N) + $foS(N) + Bo(N, Q i ) ) X  

. .  
(4.81) 

The left-hand side is factored into its value at Qi and a term which gives the evolution from this 
value. Clearly these are physically distinguishable and as such must be individually factorization 

scheme invariant. Also, we already know that exp J U , ( ~ ~ ~ ~ d a 8 ( q 2 ) ]  Q (Q;)9' ( " a ( q a ) / W  is factorization [ 
scheme invariant on its own, and exp[- h(a8(Qi) /a8(Q2)) ]  clearly is. Hence, we make the definition 

(4.82) 

where iPt ( Q 2 ,  Qi )  must now be factorization-scheme independent (as can be checked using the 

rules (2.10)-(2.12)) and @ t ( Q i , Q i )  = 1. 
Having isolated the factorization-scheme-independent parts, we may factorize (4.78) com- 

pletely into factorization-scheme-hvariant input and evolution parts, i.e. 

(4.83) 

It is now possible to attach direct physical significance to each of the factorization-scheme- 
independent pieces appearing in this expression. 

We first consider the inputs. Going to (4.79) for the moment we see that f t ( N )  is the only 
term in &(N, Q i )  which is zeroth-order in our expansion scheme. As such it is the zeroth order 
input for F2(N, Q 2 ) ,  and we may write 
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and this is one of our two fundamentally nonperturbative inputs. Also, fiom (4.83) we see that 
the total a,(Qi)-independent input for FL(N,QX) (once we have divided out a single power of 

a#(Q:)/(2r)) is 

- ( g o ( N )  2Nf + $ ~ o s ( N ) )  + ( 36 - 27 8Nj) f t ( N ) .  (4.85) 
3 

This whole expression may therefore be written as k ~ , o ( N ) ,  and we have 

(4.86) 

k ~ , o (  N) is our other fundamentally nonperturbative physical input. We note that the expression for 
F2,o(N) in terms of the parton inputs is the same in this case, i.e. (4.84), as in the loop expansion 
(4.36). However, the definition of FL,o(N) in terms of the parton inputs, (4.86), is not the same as 

in the loop expansion (4.37). Thus, the definition of the nonperturbative gluon, go(N), is different 
in the two expansion schemes. 

We also make a similar definition for the part of the input for f i ~ ( N ,  Q2) which is of the form 

an( Si)( a,( Qo)/N)" multiplying (go( N)+ 4 ft( N)), or more correctly multiplying ( @L,o( N) - 

2 
kL,O(N) = F ( g o ( N )  + -fOS(N)). 

NI 

00 

((36 - 8Nj)/27)F2,o(N)), to complete our definition of the input in (4.83) and write 

This whole expression must be both factorization scheme and renormalization scheme independent, 
facts which reveal information about the form of the gluon input. Ci,,(N, a,(&;)) is both renor- 
malization and factorization-scheme dependent, so the scheme dependence of jo(N, Qi) must be 
precisely so as to cancel this out, i.e. 

(go (N )  + bfoS(N) + Jo(N, QX)) 
00 

E (go(N) + $foS(N)) (1 + !h,m(a8(Q;)/N)m) ~ ~ ~ [ ~ . ( Q X / A L L ) Y ~ , ( ~ , ( Q X ) / N ) I  
m=l 

= (go (N 1 + $ foS (N ) )go (N, Q X ) (C! ,1 ,o /G,1 (a,  (QX 1 /N 1) exp Q X /ALL )Y :&a, (Q X 1 /N 11 , 
(4.88) 

where go(N, Qi) is scheme independent. Hence, there is no reason for k~,o(a,(Qi)/N) to depend 
on the leading-order longitudinal gluon coefficient function at all, and indeed, a natural choice 

seems to be that (1 + E:=, j~,,,,(a,(Qi)/N)~) is chosen equal to (Ci I ,  o/Ci,l(N,a,(Qi))) (it is 
difEcult to see what else it could be chosen equal to), i.e. go(N,Qi) = 1, and therefore that 

- 
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Hence, we have a prediction for the input for the longitudinal structure function at small z in terms 

of the nonperturbative inputs and some scale ALL (where ALL = A,, fiom the previous subsection). 

As with ANS earlier, ALL is the scale at which the input is equal to the nonperturbative input alone, 

and hence we would expect it to be typical of the scale where perturbation theory starts to break 

down. As we have already stressed, Qf is a completely free parameter. We have constructed the 

solution to be insensitive to Q," at leading order, but there is clearly some residual Qf-dependence. 

Hence, there will also be some optimum Qf to choose as the starting scale. 

We may now examine the terms governing the evolution, continuing the convention started 
in (4.82). exp [ J",io2, Q (Q:)?' - d  ( a a ( q z ) / N  a,(q2)] is the factorization-scheme-independent factor coming 

from the eigenvalue of the zeroth-order anomalous dimension which will govern the small-z growth 

with Q2. As such we make the definition 

(4.90) 

O f  course, the other evolution factor resulting from the eigenvalues of the zeroth-order anomalous 

dimension was simply unity and as such @O(Q2,Q,") does exist, but is implicitly zero. However, 

there is a correction to this factor of unity in (4.78)-(4.80), and we make the definition 

(4.91) 

Having made these factorization-scheme-invariant definitions for the inputs and evolution we 

may write the solution for FL(N, Q2) as 

+ higher order in a, and/or N. 

It is now relatively obvious how we may separate out the "leading part" fiom this expression. 

[@;f(Q2,Qf) - ln(ab(Qi)/ad(Q2))] contains the same type of terms as @$(Q2,Qf), but each is 

a power of N higher. Thus [@t(Q2,Qi)  - ln(a,(Qf)/a,(Q2))] is subleading to @:(Q2,Qf), and 

indeed @t (Q2 ,Qf )  is a renormalization-scheme-dependent quantity, as it must be in order to 

absorb the change in @$(Q2,Qi) resulting from a change in the definition of a,(Q2) under a 

change in renormalization scheme when working beyond leading order. Hence, we should factor 

exp[@;'(Q2, Q~)-~(a~(Qf)/a,(Q2))l  out ofthe first term. Since [@F(Q2, Qt)-1.(ab(&f)/a,(Q2))I 
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is of the same form as the zeroth-order-in-N part of @ t ( Q 2 ,  Q i ) ,  then it should also be factored 

out of the leading-arder expression for Fh(N, Q2 ) .  Thus, we are left with 

Using the one-loop running coupling constant, as is appropriate for a leading-order expression, the 

whole of (4.93) is not only manifestly factorization scheme independent, but also renormalization 

scheme independent, as one would hope. Also, p ~ , o ( N ,  Q i )  is constructed precisely so as to make 
the expression unchanged, at this order, under a change in starting scale. Hence, within this 

expansion scheme (4.93) is genuinely the leading-order expression for Fh(N, Q 2 ) .  

- 

We now turn our attention to the more phenomenologically important case of the struc- 
ture function F2(N,Q2). Here we immediately have an ambiguity: should we consider the ex- 

pression for the structure function itself in this expansion scheme, or that for its a,-derivative, 

ai(Q2)(dF2(N, Q2) /da, (Q2) )  (which, using the definition of the running coupling (2.5), is directly 
related to (dF2(N, Q 2 ) / d h Q 2 )  at leading order)? It may be argued that in certain senses the latter 
is more natural because it is a "real" perturbative quantity, beginning at f ist  order in a,, as does 

FL (N ,  Q 2 ) -  
There is in fact a distinction between F2(N, Q 2 )  and (dF2/d h Q 2 )  in the usual loop expansion. 

Differentiating a fixed-order expression for F2(N,Q2) and using the P-function evaluated to the 
appropriate order in a, results in the fixed-order expression for (dFz/d hQ2)16 plus terms of 

higher order in a, (Q2 ) ,  which depend on the p-function beyond lowest order (and thus are absent 
when working to leading order only). Hence, the size of these extra terms is of the same order 
as the renormalization scheme uncertainty, and therefore the distinction between the fixed-order 

expressions for F2(N,Q2) and (dF2/d h Q 2 )  is of similar magnitude to the distinction between 
renormalization schemes. 

There is also a distinction when using the small-z expansion, and it appears more graph- 

ically, and is not only dependent on terms in the P-function beyond lowest order. We distin- 

guished between F2(N, Q 2 )  and a:(Q2)(dF2(N,Q2)/da,(Q2)) in (4.79) and (4.80) because the 
expression to a given order in a, and N even for a3(Q2)(dF2(N,Q2)/da,(Q2)) is no longer sim- 
ply obtained by differentiating F2(N, Q 2 )  at given order, and conversely given order in F2(N, Q 2 )  
is  not obtained just by integrating a",(s2)(dF2(N,Q2)/da,(Q2)) with respect to a, at fixed or- 
der. This was clearly illustrated when finding the leading part of f t ( N , Q 2 )  by solving the equa- 

tion for at(Q2)(df;(N,Q2)/da,(Q2)) earlier, and it leads to a distinction between even the LO 

l6 ( d F z ( N ,  Q')/d In 8') is analogous to the longitudinal structure function, i.e. it has an overall power of 
a. (0') and the lowest-order expression consists of first order-in-a, (0:) inputs multiplying the eigenvalue- 

determined evolution terms ( A M )  . a (8') ?:(-I 
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(dF2/dlnQ2) and the derivative of the LO F2(N,Q2) in this expansion scheme. Thus, even at 

leading order we have to decide which of the two expressions to use, although we would hope that 

there is not too much difference between the choices in practice. We will postpone the decision for 

the present and will derive the form of the leading-order expressions for both F2(N, Q 2 )  and its 

derivative. We can then examine these expressions and use them in order to help us decide. 

For technical simplicity we begin with the expression for a:(Q2) (d F2(N, Q2) /da8 (Q2 ) ) .  Using 

the definitions introduced in our discussion for the longitudinal structure function we may write 

(4.80) as 

4 2Nf 
exp[@O+(Q2, Qi )  + @:(Si, Q 2 ) l  - a , ( Q 2 ) ~ ~ F 2 , ( 1 ( N ) e x p [ Q ; ( Q 2 ,  Qi)1 

+higher order in a, and/or N .  
(4.94) 

The factorization scheme independence of this complete expression guarantees that the term 

Q 2 ) / N )  4- C;J (%(Q2)/N)7i&a8( Q 2 ) / N ) ) (  C ~ J  ,o/C;,i (% (Q2 ) /N ) )  is a factorization- 
scheme-invariant quantity, of the form U , , , ( ~ , ( Q ~ ) / N ) ~ .  It is straightforward to 

verify this. Indeed, it was shown by Catani and Hautmann that (T ig (a8 (Q2 ) /N )  +- 
C~,l(a8(Q2)/N)j~g(a8(Q2)/N)) and Ci , , (a , (Q2 ) /N )  could each always be expressed in terms of 

the product of a factorization-scheme- and renormalization-scheme-independent factor (which 

they calculated) and a scheme-dependent factor, where the scheme-dependent part was the same 

for both [18]. Using their results for the scheme-independent parts it is a trivial matter to find 

that 

(4.95) 

which is clearly both factorization scheme and renormalization scheme independent. Thus, making 

the definition 

(4.96) 
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our expression for the explicit part of (4.80) is entirely in terms of factorization-scheme-hvcuiant, 

and hence physically meaningful quantities, i.e. 

4 2 N j  
exp[@$(Q2, Q X )  t @:(Si, Q 2 ) 1  - a # ( Q 2 ) , g & - F 2 , 0 ( N )  exp[@P1(Q2, Q X ) I  
+ higher order in a, and/or N .  

(4.97) 

We now have an expression which is analogous to that for &(N, Q 2 )  in (4.92), except that it 

has still not been explicitly separated into inputs and evolution terms. In order to do this we must 

rewrite (4.97) as 

- ---a8(Q:)F2,~(N)erp[@;(Q2,Q:) 4 2 N j  - In(#)] t higher order in a, and/or N ,  

(4.98) 
9 6 ~ b o  

where & f ( Q 2 , Q i )  is a series of the same form as @f(Q2,Qi), defined as 

(4.99) 

It is now clear how we obtain the "leading part" of this expression. All of the inputs are 

of leading order, but we must factor out the subleading parts of the evolution. [@:(Q2,Qi) + 
& f ( Q 2 ,  S i ) ]  is subleading to @;(Q2,Qi) (we note that &.,'(Q2,,&i) is a renormalization-scheme- 

independent contribution to this subleading evolution), and must be factored out. Since it is of 

the same order, so must [@T(Q2,  Q i )  - h(a , (Qi) /a , (Q2))] .  This leaves us with the leading-order 

expression 

(4.100) 
Again, this expression is insensitive to changes in starting scale, up to higher order, and using the 

one-loop coupling constant, is renormalization scheme independent as well as factorization scheme 

independent. 
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Finally we consider the expression for F2(N,Q2) itself. It  is now a relatively simple matter 
to write this in terms of factorization-scheme-independent quantities and in terms of inputs and 

evolution terms. Using the definitions we have already made and defining & t ( Q 2 , Q i )  by 

we may write (4.79) as 

So the factorization-scheme-independent input F2 (N, Qi) is 

(4.103) 
By construction it is guaranteed that the change of (4.103) under a change in starting scale 

will cancel the change in the evolution in the first term in (4.102) under a change in start- 

ing scale up to higher orders. It is also clear that (4.103) is both renormalization scheme 
and factorization scheme independent, as we require, as long as ff'(N,Qi) is scheme indepen- 

dent. In fact, the requirement that if Qi = ALL the input reduces to the nonperturbative 

input F2,o(N) determines f . ( N ,  Qi) uniquely. It  must be the scheme-independent quantity 

(Qi )(7fL(a8 (Qi /N /7:g(a8 (Qi )/N ) ) ( ~ L , o ( N  - ( 36; :Nt) F2,o(N)). Hence, the input for 

F2(N,Q2) is 

(4.104) 

and the expression for F2(N, Q2) is 

+ higher order in a, and/or N. 

B y  comparing (4.104) with (4.93) we now see that there is a very direct relationship between 
the inputs for our two structure functions at small 2, i.e. we have a definite prediction, up to 
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additive nonperturbative parts which are flat at small z, for one in terms of the other, as well as 

approximate predictions for the form of each. Also comparing with the form of (4.100), these two 

inputs for the structure functions are directly related to the slope of (dF2/dlnQ2) for small z at 
Qi. As already mentioned, we do not yet know at what Q i  it is most appropriate to choose the 

inputs, but it is a nontrivial requirement that the inputs for the three expressions are of the correct 

form and related in the above manner at any Qi. 
Our expression for &(N, Q2) cannot be split into leading and next-to-leading pieces in quite 

such a clear and symmetric way as our previous two examples, essentially because it begins at 

zeroth order, not at first order in a,. Looking at (4.105) it is clear that there is only one LO (in 

our expansion scheme) input multiplied by a LO evolution, and that is F2,o(N) multiplying unity. 
Hence we take the leading-order expression to be given simply by 

This is obviously completely independent of a#, and is rather trivial. At next-tdeading order, 

or equivalently, at leading-a,-dependent order, we indude the whole of (4.105) except that we 

factor exp[@t(q2, Qi)  + &f(Q2, Si)], out of the first term, i.e. we have NLO inputs multiplying 
LO evolution, and vice versa, as well as &,o(N,Q2). Hence, at leading-a,-dependent order we 
have 

+ higher order in a, and/or N. 
(4.107) 

In this expression there are clearly no terms which mix if we were to make a change in definition 
of the coupling a, + a, + ea:, and hence we can consider it as a leading-order expression. If the 
one-loop coupling is used, it is both factorization scheme and renormalization scheme independent. 

We now have the full set of LO expressions in the leading-ln(l/z) expansion scheme. We 
could obtain the correct scheme-independent expressions for the structure functions at higher 

orders within this expansion scheme. We choose to finish at leading order, however. The labour 

required to obtain higher-order expressions becomes progressively greater and we would obtain 

expressions requiring unknown anomalous dimensions and co&cient functions. Working to NLO 
we would need to calculate all the NLO evolutions and all the NLO inputs. This would require all 

the NLO expressions for the anomalous dimensions and coefficient functions, i.e. the 

and Ci42’s. There is optimism that these NLO terms will soon be known [35], and once this is so 
the full NLO scheme-independent expressions should be calculated. 
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We should make some comments about our LO scheme-independent expressions for FL(N, Q2), 

&(N, Q2) and (dF2(N, Q2)/dln(Q2)) .  First we note that all depend on factorization-scheme- 
independent combinations of the j ; a ' s  and C$'s (along with the input parton distributions, 
where go(N,Qi) is also factorization scheme dependent). There is, however, no terribly simple 

prescription for how one uses the anomalous dimensions and coefficient functions in order to ar- 
rive at the expressions. One does certainly not take the known anomalous dimensions, solve the 

full renormalization group equations, and combine with the known coefficient functions. This in- 

troduces terms we do not even include in (4.78)-(4.80), let alone in (4.93), (4.100) and (4.107). 
The additional terms will depend on the factorization scheme used, and can be very large. The 

method of determining LO scheme-independent expressions is also more complicated than solving 

the renormalization group equations to a given order and combining with coefficient functions to 

a given combined order, as in the loop expansion. The only way to obtain the correct expressions 

using the parton model directly seems to be to calculate carefully and keep all terms of a given 

type, as explained. 

We should also make some mention of why factorization scheme dependence can be very large 
in this expansion scheme. In order to do this let us consider (4.81) as an example. A representative 
example of the way in which factorization-schemedependent calculations are done is to consider 

this expression evaluated with 7i8(a8(Q2)/N), j ; , (a ,(Q2) /N) and Ci,1(a8(Q2)/N) known in some 
particular factorization scheme, but j i 8 ( ab (Q 2 ) /N ) ,  which is unknown, either set equal to zero, or 

guessed by imposing some ansatz such as momentum conservation (which may well give completely 

the wrong answer). 
The input in terms of parton distributions 

is multiplied by c&(a,(Q;)/N), a series of the form ~ ~ = o a , ( a , ( Q ~ ) / N ) m  which, in gen- 
eral, becomes singular at N = X(Qi).  Under a transformation of the type (4.45) this series 

will be multiplied by (Uig(a8(Qi)/N))-' in order to compensate for the change in the input 
parton distributions. A number of scheme transformations that are considered have the series 

U:8(a,(Qi)/N) = 1 + U:bm(a,(Qi)/N)m also becoming nonsingular at N = X ( Q i )  (e.g. 
[24][25]). This nonsingular behaviour leads to powerlike growth of the form z-'-'(Q:) as z + 0,  

but the magnitude of the powerlike behaviour and the manner in which in which it is approached 

depends on the strength of the singularity and/or on the precise behaviour of the coefficients in the 

series. Hence, changes in definition of the form in (4.45) with this type of singularity can lead to 
very marked differences in the form of the gluon at small 2, or if the gluon is kept roughly constant 

(e.g. it is attempted to predict the form of the input structure function by assuming a form for 

the input gluon), to significant changes in the form of FL(z, Si). Very similar considerations also 

hold for F2(z,Q2) because the input depends strongly on C!, I ,  o(a#(Qi)/N),  which transforms in 

the same way as Ci,l ,o (a8(Qi ) /N)  under changes in factorization scheme; i.e. the parton input 
(or prediction for the structure function if the parton input is assumed, e.g. to be flat) depends 

As a first comment we consider the input. 
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very strongly on scheme. We also note that some of the scheme changes away from the standard 

MS scheme (e.g. the SDIS scheme) involve U;, (a, (Qf) /N) with larger coefficients in the power 
series than in C&(a , (Q f ) /N )  defined in the MS scheme. This leads to C&(a , (Q i ) /N )  defined 

in the new scheme to have negative coefficients and therefore to FL(z, Qf )  developing a powerlike 
behaviour with negative magnitude unless either the input gluon or quark (or both) has a powerlike 
growth of the form Z - ' - ~ ( Q ; )  itself, with a large enough multiplicative factor, in order to counter 
this effect. This must be borne in mind when using such schemes. 

