
Technical Report 
RAL-TR- 96-073 

A Theoretical Framework for Dichroism 
and the Resonance-Enhanced Scattering of 
X-Rays by Magnetic Materials; Quadrupolar 
Absorption Events 

S W Lovesey 

September 1996 

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS 



0 Council for the Central Laboratory of the Research Councils 1996 

Enquiries about copyright, reproduction and requests for 
additional copies of this report should be addressed to: 

The Central Laboratory of the Research Councils 
Library and Information Services 
Rutherford Appleton Laboratory 
Ch i lton 
Didcot 
Oxfordshire 
ox1 1 OQX 
Tel: 01 235 445384 
E-mail library@rl.ac.uk 

Fax: 01 235 446403 

ISSN 1358-6254 

Neither the Council nor the Laboratory accept any responsibility for loss or 
damage arising from the use of information contained in any of their 
reports or in any communication about their tests or investigations. 



A theoretical framework for dicbroism and the 
resonance-enhanced scattering of X-rays by 

magnetic materia1s;quadrupolar absorption events. 

Stephen W. Lovesey 

ISIS Facility, Rutherford Appleton Laboratory, 
Oxfordshire OX1 1 OQX, UK. 

Abstract 

Work by Lovesey and Balcar with the resonant scattering-length that is based on an 

atomic model and dipolar absorption events is extended to encompass quadrupolar absorption 

events. The scattering length is the common element in calculations o f  the attenuation 

coefficient, dichroism and the cross-sections for elastic and inelastic resonance-enhanced 

scattering o f  X-rays by magnetic materials. Both jj-coupling and Russell-Saunders coupling 

schemes for the atomic electrons are utilized; included are tables o f  relevant Racah unit tensor 

operators for the valence shell f '. 

1. Introduction 

A wealth o f  experience in the interpretation o f  X-ray spectra for atoms has shown that a 

useful approach is to classify events according to the power o f  the wave vector, q, o f  the X- 

rays in the operator for their interaction with the atomic electrons. Usually referred to as a 

multipole expansion o f  the interaction, the small parameter in the expansion isiof the order o f  

(quo) where U, is the Bohr radius. The leading-order term is an interaction independent o f  q; in 

this case, allowed events arise through non-zero matrix elements o f  the positions o f  electrons 

within atoms and the events satisQ the electric dipole selection-rules. At the next level o f  

approximation, events can take place by both electric and magnetic interaction operators. The 

electric interaction operator in this case is proportional to the square o f  the electron's position, 

and the events satisfy the electric quadrupole selection-rules. 

The topic o f  interest here is the use o f  beams o f  X-rays to study magnetic properties o f  

materials, which has flourished in the past decade. (By and large, the recent experimental 

work, which includes the exploitation o f  the dichroic effect and scattering methods, has been 

underpinned by sources o f  X-rays provided by particle accelerators.) Lovesey and. Collins 
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(1996) review a body o f  experimental and theoretical findings from this emerging field of  

research. 

In a previous paper (Lovesey and Balcar 1996, and hereafter referred to as L & B) we 

proposed a theoretical framework for absorption and the resonance-enhanced scattering o f  X- 

rays by magnetic materials based on an atomic model of  electric dipole (El) events. Here, 

we extend the framework to include electric quadrupole (E2) events. There is no interference 

between the two types o f  event, so the scattering length for resonant processes is just the sum 

o f  the contributions from dipole-allowed events, treated by L & B, and quadrupole-allowed 

events. The expression for our idealized resonant scattering-length appropriate for 

quadrupole-allowed events is found in 93. 

Our formulation o f  attenuation and the resonance-enhanced scattering o f  X-rays via 

quadrupole-allowed events is the same in all respects to the formulation o f  dipole-allowed 

events reported by L & B. The reader is referred to L & B for a discussion o f  the basis o f  the 

formulation, which entails the neglect o f  how energies o f  a subset of  the intermediate states in 

the scattering length depend on their magnetic quantum numbers. While the spectrum o f  

intermediate states available in dipole-allowed and quadrupole-events is the same, for a given 

configuration o f  the electrons, the selection rules that operate in the matrix elements, between 

these states and the initial and final states o f  the equilibrium configuration o f  the atom, mean 

that different parts o f  the whole spectrum are selected to appear in the dipole-allowed and 

quadrupole-allowed resonant scattering-lengths. It is to be noted that summation over the 

quantum numbers o f  the subset o f  intermediate states which feature in our formulation is 

achieved without approximation, and the selection rules for the absorption event (dipole or 

quadrupole) are fully preserved. 

