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Abstract 

The origin of texture zeroes in the Yukawa matrices may be accounted for by appealing 
to a broken gauged family symmetry such as U(l)x ,  where such symmetries arise 
naturally from string theories. In order to improve the predictive power of such models 
we appeal to  quark-lepton unification where additional Clebsch texture zeroes appear, 
leading to an entirely new class of models. We illustrate these ideas in the context 
of the Pati-Salam gauge group SU(4) 8 SU(2)L 8 SU(2)R supplemented by a U(1)X 
gauged family symmetry. The gauge symmetries are broken down to those of the 
minimal supersymmetric standard model which is the effective theory below 10l6 GeV. 
The combination of the U( 1)x  family symmetry and the Pati-Salam gauge group leads 
to a successful and predictive set of Yukawa textures involving both kinds of texture 
zeroes. We discuss both symmetric and non-symmetric textures in models of this kind, 
and in the second case perform a detailed numerical fit to the charged fermion mass 



and mixing data. Two of the Yukawa textures allow a low energy fit to the data with 
a total x2 of 0.39 and 1.02 respectively, for three degrees of freedom. 
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1 Introduction 

The pattern of quark and lepton masses and quark mixing angles has for a long time 
been a subject of fascination for particle physicists. In terms of the standard model, this 
pattern arises from three by three complex Yukawa matrices (54 real parameters) which 
result in nine real eigenvalues plus four real mixing parameters (13 real quantities) 
which can be measured experimentally. In recent years the quark and lepton masses 
and mixing angles have been measured with increasing precision, and this trend is likely 
to continue in the future as lattice QCD calculations provide increasingly accurate 
estimates and B-factories come on-line. Theoretical progress is less certain, although 
there has been a steady input of theoretical ideas over the years and in recent, times 
there is an explosion of activity in the area of supersymmetric unified models. This 
approach presumes that at very high energies close to the unification scale, the Yukawa 
matrices exhibit a degree of simplicity, with simple relations at high energy corrected 
by the effects of renormalisation group (RG) running down to low energy. For example 
the classic prediction that the bottom and tau Yukawa couplings are equal at the 
unification scale can give the correct low energy bottom and tau masses, providing 
that one assumes the RG equations of the minimal supersymmetric standard model 
(MSSM)[l]l. In the context of the MSSM it is even possible that the top, bottom and 
tau Yukawa couplings are all approximately equal near the unification scale [3], since 
although this results in the top and bottom Yukawa couplings being roughly the same 
at low energy, one can account for the large top to bottom mass ratio by invoking a 
large value of tanp  defined as thc ratio of vacuum expectation values (VEVs) of the 
two Higgs doublets of the MSSM. 

These successes with the third family relations are not immediately generalisable 
to the lighter families. For the remainder of the Yukawa matrices, additional ideas are 
required in order to understand the rest of the spectrum. One such idea is that of 
texture zeroes: the idea that the Yukawa matrices at the unification scale are rather 
sparse; for example the Fritzsch ansatz [4]. Although the F’ritzsch texture does not work 
for supersymmetric unified models, there are other textures which do, for example the 
Georgi-Jarlskog (GJ) texture [5]  for the down-type quark and lepton matrices: 

lThe next-to-MSSM (NMSSM) with an additional low energy gauge singlet works just as well [2]. 

2 



After diagonalisation this leads to AT = Ab, Ap = 3X,, Ae = Xd/3 at the scale M G ~ T  
which result in (approximately) successful predictions at low energy. Actually the 
factor of 3 in the 22 element above arises from group theory: it is a Clebsch factor 
coming from the choice of Higgs fields coupling to this element. 

It is observed that if  we choose the upper two by two block of the GJ texture to be 
symmetric, A12 = X21, and if we can disregard contributions from the uptype quark 
matrix, then we also have the successful mixing angle prediction 

vu, = ~ x * / x s .  (2) 

This last relation supports the idea of symmetric matrices, and a texture zero in the 
11 position. Motivated by the desire for maximal predictivity, Rarnond, Roberts and 
Ross (RRR) [6] have made a survey of possible symmetric textures which are both 
consistent with data and involve the maximum number of texture zeroes. Assuming 
GJ relations for the leptons, RRR tabulated five possible solutions for the uptype and 
down-type Yukawa matrices. We list them below for completeness: 

Solution 1: 
0 f i x 6  0 o 2x4 o 

L l  

x u =  ( y ; ;), x D =  ( 2 x 4  2x3 4 ; )  
0 4x3 

Solution 2: 
0 A6 0 o 2x4 

p = ( x 6  o x 2  ) , x D  = ( 2x4 2x3 2)) 
0 x2 1 o 2 ~ 3  

(3) 

(4) 

Solution 3: 
0 0 fix4 o 2x4 

p =  ( 0 x 4  0 ) ,  x D =  ( 2x4 0 4x3 2x3 4 9  ( 5 )  
f i x 4  0 1 

Solution 4: 
0 f i x 6  0 o 2x4 o 

xu = ( f i x 6  ) , x D  = ( 20x4 2x3 0 )  
0 A2 1 0 1  

Solution 5: 
0 0 A4 o 2x4 o 

x4 P/fi 1 
xU'= ( o f i x 4  i ' / f i ) ,  x D =  (20x4 2x3 0 1  0 )  (7) 
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where A = 0.22, and the top and bottom Yukawa couplings have been factored out for 
simplicity. These textures are valid at the unification scale. All the solutions involve 
texture zeroes in the 1 1  entry. Solutions 1,2, and 4 involve additional texture zeroes 
in the 13=31 positions which are common to both uptype and down-type matrices. 
Solutions 3 and 5 have no texture zeroes which are common to both uptype and down- 
type matrices, apart from the 11  entry. Thus solutions 1,2 and 4 involve rather similar 
uptype and down-type matrices, while solutions 3 and 5 involve very different textures 
for the two matrices. 

Having identified successful textures2, the obvious questions are: what is the origin 
of the texture zeroes? and: what is the origin of the hierarchies (powers of the expansion 
parameter A)? A natural answer to both these questions was provided early on by 
F’roggatt and Nielsen (FN) [SI. The basic idea involves a high energy scale M, a family 
symmetry group G, and some new heavy matter of mass M which transforms under 
G. The new heavy matter consists of some Higgs fields which are singlets under the 
vertical gauge symmetry but non-singlets under G. These break the symmetry G by 
developing VEVs V smaller than the high energy scale, There are also some heavy 
fields which exist in vector-like representations of the standard gauge group. The 
vector-like matter couples to ordinary matter (quarks, leptons, Higgs) via the singlet 
Higgs, leading to “spaghetti-like” tree-level diagrams. Below the scale V the spaghetti 
diagrams yield effective non-renormalisable operators which take the form of  Yukawa 
couplings suppressed by powers of X = V / M .  In this way the hierarchies in the Yukawa 
matrices may be explained, and the texture zeroes correspond to high powers of A. 