Examining (4.81) we can also see how the evolution may be strongly factorization scheme 
dependent. As we have already mentioned, the whole of @ f ( Q 2 , Q f )  must be used in order to 

obtain a factorization-schemeindependent expression. If ytg (a, (Q2) /N )  is omitted, or the wrong 

y jg (a , (Q2 ) /N )  used, then this can give a completely misleading result for the evolution. The 
integrand in @ f ( Q 2 , Q f )  is a series which is a power of a,(Q2) down on the series yi , (a , (Q2) /N ) .  
However, in many popular factorization schemes the coefficients in the incomplete, or incorrect 

series for this integrand are much larger than those in yi8 (a, (Q2) /N )  (helped by the fact that 
many of the early coeflicients in y; , (a , (Q2) /N )  are zero), e.g. they commonly behave roughly like 
(12 l n ~ ? / n ) ~ n - ~ / ~ ,  whereas the coefficients in yi8 (a4(Q2) /N )  behave roughly like (12 h 2 / ~ ) " n - ~ / ~ .  

Hence, the incorrect @ f ( Q 2 , Q f )  can have a dominant effect on the evolution. Under changes of 
factorization scheme the coefficients in the factorization-schemedependent series can change by 
amounts similar to their own magnitude, i.e. yt , (a , (Q2) /N )  is very unstable under factorization 
scheme changes as can be seen from (2.12). Therefore, the evolution of the structure functions in 
terms of a given input can appear to have a very strong factorization scheme dependence. Once 

again, this is true for the evolutionof &(z, Q 2 )  as well as for FL(z, Q 2 ) :  the influence of the incorrect 

@ f ( Q 2 , Q i )  can be more important than that of @; (Q2,Qf )  and j 2 ~ ( N , a ~ ( Q f ) )  combined, where 

for the latter the coefficients in the series are again relatively small. 

- 

Simply using an incorrect calculational procedure, such as solving for the parton distribution 
using the renormalization group equations up to some order, and then combining with the coefficient 
functions to a given (combined) order leads to expressions which are not only similar to (4.78)- 

(4.80) with incorrect or missing yi8(a4( Q 2 ) / N ) ,  but which have additional factorization-scheme- 

dependent terms. (Solving by using the full known anomalous dimensions and combining the 
resulting parton distributions with all known coefficient functions is even worse.) These will be 

formally of higher order than the terms in (4.78)-(4.80), but again can have very large coefficients 
in the series expansions. This can lead to even more dramatic effects than those outlined above. 
One clear example of such incorrect effects is found in [22]. 

Once y;,(N, a, (Q2 ) )  is known in a given scheme and (4.78)-(4.80) can be calculated correctly 
there is no guarantee that the correct @ t ( Q 2 ,  Q i )  is not larger than @$ (Q2 ,  Qi ) .  If this is the case, 

@; (Q2 ,  Q f )  will then have a large, but at least definite, effect. However, because it is a formally 
NLO correction to the structure functions, if @ f ( Q 2 , Q f )  is introduced then the full set of NLO 
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expressions, both evolution and input factors, must be calculated at the same time. The correct 

calculational method respects renormalization scheme independence as well as factorization scheme 

dependence. As mentioned earlier, this requires many more terms than just @ t ( Q 2 ,  Qi). Hopefully, 

the complete NLO expression, as well as being factorization scheme independent, will also cause 

only fairly small changes to the LO expressions. 

Having obtained our full set of leading-order expressions, we can also now examine the dif- 

ference between (dF2(N,Q2)/d h(Q2))o and a8(Q2)dF2,0(N,Q2)/d ln(Q2), i.e. the LO derivative 

of F2(N,Q2) and the derivative of the LO F2(N,Q2). If we differentiate (4.107) with respect to 

a8(Q2) we obtain 

4 2Nt 
- a 8 ( Q 2 ) 9 G F 2 , 0 ( N )  exp[@1(Q2, QX1.  

(4.108) 
This is clearly not exactly the same as (4.100), the difference being due to three additional terms in 

the above expression as compared to (4.100). These are the factor ( y ,o , (a8 (Q2 ) /N ) /y~ , (a8 (Qi ) /N ) )  

in the f i s t  term, and the factors (a8(Q2)/a,(Q:)) and exp[@,(Q2,Qi)] in the second term. All 
of these factors are unity at the boundary of the evolution, and the two expressions are therefore 

identical in this Limit, i.e the inputs are the same. Therefore, it is the evolution terms which are 

different when comparing (4.100) and (4.108). Writing 

and 

(4.110) 

we see that the terms present in (4.108) but absent in (4.100) are NLO evolution terms. Thus, as 

in the loop expansion, the difference between the fixed-order expression for (dF2/dlnQ2) and the 

h Q 2  derivative of the fixed-order F2 consists of terms of higher order. However, in the leading- 

ln(l/z) expansion this difference exists between even LO expressions. Close to the boundary the 

effect of the additional evolution terms in (4.108) is very small, but they clearly become more 
significant for Q2 >> Qi or Q2 << QE. So, as we might hope, despite the formal difference 

between the derivative of the LO structure function and the LO expression for the derivative of the 

structure function, within the region of expected applicability, i.e. z small and Q2 relatively near 

QX, the two are very similar in practice. As one goes away from the boundary, especially at large z, 
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the terms begin to M e r  markedly.17 This highlights the fact that the main region of applicability 

of the leading-ln(l/z) expansion is small z and Q2 N Qi. 

Finally, we should also make some comment about longitudinal momentum conservation. The 
first moment of the parton distributions is interpreted as the fraction of momentum carried by 

that type of parton. As such it is usually required that fS(1,Q2) + g(l ,Q2)  = 1, i.e. the total 
momentum carried by the partons is that of the proton. For this to be true for a l l  Q2 then, of 

course, (d(fs(l,Q2) i- g(l ,Q2))/dlnQ2) = 0, and from the renormalization group equations this 
is true if 

This is assumed to be true for the all-orders anomalous dimensions, and thus momentum will 

be conserved for the all-orders parton distributions. When expanding the anomalous dimensions 

order by order in a,(Q2), i.e. as in (1.3), it is easy to specify that (4.111) be true for the anomalous 
dimensions at each order, and to define a wide variety of factorization schemes which maintain this. 

It is not difficult to see from $2.2 that this guarantees that the fraction of momentum carried by 

the nth-order parton distributions is conserved at each n. However, it does not necessarily tell us 

anything about the amount of momentum carried by the nth-order inputs, for any particular n. 

Sometimes, all the momentum is designated to be carried by the zeroth order part of the solution, 

but this need not be the case, and indeed, we see no good reason why it should be. Most often the 

input is implicitly assumed to be the all-orders input. In this case it is true that it must carry all 

the momentum, but this method destroys the strict ordering of the solution. 

As always seems to be the case, the situation is not as simple for the leading-ln(l/z) expansion. 
As can be seen from the matrix in (4.50), the leading-order 7 contains entirely positive entries for 
N = 1, and is clearly not consistent with momentum conservation: fZ(Q2) carries a constant 

amount of momentum while that carried by go(Q2) is constantly increasing with Q2. In a general 

factorization scheme we assume that there is no reason that working to a finite higher order will 
restore the relationship (4.111). 

Two general methods have been proposed to restore momentum conservation. The f i s t  multi- 

plies the known 7”s and 7”s in some factorization scheme by some finite power series in N which 

vanishes at N = 1 [21], e.g. the simplest example is (1 - N). The evolution equations are then 

solved using the whole of these anomalous dimensions and momentum conservation is guaranteed. 

However, this prescription destroys any sense of ordering the solution correctly and is extremely 

l7 Similarly, in the loop expansion significant differences appear between the derivative of fixed order 
F’(N, Q’) and (dA(N, Q’) /d ln  Q’) at the same fixed order when higher powers of a,(@) become more 
important, i.e. at low Q’. Hence the differences are small in the expected region of validity of the loop 
expansion, i.e. large 8’. 
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scheme dependent, causing the sort of large factorization scheme variations described above. Also, 

since the full anomalous dimensions have singularities at N = -1 the power series expansion about 
N = 0 for given order in a# does not even converge at N = 1. Thus, it seems inappropriate to 
demand that the first few terms in the expansion about N = 0 should approximate the correct 

value at N = 1. An examination of the first few terms in the expansion of the two-loop anomalous 

dimensions about N = 0 shows that a truncation of each after a few terms is not at a3l similar to 
the above prescription. 

An alternative method [20] is to assume that the relationship 

is satisfied, and to determine the unknown 7i,(a8/N) this way. In fact it has been proved that 
it is always possible to choose a factorization scheme where this is true [36], and suggested that 
this might be some sort of preferred scheme. This will guarantee momentum conservation if one 

truncates the series for the 7’s  at the 7”s and solves the whole renormalization group equation 
using this truncated 7. However, this does not lead to a well-ordered solution for the parton 
distributions in any sense. If one were to believe that solving the renormalization group equations 

order by order and combining with the coefficient functions up to a given combined order led to an 

ordered solution for the structure functions in this expansion scheme, as in the loop expansion (and 
as is used in some calculations), then the zeroth-order solutions for the partons do not conserve 

momentum, and even if (4.112) is true then adding (4.50), (4.57) and (4.67) still leaves us with 

(4.113) 

as well as terms coming from the difference between 7i8 and 7i8. Thus, momentum violation will 

not be zero in general, and may be quite large. Thus, it seems that in order to enforce momentum 
conservation strictly within this expansion scheme one must make a guess at the full anomalous 

dimensions (and coefficient functions) in terms of some truncated form of them, and hope that this 

is a good approximation to the full solution. This sacrifices any possibility of making a well-ordered 
expansion for the structure functions. 

O f  course, in this paper we advocate that the most sensible approach is to obtain a well- 
ordered solution for the structure functions, and thus definitely eliminate any questions of scheme 

dependence; i.e. regard a correct treatment of the physical quantities as of paramount importance. 
Doing this, there does not seem to be any way to ensure that what we choose to define as the 

parton distributions within our hal expressions are such as to conserve momentum. Thus, we 

simply take the hint offered us by the zeroth-order anomalous dimension, and accept the fact that 

momentum is not conserved order by order in this method of expansion. How badly it appears to 
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be violated, however, will depend very much on which factorization scheme we claim to work in. It 
will always be possible to choose one where momentum violation is very small and, if one wishes, 
one may choose to think of this as a "physical scheme" for the partons. However, the structure 
functions themselves will be completely unaffected by this choice, and the real physical relevance 
is therefore rather questionable. Because momentum is not in general conserved order by order 
in this expansion scheme the amount carried by a certain order will vary with Q2. Hence, using 
an arbitrary factorization scheme there seems little reason to demand that the momentum carried 
by the zeroth-order inputs for the partons should sum to one; it seems more sensible to share the 
momentum amongst the different orders in the inputs. It is clear that the momentum carried by 
the zeroth-order parton distributions, for example, will increase quickly with Q2, and thus it makes 
sense when choosing their inputs to choose distributions which sum to less than unity. As higher 
order corrections to the evolution come in, acting to curb this growth in momentum of the parton 
distributions (hopefully countered by increased growth with Q2 of the first moment of the structure 
functions coming from the effects of the coefficient functions, leading to the overall behaviour of the 
structure functions being largely unchanged) they can bring inputs carrying positive momentum 
with them. If we could work to all orders then the momentumcarried by the inputs would eventually 
sum to unity, and stay at this value for all Q2, but this is of course not possible. 

- - _  

We can also discuss the relationship between our scheme-independent solutions and the ones 
which would be obtained using Catani's physical anomalous dimensions. One can solve for the 
LO structure functions using these effective anomalous dimensions in exactly the same way as 

we solved for the parton distributions in the previous subsection. In the same way that we have 
the relationships between the LO anomalous dimensions, (1.7) and (4.41), we have relationships 
between the effective anomalous dimensions (3.13), i.e 

and 

(4.114) 

(4.115) 

where the second term in (4.115) is the oneloop contribution to r iL (ad (Q2 ) /N ) .  Using these rela- 
tionships it is straightforward to follow through the steps in (4.50)-(4.77) to obtain the analogous 
expressions to (4.75), (4.76) and (4.77): 

(4.116) 
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(4.117) 
and 

-8% 
t higher order in a, and/or N, 

(4.118) 

- $ a 8 ( Q 2 ) F 2 ~ O ( N ) a  2Nj (m) a#(&:) 

- 
where ~ L , o ( N ,  Q;) is a function of I’tL rather than 7,”,. 

We see that, once we make the identifications 

(4.119) 

(4.120) 

(4.117) is identical to (4.92), (4.118) is identical to (4.97) and (4.116) is identical to (4.105). O f  
course, the identifications (4.119)-(4.120) are exactly what we obtain from the definitions of the 
physical anomalous dimensions in 93. 

Thus, we are able to reach these expressions for the structure functions somewhat more directly 
by using the physical anomalous dimensions, and do not have to worry about problems with factor- 

ization scheme dependence (though we do have to calculate the physical anomalous dimensions in 

terms of known coefficient functions and anomalous dimensions of course). Once we have obtained 

these expressions using the physical anomalous dimensions we may then separate each of the terms 

into input parts and evolution parts (where more of this has already been done automatically when 

using the physical anomalous dimensions) and keep the most leading parts, obtaining once again 
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the LO expressions (4.93), (4.100) and (4.107). So, using the physical anomalous dimensions leads 

us in a rather more direct manner to the correct leading-order expressions. If we were to work to 

higher orders, the amount of simplification obtained by using the physical anomalous dimensions 

rather than working in terms of parton densities would increase significantly. However, we stress 

that one will always automatically obtain factorization-schemeindependent answers by working 

to well-defined orders in physical quantities even when working in terms of partons. Also, even if 
one uses the physical anomalous dimensions, care is still needed to obtain expressions which are 

consistent with renormalization scheme dependence. 

In this section, we have derived well-ordered, factorization-scheme-independent expressions 

for structure functions in the leading-ln(l/z) expansion (which should be useful at small z and 

moderate Q2) up to the order which is useful at present. This expansion does, however, sacrifice 

any attempt to describe the structure functions at large z at any reasonable distance from Qi (we 

will discuss later what large z and small z turn out to be), in the same way that the loop expansion 

should show signs of failing at very low values of z. We would hope there is some expansion scheme 

which will be useful at all values of 2. In the next section we will show that there is indeed an 

expansion scheme which satisfies this criterion, and argue that it is the only really correct expansion 
scheme. 

4.4. The Renormalization-Schemeconsistent Expansion. 

In order to devise an expansion scheme which is useful at both large and small z we would a 

priori expect that we would need to use the known anomalous dimensions and coefEcient functions 

at low orders in both a, and in the leading-ln(l/z) expansion. There have already been various 

methods along these Lines, and the phrase “double leading expansion” was coined in [20]. However, 

these methods have all suffered from scheme dependence. As when deriving our expressions for the 

structure functions when using the leading-ln(l/z) expansion we will ensure that we obtain results 

which are invariant under changes of factorization scheme and, as a stronger constraint, demand 

complete consistency of our expressions for physical quantities with renormalization scheme invari- 

ance (which in itself automatically guarantees factorization scheme independence). Consequently, 

our approach will be rather Merent from those used previously, and the results and conclusions 
will also be somewhat Merent. 

To begin, let us consider what we have meant by “consistency with renormalization scheme 

dependence” so far in this paper. In both the loop expansion and the leading-ln(l/z) expansion we 

demanded that once we had chosen a particular renormalization scheme and chosen to work to a 

particular order in this renormalization scheme then we would include all terms in our expressions 

for the structure function which were of greater magnitude than the uncertainty due to the freedom 

of choice of renormalization scheme (i.e. the uncertainty in the definition of the coupling constant), 
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and no others. In both cases the leading-order term consisted of the lowest-order inputs multiplying 

the lowest-order evolution terms. If working with the n-loop coupling constant in a particular 
renormalization scheme the uncertainty in its definition is of order a!+1. Thus, the uncertainty 

of the input or evolution when working to nth-order is the change in the leading-order input or 

evolution if the coupling changes by 6a# = ea!+', i.e a, + a,( 1 + ea:). Hence, the uncertainty in 
the whole structure function is of the order of the change of the leading-order part under such a 

change in the coupling. Therefore the nth-order renormalization-scheme-independent expression 
includes all complete terms smaller than this change. 

This definition does give us a well-defined way of building up an ordered solution to the struc- 
ture hctions, but relies upon the definition of a given expansion scheme. It leaves an ambiguity 

about how we define the leading-order expressions and in how we define the order of terms com- 
pared to this leading-order term. Our two examples, i.e. the loop expansion, where the size of a 

term is determined simply by its order in a,, and the leading-ln(l/z) expansion, where ln(l/z) is 

put on an equal footing to a,, me just the two most commonly used examples of expansion schemes 

(even though the In(l/z) expansion has not previously been presented in the quite same way as in 
this paper). Both have potential problems: in the former one does not worry about the fact that 

the large-ln(l/z) terms can cause enhancement at small z of terms which are higher order in a,, 

and in the latter one does not worry about the fact that at large 2, especially as Q2 increases, it is 

the terms which are of lowest order in a, that are most important. Hence, one would think that 
both have limited regions of validity. 

The shortcomings of these two expansion schemes come about because, even though any given 

order contains no terms which are inconsistent with working to the same given order in a particular 
renormalization scheme, in neither case does it include every one of the terms which are consistent 

to working to a given order in the renormalization scheme. In each expansion scheme some of the 

terms appearing at what we call higher orders are not actually subleading in a, to any terms which 
have already appeared. Thus, despite the fact that for a given expansion method these terms are 

formally of the same order as uncertainties due to the choice of renormalization scheme, they are 
not terms which can actually be generated by a change in renormalization scheme.18 

In order to demonstrate this point more clearly we consider a simple toy model. Let us imagine 
some hypothetical physical quantity which can be expressed in the form 

where the expansion in powers of N about N = 0 is convergent for all N. The first way of writing 

H(N, a,(Q2)) as a power series corresponds to the loop expansion, where we work order by order 

l8 Similarly, they cannot be generated by a change in renormalization scale. 
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in m, out to m = k,  and use the E-loop coupling. The second corresponds to the leading-ln(l/z) 

expansion where we work order by order in i ,  out to i = I, and use the (I + 1)-loop coupling. 