L & B provide some tables o f  the relevant Racah unit tensor operators for the valence 

shell f . Bothjj-coupling and Russell-Saunders coupling schemes are utilized. More entries 

are required for the quadrupole-allowed events, and the additional information is included 

here. In one respect, at least, empirical data for quadrupole-allowed events is more valuable 

than for dipole-allowed events, simply because in the former there are more contributions to 

the representation o f  the scattering length as a sum of Racah unit tensor operators. On the 

other hand, the high-order contributions to quadrupole-allowed events, not present in dipole- 
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allowed events, do not readily admit to simple, physical interpretations in terms o f  basic 

equilibrium properties o f  the magnetic atoms. 

The resonant scattering-length including both dipole (El) and quadrupole (E2) 

interactions is developed in the next section. The contribution to the idealized 

scattering-length made by the quadrupole interaction is worked out in $3 following the steps 

in the formulation by L & B for the dipole interaction. Thereafter, the result for the 

quadrupole interaction is examined for the special case o f  a saturated magnetic atom, which 

can sensibly be used as a model o f  a magnetic material held at a very low temperature. In $5, 

the dichroic signal is calculated and compared with the corresponding value generated by the 

dipole interaction. Scattering cross-sections, for Bragg diffiaction and inelastic processes, can 

be calculated with the aid o f  the results given in $3 and formulae provided by L & B. A 

knowledge o f  the scattering length, and relevant results given by Lovesey and Collins (1996), 

also permit one to calculate the polarization o f  the beam o f  X-rays after scattering, however 

this topic is not taken up. 

$2. Resonant scattering-length 

The resonant contribution to the scattering length contains matrix elements o f  E.J(Q) 

where J(q) is the spatial Fourier transform o f  the current operator and E and q are the 

polarization vector and wave vector, respectively, of  the primary beam o f  X-rays. Let IF) and 

(q) be eigenstates of the atom, with energies Ep and E,, , respectively, and define A = (E,, - E,,). 

To first order in q one finds for the matrix element o f  E.J(q) the result, 

In this expression, R, 1 and s are the position, orbital angular momentum and spin operators o f  

an electron, and the sum is taken over all electrons in the atom in question. The last term in 

(2.1), which involves the magnetic moment o f  the electrons, is neglected in the present 
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calculation on the grounds that it is small relative to the first term. The latter is the sum of a I 

dipole (El) and a quadrupole (E2) contribution. 

The scattering length which is the common factor in calculations o f  the attenuation 

coefficient and the cross-sections for the resonance-enhanced scattering o f  X-rays by atoms at 

sites defined by { R,,} is, 

In this expression, p and p' label the initial and final states of  the atom, respectively, and q 

labels the intermediate states. The primary X-rays have an energy E = Acq = (27cAc/h), E' and 

q' are the polarization vector and wave vector of the secondary X-rays, and k = q - 9'. The 

Debye-Waller factor exp{-W(k)} might depend on the position o f  an atom, and for this 

reason in (2.2) it is included in the sum over the position vectors {R,,} . 

By setting aside the dependence o f  E, on the quantum numbers for the subset of  

intermediate states over which we can perform the sum of  the product o f  matrix elements in 

(2.2), we arrive at our idealized resonant scattering-length, 

f ( p , ~ ' ) = - ( ? ) ~  ($)(E- A'+iI'/2)-1c exp(ik~Ro)exp{-W(k)}Z(p;p':Ro).(2.3) 
RO  

Here, it is assumed that E is tuned close to A, which now is a mean energy for the separation 

in energy between the initial state and the subset o f  intermediate states. The corresponding 

energy for the intermediate states and the final state is A'. The energy r is the total decay 

width for the subset o f  intermediate states. Lastly, 2 (p;p':R,,) is formed from the product of  

polarization vectors and matrix elements in (2.2). Its dependence on the position o f  the atom, 

admittedly not always explicitly displayed in subsequent workings, arises from the 

dependence o f  the atomic states on chemical and magnetic order in the sample. An 

expression for 2 (p;p') appropriate for quadmpole-allowed absorption events is given in the 

following section. 
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83. Matrix element 

The absorption event in the resonant scattering process involves the transfer o f  a hole 

from the valence shell, with angular momentum 1, to a core state with angular momentum 

1 z 1. The initial and final states of the atom both belong to the valence shell 1" , where n is 

the number of electrons. 