A specific realisation of the FN idea was provided by Ibanez and Ross (IR) [9], 
based on the MSSM extended by a gauged family U(l)x symmetry with 8 and 8 singlet 
fields with opposite X charges, plus new heavy Higgs fields in vector representations3. 
Anomaly cancellation occurs via a Green-Schwarz-Witten (GSW) mechanism, and the 
U(l)x symmetry is broken not far below the string scale [9]. By making certain sym- 

metric charge assignments, IR showed that the RRR texture solution 2 could be approx- 
imately reproduced. To be specific, for a certain choice of U(l)x charge assignments, 

20ver the recent years, there has-been an extensive study of fermion mass matrices with zero 

3The generalisation to include neutrino masses is straightforward [lO]. 
textures [7]. 
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IR generated Yukawa matrices of the form: 

A'= ( :  E !), A D = ( ;  53 :). X E = ( z  s3 I? 0 0 )  (8) 
0 0 1  

These are symmetric in the expansion parameters E and s, which are regarded as inde- 
pendent parameters. This provides a neat and predictive framework, however there are 
some open issues. Although the order bf the entries is fixed by the expansion param- 
eters, there are additional parameters of order unity multiplying each entry, making 
precise predictions difficult. A way to address the problem of the unknown coefficients 
has been proposed in [ll] where it has been shown that the various coefficients may 
arise as a result of the infra-red fixed-point structure of the theory beyond the Standard 
Model. 

Note that the textures for up-type and down-type matrices are of similar form, 
although the expansion parameters differ. Also note that there are no true texture 
zeroes in the quark sector, merely high powers of the expansion parameter. Thus 
this example most closely resembles RRR solution 2 with approximate texture zeroes 
in the 11 and 13=31 positions. However, without the inclusion of coefficients, the 
identification is not exact. The best fit to solution 2 of RRR is obtained for the 
identification E = A2, E f A (alternative identifications, like E = X2, 5 2A3 lead 
to larger deviations). However even this choice does not exactly correspond to RRR 
solution 2, as can be shown by taking solution 2 and inserting the numerical values of 
the entries: 

0 1 x 10-4 0 0 5 x 10-3 0 

5 x 10-2 1 0 2 x 10-2 
xu= ( yo-4 0 1 

(9) 
We compare these numbers to the order of magnitudes predicted by the symmetry 
argument, making the identifications E E A2, 5 A 

3 x 10-11 1 x 10-4 5 x 10-6 5 x 10-6 1 x 10-2 2 x 10-3 
1 x 10-2 5 x 10-2 2 x 10-1 

5 x 10-6 5 x 10-2 1 2 x 10-3 2 x 10-1 1 
(10) 

Comparison of Eq.9 to Eq.10 shows that while Xu is in good agreement, AD differs. In 
Eq.10, the 23 = 32 element is an order of magnitude too large. When the unknown 
couplings and phases are inserted the scheme can be made to work. However, some 
tuning of the unknown parameters is implicit, and to some extent this is in contrast 
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with the object of the symmetries approach, where one had hoped to understand at 
least the order of magnitude of the entries of the Yukawa matrices using symmetries. 
We observe that a better fit to AD could be obtained by introducing a small parameter 
6 into all the elements apart from the 33 renormalisable element, so that Eq.8 gets 
replaced by4 

€* 8 €4 68  68 68 
A U = (  5 ; ) ,  A D = (  6 8  6 8  6E2 6E T) (11) 

The idea is that the suppression factor 6 originates from some flavour independent 
physics, while the parameters e and E control the flavour structure of the matrices. For 
example, suppose we take E A as in the previous example but scale down the entries 
by a factor of 6 = 0.2. Then we would have, 

(12) 
1 x 10-6 2 x 10-3 4 x 10-4 

A D =  ( 2 x 10-3 1 x 10-2 4 x 10-2 

4 x 10-4 4 x 10-2 1 

which provides a better description of the numerical values required by the RRR anal- 
ysis for solution 2 in Eq.9, at the expense of introducing the parameter 6. This ex- 
ample indicates that if family symmetries are to give the correct order of magnitude 
understanding of Yukawa textures without any tuning of parameters, then an extra 
parameter 6 needs to be introduced as above. 

Another aspect of the fermion mass spectrum not addressed by only U(1)x flavour 
symmetries, is that of the mass splitting within a particular family. For example 
the GJ texture in Eq.1 provides a nice understanding of the relationship between the 
charged lepton and down-type quark Yukawa couplings within a given family, and 
in the simplest U(l)x scheme such relations are either absent or accidental, as seen 
in Eq.8 where the form of AE has been fixed by a parameter choice. Unless such 
parameters are predicted by the theory, as in the extension of the initial IR scheme 
that is discussed in [ll], the only antidote is extra unification. Then, the leptons 
share a representation with the quarks, and the magic GJ factors of three originate 
from the fact that the quarks have three colours. For example the SO(10) model of 
Anderson et a1 [12] with both low energy Higgs doublets unified into a single 10 - 
representation predicts Yukawa unification for the third family, GJ relations for the 
charged leptons and down-type masses, and other Clebsch relations involving uptype 

41n our scheme we will have a Unified Yukawa matrix. This, as we are going to see, will imply a 
common expansion parameter for the up and down-type mass matrices and the presence of a factor 6 
in the upquark mass matrix as well. 
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quarks. As in the IR approach, the approach followed by Anderson et a1 is based on 
the FN ideas discussed above. Thus for example, only the third family is allowed to 
receive mass from the renormalisable operators in the superpotential. The remaining 
masses and mixings are generated from a minimal set of just three specially chosen 
non-renormalisable operators whose coefficients are suppressed by a set of large scales. 
The 12=21 operator of Anderson et a1 is suppressed by the ratio (451/M)~,  while the 
23=32 and operators are suppressed by ( 4 5 ~ - ~ / 4 5 1 ) ~  and (45B_LS/45f) where the 45’s 
are heavy Higgs representations. In a complicated multi-scale model such as this, the 
hierarchies between different families are not understood in terms of a family symmetry 
such as the the U ( l ) x  of IR. Indeed it is difficult to implement a family symmetry 
in this particular scheme, and the latest attempts based on global U(2) [13] abandon 
it. In any case5, models such as SO(l0)  are not “string friendly” and simple orbifold 
compactifications in which candidate gauge U( 1 ) ~  family symmetries are present do 
not easily emerge. 

In this paper we shall combine the U ( l ) x  family symmetry approach of IR with the 
idea of Clebsch relations to describe the mass relations within a particular family. The 
combination of the two ideas provides a very attractive framework for describing the 
fermion mass spectrum. It is clear that the way to obtain Clebsch relations is to unify 
the quarks with the leptons. It is equally clear that too much unification can lead to 
too many different scales which negates the idea of the U(l )x  family symmetry, and 
causes problems with string compatibility. Therefore we shall consider the simplest 
“string friendly” unified extension of the standard model, which can lead to Clebsch 
relations of the kind we desire. In this way we are led to the Pati-Salam gauge group 
[14] which was considered as a unified string model [15],[16] some time ago. This Pati- 
Salam gauge group has recently’been the subject of renewed interest from the point 
of view of fermion masses [17], and an operator analysis has shown that it is possible 
to obtain desirable features such as Yukawa unification for the third family, and GJ 
type relations within this simpler model. A particular feature of the published scheme 
which we would like to emphasise here is the idea of Clebsch tedure zeroes which arise 
from the group theory of the Pati-Salam gauge group. These Clebsch zeroes were used 
to account for the lightness of the up quark compared to the down quark, for example 
[17]. However the operator analysis of [17] did not address the question of the hierarchy 
between families (no family symmetry was introduced for example), nor the question of 
the origin of the non-renormalisable operators. Here we shall introduce a U( 1)x gauge 

6Here we restrict our discussion in string constructions based on k = 1 level of Kac-Moody algebras. 
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symmetry into the model and combine it with the Clebsch relations previously used, 
to provide a predictive scheme of fermion masses and mixing angles. We shall also 
ensure that we obtain the correct order of magnitude for all the entries of the Yukawa 
matrices from the symmetry breaking parameter, using structures like that of Eq.11. 
In our case the quantity 6 will be identified with a bilinear of heavy Higgs fields which 
are responsible for generating the Clebsch structures, while the parameters such as e 

will have trivial Clebsch structure (singlets under the vertical gauge group) but will 
generate family hierarchies from the flavour symmetry. This corresponds to  there being 
two types of heavy Higgs fields: Pati-Salam gauge singlets (corresponding to  IR 8 and 
8 fields) which break the U( l )x  family gauge group but leave the Pati-Salam group 
unbroken, and Pati-Salam breaking fields whose bilinear forms are U( l ) ~  singlets but 
transform non-trivially under the Pati-Salam gauge group, thereby giving interesting 
Clebsch structures. The non-renormalisable operators of interest must therefore involve 
both types of Higgs fields simultaneously. 