Let us, for a moment, consider the LO expression in the loop expansion, a, (Q2 )  E,"=-, UlnN". 

The coupling is uncertain by U(a:(Q2)) and hence the uncertainty of the leading-order expression 

(i.e. the change due to a change of the coupling) is N aZ(Q2) E,"=-_, blnNn. There is no change 

with powers of N less than -1, and hence any such term is not really subleading. Similarly, the 

uncertainty of the leading-order expression in the leading ln(l/z) expansion contains no terms at 
first order in a, (or with positive powers of N), and such terms are not really subleading either. The 
full set of terms contained within the combination of both leading-order expressions is genuinely 

leading order, and is therefore renormalization scheme independent by definition. 

Perhaps the best way in which to write our expression for H(N, a,(Q2)) in order to appreciate 
these points is 

00 00 00 00 

(4.123) 
m=-1 n=l m=2 n=m 

i.e. as an infinite number of power series in a,(Q2), one for each power on N. Each of these 

series in as(Q2) is independent of the others, and the lowest order in ab(Q2) of each is therefore 
renormalization scheme independent and part of the complete LO expression for H(N, a,(Q2)). 

The full LO expression for H(N, a,(Q2)) is therefore 

00 00 

m=-1 m=2 (4.124) 

Hence, the combined set of terms considered LO in both our expansion schemes comprise the 

full set of renormalization scheme invariant, and thus truly leading-order, terms. By considering 

H(N,a,(Q2)) written in the form (4.123), and considering how the coefficients in the expression 
must change in order to make the whole expression invariant under a redefinition of the coupling 

constant, a,(Q2) --t a,(Q2) + U(aY(Q2)),  we see that the qh-order expression for H(N, a,(Q2)), 

which should be used with the n-loop coupling constant, consists of the sum of the first n terms 

in each of the power series in a,(Q2). Thus, the full qh-order expression always consists of the 

nth-order expression in the loop expansion plus additional terms with inverse powers of N greater 

than n. 
Similar arguments have already been applied to the anomalous dimensions and coefficient 

functions, for example [18] and particularly [20]. The latter claims that one may, but need not, use 

expansions of the above form for the anomalous dimensions and coefficient functions, and moreover, 
in practice expresses the terms beyond fixed order in a, as functions of 2 / 2 0  for 2 < 20 and sets them 
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to zero otherwise (20 5 1, and is in general simO.l), thus reducing their effect (see also [28]). Here we 
take a strong, inflexible viewpoint and insist that the complete renormalization-scheme-consistent 
expressions, with no artificial suppression of leading-In( 1/z) terms, must be used. F’urthermore, 
and very importantly, the expressions used must be those for the physical structure functions, 
not for the factorization-scheme- and renormalization-scheme-dependent coefficient functions and 
anomalous dimensions. 

When considering the real structure functions the situation is technically a great deal more 

complicated than our toy model, but the principle is exactly the same. This can be seen by 
examining the the LO expressions for the structure functions in the two expansion schemes already 
considered. There is some overlap between the LO expressions for the structure functions when 
using the loop expansion and when using the leading-ln(l/z) expansion, but each contains an 
infinite number of terms not present in the other. However, we were previously happy to use the 
one loop coupling for both expressions. The uncertainty in the definition of this coupling is O(at) .  
Considering the change of each of our leading-order expressions under a change of coupling of 
O(af) ,  the changes in the expressions are rather complicated. However, it is not too difficult to 
see that, as with our toy model, the change in the LO structure functions in the loop expansion 
contains no terms in the LO expressions in the leading-ln(l/z) expansion, and vice versa. Thus, 
none of the terms contained within each of the LO expressions are generated by uncertainties at 
higher order in the opposing expansion scheme. Therefore, they should really all be regarded as 
genuinely LO, and be included in the full expressions for the structure functions which use the 

one-loop coupling constant. 
Hence, as with the toy model, there should be some combined expansion-scheme-independent 

expressions for the structure functions which we can genuinely call the “leading order” expressions. 
Since these expressions will contain all the parts of the one-loop expressions, and also contain 
leading-ln(l/z) terms as well, they should be able- to describe the data over the full range of 
parameter space (except very low Q2, of course), as we would like from our correct LO expressions. 
We shall now demonstrate how we obtain these expressions. 

There are two main complications when considering structure functions in comparison to our 
simple toy model. One is that the structure functions are combinations of perturbative evolution 
parts and input parts (which are viewed as partly perturbative with nonperturbative factors), 

rather than one simple power series in a,( Q2). The other is that in general the physical anomalous 
dimensions, out of which the perturbative parts are constructed, are nonanalytic functions which 
cannot be expressed as power series about a particular value No for all N. The physical anomalous 
dimensions have singularities at N = 0 (in the case of the singlet structure function only), and also 
at negative powers of N (as well as possible a,(Q2)-dependent nonanalyticities due to resummation 
effects, e.g. the branch point in I’iL(N,a,(Q2)) at N = X(Q2)). We will deal with this second 
complication fist. 
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Let us consider the perturbative parts of the expressions for the structure functions. The 
singularities at negative integer values of N mean that we cannot write any physically meaningful 
quantity as just a power series about N = 0 (or about (N + 1) for the nonsinglet case). Any such 
power series expansion will have a radius of convergence of unity, whereas the physical moments 

of any z-space quantity will exist for all real N above some minimum Nmin, which depends on 
the asymptotic form of the structure functions as 2 + 0. A series expansion which applies over 
this whole range of N does not exist: the valid expression must include the nonanalytic functions 
explicitly. This seems to make it impossible to order the moment-space solution in such a simple 
way as in (4.122). 

In order to overcome this problem let us consider making the inverse transformation of some 
physically relevant perturbative function A( N, a,( Q2)) to 2-space. The inverse of the Mellin trans- 
formation (2.1) is 

A(z,a,(Q2)) = 2ai J z - ~ A ( N , ~ , ( Q ~ ) ) ~ N ,  (4.125) 

where the line of integration is to the right of all nonanalyticities. Making the substitution ( = 
In(l/z) this becomes 

1 c+i00 

C-i00 

Since A(N,a,(Q2)) has, in general, singularities for all nonpositive integers, this whole ixitegral 
may be evaluated by performing an infinite series of integrals, each with a contour centred on a 
given singularity, and not extending as far as unity from this singularity, i.e. not reaching any of 
the other singularities. Within each of these contours the function A(N, a,(Q2)) may be expanded 
as a power series about the singularity, i.e. we may write 

where An((N + n), a,(Q2)) denotes A(N, a,(Q2)) expanded as a power series about N = -n. The 
integrals will produce functions of (, which do not sum to integer powers of 2, and hence each of 
the integrals in (4.127) will be independent and physically relevant in its own right. 

So this is the solution to our problem of how to order the moment space expressions for physical 
expressions which are related to the real structure functions as powers series in a, and N. We must 
consider the complete moment-space expression as an infinite number of expressions of the form 
(4.123), each one having power series expansions in terms of (N + n), where n = 0 + 00. The 

expression for each n is then related to the part of the z-space expression behaving N 2". Of 
course, in practice, unless we want to examhe the details of the perturbative calculation of the 
structure function for z very close to 1, we can ignore all n greater than a finite, relatively small 
constant. 
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Thus, when we calculate the expressions for the perturbative part of the singlet structure 
functions, we will only be concerned about any LO terms beyond lowest order in U ,  for the specific 

case of n = 0. For n > 0 we take the whole LO expression to be the one-loop expression. The 
terms we ignore by making this necessary decision are those which are LO in ln(l/z) at first order 
in 2. Although these terms grow like ay ln2m-1 (l/z), as opposed to ay lnm(l/z) at zeroth order 

in 2, there is no evidence that their coefficients are any larger than those for the zeroth-order- 

in-z logarithms. Since the resummed terms at zeroth order in z only begin to make an impact 
as 2 falls to N 0.1 (as we will see), and only become dominant for z much smaller than this, the 

effect of terms like zar ln2"-'(1/z) should be extremely small in comparison. Indeed, the effect 

of those terms of the form zar ln2'"-l ( l/z) which are actually known, i.e. for rn = 2, can indeed 

be shown to be negligible. In a similar manner, we will only consider the one-loop expressions for 
the nonsinglet structure functions in practice: the other LO parts of the expressions again lead to 

small-2 enhancement of the form xar ln2'"-l (l/x), which is very small compared to the leading 

singlet small-z enhancement, and there is only detailed data at very small z for the total structure 

function." 
Hence, we only really need to consider calculating a full LO renormalization-scheme-consistent 

(RSC) expression for the perturbative contributions to the structure functions expressed as power 

series in a, and in N about N = 0, as for our toy model. However, we now have to return to 
our first problem, i.e. the fact that the structure functions are expressed in terms of both inputs 

and evolution parts. Using the results we have already obtained in the earlier subsections it is not 

too difficult to construct the full LORSC expressions for the inputs and for the evolution parts 

of structure functions. For the case of the nonsinglet structure functions the construction of the 

LORSC expression is then just the product of these two terms. Let us discuss this as an example 

first. 

4.5. The Nonsinglet Structure Functions. 

We consider a nonsinglet longitudinal structure function. For the nonsinglet structure func- 
tions the physical anomalous dimensions contain no singularities at N = 0, so the leading-ln(l/z) 

behaviour comes from singularities at N = -1. Expanding about N = -1, the full LO physical 

anomalous dimension can be written in the form, 

00 

m=l m=l 
(4.128) 

l9 Also, the full leading-order-in-ln(l/z) physical anomalous dimension is not yet known for the nons- 
inglet structure functions, as will be discussed below. 

61 



The first sumis just I'[&(N+l), the oneloop anomalous dimensionexpanded in powers of (N+l). 
The second sum contains the leading singularities in (N + 1) for all other orders in a,(Q2). The 
final sum is included because, despite the obvious fact that it is a power of (N + l)-' down on 
the second sum, a series of this form cannot be created from the second sum by a change in the 
definition of the coupling of O(a3(Q2)). Therefore, the third sum is not subleading in a,(Q2) to 
the second sum, and must be renormalization scheme independent. Integrating (4.128) between 

Q i  and Q2, and including the overall power of a,(Q2) for the longitudinal structure function we 
obtain the leading-order evolution 

In the loop expansion the lowest-order input for FfS(N, Q2) was a,(Qi)Cc;,l(N)~~'(N), 
where FTt(N) is a nonperturbative factor and Cffl(N) I 1  has an expansion in powers of (N + 1) 
beginning at zeroth order. Factoring out the nonperturbative part, our lowest-order input is a(Qi) 

multiplying a power series in (N + 1) which starts at zeroth order, i.e Czf,l(N + 1). In order 
to construct the full LO input we must consider how the evolution term (4.129) changes under a 

change in starting scale Qi 4 (1 + S)Qi, and therefore how the input must change in order to 
compensate for this. The change in the fist term is a a,(Qi)(f'Z,i,l(N + 1) - 1). This can be 

absorbed into a change of the input at order a;(&;), and hence the second-order-in-a,(Qi) input 
has a part a (f'g,l(N + 1) - l)Cc:,l(N + 1). The power expansion of this expression in terms 

of (N + 1) begins at order -1, and a term of this type cannot be generated by a change of the 
order-a,(Qi) input under renormalization scheme changes. Hence, this part of the a:(&;) input, 

i.e oc a!(Qi)a-lCffl(N I 1  = -l)(N+l)-l, belongs to the LORSC input. The rest ofthe O(a;(Qi)) 
input is genuinely subleading to the O(a,(Qi)) input and is renormalization scheme dependent. 
Extending this argument, and considering the form of the input required to compensate for the 

change of the whole of (4.129) under a change in starting scale (as with go(N,Qi) in subsection 
4.2), we can see that the full LORSC input is 

where bo E U-1 and CO = 0. The fist term is just the lowest-order input in the loop expansion, 
while the second includes all the leading-h(l/z) terms in a simple form which is compatible with 

making the full expression invariant under changes in starting scale Qi.  This second term only 
depends on the part of the oneloop coefficient function at zeroth order in (N + 1): the higher- 

order-in-(N + 1) parts multiply the part consisting of the leading-h(l/z) terms to give the type 
of terms which can be generated from (4.130) by changes in the renormalization scheme. 
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Hence, the full LORSC expression for the nonsinglet longitudinal structure function, expanded 

about N = -1, is 

(4.131) 
As we have already argued for the singlet case, as far as the expansion about the singularities at N to 

the left of the rightmost singularity are concerned, we may as well just take the one-loop expression. 
In practice, we will only use the one-loop expression for the nonsinglet structure functions for all 

the singularities in the anomalous dimensions. This is because of the phenomenological reasons 
given at the end of the last subsection, and also because of lack of knowledge of the full physical 

anomalous dimensions. In the MS scheme the terms N ar(N + 1)2rn-1 in the parton anomalous 
dimension are all known [37]. It does not appear as though the coefficient functions contribute 

to these sort of terms in the physical anomalous dimension (though there is no formal proof of 
this), and hence, it is believed all of these terms are known. However, there is little knowledge 

yet of the terms of the sort N ar(N + 1)2rn-2. We have argued that these are an intrinsic part 

of the LORSC expression for the nonsinglet structure function, and they should be calculated and 
included in order to give a true indication of the effect of leading-ln(l/z) terms. Hence, we believe 
that calculations of the nonsinglet [23][38] (and polarized [39]) structure functions which claim to 
include leading-ln(l/z) corrections are incomplete, even at leading order, until the terms of the 

form ar(N + 1)2m-2 are known. 

We now consider the nonsinglet structure function F . f S ( N , Q 2 ) .  This leads us back to our 

previous question of whether we should use the full RSC expression for F2(N,Q2) or that for 
( d F 2 ( N , Q 2 ) / d  l n Q 2 ) .  In order to illustrate the difference between the two, and help us make our 

choice, we consider the simpler nonsinglet case before the singlet case. We also pretend for the 

moment that the inverse powers of (N + 1) in the expressions do not 

increases, i.e. there is no small-z enhancement at higher orders in a,. 

term in the evolution is just 

increase as the power of a, 

This being the case, the LO 

(4.132) 

Of course, the input may be written as a power series in a,(Q;), as we saw in 54.1, and is of the 

form 
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Therefore, we have the problem that as well as the lowest order a,-, and hence Qi-dependent part 

of the input there is also the "sub-lowest-order", Qi-independent part. These two terms are clearly 

of Merent order, but under a change in renormalization scheme, and hence in the definition of 

the coupling, both remain unchanged and both should therefore appear in the LO definition of the 

structure function. This miring of orders seems rather unsatisfactory, and comes about because for 

FfS(N, Q2) the structure function still exists in the formal limit of a, + 0, i.e. the parton model 

limit, being equal to the simple Qi-independent function FGS(N). Hence, it is not a perturbative 

quantity in quite the sense way as FfS(N, Q2) or ( d F f S ( N ,  Q2)/dlnQ2), both of which vanish in 

this limit. 

So in our simplified model the LORSC expression for FfS(N, Q2), obtained by combining the 
LO input and evolution, is 

This consists of two parts which are clearly of Merent magnitude, i.e. one is a power of a, down on 

the other with no small-z enhancement. This seems against the spirit of a well-ordered calculation. 

Indeed, the second part of this LO expression is of the same order of magnitude as part of the LO 
input multiplying the NLO evolution, i.e. 

(4.135) 

Even when we take into account the higher inverse powers of (N + 1) at higher powers of a,, (4.134) 

will be part of the LO expression for FfS(N, Q2), and this unsatisfactory behaviour remains. It is 

also clear that the same effect will be seen for the singlet structure function. 

If we instead consider ( d F f S ( N ,  Q2)/d lnQ2) (again ignoring small-z enhancement for the 

moment) the situation improves. In this case the full expression is 

- v  

(4.136) 

Hence, the input may be written as 

+ r2*'**(N + 1)) t o(af(Qf))]. 
(4.137) 
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Of course, the O(a,(Q;))  piece is renormalization scheme independent by definition. The 
O(a2, (Qi ) )  piece is renormalization scheme dependent (I'2~1~t( N) is renormalization scheme de- 

pendent) in order to absorb changes in the O(a,(Qf))  piece under a change in the coupling of 

O(aZ(Qi)). So this time we have a LORSC input which is of a given order in a,(&;). The full LO 
expression for (dF2(N, Q2) /dlnQ2)  is then 

This is rather more satisfactory than the renormalization-scheme-independent expression for 

FFS(N, Q 2 )  itself, and hence we choose (dF2(N, Q2) /dlnQ2)  to be the perturbative quantity we 

calculate, in both the nonsinglet and singlet case. 

If we wish to calculate the structure function F2(N, Q 2 )  itself to a given order we will do this 

by integrating the given order expression for (dF2(N, Q2) /dlnQ2)  between Qf and Q 2 ,  and adding 

it to F2(N, Qf)  evaluated to the same order. For example, in our simplified nonsinglet model we 

would integrate (4.138) and add this to the explicitly written part of (4.133). This results in the 

effective LO expression 

This is perhaps more sensible than (4.134), since the two terms are now of a more comparable size. 

Moreover, this expression is more stable under changes in Qi.  

Of course, this whole discussion of FfS(N, Q 2 )  has been rather simplified by the assumption 

that the higher-order-in-a, terms in the physical anomalous dimension do not contain higher sin- 

gularities in (N + 1). Recognizing that they do, we obtain expressions which are more complicated, 

as in the case of F f S ( N , Q 2 ) .  With a little work it is possible to see that the full leading-order 

expressions are 
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and 

(4.141) 

where for Fps(N,Q2) the coefficients in the series in (N + 1)-’are not necessarily the same as 

for the longitudinal structure function, hence the slightly Merent notation. However, 0-1 = 6-1 
and, if the hypothesis that in the renormalization and factorization scheme all the contribution 
to the a y / ( N  + 1)2m-1 singularities in the physical anomalous dimensions is due to the parton 

anomalous dimension, b, = 6, as well. The cm are not equal to the 2, in general though, so 
there is no guarantee that F.;sc, ,(z ,  Q2) and F[’sc,0(2, Q2) will behave in the same way in the 
small-z limit. 

When all the bm and c, are known they can be used to present an argument for the form of the 
small-z behaviour of nonsinglet structure functions, e.g. to explain any discrepancy between the 
input power at small 2 for these structure functions and predictions from Regge physics. This seems 
to us to be an interesting project, and we look forward to the calculation of these coefficients. Until 
this happens our discussion of the LORSC Calculation of the nonsinglet structure functions is rather 
academic. However, it has enabled us to discuss many of the issues in a simpler framework than 
if we had gone directly to the singlet structure functions. We will discuss these singlet structure 
functions next. 

