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The quantum Heisenberg antiferromagnet on the square 
lattice is known to model the magnetic interactions in the 
copper ion planes of many high-T‘ superconductors and their 
parent compounds. The thermodynamics of the model is 
approached by the PureQuantum Self-Consistent Harmonic 
Approximation, that reduces the quantum problem to the 
study of an effective classical antiferromagnetic system. The 
effective exchange, weakened by quantum fluctuations, enters 
as a temperature scale the classical-like expressions for the 
thermal averages, and the quantum spin correlation length 
is then obtained from its classical counterpart in a simple 
way. The theory compares very well, for any value of the 
spin and without need for adjustable parameters, with high- 
temperature expansions, quantum Monte Carlo simulations 
and recent neutron and NQR experiments. 

The two-dimensional quantum Heisenberg Antiferro- 
magnet (2d-QHAF) is described by the isotropic Hamil- 
tonian 

where the index i E (il, i2) runs over the sites of the 
square lattice, and d E ( f l ,  fl) represents the displace- 
ments of the 4 nearest-neighbors of each site. The quan- 
tum spin operators S i  satisfy 

Being a two-dimensional model with a continuous sym- 
metry, this model is disordered at any finite temperature; 
the study of the spin correlations is then a matter of char- 
acterizing the disorder itself and its evolution as temper- 
ature and spin magnitude S vary. At  T=O and S=oo, 
i.e. when neither thermal nor quantum fluctuations are 
active, the system’s ground state is the perfectly ordered 
Ndel state. Increasing the quantum effects, by lowering 
the spin value, makes the ground state evolve towards 
different configurations which can be rigorously demon- 
strated [l] to be ordered as far as S z l .  No  definite 
answer about the S=1/2 ground state is available yet, 
though many works, including this one, strongly suggest 
an ordered ground state even in the extreme quantum 
case. This conclusion is actually drawn out of results ob- 
tained at finite temperature through the extensive com- 
parison with the experimental data. 

What in fact makes the quantum HAF so much inter- 
esting is the existence of several real compounds whose 
magnetic behaviour is described by Eq. (1) which are 

= S(S + I). 

either parent compounds of high-T, superconductors or 
superconductors themselves. Also from the experimental 
point of view the interest mainly focuses on the spin cor- 
relations and the signature of unusual responses of the 
system to an external perturbation; as a consequence, 
amongst the most interesting physical observables that 
have been measured are the spin correlation length C, 
the magnetic susceptibility x and both the dynamical 
and statical structure factors S(q ,w)  and S(q). 

In this work we tackle this problem by the 
Pure-Quantum Self-Consistent Harmonic Approximation 
(PQSCHA) which has never been used in this frame- 
work, though successfully applied to the study of other 
magnetic systems. Beside the very good agreement we 
find between our results and experimental and simuls 
tion data, the importance of this work resides also in the 
novelty of such results being obtained in a completely 
new way and hence free from typical problems of previ- 
ous approaches. 

The 2d-QHAF can be related with the quantum field 
theory of the nonlinear a model (QNLaM) in different 
ways. The procedure used by Haldane and Affleck [2] 
starts with the parametrieation of the quantum spin o p  
erators by two canonically conjugated vector fields, and 
leads to an effective action for the QHAF which is indeed 
that of the QNLaM. Being based on a precise mapping, 
the coefficients of the model (typically the spin stiffness 
p, and the spin wave velocity c) are univocally defined 
in terms of the parameters of the original Hamiltonian, 
i.e. S, J, the lattice constant a and the dimensionality 
d. This approach is justified only in the semiclassical 
limit S+oo so that the comparison with experimental 
data from real compounds, mainly with Ss5/2,, cannot 
be safely carried out. .Haldane suggested an ad hoc re- 
placement of S with d m  to make the results more 
appropriate for the quantum case, but, as we have al- 
ready pointed out elsewhere, the combination in which 
the spin length enters the results of any theory, should 
indeed be defined unambiguously by the theory itself. 

The subsequent work by Chakravarty, Halperin and 
Nelson (CHN) [3] connects QHAF and QNLaM in a 
rather different way, i.e. showing that, because of sym- 
metry reasons, the short-wavelength, low-energy physics 
of the former must be the same of that of the latter. The 
results obtained are valid for any value of the spin, as 
far as there is LRO at T=O, and can then be easily com- 
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pared with experimental data. The price to pay for this 
gain in generality is that the theory, though depending 
on both ps and c, does not fix their values. They have 
to be considered as phenomenological input parameters 
and determined from either experiments or simulations. 