In the idealized scattering length, the matrix element 2 (p;p') is built from the following 

product o f  one-particle matrix elements, 

and for the current operator we take the first term in (2.1), which is a sum of electric dipole 

and quadrupole operators. Because the dipole and quadrupole operators connect the valence 

shell to different core states, there are no cross terms between matrix elements o f  these two 

operators in (3.1) and the latter, therefore, is the sum of a pure dipole contribution and a pure 

quadrupole contribution. 

The sum in (3.1) on 7 and a renders the product o f  matrix elements proportional to a 

sum of spherical tensors. To these we can apply the methods for equivalent particles 

developed by Racah and thereby extend the result o f  our calculation from one hole in a 

valence shell to a number o f  holes nh 2 1. The proper account o f  Fermi statistics applied to a 

configuration o f  n,equivalent holes is embedded in Racah's unit tensor operators. All the 

properties o f  unit tensor operators, for jj-coupling and Russell-Saunders coupling, needed in 

the present work are gathered in L & B. 

In the general case, the wave functions o f  the atomic states are linear combinations o f  

states labelled by the quantum numbers 0JM, where 0 contains all quantum numbers, over and 

above J and M, needed for a unique classification o f  atomic states. Here, we give the matrix 

element 2 (p;pf), which appears in the idealized scattering length, for the states p= W M  and 

p' = 8SM. We have achieved a relatively compact expression for the quadrupole matrix 
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element through use o f  a spherical tensor H(K) that contains the polarization vectors E and E’ 

and the information on the directions o f  propagation of  the primary and secondary beams. It 

is to be noted that, in the dipole matrix element, treated by L & B, there is no information on 

the directions o f  propagation o f  the X-ray beams. In consequence, the analogue in the dipole 

matrix element of H(K) is a much simpler quantity (L & B denote it by X (K )  ). The 

definition and properties o f  H(K) are the subject o f  an appendix. The properties o f  the atom 

under investigation appear in 2 (p;p‘) through a tensor operator T; , whose properties are 

thoroughly discussed by L & B. For the dipole matrix element 0 I K I 2, whereas in the 

quadrupole matrix element we find the rank extends up to K = 4. 

It is convenient to lump together several factors that are common to each tensor. Let, 

where (llR21i) is the matrix element o f  R2 taken between the valence and core states, and 

(ZllC(2)lli) is the reduced matrix element o f  the normalized spherical harmonic o f  rank two. 

We find, for i= I - 2, 

Our result for the quadrupole matrix element is, 

A triangle condition in the 6j-symbol limits the integer K to the range 01 K I 4. The integer 

m, ranges between K and -K. We draw attention to the form o f  the terms in the sum on m,; 

this sum has the structure o f  the standard definition o f  the scalar product o f  two tensors, and 

for K = 1 it is identical to the conventional scalar product o f  two vectors. 
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The matrix element o f  T: satisfies the Wigner-Eckart theorem, namely, 

L & B provide the reduced matrix element in (3.5) for K = 0, 1 (see, also, $4) and 2 in both 

thejj-coupling and Russell-Saunders coupling schemes. Here, table 1 lists for K = 3 and 4 

values o f  the reduced matrix element o f  the unit tensor operator V(K) in the two coupling 

schemes for states o f  f” , appropriate to the study o f  rare earth atoms. The reduced matrix 

elements (eJllT(3)Il eJ) are listed in table 2 for values o f  BJ chosen according to Hund’s rules 

for the ground state o f  f” in the coupling scheme o f  Russell and Saunders. It i s  interesting to 

note that (eJllT(3)11 OJ) is zero for n = 2 , 5 , 9  and 12. 