4.6. The Renormalbation-Schemeconsistent Singlet Structure Functions. 

When calculating the singlet structure functions we cannot just construct the complete LO 
evolution and input and combine these to obtain the LO expression because the evolution mixes the 
two different structure functions. Each of the component parts of the LO expressions for F2(N, Q2) 

and FL (N ,Q~ )  (we omit the superscript S in this section) must consist of LO input parts and 
evolution parts, but it is not obvious what these are. In order to find the full LORSC expressions 
for the singlet structure functions we will have to work in steps. We will consider only the full LO 
expression with the perturbative factors expanded about the particular value of N = 0 (the non- 
perturbative inputs are the full nonanalytic expressions for @L (N )  and F2(N)), and the simplest 
way to proceed is to work directly with the physical quantities, solving the evolution equations in 
terms of physical anomalous dimensions and structure functions. We have already proved that in 
the loop expansion the LO expressions only depend on the one-loop physical anomalous dimen- 

sions, and in the leading-ln(l/z) expansion the LO expressions depend only on r” , (aU (Q2 ) /N ) ,  
rL2(a8(Q2)/N), riL(a8(Q2)/N) and r:,(au(Q2)/N). Hence, it is only the combination of these 
anomalous dimensions which is considered in our solution. 
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We cannot simply write the physical anomalous dimension matrix 

) (4.142) 

(where r!,(a8(Q2)/N) = riL(a8(Q2)/N) with the one-loop component subtracted out, etc.), 
and solve the renormalization group equations. With this anomalous dimension matrix there is no 

simple closed form for the solution of these equations, and the full solution contains terms which 
are not properly of leading order. We must choose some way of solving for the structure functions 

systematically which enables us to extract the true LO behaviour in as simple a manner as possible. 
In order to do this we take account of the fact that the one-loop solutions for F L ( N , Q ~ )  

and (dF2(N,Q2)/dlnQ2) must be part of the complete LORSC solutions. Hence, we split our 

anomalous dimension matrix up into the form 

a8(&2)r;L( N ,  + '!L( Q2)/N) a 8 ( & 2 ) r 2 t ( N )  + r $ ( a 8 ( & 2 ) / N )  ( a.(Q2)r0" ~ L ( N )  4- %(Q2)r:~(a8(Q2)/N) 2 yOJ 22 (N) a8(Q2)r;2(%(Q2)/N) 

and solve by treating the second matrix as a perturbation to the fist .  Doing this we obtain the 

one-loop solutions as the lowest-order solutions and can systematically calculate corrections to 
this, extracting the parts of these "corrections" which are leading order. 

So, first let us consider the solution to the renormalization group equation 

with boundary conditions @'(N7Qi) = ~ L ( N )  and F;"(N,Qi) = F2(N). We may write the 

solution for the longitudinal structure function as 

where f"*'i+*-(N) are the two eigenvalues of the zeroth-order physical anomalous dimension matrix 
(which are the same as the eigenvalues of the zeroth-order parton anomalous dimension matrix), 
and k;"'+(N) + &;*'f-(N) = ~L(N). Having chosen to write the lowest-order solution for the lon- 
gitudinal structure function in this way we may then write the lowest-order solution for F2( N ,  Q2) 
as 

where 
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and e+(N)@ '*+ (N)  + e - ( N ) c * ' * - ( N )  = Fz(N). In practice 

(4.148) 

and 

F2(N) + O(N ) .  (4.149) 
36 - 8Nj 

27 F2(N) + O (N ) ,  CJ*-(N) = 
36 - 8Nj 

27 
>iJS+(N) = &(N) - 

It is then simple to see that 

#*'*-(N) = e-(N)el'l-(N) = F ~ ( N )  + o (N ) .  

The first correction to the one-loop solution may be obtained by solving the equation, 

- (36-8NtIr6 27 LL( a ) ( $*'(N*Q2)) 
(36-SN ) 

+ ( rL(aAQ2)/N) 
4Q2 ) r f ~ (  a, (Q2 )/N - 27 ' a,(Q2)rfL(a,(Q2)/N) @ ' W Q 2 )  ' 

(4.151) 

where we have used the relationships in (4.114) and (4.115) in order to simplify the second matrix. 
We proceed as follows. First we define the vectors 

and write 
FC'(N,Q2) = g+(N)Fc '*+(N,Q2) + e- (N)Fc '* - (N,Q2) -  (4.153) - 

We also define projection operators p+(N) and p-(N) - by - 

which in practice gives 

Multiplying (4.151) by p+(N) - now leads to the straightforward first-order differential equation 
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We also write the zeroth-order solution Foi'(N, Q2 ) ,  in the form 

- Fo"(N, Q 2 )  = g+(N)F"i'*t(N, Q 2 )  + g- (N)Fo8 ' i - (N ,  Q 2 ) ,  (4.157) 

where Foi'~+(N, Q 2 )  = ~ ~ " ' + ( N ) ( a , ( Q ~ ) / a , ( & 2 ) ) f o " ' + ( N )  and similarly for F o i ' ~ - ( N ,  Q 2 ) .  Doing 
this (4.151) becomes 

This equation can now be solved by using the power series expansions of E+(-)( N) and p+(-)(N) - in 
terms of N. Only a small part of the overall solution contributes at LO. Considering the contraction 

of the matrices between the two vectors in (4.158) we obtain 

= r i ~ ( a , ( Q ~ ) / N )  + higher order, 

and 

= O ( a 8 ( Q 2 ) ( F ) m ) .  

Therefore (4.158) becomes 

= a,( Q2)I'oi'i+( N)Fcll+(N, Q2)+  
d Fcl*+(N, Q 2 )  

d lnQ2 

Thus 

+ higher order. 

(4.159) 

(4.160) 

(4.161) 

(4.162) 

This method of solution demonstrates the particularly nice feature that the leading-order "cor- 
rections" to the one-loop solution which are proportional to g + ( N )  are completely independent of 
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pgi*-(N, Q'). Since this is due to the form of the "correction" matrix contracted between p+(N) - 
and g - ( N ) ,  we can write the equation for the qh-order correction to P* ' *+ (N ,  Q') as 

= a,(Q2)r0***+( N)Fm*+(N,  Q') d Fma+(N, Q2) 
d lnQ2 

d FCn*+(N, Q') 
d lnQ2 = a,(Q2)rogig+( N)F""I+( N, Q') t&( a,( Q')/N)Fd"-')*+( N, &')+higher order. 

(4.164) 

Thus, it is easy to prove by induction that 

+ higher order. 

This leads to the straightforward expression for the whole of the leading-order part of F+(N, Q'), 

Of course, we have not yet considered the corrections to the oneloop input. We could have built 

up these corrections to the input at the same time as we built up the evolution. However, it is 

easier to simply examine the change of the whole of (4.166) under a change in starting scale, and 

choose the input necessary to make the expression insensitive to such changes. In order to do this 

it is simplest to rewrite (4.166) in the form, 

where the second term contains those parts of the one-loop input which are higher order in N. The 
factor ( @L (N )  - ( 36-SN ' ) Fz(N)) must be multiplied by exp [ ln (Q~ /A~~ ) rOL~ (a , (Q i ) /N ) ]  in order 

to absorb changes in the evolution term under a change in starting scale Qi + (1 + S)Qi. This 

does not absorb the whole of the change of the evolution term, but all other changes required in the 

input are subleading to this. Similarly the change in the input of the "higher-order-in-N" terms 

needed to absorb the change in the evolution is entirely subleading in a, (Qi )  to the oneloop input, 
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(36-8N ) or to (p.(N) - 
for F+(N, Q2)  is 

27 ' Fz(N))exp[ln(Q;/d~~)r"L(a~(Q;)/N)]. Hence, the full LO expression 

(4.168) 

We can solve for the corrections which are proportional to g - (N )  in exactly the same manner 

as above. Multiplying (4.151) by p-(N), instead of p+(N) leads to - - 

(4.169) 

Again considering the contraction of the matrix between the two vectors in the last term we obtain 

= O ( C X : ( Q ~ ) ( ~ ) ~ ) .  

Therefore we can write (4.169) in the form 

i- higher order. 
(4.172) 
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Rather than solving this equation, it is easier to solve for the whole of the correction to G * " - ( N ,  Q2) 

in one go. Using (4.170) and (4.171) we easily obtain 

t higher order. 
(4.173) 

Letting The solution to this is relatively simple if we wish to keep only the LO parts. 

Fcfuzz*-(N, Q2) = E,"==, FCni-(N, Q2) we obtain, 

(4.174) 

Adding to the solution at one-loop, the whole of the LO part of F-(N, Q2) is 

t higher order, 
(4.175) 

where, in order to make the expression invariant under changes in starting scale, and also ensure 
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that for Qi =ALL we have F - ( N , Q i )  = @"-(N), we make the choice 

( k ( N )  - ( 36 i;Nf) W )  ( ~ ~ P [ ~ ~ ( Q ~ I A L L ) ~ O L L ( ~ , ( Q ~ ) / N ) ~ -  1). 

(4.176) 

We have been able to obtain, without too much difficulty, the leading parts of F + ( N ,  Q2)  

and F - ( N , Q 2 ) .  We must now use these in order to obtain LORSC expressions for the structure 

functions. The way in which we have set up the calculation makes this very straightforward for the 

longitudinal structure function: we multiply F&c,o(N, Q2) and F&-,o(N, Q2) by (a,(Q2)/27r). 
However, we notice that all the parts of F&c,o(N, Q2),  except the one-loop expression, are sublead- 

ing to F'sc o ( N ,  Q2):  all the terms in the inputs in the former are a power of a,(&:) higher for the 

same power of N. Thus, the only part of F;;SC,O(N, Q 2 )  which contributes to the LORSC expres- 

sion for FL(N, Q2) is the one-loop part. Adding this to (4.168), and multiplying by (a,(Q2))/27r), 
we obtain 

(4.177) 

It is slightly more involved to find the LORSC expressions for F2(N,Q2).  In this case we 

wish to find the LORSC expressions for the derivative ( d F 2 ( N , Q 2 ) / d l n Q 2 )  and for the input 

Fz(N,Qi) .  We consider the former first. Using the form of e + ( N )  and e - ( N )  in (4.148) it is 

clear that, besides for the one-loop contributions, the LORSC expression will come from (27/ (36  - 
8 N f ) )  x ( d F F ( N , Q 2 ) / d l n Q 2 )  and from N / 6  x ( d F z ( N , Q 2 ) / d l n Q 2 ) .  Explicitly we obtain 
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where we have used the relationship 

and r i $ (N )  ($(N) - (7) F2(N)) is the part of the input which is common to both the 

one-loop and the leading-ln( 1/2) input, and is subtracted from the former in order to avoid double 

counting. Similarly the input for FZ(N, Q2) is given by the relatively simple form 

The third term is the renormalization-scheme-invariant order-a,(Qi) input, which must compen- 
. sate for changes in the one-loop evolution under changes in Qi.  Again we explicitly extract a term 

a In(Qi/A)I':;(N)(kL(N) - ( 3ai:Nf) F2(N)) in order to avoid double counting. The fact that 

this term can be thought of as appearing from two different sources leads us to choose both our 

unknown scale constants in the input equal to the same value ALL. We note that our choice of 
inputs not only ensures Qi-invariance up to higher orders, but are also such that our expressions for 

~L ,RSC ,O (N ,  Qi) and F z , ~ s c , o ( N ,  Qi) reduce to the nonperturbative inputs if Q i  = ALL. Having 
obtained our LORSC expressions for (dF2(N, Q2)/d h Q 2 )  and FZ(N,Qi), then as already argued, 
in order to obtain our expression for F2(N,Q2) we integrate (dF2(N,Q2)/d lnQ2)~sc,o from QX 
to Q2 and add to the input F2,RSC,O(N, Qi). 

Thus, we have our complete leading-rder, including leading-ln( 1/z) terms, renormalixation- 

scheme-consistent expressions for the structure functions. These are significantly different from 

both the one-loop expressions and the leading-ln( 1/2) expressions, although they do reduce to them 

in the appropriate limits; i.e. to the one-loop expressions for very large 2, and to the leading-ln(l/z) 

expressions in the limit of very small 2 and near the boundary of evolution, Q2 x Qi. Indeed, 
once we include the O(a,(QX)) inputs for FZ(N, Q2) in the definition of the leading-rder inputs in 

the loop-expansion (as we should), each of the terms in the inputs and evolution terms in (4.177), 

(4.178) and (4.180) contains a part which appears in both the LO expression in the loop expansion 

and the LO expression in the leading In( l/z) expansion. Our full LORSC expressions are obtained 

rather more easily than above by simply letting each of the input and evolution terms become the 

combination of the terms in the two expansion schemes. In a sense this result is obvious, but it is 
necessary to verify this by deriving the expressions as above. 
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Let us comment on the form of our final LORSC expressions. We note that as for the leading- 

In(l/z) expansion, the LORSC expansion still leads to predictions for all the small-z inputs: 

predictions of each in terms of the nonperturbative inputs (which we imagine should be q ~ t e  flat) 

and the nonperturbative scale ALL, and also stronger predictions for the relationships between the 

inputs (although the scale Qt at which they should be chosen is not determined). 

Finally, we notice that each of the terms appearing in our expressions is mauifestlyrenormaliza- 

tion scheme invariant, and it is clear that no terms are subleading in a, to any other terms, either in 

the input or in the evolution. If we had simply solved the renormalization group equations using the 

whole of the anomalous dimension matrix (4.142) then we would have obtained many terms which 

do not appear in our full leading-order expressions (4.177), (4.178) and (4.180). These would still 

be renormalization scheme independent (and trivially factorization scheme independent of course), 

since our input anomalous dimensions are renormalization scheme independent. However, all of 
these extra terms would be of the same form as terms which must be renormalization scheme depen- 

dent in order to absorb the changes of the leading-order expressions under a change of the coupling 

coming from a renormalization scheme change, i.e. a,(Q2) --t a8(Q2) + O(a",Q2)) (e.g. we saw in 

4.2 that the subleading-in&( 1/z) evolution @t(Q2, Qi) has a manifestly renormalization-scheme- 

independent part depending on I?:&( Q 2 ) / N )  as well as a renormalization-scheme-dependent 

part depending on I 'iL(a,(Q2)/N)).  Thus, these terms should be dropped, and (4.177), (4.178) 

and (4.180) axe the correct expressions for the structure functions to be used with the one-loop 

coupling constant. Finally, as already stated, when considering the expressions for the structure 

functions expanded about negative integer values of N we will simply use the one-loop expres- 

sions, due both to lack of knowledge of the explicit resummed anomalous dimensions which would 

occur, and also because it almost certainly makes practically no difference to do this as far as 

phenomenology is concerned. 

Now that we have our desired expressions, (4.177), (4.178) and (4.180), we can see how they 

compare to the data. The first step towards this is to consider the solution in z space. After briefly 

doing this we will consider detailed fits to the data. 

5.  z-Space Solutions. 

We shall now discuss how we use the expressions (4.177), (4.178) and (4.180) in order to obtain 

our expressions for the z-space structure functions and ultimately compare with data. The data 

on F2(2,Q2) exist over a range of Q2 from - 0.2GeV2 to 5000GeV2, so it is clear that we will 
need expressions for the structure functions which cross quark thresholds. Thus, before presenting 

details of the 2-space solutions we must consider how we treat these quark thresholds. 

In practice we will impose a lower cut on the data of Q2 = 2GeV2, except for the HERA data 

where we choose Q2 = 1.5GeV2 simply in order not to lose some of the very low z data. The 
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threshold of heavy quark production is W2 = 4mb, where W is the invariant mass of the hadronic 

system created from the struck proton (or neutron) and in the limit of zero proton (and/or neutron) 

mass is given by W 2  = Q2((z-' - 1). mH is the mass of the heavy quark. Thus, we clearly work 

in the limit where the up, down and strange quarks are effectively massless. However, we cross the 

bquark threshold of W2 x 20GeV2, and at the lower end of our range are in the region of the c- 

quark threshold of W 2  x 2GeV2. The correct treatment of these heavy quark thresholds is less well 

established than the treatment of effectively massless quarks, and is certainly more complicated 

(especially when considering leading-ln(l/z) terms). Hence, we will delay a more sophisticated 

treatment to a future article, and in this paper use a relatively simple treatment. 

We use the prescription for treating heavy quarks outlined in [40]. This involves treating all the 

quarks as massless, but only allowing the heavy quarks to become active above the simple threshold 

Q2 = nab. Hence, the value of Nf appearing explicitly in any expressions changes discontinuously 

at this threshold. The ruIlILing coupling constant, which itself depends on N,, is defined to be 

continuous at the thresholds. It is determined by the relationship 

where the central aa(Q2) with Nt = 4 is defined by 

This leads to a kink in a,(Q2) at the thresholds, with the coupling used below a threshold being 

larger than the continuation downwards of the coupling used above the threshold. 

This complete prescription for treatment of the heavy quarks is consistent with the decoupling 

theorem, as it is guaranteed to provide the correct expressions far above or below any threshold, 

as discussed in [40]: the increase in the coupling below a threshold compensating for the absence 

of virtual heavy quarks in calculations below this threshold. It is clearly going to be rather un- 

satisfactory in the region of the threshold, with heavy quark structure functions having an abrupt 

threshold in Q2 rather than the physically correct smooth threshold in W2. Work to rectify this 

is in progress, and win certainly involve the use of the heavy quark coefficient functions at leading 

order in ln(l/z) already calculated [13][30]. We note, however, that the treatment of quark thresh- 

olds in this paper is no less rigorous than in most of the other calculations of structure functions 

currently performed, and is perhaps better than some. 

The number of active quark flavours, N,, appears in (4.177), (4.178) and (4.180), in a number of 

places other than the implicit dependence in ad(&". It appears in the one-loop physical anomalous 

dimension eigenvalues f ' o~ ' ~+ ( - ) ( N ) ,  in the eigenvector factors e+ ( - ) (N ) ,  and in the definition of 
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~ L ( N ) ;  i.e. Ci ,(N) oc Nf and hence, from the definitions (4.36) and (4.37) which define the 

nonperturbative inputs for the structure functions, we have 
, I  

The f i s t  two forms of dependence have very little impact in practice, the NI-dependence being 

relatively weak. The last dependence, the proportionality of what is in practice almost all of i L ( N )  
to N j ,  has a large impact. It  means that the expressions for the longitudinal structure function 

and for the lnQ2 derivative of & ( N ,  Q2) are discontinuous at Q2 = m: and at Q2 = mb. Also the 
definition of the input F2(N, Qi) is sensitive to where Qi is chosen with respect to the thresholds. 