Among the many interesting results contained in the 
works cited above, we mainly concentrate on those for 
the correlation length. For models with S>1/2, i.e. in 
the so-called renormalized classical regime, CHN find ( 
to behave as in the classical model but with renormal- 
ized coefficients ps and c;  their curves fit nicely, being 
in fact ps and c the fit parameters, with experimental 
data for S=1/2. Quite surprisingly, things get worse for 
higher values of S; not only further adjustment of the fit 
parameters are necessary to reproduce the experimental 
data, but the very dependence of ( upon S cannot be 
physically neither understood, nor justified. 

A recent work by Elstner et al. [4] highlighted the weak 
points of the CHN approach and showed results from 
high-temperature expansions which, though not actually 
extended to those low temperatures where most of the ex- 
perimental data are available, are in good agreement with 
simulation data (S=1/2) and with some of the experi- 
mental data for S=l. They also find, for S>1 and T> JS 
that the quantum correlation length is ((S, T)=&~(T'~) 
with TC~=TS(S + 1) where the appearance of S(S + 1) 
is due to a purely phenomenological substitution of S2 
with S(S + l ) ,  such as that suggested by Haldane. 

Let us now describe our new approach to this problem, 
based on the effective Hamiltonian method, which allows 
to express quantum thermodynamic properties and static 
correlation functions as renormalized classical-like aver- 
ages. The procedure leading to the effective Hamiltonian, 
i.e. the PQSCHA, is described in Ref. [5] and has already 
been applied to anisotropic spin systems [6]. 

One of the distinctive features of the PQSCHA is that 
of separating the classical from the pure-quantum con- 
tribution, so that the one-loop approximation we intro- 
duce to deal with the former, does not affect the latter. 
If we then consider that the longer is the wavelength 
of an excitation, the more classical is its character, we 
conclude that the PQSCHA not only exactly takes into 
account linear excitations, but also very accurately de- 
scribes the long-wavelength non-linear ones. Besides all 
the advantages deriving from this property, in the 2d- 
QHAF case we must add that of making the first step 
of the PQSCHA, i.e. the introduction of a spin-boson 
transformation, easily acceptable. Because of the sym- 
metry of Eq. (1) we cannot use the Villain transforma- 
tion, mainly designed for easy-plane systems, but at the 
same time neither the Holstein-Primakoff (HP) nor the 
Dyson-Maleev (DM) transformations do apparently give 
a suitable alternative, as they both break the symme- 
try of the problem. However, we know that the broken 
symmetry of the 2d-QHAF's ground state is restored at 
finite temperature by those non linear- excitations that 
are very well described, for their being essentially clas- 
sical, by the PQSCHA: This indeed permits us the use 
of the HP and DM transformations in a wide range of 
temperatures. The possibility of a completely disordered 

ground state is not considered in this paper, as we think 
that for any physical value of the spin (i.e. for S>1/2) 
the ground state of the 2d-QHAF has long range order. 
The good agreement we find between our results and ex- 
perimental and simulation data indirectly confirms this 
statement. 

Moving towards the final expression of the effective 
Hamiltonian we subdivide the lattice in the usual AFM 
positive and negative sublattices, being (-)'=+ or - de- 
pending on whether the site labelled by i belongs to the 
former or the latter. The DM transformation for spins 
on the positive sublattice is 

s: = (2S)3 iii , 
s; = ( 2 q - 3  iif ( 2 s  - 2LfEli) , 
s; = s - ii/& , (2) 

while that for those sitting on the negative sublat- 
tice is obtained by Eqs. (2) by replacing $+ - ( S p ) t  

(p=z, +, -). Both transformations are canonical, being 
the spin commutation relations consequence of [hi, iif] = 
1 ,  and satisfy 1S12 = S(S + 1); they are normally or- 
dered in the boson operators (iit , ii) and transform Eq. (1) 
in a normal ordered boson Hamiltonian with quartic in- 
teraction &(irt, 6); its normal symbol %N(O*,  a) is sim- 
ply obtained replacing the Fock operators with com- 
muting holomorphic variables, (it, h )  + (a* , a), and its 
Weyl symbol [5,7] %(a* , a) obtained by the relation [7] 
%(a*,a) = exp ( - k a a . 8 , )  %N(a*,a) . The weyl sym- 
bols for the DM spin operators in the positive sublattice 
are 

si+ = ( 2 ~ 1 3  ai , 
S; = (2s)-4 ( 2 5 -  afai) a: , 
S;i = S - afai , 

- 
(3) 

in which the substitution S p +  - ( S P ) *  gives those for 
(-)'=-. As a consequence of having properly consid- 
ered the ordering problem, we see that ISj12 = SfSf + 
Si's; = g2 and the effective spin length S E S + 3 nat- 
urally appears: No need then for any ad hoc or purely 
empirical definition of it! In what follows, the reduced 
temperature is consequently defined as tET/( Jg2). 