The layout of the paper is as follows: In section 2 we briefly review the string- 
inspired Pati-Salam model. In section 3 we introduce our new approach based on 
the combined operators mentioned above, using the symmetric textures of RRR as an 
example. In section 4 we review the non-symmetric operator analysis in ref.[17] and 
then introduce a non-symmetric version of our new approach. In section 5 we perform a 
full numerical analysis of the non-symmetric models. In section 6 we review the U ( l ) x  
family symmetry approach, and perform an analysis relevant for the full (symmetric 
and non-symmetric) model. Finally section 7 concludes the paper. 

2 TheModel 

Here we briefly summarise the parts of the model which are relevant for our analysis. 
For a more complete discussion see [15]. The gauge group is, 

The left-handed quarks and leptons are accommodated in the following representations, 

U R  U B  UG U 

dR dB dG e- Faaa = (4,2,1) = ( 
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where Q = 1 , .  . . , 4  is an SU(4) index, a ,x  = 1 , 2  are S U ( ~ ) L , R  indices, and i = 1 , 2 , 3  
is a family index. The Higgs fields are contained in the following representations, 

(where hl and h2 are the low energy Higgs superfields associated with the MSSM.) The 
two heavy Higgs representations are 

and 

The Higgs fields are assumed to develop VEVs, 

< H >=< UH >N Mx, < H >=< PH >N Mx (19) 

leading to  the symmetry breaking at Mx 

in the usual notation. Under the symmetry breaking in Eq.20, the bidoublet Higgs field 
h in Eq.16 splits into two Higgs doublets hl, h2 whose neutral components subsequently 
develop weak scale VEVs, 

with t a n p  E v2/211. 

In addition to  the Higgs fields in Eqs. 17,18 the model also involves an SU(4) sextet 
field D = (6,1,1).  The superpotential of the model is a simplified version of the one 
in ref.[15]: 

W = XijFiFjh + X2HHD + X3HHD + Xi3H44i + phh (22) 

where q5i, (i = 1 , 2 , 3 )  are singlets under the PS-symmetry. The last term generates the 
higgs mixing between the two SM higgs doublets in order to  prevent the appearance 
of a massless electroweak axion. Note that this is not the most general superpotential 
that is invariant under the gauge symmetry. Additional terms not included in Eq.22 
may be forbidden by imposing suitable discrete or continuous symmetries, the details of 
which need not concern us here. The D field does not develop a VEV but the terms in 
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- -  
Eq.22 HHD and HHD combine the colour triplet parts of H, H and D into acceptable 
GUT-scale mass terms [15]. When the H fields attain their VEVs at M G ~ T  - 10l6 
GeV, the superpotential of Eq.22 reduces to that of the MSSM augmented by neutrino 
masses. Note that the last term in Eq.22 is proportional to the dimensionful parameter 
p. Below Mx the part of the superpotential involving matter superfields is just 

where Ni are the superfields associated with the right-handed neutrinos. The Yukawa 
couplings in Eq.23 satisfy the boundary conditions 

X ~ ~ ( M G ~ ~ )  E X$(MGUT) = A i j  D( M GUT) = X ~ ( M G ~ T )  = X F D ( M ~ u ~ ) .  (24) 

Thus, Eq.(24) retains the successful relation m, = mb at MGUT. Moreover from the 
relation X$(MG~T) = ~$,(MGUT), and the fourth term in (22), we obtain through the 
see-saw mechanism light neutrino masses - O(m:/MGuT) which satisfy the experi- 
mental limits. 

3 The New Approach: Symmetric Textures 

In this section we briefly review the results of the operator analysis of ref.[17], then 
introduce our new approach based on the combined operators discussed in section 1. 
We discuss the RRR textures as a simple example of the new method. 

The boundary conditions listed in Eq.24 lead to unacceptable mass relations for the 
light two families. Also, the large family hierarchy in the Yukawa couplings appears 
to be unnatural since one would naively expect the dimensionless couplings all to be 
of the same order. This leads us to the conclusion that the A y  in Eq.22 may not 
originate from the usual renormalisable tree level dimensionless coupling. We allow 
a renormalisable Yukawa coupling in the 33 term only and generate the rest of the 
effective Yukawa couplings by non-renormalisable operators that are suppressed by 
some higher mass scale. This suppression provides an explanation for the observed 
fermion mass hierarchy. 

In ref. [ 171 we restricted ourselves to  all possible non-renormalisable operators which 
can be constructed from different group theoretical contractions of the fields: 

HH 
Oij - ( F , 4 ) h  (-) + H.c. 
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where we have used the fields H,H in Eqs.17,18 and M is the large scale M > Mx. 
The idea is that when H,H develop their VEVs, such operators will become effective 
Yukawa couplings of the form hFE with a small coefficient of order M&,,/M2. We 
considered up to n = 2 operators. The motivation for using n = 2 operators is simply 
that such higher dimension operators are generally expected to  lead to  smaller effective 
couplings more suited to the 12 and 21 Yukawa entries. According to our present 
approach we shall restrict ourselves to n = 1 operators with the required suppression 
factors originating from a separate flavour sector. We will leave the question of the 
definite origin of the operators for now. Instead we merely note that one could construct 
a FN sector to motivate the operators, or that one might expect such operators to come 
directly out of a string theory. In section 6 we shall introduce a U( l ) ~  family symmetry 
into the model, which is broken at a scale MX > M G ~ T  by the VEVs of the Pati-Salam 
singlet fields 8 and e. According to the ideas discussed in section 1 we shall henceforth 
consider operators of the form 

H H  enem 
Oij - (F,F,)h (w) ( Me"MB" ) + h.c. 

where we have assumed the form of the operators in Eq.25 corresponding to n = 1 
and glued onto these operators arbitrary powers of the singlet fields e,#. Note that 
the single power of (HH) is present in every entry of the matrix and plays the role of 
the factor of 6 in Eq.11. However, unlike the previous factor of 6, the factor of (HH) 
here carries important group theoretical Clebsch information. In fact Eq.26 amounts 
to assuming a sort of factorisation of the operators with the family hierarchies being 
completely controlled by the 8, e fields as in IR, with m, n-being dependent on a ,  j, and 
the horizontal splittings being controlled by the Clebsch factors in (HI?). However 
this factorisation is not complete since we shall assume that the Clebsch factors have 
a family dependence, i.e. they depend on i , j .  We offer no explanation for the family 
dependence of the Clebsch factors but simply select the Clebsch factor in each entry 
in an ad hoc way. 