This dependence of &(N) on Nf is obviously rather unsatisfactory. When treating the heavy 

quark thresholds more rigorously we should subtract out of the full structure functions those con- 

tributions where there are particles with heavy quarks in the final state. Doing this, we could 

define intrinsic light quark structure functions where the final state particles do not contain heavy 

quarks, and which have a fixed number of active flavours. Our definition of the nonperturbative 

inputs could come from these light quark structure functions alone. There would then also be heavy 

quark structure functions which could be calculated separately from and entirely in terms of the 

light quark structure functions. However, using our somewhat simplistic prescription for turning on 

the heavy quark contributions, even if we were to define heavy quark structure functions completely 

separately from the light ones, the expressions for F’,H(N, Q2) and ( ~ F ~ , H ( N ,  Q2))/dh(Q2)) would 

be discontinuous at the thresholds. Thus, in this paper we feel that the treatment of quark thresh- 

olds makes it more appropriate to define the whole structure function in terms of a discontinuous 

number of active quark flavours. The contribution to this complete structure function from the 

production of heavy quarks can then be extracted straightforwardly. Hence, we treat the problem 
of quark thresholds as described above. We will discuss the effect of the discontinuities at the 

thresholds on fits to data in detail in the next section. We note, however, that the expressions for 

the whole structure functions in terms of the singlet and nonsinglet components in (3.1) depend on 
the average value of the squared charge of the active quarks, and this will also change discontinu- 

ously at the thresholds. This means that overall the effects of heavy quark thresholds on a best fit 
to F2(z,  Q2) data are in practice rather small. The effects of the b-quark contribute only like the 
charge squared, i.e. 1/9, and hence have little impact. The effects due to the c-quark threshold 

are proportionally much larger, but because they are at Q2 M 2GeV2 they only affect a very small 

proportion of the complete set of data. 

Having defined our treatment of quark thresholds we can now discuss the form of the z- 

space solutions for the structure functions. As already discussed it is the perturbative part of the 

moment-space structure functions for which we can produce well-ordered, RSC expressions and 
the nonperturbative parts of the expressions for these structure functions, F2(N) and &(N), will 
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be nonanalytic, complicated functions of N. Our complete moment-space expression for a general 

structure function (or derivative of a structure function) will be 

where the P;j(N, a,)’s are the calculable perturbative components of the complete expressions 

which can be expanded as power series in both a, and N. Hence, the Pij(N, a8)’8 are an example 
of the physically relevant perturbative functions we discussed in $4.4. Taking the inverse Mellin 

transformation of (5.4) back to 2-space we obtain 

where 8 denotes the convolution of two quantities, i.e. 

Making an ordered calculation of the structure function is then equivalent to making an ordered 

calculation of the Pij (z ,  01,)’s. As proved in $4.4, this is equivalent to calculating these perturbative 

parts of the expressions for structure functions as RSC expansions about each of their nonanalyt- 
icities in N, and then taking the inverse Mellin transformation of each of these expansions by 

integrating around curves enclosing each nonanalyticity. 

Our moment-space expressions (4.177), (4.178) and (4.180), are part of the full expressions for 

the structure functions in the form in (5.4). They contain the complete nonanalytic expressions for 

F2(N) and PL(N), but the factors multiplying these are LORSC expansions of the perturbative 

parts of the expressions about N = 0. Thus, in a sense the expressions (4.177), (4.178) and (4.180) 
are misleading. They need to be interpreted correctly. We cannot simply take an inverse Mellin 

transformation of these expressions because the result would depend on all the singularities in 

the nonperturbative functions, whereas the perturbative factors in these expressions are defined as 

power series expansions in N about N = 0 with radii of convergence of only unity. The expressions 
do not have a direct meaning for general values of N. Instead, we must interpret them as providing 

us with the perturbative factors multiplying F2(N) and @L(N) which are LORSC when expanded 
about N = 0. 

Hence, we use (4.177), (4.178) and (4.180) to obtain the 2-space structure functions as follows. 

We can factor out the perturbative part of each of these expressions which is proportional to either 

@L (N )  or F2(N), and take the inverse Mellin transformation of this perturbative function by 
integrating around a contour encircling N = 0. This provides us with the leading-in-ln(l/z), at 

lowest-order-in-z parts of the perturbative P (z ,  a#)% as well as all the lowest-order-in-a, parts at 

lowest-order-in-2. In order to obtain the leading-order-in-ln( l/z)-and-a,, at lowest-order-in-2, 

part of the perturbatively calculated structure functions we then convolute with the whole of the 
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nonperturbative &(z) and F2 (2) which are obtained by a complete inverse Mellin transformation of 

@L (N )  and F2(N), including contributions from singularities at many values of N. In principle, the 
full LORSC z-space structure functions are calculated by repeating this procedure for the LORSC 
moment-space structure functions where the perturbative parts are expanded about N equal to all 

negative integers. This would systematically include all leading-order-in-h( l/z)-and-a, terms at 
progressively higher orders in 2. As already explained, in practice one only really needs include the 
one-loop, or leading-in-a, part of the full LORSC perturbative parts for all negative integers, and 
also only need to work to a relatively small negative integer unless one is concerned with values of 

2: very close to one. Thus, it is this type of calculation we aim to make in order to compare our 

expressions with data. 

In practice the calculation of the structure functions is performed in a rather different manner. 

The structure functions are calculated using a modification of the computer program that is used 

by Martin, Roberts and Stirling in their global fits to structure function data. This works in 

terms of parton densities and also directly in 2-space. Input parton densities are specified at 
some scale 0; and the Q2 evolution is calculated on a grid in 2 and Q2. This Q2 evolution is 
obtained by integrating up the complete renormalization group equations involving the complete 
parton distributions and full specified splitting functions. The structure functions are calculated 
by numerically performing the convolutions of the resulting Q2-dependent parton distributions 
with coefficient functions. Thus, in fact we obtain the factorization-scheme-independent LORSC 

structure functions by working in terms of parton densities obtained from the full solution of the 

renormalization group equations and choosing coefficient functions and splitting functions (i.e. an 

effective factorization scheme) which will reproduce the correct expressions as closely as possible. 

In order to do this we choose to work in a DIS-type scheme for simplicity, and take the 

longitudinal coefficient functions to be just the one-loop expressions. By  breaking the expressions 

for the LORSC structure functions in terms of the structure functions themselves into expressions 

involving partons with the above choice of coefficient functions, and also using the power series 
expansions of the one-loop anomalous dimensions and eigenvalues in terms of N it is possible 
to choose effective splitting functions which when used in the computer program will reproduce 

the correct expressions for ( dFZ (2 ,  Q2)/dh(Q2))), &(z, Qi) and FL(z, Q 2 )  to very good accuracy. 

We note that this choice has to be different when calculating F2(2,Q2) from when calculating 

FL(z, Q2). Due to the method of calculation used by the MRS program, it is extremely difficult to 
obtain the exact behaviour one desires of the structure functions, i.e. a given evolution away from 
a particular input at some fixed Qi ,  with any choice of splitting functions. However, we aim to get 

as close as possible to this exact behaviour with relatively simple choices. 
We will briefly describe our choice of effective splitting functions as follows. At first order in 

a, we choose the normal parton splitting functions. We then add corrections to these in order to 
reproduce our desired results. Denoting these corrections by A7,a(N, ab(Q2)), for a given Paton 
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to parton splitting function, and expressing these in moment space and in terms of previously 

discussed quantities for simplicity we get for FL(z, Q 2 )  

This form is not too difficult to understand by looking at e.g. (4.177): the only leading-ln(l/z) 

enhancement of the one-loop expression comes from the evolution in the longitudinal sector which 

is directly related to the enhanced gluon evolution and hence corrections to the gluon anomalous 
dimensions. For &(z, Q 2 )  the corrections are a little more involved: 

The corrections to the quark anomalous dimensions are functions of QX rather than Q 2 ,  ex- 
cept for the single power of a, (Q2 ) ,  because I ' iL(a,/N) appears only in the input terms in 

(4.178). In the small-z, or small-N limit we have the simplifications that Ayj , (N,a, (Q2) )  -, 
a,(Q2)(2Nj/3)rf,(a,(Qi)/N) and AYj j (N ,  a8 (Q2 ) )  + $AYj , (N,%(Q2) ) -  Thus, in this limit 
these corrections to the one-loop quark anomalous dimensions take on the standard form of 
a,(& 2 1  )yr8(a. (Qi ) /N) and a.(Q2)yj j ( a , (Q i ) /N )  minus their one-loop components. The pref- 

actors multiplying these terms, which depend on the one-loop longitudinal coefficient functions, 
ensure that the leading-ln(l/z) enhancement of the rate of growth of 32(z, Q 2 )  is directly coupled 

to the longitudinal structure, not to the gluon. This delays the enhancement to slightly smaller 
values of 2, and reduces it a little. The contributions to the gluon anomalous dimensions beyond 

LO in In(l/z) are present to counter the exponentiation of the corrections to the quark anomalous 

dimensions, i.e. this is similar to choosing yi, (a,/N) equal to -$7ig (a8/N)  in (4.78)-(4.80) in 
order to ensure that the exponentiation of y;,(a,/N) has no effect in these expressions. The effect 
of these terms is in practice rather small. 

We may now perform checks to see if the particular choice above does indeed lead to an 
accurate representation of the correct expressions. In order to do this we obtain solutions for 
the structure functions which are the same as those obtained by the MRS program for our given 

choice of splitting functions, by analytically performing the same calculation as performed by this 
program, but in moment space, where the calculation is possible. The resulting expressions can 

80 



be compared with the correct LORSC moment-space expressions in the region of relatively small 

2 (z 6 0.1) by expanding both expressions in powers of N, and an accurate approximation of 

the differences between the two found.20 These differences between the expressions can then be 

estimated by transforming back to 2-space. With the choice of the splitting functions above the 

differences between the expressions are very small. 

One may also take a more direct approach. For a simple, but physically reasonable, choice of 
input parton densities, and hence input structure functions, one can use the types of techniques 

outlined in [22] to begin with the exact expressions (4.177), (4.178) and (4.180) in moment space 

and then transform to z-space obtaining analytic solutions for the structure functions. These 
expressions are very complicated, but are almost exact for very low values of 2. They begin to 

become approximate for larger values of z,  particularly at high Q2, due to the effects of truncating 

power series in N. The range of z for which the expressions are reliable depends on the severity 
of the truncation but it is not too difficult to have accurate expressions for 2 6 0.1. These enable 

one to compare the results obtained from the inverse Mellin transformation of our correct moment- 

space expressions with the calculations performed using the computer program in z-space. For 
2: 6 0.1 our choice of the anomalous dimensions leads to agreement with the analytic expressions to 

an accuracy much better than the errors on the data in any appropriate range of parameter space. 

There is no reason to believe that input distributions which are very similar in form, but which need 

to be described by more complicated expressions, should lead to deviations much Merent from our 

2o The ease of obtaining an accurate expression at small x is aided immensely by the fact that the 
expansions about N = 0 of the one-loop parton anomalous dimensions, and subsequently their eigenvalues, 
eigenvectors and projection operators have coefficients which stay roughly constant as the power of N 
increases, or even where the lowest powers have the largest coefficients. For example, the expansion of 
Toi’*+(N) about N = 0 goes like (6 /N - 5.64 + 0.24N - 2.37Na + 3.38N3 + - e , ) .  This enables one to 
truncate these series after a very small number of terms when working at small z, or conversely work 
to quite large x without keeping too many terms in the series. It is also the reason why the “double 

asymptotic scaling” formula, which effectively truncates the above series after the second term, is such a 
good approximation to the full one-loop solution (with flat parton inputs) up to quite high values of x. In 

the MS renormalization and factorization scheme, or the DIS factorization scheme, the two-loop anomalous 

dimensions, and in the former case coefficient functions, do not exhibit nearly such a nice behaviour. e.g. 

the MS scheme j i i ( N )  expanded about N = 0 goes like (26.7/N - 57.7 + 104N - 176N’ + a . . ) ,  and 

the expansion of the coefficient function is even worse, C;,l,,(N) a (1.33 - 6.16N +9.2N2 - 12N3 + s e . ) .  

Hence, truncations of the two-loop anomalous dimensions and coefficient functions expanded as series about 

N = 0 give a far worse approximation to the effects of the complete anomalous dimensions and coefficient 
functions at s m d  x than in the one-loop case. This has been explicitly checked, and indeed, evolution and 
convolution of a given set of parton distributions using the series expansions for the two-loop anomalous 
dimensions and coefficient functions truncated at lowest order in N lead to structure functions up to a 
factor of two larger than those obtained from calculations performed using the full anomalous dimensions 

and coefficient functions. 
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particular choice. Hence, using this direct test and the more general, if slightly more approximate 
check above, we are confident that our choices do lead to the correct z-space expressions for z 6 0.1 
up to very small corrections. 

At higher 2 the check is simpler, in fact almost trivial. Simply setting to zero all terms in 
the MRS program other than those coming from one loop, we observe that the expressions for the 
structure functions for 2 > 0.1, particularly at high Q2, are very close to the one-loop expressions 
alone (becoming essentially identical for 2 > 0.3). This result agrees with calculations taking the 
inverse Mellin transformation of the LORSC moment-space expressions. Hence, the direct z-space 
calculation must be the same as our desired expression in this relatively high 2 range. Therefore, the 
correct choice of effective splitting functions leads to the M R S  program producing a very accurate 
approximation to OUT correct LORSC expressions for the structure functions over the complete 
range of parameter space.21 

We note that with our choice of splitting functions and definitions of parton densities then 
momentum is not conserved by the evolution: in the best fit to F2(2, Q 2 )  discussed in the next 
section the total momentum carried by the partons at Q2 = 2GeV2 is 87% and at Q2 = 5000GeV2 
it is about 94%. Hence, the amount of momentum violation is at the level of a few percent. We 
have already defended this violation of momentum conservation in subsection 4.3. We now also 
point out that starting with our definition of the partons we could define new parton densities 

and splitting functions by defining non-zero C[y ’ (a , /N )  and C ~ ~ ~ ’ ( a , / N )  beyond one-loop, and 
use the transformation rules in 52 to keep the structure functions unchanged. If these coefficient 
functions had negative coefficients then, compared to our prescription above, the low Q2 parton 
distributions would need to be larger, and would hence carry more momentum. As Q2 increased 
the effect of these new coefficient functions would decrease, and the extra amount of momentum 
carried by the new parton distributions compared to the original ones would decrease. Thus, the 
effect of such a redefinition of parton distributions would be to increase the amount of momentum 
carried by the partons at low Q2 and also to slow the growth of momentum with Q2 (or even to 
turn it into a fall). With a judicious redefinition of coefficient functions of this sort (with perhaps 
some dependence on a,(&:) as well as a,(Q2)) it should clearly be possible to find an effective 

factorization scheme where the structure functions are identical to those given by our prescription, 
but where the momentum violation will be extremely small. As already mentioned, one may think of 
this as a “physical scheme”. We have not seriously investigated this redefinition of parton densities 
in any quantitative manner since it will not affect any physical quantities. 

Now that it has been determined that our choice of splitting functions is correct, one can 

vary the input parameters in the standard way to obtain the best fit. In practice the starting 

21 In fact the agreement between the result obtained fiom the computer program and the “correct” result 
is certainly better than the agreement between NLO calculations performed using different programs and 
different prescriptions for truncating the solution at NLO [34]. 
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scale for the numerical evolution is chosen to be Qi = rn: so that the charm contribution to the 

structure functions is guaranteed to turn on at this scale. Evolving upwards, the bottom quark 

contribution turns on at Q2 = rni. Thus, the parton distributions and, via convolutions with 
coefficient fimctions, the structure functions are input at Qi. However, this does not mean that 

the true starting scale, Qi, has to be the same as Qi. This true starting scale is the scale at which 

some of the couplings in the anomalous dimensions in our full LORSC expressions have to be fixed. 

When performing the numerical integration upwards form a lower scale we simply interpret the 

values of FL(z, Q2), (dFz(2, Q 2 ) / d l n Q 2 )  and F2(2,Q2) at the fixed scale Qf as our input values 

for these structure functions. We then demand that at Qf the relationship between these quantities 

is the same (up to an accuracy much better than the errors on the data) as that demanded by the 

expressions (4.177), (4.178) and (4.180). We also demand that the value of each of these quantities 

at Qi is compatible with them being written as the convolution of our completely determined, up 

to the scale ALL, perturbative parts and our nonperturbative soft inputs. In practice we demand 

that these nonperturbative inputs must be flat at small 2 ,  i.e. they must be described well by a 

function of the form 

.F~(Z) = F~(I - 2 ) ~ ' ( 1 t  E~zO. '  t Y i Z ) .  (5.9) 

It is by satisfying these requirements on the inputs, while simultaneously choosing Qf as the fixed 

scale appearing in the anomalous dimension or splitting function dependent input terms in our 

expressions, which enables us to identify Qi as the true starting scale. The evolution which takes 

place upwards from &i(= m:) to Q i  would be identical if it were to take place backwards from Qi 
to Qt. The former manner of performing the evolution is simply more convenient in practice.22 

We should perhaps comment more on this starting scale Qf, and on its relationship to ALL. 
ALL has been defined as the particular choice of Qi for which the inputs for the structure functions 

reduce to the purely nonperturbative inputs. Hence, we imagine it is a scale typical of nonperturba- 

tive physics, i.e. ALL 5 1GeV2. If we choose Qi different from (in practice higher than) ALL, then 

ALL is not precisely the scale at which the full expressions for the structure functions reduce to 

the nonperturbative values, although it will remain fairly close to this. Hence, ALL is simply some 

phenomenological parameter which we will fine tune in order to get the best fit, though it does 

maintain its interpretation as a scale typical of the transition between perturbative and nonper- 

turbative physics, and it would be surprizing if it were much greater than say 1GeV2. As already 

mentioned, the choice of QX is undetermined. However, it should be such that it does make our full 
~ ~ ~~ 

22 As already mentioned, a more sophisticated treatment of the heavy quarks would involve calculating 

heavy quark structure functions separately from the light quark structure functions. More sophisticated 
treatments within the usual loop expansion, e.g [41], have the thresholds for heavy quark production built 
into the coefficient functions, and it is not important to begin numerical evolution at, or below any particular 
value of &' in this case. 
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expressions relatively insensitive to its value. (We also reduce this sensitivity by letting ALL be a 

free parameter for each choice of QX, though it should not vary a great deal.) This insensitivity to 

QX imposes two restrictions on its value. Firstly, QX should not be too small, otherwise the value 

of a,(&:) will be very sensitive to our choice of QX, making it difficult to make our expressions QX 
insensitive. However, we cannot simply choose very high Qi. This is because terms beyond LO in 

the full RSC expressions will contain terms of higher order in ln(Q;/ALL), albeit along with higher 

orders in a,(Qi). Hence, we do not wish to choose Qi to be a great deal larger than the scale ALL. 
Thus, QX is probably some intermediate value. It will, of course be determined in practice by the 

quality of the fits to data using the expressions (4.177), (4.180) and (4.178) evaluated at particular 

values of Qi. 