If the wave h c t i o n s  for the initial and final states o f  the atom are drawn fiom a single 

J-manifold it might be useful to employ operator equivalents. To this end one re-writes the 

matrix element (3.5) as, 

when the tensor I ( K )  is defined to have a reduced matrix element equal to one. A 

consequence o f  this notation is that the mean value o f  Z, required for both the attenuation 

coefficient and the scattering length for Bragg difiaction, is a weighted sum o f  mean values 

o f  I ( K ) ,  in a scalar product with H(K). However, this appealing result does not hold in the 

general case, where the initial and final states o f  the atom contain contributions fiom more 

than one J-manifold. Moreover, the use o f  operator equivalents does not add too much in the 

way o f  physical insight for contributions to (2) coming fiom the terms with K 2 3, simply 

because the operator equivalents for high-order tensors are complicated objects. By way o f  an 

example consider K = 3 and m, = 0, for which we have the result, 
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This result suggests the use of  an operator equivalent proportional to an octupole moment 

operator, 

Jc{5J: + 1-3J(J+l)}= 3 Jc{3J,2 -J(J+l)} + 3 Jc{3-4J(J+l)}, (3.8) 

in which the second form is a sum of  J, and the product of this operator with the diagonal 

element of the quadrupole operator. 

Expressions in terms o f  the idealized scattering length for the attenuation coefficient and 

cross-sections, for elastic and inelastic scattering, are given by L & B. These expressions 

remain valid when the idealized scattering length is taken to be the sum o f  the dipole and 

quadrupole scattering lengths, i.e. when 2 (p;p‘) in (2.3) is the sum o f  equation (3.10) in 

L & B and (3.4) in the present paper. In the next section we consider the structure o f  the 

quadrupole matrix element (3.4) for the special case o f  a saturated magnetic atom, which can 

be a guide to properties observed o f  a sample held at a low temperature. 

94. Saturated magnetic atom 

In some respects, the model of a saturated magnetic atom serves as a useful orientation 

to the structure and relative magnitudes of  the five contributions, labelled by K, to the 

quadrupole matrix element (3.4). Taking M =  M’ = Jin the latter we find, 

Values of HiK) are provided in an appendix. 

In the remainder o f  this section we individually consider the five contributions to (4.1). 

K = 0: From the result, 
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we readily find the first contribution to the quadrupole matrix element of a saturated atom, 

{nh / (21 + 1))H;O’ . . (4.2) 

K = 1 : We make use of the results, 

2 1  112 (1 + 1) 
{1 1-2 :}=-(&I my 

and, for the particular case J = J ’, 

where g is the Land6 factor. Assembling the results, the K = 1 contribution to 2 (p;p) is, 

(2 - g) J H,“’ . 1 
1(21.+1) I 

o($)1’2 

/ .  I . 

K=2: 

112 2 2 2 (1+1) 2(21+3) 
{1 1-2 I)=- {35(21-1)} ’ 

and 

(4.3) 
I 

. .  

. .  ‘ X .  

.. , ., . 

J 
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(I + 1) (I + 2)(21+ 3) {; I-'2 ;}=-- (IllIllI) { 70(1- 1)(21- 1) 

and, from (3.7) say, 

K=4:  

2 4  2 (I + 2)(21+ 3)(22 + 5) 
630(I - 1)(21- 1)(21- 3) 

( J 4 J) = J { (J-1)(2J-1)(2J-3) 
-J  0 J (JIIJIIJ) (J+2)(2J+3)(2J+5) 

The reduced matrix elements (OdlT(K#J) to go with the foregoing expressions for 

K = 2,3 and 4 are obtained, for eitherjj-coupling or Russell-Saunders coupling schemes, from 

tables in L & B and this paper. 

$5. Dichroism 

In our theoretical framework for the attenuation coefficient, y, one finds that y is 

proportional to the mean value o f  2 evaluated for a forward scattering geometry (q = q') and 

averaged with respect to state o f  polarization in the primary beam o f  X-rays. Following 

L & By we denote this special value o f  2 by (ao. The attenuation coefficient is proportional to 

the density o f  particles in the foil, no, and in the limit r+ 0, 
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2 

y = 2 ~ h n ,  (2) 6( E - A)@), , 

I f  y is integrated with respect to E over an interval which includes the subset o f  intermediate 

states, whose average energy is defined by A, our theoretical framework provides an exact 

interpretation, within the scope o f  the atomic model. 

For quadrupole-allowed absorption events the mean value o f  2, required in (5.1), is 

calculated using the matrix element (3.4). In the general case, (2) is the linear combination of 

matrix elements with weights determined by the chemical and physical properties o f  the target 

foil. Regarding the dependence of  (a, on the states o f  polarization in the primary beam, and 

it is this dependence which creates a dichroic effect, it is necessary to examine the values o f  

H(K) calculated for k = 0 and averaged with respect to the states of polarization. If the 

symmetry o f  the magnetic state o f  the atom is cylindrical, or higher, one only needs the 

diagonal component o f  H(K). The appropriate values are listed in table 3, together with all the 

components, o f  H(') and HO), needed to discuss the circular dichroic signal for an arbitrary 

magnetic symmetry. 