As a first example of our new approach we shall consider the RRR textures discussed 
in section 1. Our first observation is that, restricting ourselves to n = 1 operators, there 
are no large Clebsch ratios between the up-type and down-type quarks for any of the 
operators. This means that it is very difficult to reproduce RRR solutions such as 
solution 2 where the 12 element of the down-type matrix in Eq.9, for example, is 50 
times larger than its uptype counterpart. Of course this can be achieved by requiring 
an accurate cancellation between two operators, but such a tuning of coefficients looks 
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- 
OA 
OB 
O C  
O D  
OC 
O H  
O K  
O M  
ON 
OR 
OW 
OS - 

QUh2 
1 
1 + 
3 
0 

4/5 
8/5 
0 
2 
0 
0 

h 

- 
LNh2 

1 
1 

3 
3 

815 
0 

6/5 
0 
0 
0 
0 

& 

Table 1: When the Higgs fields develop their VEVs at MGUT, the n = 1 operators utilised 
lead to the effective Yukawa couplings with Clebsch coefficients as shown. We have included 
the relative normalisation for each of the operators. The full set of n = 1 operators and 
Clebsch’s is given in Appendix 1. These n = 1 operators were used in the lower right hand 
block of the Yukawa matrices in the analysis of ref. [17]. 

ugly and unnatural, and we reject it. On the other hand the n = 1 Clebsch’s in Table 
1 include examples of zero Clebsch’s, where the contribution to the uptype matrix, for 
example, is precisely zero. Similarly there are zero Clebsch’s for the down-type quarks 
(and charged leptons). The existence of such zero Clebsch’s enables us to reproduce 
the RRR texture solutions 3 and 5 without fine-tuning. Interestingly they are precisely 
the solutions which are not possible to obtain by the standard IR symmetry approach, 
which favours solutions 1,2 and 4 and for which the uptype and down-type structures 
are similar. Thus our approach is capable of describing the RRR solutions which are 
complementary to those described by the IR symmetry approach6. To take a specific 
example let us begin by ignoring the flavour dependent singlet fields, and consider the 
symmetric n = 1 operator texture, 

(27) 
ON 0 3 3  ON 1 (,9. 
OM 

A =  OM OW+s .d .  ON 

[19], two of us used an alternative approach in order to reproduce the structure of solutions 
1 and 3 of RRR by the implementation of a symmetry. These solutions were found to lead to the 
optimal predictions for neutrino masses and mixings. This has been achieved by a proper choice of 
charges (integer/half-integer) and by imposing residual ZZ symmetries which forbid Merent entries 
in the up and down-quark mass matrices. 
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where 0 3 3  is the renormalisable operator, s.d. stands for a subdominant operator 
with a suppression factor compared to the other dominant operator in the same entry. 
Putting in the Clebsch's from Table 1 we arrive at the component Yukawa matrices, 
at the GUT scale, of 

0 "1 1 
A D =  ( Jzxfi xgJZ/fi 0 

0 

0 

0 "1 1 
X E =  (Jzxfi 3 x g a / f i  0 

0 

0 

where Xg and A; arise from the dominant 0g operator and A& comes from a sub- 
dominant operator that is relevant because of the texture zero Clebsch in the up sector 
of 0g. The zeroes in the matrices correspond to those of the RRR solution 5 ,  but 
of course in our case they arise from the Clebsch zeroes rather than from a family 
symmetry reason. The numerical values corresponding to RRR solution 5 are, 

0 0 2 x 10-3 0 5 x 10-3 o 
P=( 0 3 x 3 x , AD = ( 5 x 10-3 2 X 0 

2 x 1 0 - ~  3 x 1 0 - ~  1 0 0 

Thus, the hierarchy A% << A& is explained by a Clebsch zero and a suppression factor 
of the subdominant operator. Using Eq.31 we can read off the values of the couplings 
which roughly correspond to a unified matrix of dominant couplings 

(32) 
0 3 x 10-3 1 x 10-3 

3 x 10-3 2 x 10-2 2 x 10-2 
1 x 10-3 2 x 10-2 1 

where we have extracted the Clebsch factors. We find it particularly elegant that the 
whole quark and lepton spectrum is controlled by a unified Yukawa matrix such as in 
Eq.32 with all the vertical splittings controlled by Clebsch factors. 

At this stage we could introduce a U(l )x  symmetry of the IR kind, and the flavour 
dependent singlet fields in order to account for the horizontal family hierarchy of cou- 
plings in Eq.32. In the present case we must remember that there is a small quantity 
6 multiplying every non-renormalisable entry as in Eq.11, corresponding to the n = 1 
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bilinear 6 
entry. Thus we can understand Eq.32 as resulting from a structure like, 

$ which we have required to  be present in every non-renormalisable 

where we identify e = A = 0.22 and set 6 x 0.2 which gives the correct orders of 
magnitude for the entries, rather similar to the case we discussed in Eq.12. Here 
of course the considerations apply to  the unified Yukawa matrix, however, not just 
the down-type quark matrix. The details of the U(l)x family symmetry analysis are 
discussed in section 6. Here we simply note that such an analysis can lead to  a structure 
such as the one assumed in Eq.33. 

A similar analysis could equally well be applied to RRR solution 3. In both cases 
we are led to a pleasing scheme which involves no unnatural tuning of elements, and 
naturally combines the effect of Clebsch's with that of family symmetry suppression, in 
a simple way. The existence of the Clebsch texture zeroes thus permits RRR solutions 3 
and 5 which are impossible to obtain otherwise within the general framework presented 
here. 

4 Non-Symmetric Textures 

In this section we update the non-symmetric textures based on both n = 1 and 
n =-2--operators introduced in ref.[17], then extend the new approach introduced in the 
previous section to the non-symmetric domain. As in the previous section, we shall 
begin by ignoring the effect of the singlet fields, which will be discussed in section 6. 

As discussed in Appendix 2 we shall modify the analysis of Ref.[17] to  only include 
the lower 2 by 2 block Ansatz: 

This is then combined with the upper 2 by 2 blocks considered in ref.[17]: 

O A d  x 

O A d  ''1 x Bz = [ 
(35) 

(36) 
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O2 
0 3  

Table 2: Clebsch coefficients of n = 2 operators previously utilised. 

0 6 - 8 - 
9 I 0 

0 
0 - 

B7 = [ O M d  ''1 x 

BB = [ O M d  02] x ' 

where X stands for whatever is left in the 22 position, after the lower 2 by 2 submatrix 
has been diagonalised. The Clebsch coefficients of the n = 2 operators used in Eqs.35- 
42 are displayed in Table 2 but we refer the reader to ref.[l7] for the explicit realisation 
of these operators in terms of the component fields for reasons of brevity. The Ansatze 
listed above present problems because of the breakdown of matrix perturbation theory7. 
For purposes of comparison with the new scheme involving only n = 1 operators, we 
will recalculate the predictions for each of the models from ref.[17] numerically in the 
next section. 