Following the procedure described in [5] and [S] we 
obtain the effective Hamiltonian 

- 

where 81 are classical unit vectors. The term g(t)  = 
tN-lCk 1n[sinhfk/(O2fk)] - 202V is uniform and does 
not play any role in calculating thermal averages. 

The renormalization parameter O2 E 1 - V/2 repre- 
sents the effect of pure-quantum fluctuations, 

where = (cos k, + cos k,)/2 and f k  = Wk/(2&).  A 
further low-coupling approximation leads to the coupled 
equations 
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W k  = 42Jl'i--^fk ; 

whose self-consistent solution finally closes the whole 
scheme. At variance with previous applications of the 
PQSCHA, the frequency spectrum does not depend upon 
the pure-quantum coefficient 02, but rather upon the 
SCHA renormalization coefficient tc2; this is due to the 
use of a slightly different and more refined LCA made 
necessary by the pronounced instability of the ground 
state. The well known unphysical break-down of the 
SCHA frequencies renormalization tc2 ( t )  occurring at 
t = O4 can be avoided by inserting a proper cut-off for the 
contributions of wavelengths larger than 21, as described 
in Refs. (81. 

The PQSCHA expressions for the spin-spin correlation 
functions are similarly found to be 

(6) 
r-2 4 

(-)r(hi * a i + r )  = (-1 s or(8i * Bi+r)eff 9 

where ( s i  . Bi+r)eff is the classical like average with the 
effective Hamiltonian and the parameter 0: tends to a 
constant value as 1r1 increases. Because of the symmetry 
of Eq. ( l ) ,  the renormalization coefficient 04(S, t )  enters 
the effective Hamiltonian Eq. (4) just as a multiplying 
factor, so that any ( . )eff at a given temperature t is just 
equal to the classical average at a higher temperature 
t/04(S, t ) .  As for the correlation length this means that 
the quantum correlation length t ( S , t )  is related to its 
classical counterpart by 

+ 

Given the value of J and the classical tCl(t), we do not 
need any external parameter or input of any kind to ob- 
tain, from Eqs. (7 ) ,  the curves to compare with experi- 
mental and simulation data, or with results from other 
approaches. Values for in the range 1 s ( s 8 have 
been obtained by Monte Carlo simulation [9] and by high- 
temperature expansion [4] (HTE); we ourselves have per- 
formed some more Monte Carlo simulations to extend 
this data range [8]. All the available classical data sets 
agree with each other, so we have used the data of Ref. [4] 
and ours, and fitted them by a (polynomial x exponen- 
tial) curve in the range 1 s t 50. In Fig. 1 we report 
our result for ( ( t )  at spin S = h together with experi- 
mental data for SrzCuOzClz [10,11], for LaaCuO4 [12,13] 
and with quantum Monte Carlo results [14]. In Fig. 2 we 
compare our curve at spin S = 1 with experimental data 
for LazNi04 [15] and for KzNiF4 [ l l ) .  

Our results appear to explain all the experimental data 
[lO-13,15,11] for different values of S without any fitting 
parameters and they also agree with the HTE results 
of Ref. [4]. This gives evidence of our approach being 
an important step forward in the direction of the full 
understanding of the real quantum Heisenberg antiferro- 
magnet, and perhaps in the possible overtaking of the 
QNLuM approach. 
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FIG. 1. Correlation length ( ( t )  for spin S = 8. Continuous 
line: this work; dashed line: classical results from [9] and [8]. 
Squares: experimental data [10;11] for Sr2Cu02Clz; triangles 
and diamonds: data for LazCuO4 from neutron scattering [13] 
and from s3Cu NQR relaxation [12] experiments, respectively; 
crosses: quantum Monte Carlo results [14]. 
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FIG. 2. Correlation length for spin S = 1. Wangles: ex- 
perimental data [15] for LazNiO4; squares: experimental data 
[I11 for K2NiF4. Lines as in Fig. 1.' 
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