The circular dichroic signal is the difference in two values o f  y in which the Stokes 

parameter P2 is assigned values o f  equal magnitude and opposite sign. Note that P2 is the 

mean helicity of the X-ray beam. Let us define a signal by, 

Empirical data for the signal has been obtained at the dysprosium L, edge by Lang et al. 

(1 999, and at the L, edge o f  Yb in YbFe, by Giorgetti et al. (1 995). 

. Contributions to (a,, with K = 0 , 2  and 4 are independent o f  P2 and cancel out in the 

dichroic signal (5.2). Thus, A2 is proportional to the sum o f  the contributions to (a,, with 

ranks K = 1 and K = 3. Referring to the entries in table 3, the components o f  lb(')Il and 

/lH(3) 11 are proportional to P2. For a given atomic wavefunction, we provide the reader with all 

necessary information to calculate the dichroic signal. 

11 



The relatively simple structure o f  the reduced matrix element o f  T( 1) enables us to make 

progress with the physical interpretation o f  the rank-one contribution to (3,. Regrettably, and 

predictably, very little light can be shed on the physical significance o f  the rank-three 

contribution, although the reader might find interesting the octupole operator-equivalent for 

the diagonal element for K = 3 given in (3.8). 

Let us examine the result for the dichroic signal appropriate to the special. case where (i) 

operator equivalents can be used because the atomic wavefunction is created from one 

J-manifold and (ii) the rank-three contribution to (a, can be safely neglected (with regard to 

this aspect it is noted that, the rank-three contribution is zero for pure Russell-Saunders 

coupling and a number o f  electrons in the valence shell = 2, 5,9 or 12). For this special case, 

the circular dichroic signal is (K=l), 

A2 = - 0( P2 / 51(21+ l))(L) * 4, (5.3). 

and 0 is obtained from (3.2) with q = q'. The structure of the result (5.3) is very similar to the 

dichroic signal with dipole-allowed events; the appropriate result for the latter case is (4.5) in 

L & B. I f  we normalize (5.3) by the isotopic contribution to (a,, generated by the rank-zero 

contribution, 

the result is, 

This value is the same as the corresponding quantity obtained for dipole-allowed events apart 

from the factor (2/3), and most importantly, here we have set aside for the moment the rank- 

three contribution to the quadrupole matrix element. 

To assess the relative sizes o f  the rank-one and rank-three contributions to the dichroic 

.signal one can appeal to the results in $4 for a saturated magnetic atom. These results lead to 
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the conclusion that, at a low temperature, the key quantities determining the relative sizes of  

the two contributions are the reduced matrix elements (€l.@(l)llfM) and (~~2'(3)~1fM) and not 

the 3j and 6j-symbols for which we have given analytic results. The rank-one reduced matrix 

element is found in $4  and table 2 contains a listing o f  the rank-three reduced matrix element 

evaluated for the ground states o f  f" determined by Hund's rules. 

We conclude by giving the contribution to the dichroic signal made by the rank-three 

tensor, i.e. the contribution which when added to (5.3) leads to the total value o f  the circular 

dichroic signal. The following contribution is the complete expression for the id- three  

contribution to A2 in the special case o f  an atom with cylindrical symmetry, for which terms 

in (3.4) with m,zO are zero (no such limitation applies in 5.3). Assuming it is valid to use the 

operator equivalent (3.8) we find (K=3), 

Here, (IllIllI)= d{I(Z+l)(2I+l)}, and a similar expression holds for the reduced matrix element 

o f  the total angular momentum. 

$6. Comments 

We have obtained an idealized X-ray resonant scattering-length for quadrupole-allowed 

absorption events. The formulation follows work by Lovesey and Balcar (1 996) for dipole- 

allowed events. The idealized scattering length provides a description o f  processes which 

involve valence electrons in a shell I " .  Where necessary, tables o f  relevant Racah unit tensor 

operators for I = 3 are given. Thus, the reader can readily apply the formalism to an atomic 

model o f  any rare earth material o f  interest. 