We now turn our attention to the new approach introduced in the previous section, 
based on n = 1 operators together with singlet fields which for the moment we shall 
ignore. In this case the 21 operator used in ref.[17] which gave an up Clebsch coefficient 

'When the magnitudes of H21, H12 and H22 are calculated they are each of the same order in the 
down Yukawa matrix, thus violating the hierarchy in Eq.88 that was assumed in the calculation of 
the predictions. 
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1/3 times smaller than the down Clebsch is not available if we only use n = 1 operators. 
We must therefore use a combination of two operators in the 21 position that allow 
the up entry to be a bit smaller than the down entry. We require that the combination 
provide a Clebsch relation between A; and A 5  for predictivity. The two operators 
cancel slightly in the up sector, but as shown later this cancellation is - 0(1) and 
therefore acceptable. The result of this is that the prediction of Vub is lost; however this 
prediction was almost excluded by experiment anyway, and a more accurate numerical 
estimate which does not rely on matrix perturbation theory confirms that Vd in ref.(17] 
is too large. So the loss of the Vu, prediction is to be welcomed! The Clebsch effect of 
the 12 operator (with a zero Clebsch for the uptype quarks) can easily be reproduced 
at the n = 1 level by the operator OM for example. 

To get some feel for the procedure we will follow, we first discuss a simple example of 
a non-symmetric texture, ignoring complex phases for illustrative purposes. Restricting 
ourselves to n = 1 operators, we consider the lower block to be A1 and the upper block 
to be the modified texture as discussed in the previous paragraph. Thus we have, 

oc 0 3 3  

0 O M  

0 
A = (  O M + O A  OW+s.d.  0 (43) 

where 0 3 3  is the renormalisable operator. Putting in the Clebsch's from Table 3 we 
arrive at the component Yukawa matrices, at the GUT scale, of 

where A& and A202 arise from the difference and sum of two operators whose normalisa- 
tion factor of & has been explicitly inserted, and similarly for AYl and A;. To obtain 
the numerical values of the entries we use some typical GUT-scale values of Yukawa 
couplings and CKM elements (see ref.[17]) as follows: 

A33 = l , A c  = 0.002, A8 = 0.013, A, = 0.04,Au = 10-6,Ad = 0.0006,Ae = 0.0002, (47) 
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where we have assumed, 

a, = 0.115, mb = 4.25, t a n p  = 55, mt = 180GeV (49) 

The textures in Eqs.44, 45 and 46 imply that the 22 eigenvalues are just equal to 
the 22 elements (assuming matrix perturbation theory is valid - see later), and A& = 

Vd/2 = 0.025. Thus we have Af2 = 0.004,Ag = 0.03. The remaining parameters are 
determined from the relations, 

Note that the up quark mass looks like it is zero, but in practice we would expect some 
higher dimension operator to be present which will give it a small non-zero value. We 
thus have three equations and three unknowns, and solving we find A& = 2 x l O - * ,  Ag = 

2 x 10-3, Af2 = 3 x 10-3. The difference between AYl and Ag requires suppression of OA 
caused by the Clebsch zero in the dominant operator OM. Thus the unified Yukawa 
matrix involves operators with the following approximate numerical coefficients, 

(51) 
2.5 x 10-2 1 

0 

0 

where we have extracted the Clebsch factors, and the 22 and 21 values in Eq.51 refer to 
each of the two operators in this position separately. The numerical values in Eq.51 are 
not dissimilar from those in Eq.32, in particular the upper 2 by 2 block is symmetrical 
with the same values as before. In this case the lower 2 by 2 block has a texture zero 
in the 23 position, as well as the 31 and 13 positions, but otherwise the numerical 
values are very similar to those previously obtained in Eq.32. Thus this particular 
non-symmetric texture can be described by a structure of the kind, 

(52) 
6€”9 6€3 6€”9 

6 P 9  6 E  1 
A =  ( 6€3 6 P 2  6€”9 

where we identify E = A = 0.22 and set 6 M 0.1 as before. Can such a structure for the 
E’S be. obtained from the U(l)x symmetry? This will be discussed in section 6. 

There is no reason to restrict ourselves to non-symmetric textures with a zero in 
the 13 and 31 position, as assumed in ref.[17]. For example the following texture is 
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also viable, amounting to a hybrid of the symmetric case considered in Eq.27 and the 
non-symmetric lower block just considered. 

ON oc 0 3 3  
(53) 

Here, 0 3 3  is the renormalisable operator. We now perform a general operator analysis 
of the non-symmetric case, assuming n = 1 operators for all non-zero entries (apart 
from the 33 renormalisable entry). In this general analysis there are two classes of 
texture: those with universal texture zeroes in the 13 and 31 position (essentially 
n = 1 versions of the textures considered in ref.[17]) and new textures with non-zero 
entries in the 13 and/or 31 position. For now we will not consider the cases with 
operators in the 13 or 31 positions for reasons of brevity. In the general analysis we 
repeat the above procedure, being careful about phases, and obtain some numerical 
estimates of the magnitude of each entry which will be explained in terms of the U(l )x  
family symmetry as discussed in the next section. 

With the above discussion in mind, we consider the new scheme in which the 
dominant operators in the Yukawa matrix are 0 3 3 ,  OE, Og, 0 2 1 , 6 2 1  and 0 1 2 ,  where 
the last three operators are left general and will be specified later. We are aware from 
the analysis in ref.[17] that 0 1 2  must have a zero Clebsch coefficient in the up sector. 
A combination of two operators must then provide a non-zero 0 2 1  entry to provide a 
big enough Vub, an additional much more suppressed operator elsewhere in the Yukawa 
matrix gives the up quark a small mass. At M G ~ T  therefore, the Yukawa matrices are 
of the form 

A' = H21xi1eih1 + H215i1eiA1 H ~ x i 2 e ' h ~  x12 : 1, (54) 

where only the dominant operators are listed. The I superscript labels the charge 
sector and x& refers to the Clebsch coefficient relevant to the charge sector I in the 
i j th position. &j are unknown phases and H;j is the magnitude of the effective di- 
mensionless Yukawa coupling in the i j th  position. Any subdominant operators that we 
introduce will be denoted below by a prime and it should be borne in mind that these 
will only affect the up matrix. So far, the known Clebsch coefficients are 

0 H12eih I 

[ 0 H32xi2e'#sa H33e* 
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We have just enough freedom in rotating the phases of  F1,2,3 and p1,2,3 to  get rid of all 
but one of the phases in Eq.54. When the subdominant operator is added, the Yukawa 

L 

where we have defined 

D,E - 
H21 = 

We may now remove $22' by phas 

(57) 

transformations upon p1,2,3 but $E mal only be 
removed by a phase redefinition of F1,2,3, which would alter the prediction of the CKM 
matrix V C K M .  Thus, $yl is a physical phase, that is it cannot be completely removed 
by phase rotations upon the fields. Once the operators 0 2 1 ,  6 2 1 , 0 1 2  have been chosen, 
the Yukawa matrices at MGUT including the phase in the CKM matrix are therefore 
identified with Hij, H'22, $fl. 

5 Numerical Analysis of Masses and Mixing Angles 

In this section we discuss the numerical procedure used to analyse the non-symmetric 
cases introduced in the previous section. We shall perform an analysis on the new 
approach based on n = 1 operators only, and also re-analyse and up-date the original 
scheme of ref. [ 171 for comparison. 

The basic idea is to do a global fit of each considered Ansatz to me, m,, mu, m,, mt, 
md, m,, mb, a s ( M ~ ) ,  Ivubl, IV ,b l  and lVu81 using m7 as a constraint. We assume that the 
whole SUSY spectrum of the MSSM lies at Msu~y = mt and that the MSSM remains 
a valid effective theory until the scale MGUT = 10l6 GeV. Not wishing to include 
neutrino masses in this analysis, we simply set the right-handed Majorana neutrino 
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mass of each family to be 10l6 GeV so that the neutrinos are approximately massless 
and hence their masses do not affect the RGEs below MGUT. Recall the paameters 
introduced in Eq.56: 4;' E 4, HK E H21', H i  E H21, Hz', Hz, H12, H32, Hs. The 
values of these 8 parameters plus QS at the GUT scale are determined by the fit. 