Now that we know precisely how we will perform our calculations of structure functions we 

can make some comment on the general form the structure functions have to take. The expressions 

for FL ( z ,Q~ )  and F2(z,Q2) depend on r",(a,/N) and riL (a, /N ) .  Both of these series have 
coefficients which behave like n-3/2(121n2)/7r for very large n. This leads to a cut in the N- 
plane at N = 6,4ln2 in both cases, and to the structure functions having asymptotic behaviour 
F(z,Q2) N (ln2)-3/22-41n2aa as z --t 0, where a, = a,(Q; )  and Q2 2 QX.  

However, this is only for the strict asymptotic limit 2 --t 0. It was convincingly demonstrated 

in [20] (and discussed from a Merent point of view in [22]) that one only need keep a finite number 

of terms in the leading-ln(l/z) series if working at finite h(l/z). In practice, if one works down 

to 2 x 10-' and the nonperturbative inputs behave roughly like (1 - 2)" then keeping terms up 

to 10th order in the series for r i L ( a , /N )  and r iL (a , /N )  is more than sufficient (truncating at 8th 

order leads to only tiny errors). The series up to this order have the explicit form 

rOLL(a,/N) = ($) +2.40($)~+?.07($)~+i7.3(%)~+2.01(%)~ 
+ 39.8( $)' + 168.5 ($) l0 + . - - , 

(5.10) 
and 

~ K ~ : ~ ( Q , / N )  = 1 + 2.5 

+ 58.1 (;)7 - +64.7($)' + 196.8($)' +650 (;)lo - + . . S .  

(5.11) 
It is clear that the low-order terms in both these series have coefficients which generally grow 

far less quickly than the asymptotic relationship a,+l = 4ln2a,; some fall, and in the case of 

r iL (a , /N )  are even zero. Thus, in the range of parameter space we are considering we will have 
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rather less steep behaviour than the asymptotic limit of T ( z ,  Q2) N ( I ~ z ) - ~ / ~ z - ~ ' ~ ~ & ~ .  Using the 

techniques in [22] to derive analytic expressions for the structure functions in the small-z limit, it 

becomes clear that the extreme smallness of the f i s t  few coefficients in the series for r0,,(a8/N) 
leads to the small-z form of TL(z, Q2) being driven largely by the first term, with the &-order 

term having a reasonable effect at the smallest z values. Similarly, the small-z form of &(z, Q2) 

is determined largely by the series I ' :L(a8/N) and the first term in r : , (a8/N) ,  again with the 

4th-order term in r i L ( a 8 /N )  playing some role at the smallest z values. 

One can be a little more quantitative. Choosing Qi = 25GeV2 and making a guess that 

ALL = 0.8GeV2 we obtainln(Qi/ALL) M 3.4. We also choose nonperturbative inputs which behave 

like Fi(1- 2)' for i = L,2. As argued in [22], for values of z 6 0.01 it is a good approximation to 

replace the (1 - 2)' behaviour with the behaviour O(O.l - z ) . ~ ~  Doing this we can derive simple 

expressions for the form of the inputs for z 6 0.01 which will be accurate up to a few percent error. 

Using the series (5.10) and (5.11) and the expressions (4.177) and (4.180) we can take the inverse 

Mellin transformations (using the techniques of [22]), obtaining 

(5.12) 

and 

(5.13) 

where t = In(O.l/z), and a8(Qi) x 0.2 if A Q C D , ~  x 100MeV. Putting in values of F' = 2.5 and 
F2 = 1 ,  choices which, as with the (1 - 2)' behaviour, are roughly compatible with the high 2 data, 

we have a rough estimate of the form of the input structure functions at Qi = 25GeV2. We see 

that the coefficients in the series in a8(Qi)( multiplying (FL + 4/27&) grow a little more quickly 
for F2(z, Qi) than for Fh(z, Qi). However, in the former case this contribution which rises with 

falling z is accompanied by the flat F2, whereas in the latter it is accompanied only by the nearly 

insignificant -4a8(Qi)/(54n)F2. Thus, we find that for 2 % 10-4 F'(z, 25) behaves approximately 
like O . ~ Z - O * ~  but that F2(2,25) is slightly flatter, behaving approximately like O.~Z-'.~~. These 

powers of z are clearly somewhat less steep than the asymptotic 2-O.'. Comparison of the estimate 

of F2(2,25) with the data in [l] and [2] shows a very reasonable qualitative agreement. 

23 The argument of the @-function depends on the power of (1 - x). Higher powers would 

step to occur at lower x and vice versa. 

Of course, 

require the 
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there is no data for F~ ( z ,25 )  for values of z anything like this low. Being rather more general, 

we find that for any Qi between 10GeV2 and lOOGeV', and with any sensible choice of ALL (e.g 

0.2GeV2 2 ALL 2 2GeV2), then both F2(z,Q;) and FL(z,Q;) behave roughly like 2-Oe3 for 

0.01 2 z 2 0.00001. Hence, this type of behaviour can be taken as a prediction of the theory. 

One can also use the sane techniques to make an estimate of the structure functions at values 

of Q2 away from 25GeV2. The expressions involved are relatively straightforward to derive but 

become rather less concise than (5.12) and (5.13), and we will not write them explicitly here. 

With the particular inputs above they do lead to good qualitative agreement with the data below 
z = 0.01. Therefore we have every reason to feel encouraged by our results and believe that we 

really are proceeding correctly. However, the real test of our approach will be a complete global fit 

to the available data for F~(z, Q2) using the rather more accurate calculations, especially at large 

2, of the MRS program. We will therefore discuss these detailed fits next. 

6. Fits to the Data and Predictions. 

As explained in detail in the previous section we indirectly use the expressions (4.177)-(4.180) 

to calculate the lowest-order-in-z, RSC part of the perturbative part of the solution for the z-space 
singlet structure functions, and convolute this with the nonperturbative parts. The-higher-order- 

in-z parts of the perturbative solution for the singlet structure function, along with the nonsinglet 
structure functions are calculated using the normal oneloop prescription. Phenomenologically this 

procedure is practically identical to using the full LORSC solution for the structure functions. Let 

us now explain how we use the procedure to obtain fits to structure function data. 

Once we have the general LORSC expression then by combining the singlet and nonsinglet 

components and varying all the free parameters (ALL, the soft inputs for Fi(z, Q2) and Ff(z, Q2) 
and the soft nonsinglet inputs), we obtain the best fit for the available F2 structure function data 

using a particular starting scale Qi. We note that at this starting scale the input Ff(z,Qi) and 

the evolution ( d F 2 ( 2 , Q 2 ) / d l n Q 2 ) g :  are forced by (4.178) and (4.180) to be trivially related at 
small 2. This is not the case when working at fixed order in a,, and indeed, is a new feature of 

the approach to the small-z structure functions in this paper, and in particular of the manner of 

determining the inputs that is used. Choosing the renormalisation scale to be Q2, the one-loop 

value for is fixed at 100MeV, thus giving a,(Mi)  = 0.115.24 This precise value is not 
determined by a best fit, but a value near to this is certainly favoured. 

24 Of course, since we are using a genuinely leading-order expression, any change in renormalbation scale 

p i  + kQ' is exactly countered by a change in  AN,=^ of the form  AN,=^ -t k-'AN,=a. However, it is 
encouraging that making the simple choice p i  = 0' leads to a value of a, (Mi )  which is nicely compatible 

with the usual value. 
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There are some further details we should mention. Firstly, when obtaining a fit using the 

above approach, the values of 32(z ,  Q2) used are not precisely those published in 111 and [2]. This 

is because it is not 5 ( 2 ,  Q2) that is measured directly at HERA, but the differential cross-section. 

This is related to the structure functions as follows 

where y = Q2//zs = Q2/90000z for the HERA experiment and R = F&(Z,Q~)/(~~(Z,Q~) - 
FL(z, Q2)). Over most of the range of parameter space y is very small and FL(z, Q2) is likely to be 
small. Hence, the measurement is essentially directly that of F2(2,Q2). However, at the lowest z 

values, especially as Q 2  increases, the value of F2(2, Q2) must be extracted using some prescription 

for the value of FL(z,Q~). Both the H1 and ZEUS collaborations, roughly speaking, obtain their 

values of FL(x,  Q2) from predictions coming from NLO calculations of F2(z,Q2); H1 use the GRV 
structure function parameterization while ZEUS perform their own fit to the data on 32(z, Q2).26 
Using these values of FJ,(z, Q2) can lead to an increase in 32 (2 ,  Q2) of about 12% for the highest 

values of y compared to the values of 32(z ,  Q2) obtained using the assumption that F'L(z, Q2) = 0. 
Since the approach in this paper leads in practice to a somewhat lower prediction of F'L(Z, Q2) than 
the standard NLO-in-a, approach, the values of F2(2,Q2) used in the fit must be altered to take 

account of the fact that our predictions for FL(z,Q~) are not the same as those used by H1 and 

ZEUS. Thus, the F2(z,Q2) values are a little (at most about 6%) lower for the largest values of 
Q2/z than in those in 111 and [2]. In practice, the best fit is f i s t  obtained using the published values 

of F2(2,Q2), a prediction obtained for 3 ~ ( 2 ,  Q2), the values of 3 2 ( z , Q 2 )  altered accordingly and 

the best fit obtained once again. The values of F2(z,Q2) are not altered a second time using the 

corrected prediction for FL(x, Q2) since this changes by only a small amount, leading to further 
changes in 3 i ( x , Q 2 )  of much less than 1%. 

We should also comment on our choice of mf for the best fit. This is chosen to be equal to 

4GeV2 in order to obtain a reasonable description of the available data on the charm structure 
function coming from EMC [42] and also from preliminary measurements at HERA [43]. The 

quality of the fit is shown in fig. 1. As one can see the fit is of a fair quality, with the predicted 

F,f (e,Q2) perhaps being a little large in general at large 2, and a little small at small 2. This result 

is qualitatively consistent with the fact that we have used a threshold at Q2 = m:, rather than at 

25 We note that both NLO calculations of F2(z,Q2) use a smooth treatment of the charm threshold 
while the predictions for F&(z, Q2) use a LO formula which uses NLO parton distributions and assumes 
4 massless quarks in the expression for the longitudinal coefficient functions. Thus, there seems to be an 
internal inconsistency in this method of determining F2(z,Q2). Fortunately the errors due to using the 

LO formula in general cancel with those from using 4 massless quarks. The net effect is an overestimate 
of at most about 2 - 3% on the extracted value of F2(z,Q2) at the largest values of y. For most of the 
parameter space the effect is negligible. 
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W2 = Q2(z-’ - 1) = 4mt, since in the latter case at very low z the threshold will effectively occur 
at lower values of Q2, and hence Ft(z, Q2) should increase relatively, while at large z the threshold 
will be at higher values of Q2, and Fi(z, Q2) will decrease relatively. Hopefully, a correct treatment 
of the charm quark threshold will support these qualitative conclusions. Since our treatment of 
the charm threshold is so primitive we do not regard our value of rnz as a determination of the 

charm mass. Rather, m, is used simply as a phenomenological parameter, ensuring that the charm 
contribution to the full structure function is qualitatively correct. Of course, mz = 4GeV2 is 

somewhat high compared with the values obtained from reliable determinations. We will comment 
on this value later. 

The strange quark is treated as being massless in our calculations, which is presumably a good 
approximation for the values of Q2 considered. However, we insist that the strange contribution 

to the structure function is 0.2 of the singlet structure function minus the valence contributions 
(i.e. the “sea structure function”) at Q2 = rn:. This ensures compatibility with the data on 

neutrino-induced deep inelastic di-muon production obtained by the CCFR collaboration [44]. 
Finally we consider the form of the gluon at large z. Within our effective factorization scheme 

we would expect the gluon distribution to be quite similar to that in the MS scheme at NLO-in-a, 

for very large 2. Thus, we demand that our gluon is qualitatively similar to that obtained from 

the WA70 prompt photon data [45] at z 2 0.3. This means that the gluon distribution must be 
roughly of the form 2.5(1- z ) ~  at Q2 = 20GeV2 for values of z this large. Encouragingly, this is 

the type of large z behaviour that the best fit chooses for the gluon, and no strong constraint is 
needed. 

The fit is performed for a wide variety of data: the H1 [l] and Zeus [2] data on c ’ ( z , Q 2 )  
with 0.000032 2 z 2 0.32 and 1.5GeV2 2 Q2 2 5000GeV2; The BCDMS data [46] on F;’(z,Q2) 
with 0.07 2 z 2 0.75 and 7.5GeV2 2 Q2 2 230GeV2; the new NMC data [47] on F;’(z,Q2) 
and F[d(z,Q2) with 0.008 2 z 2 0.5 and 2.5GeV2 2 Q2 2 65GeV2; NMC data on the ratio of 
F [ n ( ~ ,  Q2) to F[’(Z, Q2) [48] with 0.015 2 z 2 0.7 and 5.5GeV2 2 Q2 2 160GeV2, CCFR data 

[49] on FrN(z,Q2) and FlN(z,Q2) with 0.125 2 z 2 0.65 and 5GeV2 2 Q2 2 501.2GeV2; and 
the E665 [50] data on F[’(z,Q2) with 0.0037 2 z 2 0.387 and 2.05GeV2 2 64.3GeV2.26 For 
each data set the lowest z bins cover a range of Q2 from the minimum up to somewhat less than 
the maximum, and similarly the highest z bins cover a range of Q2 from somewhat higher than 

26 It has recently been realized that the MRS fit program has been treating the errors for the E665 data 

incorrectly; the errors as a fraction of the value of Fa (2, 9’) have been interpreted as the absolute errors, 

and the errors used have therefore been on average about 3 times too big. This has resulted in the very 

low xa in, for example, [26] and [31]. In this paper the correct errors are used, though the MRSR fits are 

not performed again. As will be seen, including the correct errors raises the x’ for the fit to the E665 data 

by a factor of about 8, as we would expect. However, it does not really affect any comparison of the best 

fits since all the fits we perform give descriptions of this data which are almost identical in quality. 



the minimum up to the maximum. We use the NMC data on the ratio F["(z, Q2)/Frp(z, Q2) as 

well as on Frp(z,Q2) and F/d(z,Q2) since the parameter space covered by the two types of data 

sets is by no means identical. One can see that the full range of data used in the fit covers an 
extremely wide range of both z and Q2 and thus provides a very stringent test of any approach 

used to describe it.27 
The result of the best fit to this data using the leading-order, including leading-ln( 1/z) terms, 

RSC expressions (henceforth referred to as the LO(x) fit) with Qi chosen to be equal to 40GeV2, 

rn; = 4GeV2 and rn; = 20GeV2 is shown in table 1. Also the result of the fit to the small-z data 

is shown in fig. 2. As one can see there is a very good quality fit to the whole selection of data, 

and thus over the whole range of z and Q2. Only the NMC F;"(z, Q2)/Frp(z1 Q2) data give a x2 
of much more than one per point, but this is due to the scatter of the data points and is true for 

any global fit. Overall, the fit gives a x2 of 1105 for 1099 data points.28 

The fit shown is for the particular starting scale Qi = 40GeV2, but the quality of the fit is 
extremely insensitive to changes in this scale, as we expect from the method of construction of the 

solutions. The fit is essentially unchanged over the range 20-80GeV2 , and we choose 40GeV2 as the 
geometricmean. When Qb drops below 20GeV2 the fit immediatelygets markedly worse. This effect 

is due to the bottom quark threshold, and we can explain it briefly. Both d F t ( z ,  Q2)/dlnQ2 and 

F'(z, Qi) are nearly proportional to Fi(z, Qtol) and hence nearly proportional to Nj at small 2, as 

can be seen from (4.180) and (4.178) and from (4.36) and (4.37). Thus, when starting at Qi above 
Q2 = 20GeV2 they are both a N, = 5. As we go below the bottom quark threshold, Q2 = 20GeV2, 

d F t ( ~ , Q ~ ) / d l n Q ~  becomes smaller, and is a 4/5Ft(z,&i) .  However, if Qi < 20GeV2, then 

d F t ( z ,  Q2)/dhQ2 is proportional to Ft(z, Si), with the same constant of proportionality as 

above, when below Q2 = 20GeV2, and is cx 5/4Ft(z,Qi) above Q2 = 20GeV2. In the latter 

case, choosing the correct value of Ft(z, Qi) to fit the data leads to d F t ( z ,  Q2)/dhQ2 being too 
large at very small 2. The quality of the fit then gets continuously worse as Qi lowers further, 

27 We have not included ZEUS data for Q' 2 2000GeV' since this was not included in the MRSR fits 
[26] against which we compare our results. The fit to this high z, high Q' data is practically identical for 
all the fits discussed in this paper, giving a x' of about 17 for the 7 data points. This fairly large value of 
x' is due to the large scatter of these points. 

28 The LO(x) fit is a little different from that in [31] since rn; = 4GeV2 is chosen here in order to give 

a rather better description of the charm structure function data. In fact this value of rn: leads to the best 

overall fit for the data also: lower rn; leads to a slightly worse fit to the HERA data with the fit to the 
other data remaining more or less unchanged, while higher rn: leads to a slightly worse fit to the large z 

data. We also point out that there was a problem in the computer program when at Q' < rn: in [31]; the 
slope of dF3(2, Q')/dh Q' was a little too small in this region. Thus, in fig. 1 in [31] this slope should be 
a little larger below Q' = 3GeV3, and hence the kink at this value of Q' becomes less obvious. As far as 
the fit is concerned, the effect of this error is minute since the error is small, and because there are so few 
data points below Q' = 3GeV'. In practice the overall x' should be N 2 better than quoted in [31]. 
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becoming completely uncompetitive long before reaching m:. We expect that a correct treatment 
of quark thresholds would lead to similar results to above for Qi x 40GeV2 ( d F t ( z ,  Q2)/dhQ2 CC 
F f ( z , Q 2 )  at the input here, but dF.j?(z,Q2)/dhQ2 falls off towards 3/4 of this as Q2 falls to 
N 4GeV2 and the charm quark effects die away) and then a smooth falling off of the quality of the 
fit as Qi was lowered, with it again beginning to deteriorate somewhere in the region of 20GeV2, 
due to a,(Qi) becoming too large below this value. 