Armed with the resonant scattering-length, it is straightforward to calculate the 

attenuation coefficient and the cross-sections for scattering. States o f  polarization in the 

3 3 



primary, and secondary, beams o f  X-rays are conveniently handled in terms of  a Stokes vector 

(Lovesey and Collins 1996). 
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Appendix 

The spherical tensor H (K )  in the quadrupole matrix element (3.4) is constructed from 

spherical tensors o f  rank two, denoted by h(Q), that are formed out o f  spherical components o f  

the polarization vector and wave vector. Following the standard convention for creating a 

spherical tensor by coupling, via a Clebsch-Gordan coefficient, two spherical components o f  

equal rank (Edmonds 1960), 

where E, and G,,, are spherical components of  the unit vectors E and 4= (q/q). We choose to 

haves purely real. Table 2 in L & B contains the definitions o f  the spherical components in 

terms o f  Cartesian components, and all the components of h(Q). Recall that E and q are 

orthogonal vectors. The spherical tensor constructed from E' and a', that relate to the 

secondary beam o f  X-rays, is denoted by h'(Q). 

With the foregoing notation, the definition o f  the components o f  H(K )  is, 

The order o f  h' and h is significant for K = odd integer. The reason for this is the behaviour o f  

the Clebsch-Gordan coefficient with respect to an interchange o f  Q and Q ,  namely, 

(2Q2Q'lKmo) = (-l)K (2Q'24Km0). 

Hence, two tensors based on (A.2) and formed out o f  the primary and secondary variables 

placed in opposite orders are related by a factor (-1) . This result permits us to anticipate the 

finding that odd-order tensors are linear in components o f  (E' x E) and (4' x 9, and even- 

order tensors are unchanged by an interchange o f  primed and unprimed variables. 

Here, and in table 2 o f  L & B, the Cartesian components o f  a vector are labelled 

(a, b, c). (The labels (x, y ,  z) are reserved for a set of Cartesian axes that are used to describe 
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the geometry of  the experimental arrangement.) For K = 0 there is only one component in 

H(K )  , and we fmd, 

For some purposes it is useful to write the sum of the second and third terms in the alternative 

Furthermore, 

In the calculation of the attenuation coefficient we need H(K) evaluated for a forward 

scattering geometry and averaged with respect to states of polarization in the primary beam of 

X-rays. The average of a quantity with respect to states of polarization is denoted by placing 

the quantity between double vertical lines. Turning to the result (A.3) for H!) and setting 

q = q' only the first term on the right-hand side does not vanish. With regard to the average 

over states of polarization we have, 

IkE' - = 1 Y 

so for q = q', 
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., 

This result and other results for (IH(K)I) required in the calculation o f  the attenuation 

coefficient are gathered in table 3. The orientational dependences o f  IlH:') 11 and IlH:3' 11 agree 

with the findings o f  Carra et al. (1993) and Giorgetti et al. (1995). 

The cross-sections for scattering are proportional to the square o f  the scattering length 

averaged with respect to states o f  polarization in the primary beam. In the event that the 

scattering length is represented by the term in 2 (p;p') with K = 0, the cross-sections are 

proportional to, 

and all the terms in this expression that occur on substituting (A.3) for H:") are given by 

Lovesey and Collins (1996). (The structure o f  the cross-section for Hagg diffraction is 

explored by Hill and McMorrow ( 1  996).) 

In the remaining discussion of  H(K) we limit ourselves to H(') and H(3). The mean value 

o f  2 contains these terms weighted by thermodynamic quantities that vanish i f  the magnetic 

state is not ordered. The magnetic quantities that weight H") and g4) can be non-zero for a 

paramagnetic sample. 

Looking at (A.3) - (A.5) it might be correctly guessed that the components o f  H(') and 

H@) are somewhat unwiedly. To make the expressions as attractive to the eye as seems 

possible we use a series o f  functions R(p), with p = 1,2,  :. . ., 10, of  the Cartesian components 

o f  E , ~ , E '  and 4'. It also convenient to use the vectors, 

5 = (4' x 3, and cp = (E' x E). 

We find that Hi') and Hr)  can be expressed as linear combinations of, 
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R(2)  = (h'(-2)h(2) - h'(2)h(-2)} = 3 {(E' * E - &;E,)g, + <Pc(ijf * ij - if&)}. 

The results are; 

= (,),I2 (R(1)  + 2R(2)) , 

H:3) = (&y2 (- 2R(1) + R(2)).  

These are the only values of H(') and H(') needed to describe the properties of a magnetic atom 

with at least cylindrical symmetry withjespect to the c-axis. 