The matrices A' are diagonalised numerically and IV~(MGUT)I, 1~8(MCUT)I are 
determined by 

(58) t VCKM = VULVDL, 

where VUL,VDL are the matrices that act upon the ( u , c , t ) ~  and ( d , s , b ) ~  column 
vectors respectively to transform from the weak eigenstates to the mass eigenstates 
of the quarks. We use the boundary conditions ~ ~ ( M G u T )  = ~ ~ ( M G u T )  = 0.708, 
motivated by previous analyses based on gauge unification in SUSY GUT models [18]. 
~ulc , t ,d ,8 ,b , e ,p ,~ ,  IvU81 and lvubl are then run8 from MGUT to 170 GeV= using the RGEs 
for the MSSM. Below MCUT the effective field theory of the Standard Model allows 
the couplings in the different charge sectors to split and run differently. The A, are 
then evolved to their empirically derived running masses using 3 loop QCDC31 loop 
QED [17]. m: and AT(m,) theng fix tan@ through the relation [12] 

where v = 246.22 GeV is the VEV of the Standard Model Higgs. Predictions of the 
other fermion masses then come from 

where ml 1 GeV. There are twelve data points and nine parameters so we have 
three degrees of freedom (dof). The parameters are all varied until the global X2/dof 
is minimised. The data used (with la errors quoted) is [20] 

me = 0.510999 MeV 

*All renormalisation running in this paper is one loop and in the MS scheme. The relevant renor- 
malisation group equations (RGEs) are listed in ref.[l7]. 

OThe superscript e upon masses, mixing angles or diagonal Yukawa couplings denotes an empirically 
derived value, where& the superscript p denotes the prediction of the model for the particular fit 
parameters being tested. 
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m, = 105.658 MeV 

mr = 1.7771 GeV 

mC 
mPh!ls 

t 

md 

mb 

= 1.3f 0.3 GeV 

= 1 8 0 f  12 GeV 

= 1 0 f 5 M e V  

= 200f100 MeV 

= 4.25 f 0.1 GeV 

= (3.50 f 0.91)10-3 

= 0.2215 f 0.0030 

= 0.117 f 0.005 

IVdl is fixed by H32 which does not influence the other predictions to a good approx- 
imation and so IVdl and H32 effectively decouple from the fit. We merely note that 
in all cases, to predict the measured value of I & / ,  H32 - 0.03. Note that no errors 
are quoted upon the lepton masses because mr is used as a constraint on the data 
and because m,,m, were required to be satisfied to 0.1% by the fit. In this way we 
merely use the lepton masses as 3 constraints, using up 3 dof. We did not perform 
the fit with smaller empirical errors on the lepton masses because of the numerical 
roundoff and minimisation errors associated with high x2 values generated by them. 
Also, 0.1% is a possible estimate of higher loop radiative corrections involved in the 
predictions. Note that no other theoretical errors were taken into account in the fit. 
The largest ones may occur in derivations of mb due to the large &, coupling [21] and 
the non-perturbative effects of QCD near 1 GeV. It is not clear how to estimate these 
errors since the error on r n b  depends upon soft parameters which depend on the SUSY 
breaking mechanism in a very model dependent way and non-perturbative QCD is an 
unsolved problem. The correlations between the empirical estimations of the current 
quark masses are also not included. A potentially large error could occur if the ansatze 
considered are not exact but are subject to corrections by higher dimension operators. 
We discuss this point further in section 6. 

The results obtained from this analysis are given in Table 3. Out of 16 possible 
models that fit the texture required by Eqs.55,54, 11 models fit the data with x2/dof< 
3. Out of these 11 models, 5 fit the data with X2/dof< 2 and these are displayed in 
Table 3. The operators listed as 0 1 2 , 0 2 1 , 0 2 1  describe the structure of the models and 
the entries H22, H12,Hzl, cos 4, H33, H22', H21' are the GUT scale input parameters of 
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Model 

0.55 

. __ . 

I 1.84 

1 
O M  

OM + OA 
2.88 
2.81 
1.30 
0.87 
1.18 
1.91 
1.94 

0.119 
6.25 
158 
1.30 
4.24 
182 

0.2211 
3.71 
59.5 
0.34 

2 
OW 

OG + OH 
2.64 
4.41 
5.97 
1.00 
1.05 
1.87 
1.62 

0.118 
1.03 
150 
1.30 
4.25 
180 

0.2215 
3.51 
58.3 
1.16 

3 
OR 

OM + OA 
2.69 
2.13 
1.76 
0.20 
1.05 
1.87 
1.63 

0.118 
8.07 
154 
1.30 
4.25 
180 

0.2215 
3.50 
58.3 
0.13 

4 
O R  

.oG + OH 
2.67 
0.70 
4.33 
1.00 
1.07 
1.87 
1.66 

0.118 
4.14 
152 
1.30 
4.25 
180 

0.2215 
3.52 
58.5 

5 
OR 

OR + os 
6.15 
1.21 
1.91 
0.61 
4.6 
2.87 
0.76 
0.126 
11.9 
228 
1.30 
4.13 
192 

0.2215 
3.50 
65.7 

Table 3: RRsults of best-fit analysis on models with n = 1 operators only. Note that 
the input parameters Hjj, Hij', cos 4 shown are their values at the scale All of the 
mass predictions shown are running masses, apart fiom the pole mass of the top quark", 
mfhys = mt(l+ v). The CKM matrix element predictions are at Mz. 
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I I '  I 

' 0.95 I 0.96 I 1.00 I 1.05 

7.58 
215 
1.29 
4.19 
188 

0.2212 
4.52 
63.2 

B1 B2 
0.123 0.123 

9.12 
240 
1.38 
4.17 
189 

0.2213 
4.37 
63.6 

B3 B4 
0.123 0.124 
4.64 
179 
1.35 
4.19 
189 

0.2214 
4.05 
63.4 

B5 
0.123 
7.49 
217 
1.29 
4.19 
188 

0.2212 
4.56 
63.2 

6.18 
210 
1.16 
4.19 
189 

0.2212 
4.22 
63.7 

B6 
0.124 
3.63 
179 
1.32 
4.18 
189 

0.2215 
3.74 
63.8 

I 

0.97 I :1.16 

0.2212 
3.85 
64.3 
1.87 

0.2214 
3.98 
63.6 
1.04 

Table 4: Predictions of best-fit analysis on models from ref. [17] with n = 2 operators 
included. All of the mass predictions shown are running masses, apart from the pole mass of 
the top quark. The CKM matrix element predictions are at Mz. 

the best fit-values of the model. The estimated la  deviation in as(MZ) from the fits is 
f0.003 and the other parameters are constrained to better than 1% apart from  COS^, 
whose la fit errors often cover the whole possible range. Out of the predictions shown 
in Table 3, md discriminates between the models the widest. as(MZ) takes roughly 
central values, apart from model 5 for which the best fit is outside the la errors 
quoted in Eq.61 on as(Mz). m,, lvubl are within la of the data point and m,, lVus/ 
are approximately on the central value for all 5 models. Models 3,l and 4 are very 
satisfactory fits to  the data with X2/dof< 1. We conclude that the x2 test has some 
discriminatory power in this case since if all of the models were equally good, we would 
statistically expect to have 11 models with X2/dof< 1, 3 models with X2/dof= 1 - 2 
and 2 models with x2 = 2 - 3 out of the 16 tested. 