There are 18 free parameters used in the fit: A g c ~ , ~  (which we choose to describe as a 

parameter since, although it is fixed at 100MeV, and small variations would no doubt improve 
the fit slightly, it can certainly not vary much); four parameters for each of the valence quark 

contributions, which are described by functions of the form (4.38) where the normalization is set by 
the number of valence quarks; four parameters for the nonperturbative inputs for the two singlet 

structure functions, which are of the form (5.9); and the unknown scale ALL, where we allow ALL 
to be a free parameter for each Qi. We do not consider Qi as a free parameter, since it can take a 
very wide range of values. The parameter ALL, which we have argued should be a scale typical of 
soft physics, turns out to be 0.55GeV2 for the fit starting at Qi = 40GeV2. This decreases a little 
as Qi increases and vice versa For Qi = 40GeV2 the soft inputs for the fit are roughly 

Fs(z) M 3(i - +(1+ 0.12O.~ - 0.221, F.f(z) x (1 - 2)3.4(l - 0.65z0.‘ + 4.52), (6.2) 

where they have been forced to be flat as z --$ 0. These nonperturbative inputs lead to complete 

inputs of @(z, Qi) x 3z-0.33 and F t ( z ,  Qi) x O.65z-Oe3 for 0.01 2 z 2 0.0001, with the effective 
X increasing in both cases for even smaller 2. Instead of forcing the nonperturbative inputs to be 
flat as z + 0 we could allow an asymptotic behaviour z-’, where X 6 0.08. This leads to an 
equally good fit as for the flat nonperturbative inputs. 

Thus, the LO(x) fit seems to be a success. However, in order to gauge its true quality it 
is helpful to have some points of comparison. Hence, we will discuss some alternative fits. As 
in [31], the most recent MRS fits RI and R2 are shown. These are obtained using the standard 
two-loop method, where RI allows A t -  to be free (giving A&- = 241MeV) and R2 fixes 
A- = 344MeV to force a better fit to the HERA data. The new NMC data for F[’(Z, Q2) and 
F[d(z, Q2) are used rather than the previous sets which were used in the MRS fits. This new data 
is not used directly in the MRS fits, i.e they are not performed again using these new data, the x2 
values for the new NMC data sets are simply calculated using the same input parameters as in [26]. 
However, there is little indication that these would be changed much by the new data. The MRS 
fits are useful for purposes of comparison for a number of reasons. Firstly the treatment of the 
errors in this paper is identical to that in the MRS fits, so consistency in this respect is guaranteed. 
Also, any systematic Merences due to differences in computer programs is guaranteed to be absent. 
Finally, the cuts in Q2 for each data set are chosen to be the same in this paper as for the MRS 
fits. 

N -4 N -4 
MS Nt =4 

MS 
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The number of free parameters in the NLO-in-a, fit is the same as in the LO(x) fit. There is 
one more parameter in the NLO-in-a, fit due to the powerlike forms of the input gluon and singlet 

quark at small z being i n d e ~ e n d e n t ~ ~  whereas the small-z shape of the inputs for both structure 

functions is completely determined by the one parameter ALL in the LO(x) fit. However, there 

is one less parameter in the NLO fit due to the normalization of the gluon being determined by 

momentum conservation. Essentially, the LO(x) fit is a little less constrained at large z than the 

NLO fit, but rather more predetermined at small z than the NLO fit. Indeed, the LO(x) fit has 
a certain amount of predictive power in the low z region, as seen at the end of the last section, 

whereas the NLO has none. 

Comparing the LO(x) fit and the MRS fits, it is clear that the LO(x) scheme-independent fit 

is much better for the HERA data (even when compared to Rz), much better for the BCDMS data 

(even when compared to RI) and similar in standard for the rest of the data. The overall fit is 
N 200 better for the whole data set; clearly a lot better. However, this direct comparison with the 

MRS fits is rather unfair, since there are a number of ways in which it differs from the LO(x) fit. 

First, and not terribly importantly, the normalisations of the data sets are allowed to vary more 

in the LO(x) fits than in the MRS fits, as described in the caption to table 1. (There is a small 

systematic difference in the normalization required by the H1 data and ZEUS data.) Rather more 

importantly the MRS fits use the SLAC data [51] on Flp(z, Q2) in the fits as well as the data sets 

mentioned in table 1. This covers the range 0.07 2 z 2 0.65 and 2GeV2 2 Q2 2 22.2GeV2, i.e. the 

same sort of high z range as the BCDMS data, but rather lower Q2 in general. Hence the SLAC 

data is not included in the LO(x) fit due to much greater sensitivity of this data to potential higher 

twist effects than any of the other data sets. If it is included in a fit, then in certain regions of 
parameter space it is incompatible with the BCDMS data, as can be seen in fig. 4 of [26]. Hence a 

best fit to both the BCDMS data and the SLAC data must, to a certain extent, be a compromise 

between the two. Therefore the fit to the BCDMS data in the MRS fits is worsened somewhat by 

the need to fit the SLAC data. If the SLAC data were ignored the fits to the BCDMS data would 

improve by about 40. The LO(x) fit also differs from the MRS fits in the starting scale of the 

evolution and in the treatment of the quark thresholds. The charm contribution to the structure 

function in the MRS fits turns on at Qi = 1GeV2 but is suppressed by a phenomenological factor 

of a function of (3.5GeV2/Q2) in order to give a reasonable description of the charm data. The 

29 We claim that the allowed powerlike form of the inputs at small x is against the spirit of a well- 

ordered perturbative expansion, and that the small-x form of the inputs should be determined in terms of 

the nonperturbative inputs and the requirement that the expressions are insensitive to the choice of Qi, as 
already discussed in $4.2. However, enforcing this rule would mean that the quality of the fit to the small-iz 

data was very poor. Thus, we allow the more usual, unjustified choice for the small-x form of the inputs. 
In fact, at Qi = 1GeV2 the gluon is strongly valence-like, while the sea-quark distribution N z -~”” ’  at 

small x. 
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bottom contribution to the structure function, which is very small, is not included at all. Finally, 
the fact that the quark and gluon distributions are input at 1GeV2 in the M R S  fits is not helpful 
to the quality of the fit. If the best fit is obtained for the HERA data using the NLO calculation 
with massless quarks with inputs at Qi x 4GeV2, as in [27], and evolution performed downwards 
in Q2 then the gluon becomes negative at very small z by the time Q2 = lGeV2 is reached. Hence, 
the valence-like input gluon distributions in MRSRl and MRSR2 are not the ideal distributions 
for fitting the HERA data. A parameterization which would allow the gluon distribution to turn 
over and become negative at very small z would be better, as would simply starting at larger Q2 
where the gluon distribution is happy to be positive e~erywhere.~' 

Thus, in order to make a more meaningful comparison of the LO(x) fit with a NLO-in-a, fit 
we have ourselves performed a NLO-in-a, fit, called NLOl, allowing the normalizations to vary 
in the same way as in the LO(x) fit, with exactly the same treatment of quark thresholds as the 
LO(x) fit, with the input parton distributions chosen at Qi = rnf and with the fit to exactly the 
same data, i.e. to those sets shown in table 1, and with the constraint on the gluon from the WA70 
prompt photon data.31 As in the MRS fits the values of F2(2,Q2) at small z are those quoted 

in [2] and [l]. Strictly speaking they should be altered to take account of fact that the predicted 
values of FL(z, Q2) from these fits are not precisely the same as those used in [l] and [2] to extract 
&(z, Q2) from the measurement of the differential cross-section, i.e. an iterative procedure should 
be used as with the LO(x) fit. However, the differences between the values of FL(z,Q') in [l] and 

[2] and from these NLO-in-a, fits are far smaller than the differences between those in [l] and [2] 
and the LO(x) fit. Hence, in practice the errors introduced by not altering the values of FL(z, Q2) 

are very small (the x2 for the fit to the HERA data might improve by a couple of points if the 
formally correct procedure was used). The value of rnf is chosen to provide a good description of 
the data on the charm structure function. The value needed is rnf = 2.75GeV2, somewhat lower 
than in the LO(x) fit, and the fit to the charm structure function data is shown in fig. 3. 32 The 
value of A&- determined by the fit is intermediate to those chosen by the M R S  fits, being equal 

to 299MeV. The quality of the fit is shown in table 1. 

N -4 

30 Starting the evolution at Qi < 1GeV' quickly leads to much worse fits to the data. Also starting at 

fairly high Qi, i.e. Qi 2 20GeV', leads to a worsening of the fit due to the given form of parameterization 
not being adequate to describe the parton distributions at these scales, see e.g. [28]. Thus, Qi is no less a 
parameter in a NLO fit as in the LO(x) fit. 

31 Once again we allow the small-z form of the inputs to be unjustified powerlike behaviours. At 
Qi = 2.75GeV' the gluon is quite flat while the sea-quark distribution - z - ~ - ~ . ' ' .  

32 As in the LO(x) fit the choice of m: which gives a good description of the charm data is also the 
choice which gives the best global fit. Raising the value of m: leads to the value of A&- chosen going up, 
which improves the fit to the HERA data, but the fit to the rest of the data deteriorates by more than this 

improvement. Lowering the value of m: leads to the value of & chosen going down, improving the fit 

to the large z data, but again leading to overall deterioration. 

N -4 
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As one can see, the different treatment of the quark thresholds and the higher starting scale 

for evolution has produced a better fit to the HERA data than the MRS fits, even though the value 

of a,(Q2) is lower than in the R2 fit. However, the best fit comes from allowing the normalization 

of the H1 data to be at the lower limit allowed by the error on the n~rmalization~~,  and is still not 

as good as the LO(x) fit to the HERA data. Not including the SLAC data, and in the case of the 

R2 fit the lowering of leads to a much better fit to the BCDMS data than the MRS fits, 
but again this is clearly not as good as the LO(x) fit. The fit to the NMC data is much the same 

for the LO(x) fit as for the NLOl fit, and the NLOl fit is a little better for the CCFR data. The 

overall quality of the NLO1 fit is 1169 for the 1099 points, and thus is 64 worse than the LO(x) fit. 

Therefore, the LO(x) fit is still clearly better than the NLO1 fit, but not nearly as convincingly as 

appeared to be the case when compared to the MRS fits. Nevertheless, it is encouraging that, while 

the overall fits to the relatively high z data, i.e. the BCDMS, NMC, E665 and CCFR data are 

similar in the NLOl fit and the LOCx) fit, it is the fit to the small-z HERA data that is definitely 

better for the LO(x) fit, as we would expect. This can be seen even more clearly if we simply 

examine the quality of the fit by separating the data into two sets: one where z < 0.1 and one 

where z 2 0.1. This is shown in table 2, and demonstrates that the LO(x) fit is superior at small 

2, while not quite as good as the NLOl fit at large 2. 

This qualitative result above is exactly what we would expect. The importance of the leading- 

ln(l/z) terms in the LORSC calculation can be quantitatively judged by how they affect the fit. 

If, after obtaining the best LO(x) fit, all terms other than those in the one-loop expressions are set 

to zero, the quality of the fit is unchanged above z = 0.3, begins to alter slightly below this, and 
is clearly worse by the time we reach z = 0.1. Thus, the leading-ln(l/z) terms are important by 

this value of 2. However, much of this effect is due to the terms at O(af), so the NLO expression 

at fixed order in a, should be insensitive to higher-order-in-a, leading-ln(l/z) terms down to 

z somewhat lower than 0.1. Therefore, above z = 0.1 the NLO fit should in principle be better 

than the LO(x) fit since it contains terms at NLO in a, which are important at large 2. However, 

the NLO fit should be considerably worse at small z since it does not contain many important 

leading-ln(l/z) terms. This is qualitatively in agreement with the comparison of the NLOl fit and 

the LO(x) fit. 

However, the above comparison is somewhat incorrect because in the process of obtaining 

the best fit for all the data the NLO1 fit may choose some parameters, particularly A&- , such 

that they mimic the effects of the leading-ln(l/z) terms, and a decent fit for the small z data is 

obtained to the detriment of the fit to the large z data. In order to check this hypothesis we have 
also performed a NLO-in-a, fit with Am fixed at 250MeV, which we will denote by NLOz. The 

33 The fit to the H1 data continues to improve slightly for a normalization going down to 0.96 if this is 
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results of this fit in terms of the different data sets is shown in table 1. The fit clearly improves 

compared to the NLOl fit for the BCDMS and CCFR data, and gives the best overall fit for the 
high z data sets. It worsens somewhat for the NMC data, and also for the HERA data, and overall 
is slightly worse than the NLOl fit, having a x2 of 1184 for the 1099 data points. Nevertheless, it 
is perhaps a truer representation of a real NLO-in-a, fit than NLO1 since, as can be seen in table 

2, it gives a better fit to high z data, but not such a good fit to the small-z data which presumably 
require the leading-ln(l/z) terms. Whether one believes this argument or not, it is certainly clear 
that the LO(x) fit does provide a better description of the data than any standard NLO-in-a, fit. 

We can be even more general in OUT NLO-in-a, type fit. We have already argued that, when 
working at fixed order in a,, despite the fact that the amount of momentum carried by the partons 
can be constant, it does not have to sum to unity, i.e. higher-order inputs can carry some fraction 
of the momentum. Thus, we have also performed a fit where the total momentum of the partons 
is not constrained. When doing this we have again allowed the small-z form of the parton inputs 

to be o( z-l-’  which, as we have already stressed, we do not believe is correct procedure for a 
NLO-in-a, calculation. However, we will allow as much freedom in this fit as possible. Doing so 

we obtain a fit which is nearly, but still not as good as the LO(x) fit. The fit to the data for z 2 0.1 
is about 25 better than the LO(x) fit, i.e. similar to the NL02 fit, but still about 45 worse for 
z < 0.1. The value of Am- chosen by the fit is 230MeV. The amounts of momentum carried 
by the quarks are similar to the other NLO-in-a, fits; these are constrained by fitting the data 
near to the input scale. The momentum carried by the gluon is 57%, far higher than in the other 
NLO-in-a, fits. This large amount of gluon momentum is necessary in order make the gluon large 
at small z and hence provide a good fit to the small-z data for F2(2,Q2) even with the small 
value of A t -  . The large amount of gluon momentum leads to the total momentum carried by 

the NLO partons being 114% of the proton’s momentum. We do not believe the validity of this 
fit, having already argued that the LORSC expressions are the theoretically correct expressions, 
and that leading-ln(l/z) terms are necessary for the correct description of small-z data. Indeed, 
this fit leads to very Merent predictions for other quantities from those obtained using the LO(x) 
fit, as we will soon see. However, we do believe that the lack of the momentum constraint on 
the inputs allows this NLO-in-a, fit to be perhaps the most realistic at high 2: the fact that the 
NLO-in-a, fit is not designed to work at small z due to the lack of leading-ln(l/z) terms can be 
largely compensated by an overly large input gluon distribution at small 2, and the high z part of 
the fit can be as good as possible without having to compromise itself to match the low z data. In 
fact, at z 2 0.1 the details of this fit are very similar to the NLO2 fit, but the gluon is much larger 
at smaller z in this fit. 

Nt-4 
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Let us comment briefly on other possible NLO-in-a, fits. As already mentioned it is dif5cult 
to compare directly with global fits from groups other than MRS since there may be Merences 
in treatment of errors or systematic differences in the outputs of the computer program. However, 
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we can make some comments. The latest CTEQ fits [52], e.g. CTEQ4M, are performed in a very 

similar manner to the NLOl fit, though with different cuts on data, and the results also appear to 
be very similar.34 Hence, there seems little more to say than that the NLOl fit is similar to the 

CTEQ results. 

We also feel we must comment on the fit performed by H1 in [l]. This takes account of the 

charm quark threshold rather more correctly than in the present paper, i.e. there is a smooth 

threshold at W2 = 4 4 .  However, it is a fit to only the H1, NMC and BCDMS data. It is difficult 

to make a direct comparison with this fit due to the completely different way of performing the 

calculation. It is however possible to perform a NLO-in-a, fit to the same data as the H! fit using 

the same prescription as for NLOl and NLO2. This has been done, and many similarities to features 

of the H1 fit noticed. It is possible to obtain a NLO-in-a, fit for the H1, NMC and BCDMS data 

of a comparable quality to that in the LO(x) fit. However, if one simply inserts the values of the 
ZEUS and CCFR data after finding the best fit one finds that the x2 for the ZEUS fit is over 300, 

i.e. there is a certain degree of incompatibility between finding the best fit to the H1 data and the 

ZEUS data, and the fit to the CCFR data is very poor indeed. Perhaps more importantly, since 

the fit does not put any direct constraint on the gluon, then as in [l] one obtains a gluon which at 

Q2 = 5GeV2 behaves like 2x-Oe2 at small 2, which helps the fit to the H1 data, but behaves like 

2(1- z ) ~  at large x. This leads to a gluon like 2(1- z)~* '  at large x at Q2 = 20GeV2 rather than 
the 2.5(1 - z ) ~  required by the WA70 prompt photon data. For values of z x 0.4, 2(1 - is 

clearly a great deal smaller than 2.5(1- z ) ~ ,  and so the gluon obtained from this type of approach 

is hopelessly incompatible with the prompt photon data. 

We feel that similar, if less dramatic, considerations are probably true of the type of approach 

adopted in [20], [27] and [28], where fits are performed to small-x data alone. Despite the fact that 

the input parton distributions are constrained to be very similar to standard parton distributions 

at large z,  e.g. the MRSDO distributions, it must be remembered that these parton distributions 

provide good descriptions of the large x data when evolved at NLO in a, only when using a 

particular value of Am . Evolving the MRSDO parton distributions, which should have A&= = 
230MeV, using instead Am = 360MeV will produce very different results. Indeed, as some sort 

of comparison we are able to obtain a fit to the H1 data and NMC data (thus constraining the 

high x parton distributions) alone to a quality rather better than in the full LO(x) fit by using 
a NLO-in-a, fit. However, the fit does indeed choose A& = 360MeV. The resulting fit to 

virtually all the other data is very poor. 

Nt =4 N 4  

N3 =4 

N -4 

34 There is a clear improvement to the fit to the BCDMS data compared to the NLOl fit, and clear 
worsening of the fit to the CCFR Fa(z, Q') data. These seem to be typical systematic differences between 

all CTEQ fits and MRS type fits and are presumably due to systematic differences in the treatment of 

errors or in the numerical calculation. The comparison of the codes in [34] certainly supports the latter 
conclusion. 
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Thus, we have a number of clear demonstrations of the dangers of performing fits to only a 

restricted set of data. In order to avoid very obvious inconsistencies with some particular data it is 

necessary to perform proper global fits. One may investigate the possibility that the data in some 

region of parameter space is not really expected to be fit well using a particular expression. Indeed, 

this is what we have done in the NLO2 fit, and believe that we have sound theoretical arguments 

for doing so, and moreover that the results of the fits back these up. 