Defining, 

R(3) = (h'(l)h(O) - h'(O)h(l) + h'(O)h(-1) - h'(-l)h(O)} = (3)"' {<P*ifi, + E:Ec5*), 

i .  and, . -  

R(4) = {h'(-l)h(2) - h'(2)h(-1) + h'(-2)h(l) - h'(l)h(-2)} = 3{(p*(ij' - ij - i:QI,) + (E' * E -'E:E,)~* 

-(EL&, + € : M e  -<p,(idi, + i f i b ) I ,  

one has, 

+ H!:) = (&)'I' R(3) + (,)'I' R(4), 
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a d ,  

H+l (3) + H(3) -1 = - (*)I/’ R(3) + (&)]I2 R(4). 

And, with, 

R(6) = (hf(-1)h(2) - h‘(2)h(-l) - h‘(-2)h(l) + h‘( l)h(-2)) = 3 { ( E ~ E ,  + E : E , ) ~ ,  

-%(a’ * 4 - ifi,) -(E’ * E - E:E,)c, + (P,(iLi, + ifi,)}, 

we find, 

H::) - H(I) -1 = (&)‘I2 R(5) + (4)’” R(6), 

a d ,  

HI:) - -1 = - (f)”’R(S) + (&)‘I2 R(6). 

For the remaining components of we choose to write, 

H::) + H$) = (3)”’ R(7), 

H::) - -2 = (3) ‘I2 R(8), 

H::) + H$) = ($)’I2 R(9),  
. .  
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Table la  

@-coupling scheme: 

The reduced matrix elements ( vjIV(K)llvJ) for K = 3 and 4, and f-electrons in configurations 

determined by Hund's rules. For the states f ' - f the total angular momentumj = (Y2) and 

for f Values of the reduced matrix element for 

K = 0, 1 and 2 are reported by L & B. As an example o f  how to read entries in the table 

consider f 'I; for this electron shellj = (7/2), the number o f  electrons in the shell n = 5 ,  and the 

values o f  reduced matrix elements are appropriate for the number o f  holes nh = (2j +1 - n) = 3. 

NB the signs o f  the matrix elements for K = even integer depend on whether one is counting 

electrons or holes, and values for the latter are given in the tables 1 a and 1 b. 

- f l3 it.  has the value j = (7/2). 

f' 

f2 

f 3  

f4  

.f 

f6 

f7 

f8 

f9 

f 'O 

f" 

f l2 

f l3 
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Table l b  

Russell-Saunders coupling scheme: 

The value of the reduced matrix elements of V(3) and V(4) for the ground state configuration 

of tripositive lanthanides derived from Hund's rules, as a function of the number of holes. 

Results are based on the tables prepared by Nielson and Koster (1963), which cover 

the p", d" and f"  shells. 

Ground state 

2F 

'H 

41 

5~ 

6H 

7F 

nh 

1 

2 

3 

4 

5 

6 

0 - 2 d(Y) 

- d(*) - + d(442) 

0 2 d(+) 

- d(%) + d(442) 

Ji -3 
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Table 2 

Values of the reduced matrix elements (€)dlT(3)11€)~) for the electron configurations f 

through to f ”. The quantum numbers 8J = vSW are chosen according to Hund’s rules for the 

ground state configurations in the coupling scheme o f  Russell and Saunders. 

f ’  

f 2  

f ’  

f 4  

f 5  

f 8  

f9 
f l0 

f l 1  

f I2 

f l3 

F5r2 

3H4 

2 

4 
I9LJ 
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Table 3 

Components of  the spherical tensor H (K )  evaluated for the forward scattering geometry (k = 0) 

and averaged with respect to states o f  polarization in the primary beam o f  X-rays, described 

by a Stokes vector P = (0, P2, P3) and defined in agreement with Lovesey and Collins (1996). 

Cartesian components of  the unit vector ij are labelled (a, b, c), and this set of  axes and the . 

set (x, y, z) are related by Euler angles a, p and y defined in the same way as L & B and Judd 

(1975); see tables 3 and 4 in L & B. In the following entries, 

llEfEcll = 3 ((1 + P3)cos2 p + (1 - P3)cos2 a sin2 p}. 

For p = 0 the axes z and 'c coincide, and for a = p = (d2) the axis o f  quantization (the c-axis) 

is aligned with the direction o f  propagation o f  the beam of  X-rays. The quantity P2 is the 

mean helicity in the primary beam. 
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