We now briefly return to  the original models with upper blocks given by B1-8 
in Eqs.35-42 [17]. After again isolating the only physical phase to  Ayl, a numerical 
fit analogous to  the above was performed using the same data in Eq.61. The main 
difference in the fit with these models is that there are now 4 degrees of freedom in 
the fit (since there is one less parameter). All eight models in question fit the data 
with x2 < 2 and these are displayed in Table 4. We do not display the best fit input 
parameters because they are largely irrelevant for the discussion here. la fit deviations 
of as(Mz) are again 0.003 for B1-8. Note that whereas these models are able to  fit 
IVuBI, m,, md, mb, m, fairly well, their predictions of  a s ( M ~ )  are high and outside the 
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la empirical error bounds. lvubl is naturally high in these models (as found in ref.[17]) 
and this forces crs(Mz) to be large, where IvUbl may decrease somewhat. To fit i n 6  with 
a high cus(Mz) requires a large H33 element and this is roughly speaking why mphyu 
is predicted to  be quite high. In each model the high value of crs(Mz) required is the 
dominant source of x2 apart from B7, where m, is low. 

In comparison to the new scheme with n = 1 operators only, the old scheme with 
n = 2 operators fits the data pretty well, although not quite is well as models 1,3,4. 
The old scheme also has one more prediction than the new one. However, the preferred 
models are the ones incorporating the U(l)x symmetry since they go deeper into the 
reasons for the zeroes and hierarchies in the Yukawa matrices. 

6 U(l)x Family Symmetry 

In our discussion of the symmetric textures, we assumed that we could obtain the same 
structure as IR. Of course, as we have already mentioned, the case we are examining 
is different in two aspects: (a) the fermion mass matrices have the same origin, and 
thus the same expansion parameter and (b) all differences between the different charge 
sectors arise from Clebsch factors. As a starting point, we will therefore briefly repeat 
the IR analysis for symmetric mass matrices in our framework; we then go on to 
consider the non-symmetric case, with the goal of being able to reproduce the numerical 
values (at least to an order of magnitude) of the successful ansatze given in the previous 
section. 

The structure of the mass matrices is determined by a family symmetry, U(l)x, 
with the charge assignment of the various states given in Table 5. 

_. Table 5: U(l)x chaxges assuming symmetric textures. 

The need to preserve SU(2)L invariance requires left-handed up and down quarks 
(leptons) to have the same charge. This, plus the additional requirement of symmetric 
matrices, indicates that all quarks (leptons) of the same i-th generation transform with 
the same charge ai. Finally, lepton-quark unification under SU(4) 8 s U ( 2 ) ~  8 s U ( 2 ) ~  
indicates that quarks and leptons of the same family have the same charge (this is 
a different feature as compared to IR, where quarks and leptons of the two lower 
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generations have different charges under the flavour symmetry). The full anomaly 
free Abelian group involves an additional family independent component, U( 1 ) ~ 1 ,  and 
with this freedom U(l)x is made traceless without any loss of generality12. Thus we set 
a1 = -(az+a3). He we consider the simplest case where the combination HH is taken 
to  have zero charge. This is consistent with our requirement that it plays no role in the 
mass hierarchies, other than leading to a common factor 6 for all non-renormalisable 
entries. 

If the light Higgs h2, hl ,  responsible for the up and down quark masses respectively, 
arise from the same bidoublet h = ( 1 , 2 , 2 ) ,  then they have the same U(1)x charge so 
that only the 33 renormalisable Yukawa coupling to  h2, hl is allowed, and only the 
33 element of  the associated mass matrix will be non-zero. The remaining entries 
are generated when the U(1)x symmetry is broken. This breaking is taken to be 
spontaneous, via Standard Model singlet fields, which can be either chiral or vector 
ones; in the latter case, which is the one studied in IR, two fields 8, e, with U(l)x 
.charge -1,  +1 respectively and equal VEVs are introduced. When these fields get a 
VEV, the mass matrix acquires its structure. For example, the 32 - entry in the up 
quark mass matrix appears at O(r)  because U ( l )  charge conservation only allows the 
term cCth2(8/M2)a2-a3 for a 2  > a3, or ~ ~ t h 2 ( e / M 2 ) ~ ~ - ~ ~ ,  for a3 > a 2 .  Here r = (< 0 > 
/M2)la2-cr31 where M2 is the unification mass scale which governs the higher dimension 
operators. In IR, a different scale, M1, is expected for the down quark and lepton mass 

' matrices. 

In our case however, all charge and mass matrices have the same structure under the 
U(l)x symmetry, since all known fermions are accommodated in the same multiplets 
of the gauge group. The charge matrix is of  the form 

(62) 
-2a2 - 4a3 -3a3 -a2 - 2a3 

-3a3 2(a2 -a3) a 2  -a3 
-a2 - 2a3 a2 - a3 0 

Then, including the common factor 6 which multiplies all non-renormalisable entries, 
the following pattern of  masses is obtained (for vector-like singlets): 

6r~2+6a~ bei34 6r11+34 

(63) 
1 

M- - 
mt mb mr 

12Since we assume that the 33 operator is renormalisable, the relaxation of the tracelessness condi- 
tion does not change the charge matrix since any additional FI charges can always be absorbed into 
the Higgs hi charges. 
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where13 a = a3/(a2 - as). We emphasise that the entries in Eq.63 describe the mag- 
nitudes of the dominant operators, and do not take the Clebsch zeroes of the different 
charge sectors into account. Note the existence of a single expansion parameter, for all 
three matrices. Another interesting point is that a unique charge combination a ap- 
pears in the exponents of all matrices, as a result of quark-lepton unification. Actually, 
unlike what appears here, in most schemes the lepton mass matrix is described in the 
generic case by two parameters (since the charges of quarks and leptons of  the lower 
generations are not related). For a = 1, one generates the structure in Eq. 33 for the 
unified fermion mass matrices. 

Before passing to the non-symmetric case, let us make a few comments on the 
possibility of having chiral or vector singlets, as well as on the charge of the Higgs 
fields. Suppose first that 8 is a chiral field. From the form of the charge matrix, we 
observe that if the 22 and 23 entries have a positive charge, a3 is negative (for all these 
entries to be non-vanishing at the same time). Moreover the hierarchy 1:3 between the 
23 and 12 elements indicates that cy2 would have to be zero in the chiral case, and thus 
the 13 element would tend to be larger than desired. We can say therefore that in the 
symmetric case with vector fields generates the mass hierarchies in a more natural way. 