This leads us to the question of the determination of a,(Mg) using global fits to structure 

function data. The complete RSC expression for structure functions only exists at leadug order, 

and, as already mentioned, this leaves the renormalization scale completely undetermined. Hence, a 

determination of a,(Mg) does not really take place. (Note, however, the previous comments on this 

question.) It is not yet possible to extend the RSC calculation beyond the leading order due to lack 

of knowledge of NLO-in-ln(l/z) terms, but hopefully these will shortly become available [35], and 

when they do the NLO versions of (4.177)-(4.180) can be derived and put to use. Only then should 

the NLO coupling constant really be used in any global fit. Until the full renormalization-scheme- 

consistent NLO expressions become available, we believe that it is incorrect to use NLO-in-a, fits 

to small-z structure function data in order to determine the NLO coupling constant (unless, of 

course, direct measurements of FL(z,Q~) and other less inclusive quantities at very small z turn 

out to verify standard two-loop predictions). However, as already argued, the fixed-order-in-a, 

expressions should be accurate for CCFR, BCDMS and NMC data (except perhaps at the lowest 

z values), which after all are still much more precise than HERA data, and fits to these data alone 

will provide the best determination of the NLO a, (Q2 ) .  However, let us be wary here. One might 

think that the above comments mean that we believe that the value of A& at NLO is about 

250MeV, since our fits to large z data at NLO-in-a, support this. To a certain extent this is true, 

but we also believe that our naive treatment of the heavy quark thresholds can introduce an error 

in the determination of a, (Mi)  which could easily be as large as 0.005. Hence, until this naive 

treatment is improved, we have nothing concrete to say about the value of a,(Q2).  

N 4  

We have given what we hope are convincing arguments for our advocated approach for cal- 

culating structure functions. Not only do we claim theoretical correctness, and limited predictive 

power, but we also have good quality, very comprehensive fits to data on F~(z, Q2). However, we 

are well aware that only further experimental tests can prove us right (or wrong). Hence, we now 

discuss our predictions for FL(z, Q2). 

So far we have only probed FL(z, Q2) indirectly, i.e. it is simply related to the lnQ2 derivative 

of & ( z , Q 2 )  (as well as to the input F2(2,Qg)). Having tied down the nonperturbative inputs 

and ALL and Qi from our fit to F2(2, Q2), we have a prediction for FL(z, Q2). The result of this 

prediction for the fit with Qg = 40GeV2 is shown in fig. 4, where it is compared to the prediction 

using the NLO-in-a, approach, in particular the NLOl fit. As one can see, it is smaller than the 
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NLOl Fh(z,Q2), but becomes steeper at very small z. The NL02 fit gives a very similar form 

of 3~(z, Q2) to the NLOl fit, while the NLO-in-a, fit where momentum is not conserved leads 

to a similar form of Fh(z,Q2) at high z but an even larger value than the NLOl fit at z 0.1. 
The LORSC prediction for . 7 ~ ( z ,  Q2) is weakly dependent on the value of Qi chosen: the value at 

Q2 = 5GeV2 and z = 10-4 varies by klO% within our range of Qt (increasing with Q;), and by less 

than this for higher z and Q2.36 The very recent results on Fh(z, Q2) for 0.01 2 z 2 0.1 from NMC 

[47] are matched far better by the LO(x) -Th(z, Q2) than the NLOl -Th(z, Q2) (the latter being 
rather large). However, it is fair to say that any problems with the NLOI Fh(z,Qz) can almost 

certainly be attributed to the naive treatment of the charm quark threshold, i.e. the predicted 

Fh(z, Q2) from the NLO-in-a, calculation in the last of [9] matches the data well. Actually, it is 

rather uncertain whether in this region of parameter space 3~(z, Q2) would be better described by 

the LORSC calculation, which ignores some O(a3) effects, or the NLO-in-a, calculation, which 

ignores the leading-ln(l/z) effects beyond second order in a,. 

Measurements of Fh(z, Q2) at z < 10-2 would be a better discriminant between fked-order- 

in-a, calculations and those involving leading-ln(l/z) terms. However, the sort of “determination” 

of FL(z, Q2) already performed by H1 [54] is really only a consistency check for a particular NLO- 

in-a, fit. It is by no means a true measurement of FL(z, (a2). In essence, all it proves is that the 
measurements of the cross-section are consistent with a particular NLO-in-a, fit to &(z ,  Q2) when 

the relationship between the cross-section and the values of &(z, Q2) is determined assuming the 

correctness of the NLO-in-a, expressions for both structure functions. This is a perfectly correct 

procedure, and should be adopted for any fit to F2(z,Q2) data, as it has been for the LO(x) fit. 

It would cause concern about the validity of the particular fit being used if it were to fail, but in 

itself says nothing whatever about the validity of a different approach, or about the actual value 

of FL(~, Q2). Hence, real measurements of Fh(z, Q2) are needed in order to find the real values of 

Fh(z,Q2). From fig. 4 it is clear that such measurements at H E M  would be an important (and 

probably essential) way of determining the validity of the approach in this paper, and the genuine 

importance of leading-ln( l/z) terms in structure functions. 
Another potentially import ant discriminant between different met hods of calculating structure 

functions is the measurement of the charm structure function. Both the LO(x) fit and the NLOl 

fit can provide good fits to the currently available charm data, as already seen, and the value of rn: 
-~ -~ 

35 The author has submitted two conference proceedings on the topic of the current paper [53] and should 
point out that these are both incomplete. In the former the expression (4.180) was not used for the input 

for 31(x, 0’). Thus, the fit imposed far less constraint on Qi than the full procedure, and a value of 5GeVa 
was used, which resulted in a prediction of 3 ~ ( a ,  Q’) that is much too small. The latter claimed that an 

input for FL(z, Q2) a little smaller than that consistent with the full set of expressions was needed for the 

best fit, even at the optimum Qi. This was due to there being no account whatever taken of the bquark 
threshold. The correction makes very little difference to the phenomenological results in this latter case. 
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in the NLOl fit is rather more satisfactory than that in the LO(x) fit. However, these calculations 

involve incorrect treatments of the charm quark threshold. A correct treatment of this threshold 

at NLO in a, [41] shows that the value of rn: must be at least halved in order to produce the same 

sort of value of the charm structure function as the approach used in this paper. Indeed, as seen 

in [55], correct NLO-in-a, calculations with rnz = 2.25GeV2 undershoot the smd-z data (other 

than the H1, calculation which has a form of the gluon already criticized and which would certainly 

badly undershoot the larger z EMC data). In fact, standard NLO-in-a, calculations using the 

coefficient functions for charm production in [41] only produce a sufficiently large charm structure 

function if rnz E 1GeV2 [56], i.e. somewhat lower than expected. 

A correct treatment of the charm quark threshold within the framework advocated in this 

paper has not been completely worked out (although, as already mentioned, work is in progress), 

and has certainly not been tested. However, using the naive treatment in this paper, the quark 

mass required in the LORSC approach is somewhat higher than for the NLO-in-a, approach. If 
the same sort of conclusion is true when using a correct treatment of quark thresholds, as we might 

expect (but cannot guarantee), then this willoffer further support for the LORSC calculation. More 

generally, a comparison of the theoretical calculations with the ever-improving data on the charm 

structure function seems potentially to be a very useful way of discriminating between Werent 

methods of ~alculation.~' 

In principle there are many other quantities which could be calculated within the LORSC 

framework and compared to those calculated using the NLO-in-a, approach (or any other method) 

and to experimental data. Particularly obvious examples are the distribution of the transverse 

energy flow in the final state in lepton-hadron scattering and the the cross-section for forward 

jet production, for both of which there exists some experimental data which does not seem to be 

terribly well described by the order-by-order-in-a, approach, particularly in the latter case, see 

e.g. [57] and [58]. We have not performed a LORSC calculation of any such quantities, and it is very 

difficult to estimate the results, other than guess that they will probably lie somewhere between the 

fixed-order-in-a, predictions and those obtained using BFKL physics naively. Such calculations are 

obviously a priority, and work will begin soon. Only by comparing our theoretical predictions with 

a wide variety of experimental data can we determine unambiguously which theoretical approach 

is correct. For the moment we leave the theoretical arguments and the results of tables 1 and 2 as 

the evidence supporting our particular approach. 
~~ 

36 We also note that as seen in [41] the longitudinal structure function is more sensitive to the treatment 
of the charm quark threshold than F2(z,Q2), with there being a sizeable discontinuity in FL(z,@) at 

Qa = m? when using the approach in this paper. Thus, for accurate predictions of FL(z,Q~) at values 
of Qa in the vicinity of rn? a smooth treatment of the charm quark threshold is really needed in practice. 

The problem is not as acute at the bottom quark threshold because the total squared charge of the quarks 
changes proportionally much less at this threshold than at the charm quark threshold. 
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7. Conclusion and Summary. 

In this paper we have derived expressions for the structure functions F~(z, Q’) and FL(z, Q2) 
in a theoretically correct, well-ordered manner. We have first done this for the particular expansions 
schemes which order the expressions strictly in orders of a,, i.e. the standard loop expansion, or in 
terms of the leading powers of In( 1/z) for given power of a,, i.e. the leading-ln( l / z )  expansion. In 
both cases we have demonstrated that a correct calculation automatically leads to factorization- 
scheme-invariant results which may be expressed in terms of Catani’s physical anomalous dimen- 

sions [30]. Thus, we refbte any suggestion that these physical anomalous dimensions are simply 

an example of anomalous dimensions in a convenient, physically motivated factorization scheme, 

but insist that they are fundamental pieces in the correct expressions for the structure functions. 

Likewise, we insist that no particular factorization scheme is fundamentally any more “physical” 

than any other. However, we also demonstrate that in the case of the leading-ln(l/z) expansion the 

correct expressions are more difficult to obtain than in the loop expansion, and a correct calculation 
requires more than just the knowledge of these physical anomalous dimensions. 

.. - 

We have then argued that both the above expansion schemes are restrictive, and lead to only 
part of the correct solution at any given order. We have shown that the only calculational method 
which is truly consistent with working to a given order in a, within a given renormalization scheme 

is the renormalization-scheme-consistent expansion, in which one works to a given order in both 

a, and in ln(l/z) for given power of a,. After presenting our argument that this is indeed the only 
correct expansion scheme, we have made use of Catani’s physical anomalous dimensions (though 

this is not necessary, merely very convenient) to derive the leading-order, renormalization-scheme- 

consistent expressions for the structure functions F2(2, Q2) and FL(z, Q2).  
As part of our overall approach we have also taken a different view of the starting scale Qi 

from that normally taken. Rather than trying to guess some form for the input at some particular 
Qi, or simply allowing the inputs at some arbitrary Qi to take any form they wish within a 
given parameterization, we have demanded firstly that our expressions should be as insensitive as 

possible to the choice of the input scale, and secondly that any deviation from the flat Regge- 

type behaviour of the structure functions must come from perturbative effects. Thus, our inputs 

take the form of nonperturbative functions, which are flat at small z, convoluted with functions of 
the physical anomalous dimensions which are evaluated at Qi and determined by the requirement 

of insensitivity to the value of Qi. This leads to our inputs being determined entirely in terms 

of the flat nonperturbative inputs and one arbitrary scale ALL which roughly indicates the scale 
where perturbative physics should break down, i.e. ALL 1GeV2. This gives us a great deal more 

predictive power than more usual approaches. We have some idea of the form of individual structure 
functions at small 2: for a full range of sensible choices of QX (10GeV2 - 100GeV2) and ALL we 

obtain &(z, Qi) roughly o( z-(0.26-0.33) for 0.01 2 z 2 0.00001, which is clearly in good qualitative 
agreement with the data. However, we also have a much stronger prediction for the relationship 
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between the small-z inputs for F2(2, Q2 ) ,  FL(z, Q2)  and for dFz(2, Q2)/dlnQ2. Therefore, as 

well as some predictive (or at the very least, explanatory) power for individual structure functions, 

we have a consistency condition between the form of the Merent inputs, i.e. once we choose the 

input for &(z, Q2 )  we have determined, up to a small amount of freedom, the small-z inputs for 

dF2(z, Q2)/dlnQ2 and FL(z, Q2) .  This is a feature unique to the approach in this paper. 
Not only are the features of the LORSC calculation unique and compelling, but they also work 

rather well in practice. The LORSC expressions, including this constraint on the small-z inputs, 
lead to very good fits to the data. To qualify this statement, the x2 for the LORSC fit to 1099 data 

on F2(z,Q2) ranging from from 0.75 2 z 2 0.000032 and 1.5GeV2 5 Q2 5 5000GeV2 is better by 
at least 60 than any NLO-in-a, fit, even though the NLO-in-a, fit is allowed arbitrary, unjustified 

powerlike behaviour at small z (i.e. the sea-quark distribution oc z-'-'*~), and the small-z inputs 
for F2(z,Q2) and dFz(z,Q2)/dlnQ2 are allowed to vary with respect to each other a great deal 
more than in the LORSC fit. In fact, as we would hope, all of this superiority comes from the fit to 
the data with z < 0.1. Moreover, much the same quality of fit is obtained for a range of QZ from 

20GeV2 - 80GeV2. Let us also put the difference in the quality of the LO(x) and the NLO, fits, i.e. 
a difference of x2 of 64, into context: if one obtains fits to the data using the NLO-in-a, approach 

and allows the fit to become up to 64 worse than the (best) NLOl fit, then values of Am from 
19OMeV to 380MeV are allowed, i.e. a,(Mi)  = 0.109 + 0.122. As a caveat to the above, however, 

it is certainly true that the calculations in this paper must be improved to take account of massive 

quark thresholds in a better manner (as is the case with most NLO-in-a, fits), and work towards 

this end is in progress. Nevertheless, with the present treatment we feel that the quality of the fit 
and the degree of explanatory (if not predictive) power, not to mention the theoretical correctness, 
give strong justification for the LORSC expressions. 

We do, however, recognize that the quality of the fit alone, although impressive, is not such a 
substantial improvement on more standard approaches that it necessarily convinces one that this 
approach has to be correct. In order to obtain verification we must compare with more and Merent 
experimental data. Hence, we have presented a LORSC prediction for F L ( z , Q ~ ) ,  comparing it 
to that obtained using the NLO-in-a, approach. Hopefully there will be true measurements of 

FL(z, Q 2 )  at HERA some time in the future with which we can compare these predictions. We stress 
the importance of such measurements to the understanding of the physics which really underlies 

hadron interactions. In the near future we will also have predictions of the charm contribution 
to the structure function within the framework of a correct treatment of the massive quark, and 
comparison with the ever-improving data on the charm structure function should also be a good 

discriminant between Merent theoretical approaches. Calculations and measurements of other, 
less inclusive quantities, such as forward jets, are another clear goal. 

Finally, as we have noted, OUT calculation is at present only at leading order due to the lack of 
knowledge of next-to-leading-order-in-ln(l/z) coefficient functions and anomalous dimensions, or 
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equivalently of physical anomalous dimensions. This means that the NLO-in-a, approach is still 
in principle superior to our approach at high 2, where the leading-ln(l/z) terms at third order in 

a, and beyond are not important but the CJ(a3) terms are. Indeed, in practice the NLO-in-a, 

fits, particularly the NLOz fit, are slightly better than the LO(x) fit for data at z 2 0.1. We 
might therefore expect any predictions coming from the NLO-in-a, approach to be more accurate 

than those coming from the LORSC approach down to values of z somewhere in the region of 

0.05. The lack of the NLORSC expressions also means that a true determination of a,(Mi)  

from a global fit to structure function data is not yet possible, but that the best determination 

from fits to structure function data should at present come from using the NLO-in-a, approach, 

with a correct treatment of heavy quark thresholds, using only large z data. For a really fair 
comparison between the renormalieation-scheme-consistent method and the conventional order- 
by-order-in-a, approach we really need the full next-to-leading-order, renormalieation-scheme- 

consistent calculation. Hopefully the required NLO in In(l/z) quantities will soon become available 
[35], and with a little work we will be able to make such a comparison. We would expect that when 

using the NLORSC expressions the fit to the large z data would become at least as good as for the 
NLO-in-a, approach, and that the fit to the small-z data would be of at least the same quality 

as for the LORSC fit. We wait expectantly to discover if this is indeed the case. 
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Table 1 

Comparison of quality of fits using the full leading-rder (including leading-h(l/z) terms) 
renormalization-scheme-consistent expression, LO(x), and the two-loop fits MRSRl , MRSR.2 , 
NLOl and NL02. For the LO(x) fit the H1 data chooses a normalization of 1.00, the ZEUS 

data of 1.015, and the BCDMS data of 0.975. The CCFR data is fixed at a normalization of 0.95, 
and the rest is fixed at 1.00. Similarly, for the NLOl fit the H1 data is fixed at a normalization 

of 0.985, the ZEUS chooses a normalization of 0.99, and the BCDMS data of 0.975. Again the 

CCFR data is fixed at a normalization of 0.95, and the rest fixed at 1.00. Also, for the NL02 fit 
the H1 data is fixed at a normalization of 0.985, the ZEUS chooses a normalization of 0.985, and 

the BCDMS data of 0.97. Again the CCFR data is fixed at a normalization of 0.95, and the rest 

fixed at 1.00. In the R1 and R2 fits the BCDMS data has a fixed normalization of 0.98, the CCFR 
data of 0.95 and the rest of 1.00. 

Experiment 

H1 31p 
ZEUS Fip 
BCDMS 32”’ 
NMC F:p 
NMC Frd 
NMC Ffn/F[p 
E665 3:’ 
CCFR 3{N 
CCFR FFN 

data 
points 

193 
204 
174 
129 
129 
85 
53 
66 
66 

158 
326 
265 
163 
134 
136 
62 
41 
51 

59 40 
48 I i: I 36 

149 
308 
320 
135 
99 
132 
63 
56 
47 

123 145 
253 281 
181 218 
122 131 
114 107 
142 137 
63 63 

Table 2 

Comparison of quality of fits using the full leading-rder (including leading-ln(l/z) terms) 
renormalization-scheme-consistent expression, LO(x), and the two-loop fits NLO1 and NL02. The 

fits are identical to above, but the data are presented in terms of whether z is less than 0.1 or not. 

145 
296 
192 
148 
125 
138 
63 

data 
points 

X2 
LO(X) NLO1 NL02 
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2 2 0.1 
z < 0.1 
total 

551 622 615 595 
548 483 554 589 
1099 1105 1169 1184 
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Figure Captions 

Fig. 1. The description of the EMC and preliminary H1 data for Fi(z, Q2) using the LO(x) fit. 

Fig. 2. The curves correspond to the value of the proton structure function F2(z,Q2) obtained 
from the leading-order, renormalization-scheme-consistent (LO(x)) calculation at 12 val- 
ues of x appropriate for the most recent HERA data. For clarity of display we add 
0.5(12-i) to the value of FZ(z, Q2) each time the value of z is decreased, where i = 1 + 12. 
The data are assigned to the x value which is closest to the experimental z bin (for more 
details see the similar figure displaying the two-loop fits in [26]). E665 data are also shown 
on the curves with the five largest x values. The H1 and ZEUS data are normalized by 
1.00 and 1.015 respectively in order to produce the best fit. 

Fig. 3. The description of the EMC and preliminary H1 data for Fi(z, Q2) using the NLOl fit. 

Fig. 4. Comparison of predictions for FJ,(z, Q2) using the full leading-order, renormalization- 
scheme-consistent (LO(x)) fit and the two-loop NLOl fit. For both sets of curves 
FJ,(z, Q2) increases with increasing Q2 at the lowest z values. 
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