Concerning the hl ,  h2 higgses, there are two kinds originating from free fermionic 
string models: those coming from Neveu-Schwarz sector which in general have integer 
(including zero) U(l)x charges, and those arising from twisted sectors, which usually 
carry fractional U(l)x charges. Which of these cases acquire VEVs, is decided from 
the phenomenological analysis. For example, to obtain the structure of Eq.33 we see 
that the charges of h1.2 may not be zero, since in such a case the 12 element which is 
proportional to the Higgs charge would be unacceptably large. For the non-symmetric 
case of course this feature does not necessarily hold. Finally, the H, H fields (the 
SU(4) higgses) tend to be non-singlets under extra U(l)x symmetries. What the 
charge under these symmetries can be, and whether our assumptions are consistent in 
the framework of realistic superstring models will be discussed in a future publication. 
We now proceed to discuss the non-symmetric case, which in the framework of 
U(l)x symmetrieskhas been extensively studied in [22]. Here, we will examine what 
constraints one may put on the various possibilities for non-symmetric textures, in the 
model under study. 

regime of the parameter space of the MSSM. 
l3In this simplest (and more predictive) realisation, hb @ hs therefore we are in the large tanP 
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coefficients of order unity indicates that we can have an asymmetry of order between 
the 12 and 21 entries. We will keep solutions with such an asymmetry, even in the 
case that Ag < Ag, due to  this coefficient ambiguity as well as the ambiguity in the 
experimental value of the up and down quarks (the lepton masses however are well 
defined). We also need not drop solutions with a large 13 or 31 entry, if  they are 
compatible with the numerics. 

On this basis, we have looked for solutions in the following way: for the charges of 
the elements 12-21-22-32 we made all possible charge assignments (such that l e d  up 
to a 4th power in terms of the expansion parameter for the resulting mass matrices, for 
the 12 and 21 entries). This, each time fixes all charges a2, a3, p2, p3. We then looked 
at what the charges of the other entries are and whether the generated hierarchies are 
consistent with the phenomenology. 

The restrictions we require in order to identify a viable solution, are (besides of 
course that the only renormalisable term is in the 33 position) 

Icharge( 11) I > (charge( 12) I 
Icharge(l1)l > Icharge(21) 

Icharge(2l)l > )charge(%%) 

Icharge( 12) I > Icharge(22) 

Icharge( 13) I > Icharge(22) 

(charge(31)l > Icharge(22) 

Icharge(32)l 5 Icharge(22)10(~) 

Icharge(l2)l a Icharge(21)10(~) 

Icharge( 23) I > Icharge( 22) I 

Then, we end up with the following possibilities: 
Case 1: 

Case 2: 

68 6€2 

a 8  a€ 1 
aq=-l , .  a3= -2, p2=-2 ,  p 3 - - 0, Yu,d,e = ( 68 6~ de2.) (67) 
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Case 3: 

SE3 6 2  
Q2 = -4/3, Q3 = -7/3, p2 = -2, p3 = 0, Yu,d,e= ( 6E4 6€ 6 ; )  

6 E 6  6E 

Case 4: 

SE6 SE3 6E4 

6 E 2  SE 

a2 = -4/3, ~3 = P2 = 0, P3 = -2, Y,,d,e = ( 6e4 66 6; ) 
Case 5: 

6 E 9  6€4 6€3 

6€3 6 2  6€3 Q2 = -4/3, 0 3  = -7/3, p2 = -3, p3 = 0, Yu,d,e = ( 6 E 6  6 E  1 ) 
Case 6: 

6 E 8  6€4 6€3 

6€5 6E 

~2 = -1, a3 = -2, P 2  = -7/3, P3  = -1/3, Yu,d,e = ( 6r3 6~ 6: ) 

Case 8: 

6€9 6r4 6€3 
~2 = -4/3, QQ = -7/3, p2 = -7/3, p3 = -1/3, Y,,d,e = 

Case 9: 

6E7 6€4 (iE5 

6 2  6 E  
a2 = -413, a3 = -1/3, p2 = -1/3, p3 = -7/3, Y,,d,e = ( 6€4 6€ 6 ; )  (74) 

Let us also list for completeness a few cases with a larger splitting between the 21 and 
12 entries (up to O(e2) ): 
Case 10: 

02 = -4/3, a3 = -1/3, p2 = 1/3, p3 = -5/3, Y,,d,e 
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Of course, here we also have the cases with the opposite charge assignment14. 
Among the various choices, we see that 

0 The charge of the Higgs fields h1,2 is always different from zero. 

0 There are cases where the 13 and 31 elements are large. 

We may now examine the results of Table 3 in the context of the U(1)x symmetry 
discussion above. We take all models that fit the data with X2/dof< 1, i.e. models 
1,3,4. We define in each of these models, Hgmp as being the dimensionless and dominant 
effective coupling constants in the SU(~)@SU(~)L@SU(~)R unified Yukawa matrix for 
the best fit parameters. 

Then, model 1 has 
0 0.003 0 

0.03 1 
HGmp - [ 0 . r l  0.03 0 ] . (77) 

We see that case 1 above does not fit this pattern very well if  all dimensionless couplings 
are - O(1) because in case 1, H21 is suppressed in comparison to H12. Cases 4,9 do 
not possess approximate texture zeroes in the 31 position and this would af€ect lVUbl 
strongly. Similar objections can be raised about other cases, except for cases 2,7,8. 
Case 2 with e = 0.21,s = .14 yields 

0.001 0.03 6.10L3 , 
2.10-6 0.001 6.10-3 

6.10-5 0.03 1 1 
which fits Eq.77 well apart from a factor -3 in the 12 position. The next subdominant 
operator in the 22 position needs to be 2.10-3 according to Table 3. The values of e and 
6 used in Eq. 78 give the subdominant operator in the 22 position to  be N 6.10-3. This 
is acceptable, but a closer match occurs for the next higher dimension operator, which 
has magnitude - 10-3. An ambiguity occurs in that we have not set the normalisation 
of the subdominant operator due to its numerous possibilities and so the original 

'*The presence of fractional charges implies the existence of residual discrete symmetries after the 
breaking of the abelian symmetry. 
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discrepancy factor of - 3 could easily be explained. Below, we do not consider the 
numerical size of the sub-dominant operator because it is clear that some operator can 
be chosen that will fit the required number well. If the charge assignments under- the 
U(1)x symmetry were the same as in this case, we would have succeeded in explaining 
why the assumption of texture zeros was valid. For example, the 13 element in Eq.78 
being 6 x 10-3 instead of zero only affects mixing angle and mass predictions by a 
small amount. We have also explained the hierarchies between the elements in terms 
of the different mass scales involved in the non-renormalisable operators by not having 
to choose dimensionless parameters of less than 1/3 (or greater than 3). Case 7 with 
E = 0.36,S = 0.08 gives 

2.10-6 0.001 4.10-3 
0.001 0.01 4.10-3 . (79) 1 [ 6.10-5 0.03 1 

We should note that at this level, we may naively expect 8% corrections to the con- 
straint in Eq.79 through the next order of 6 operators in each element. We could have 
attempted to include these possible errors in the numerical fits but we did not due to 
the fact that they are very model dependent. Deeper model building in terms of con- 
structing the non-renormalisable operators out of extra fields or examining underlying 
string models would be required to explain why this should not be the case. It should 
also be borne in mind that explanations for exact texture zeroes can be made in this 
context by setting fractional U(l)x - charges on the heavy fields in the operators, or 
by leaving certain heavy fields out of the FN model. Case 8 with E = 0.36,S = 0.08 
gives the same results as in Eq.79, except with the (22) element as 0.03. 

From Table 3 we see that model 3 (the model that fits the data the best) has 

0 0.002 0 
N 0.002 0.03 0 . (80) [ 0 0.03 1 ] 

Choosing E = 0.26, S = 0.12 in case 2 gives a good match to Eq.80: 

0.002 0.03 8.10-3 . (81) 1 [ 6.10-5 0.03 1 

9.10-8 0.002 8.10-3 

Case 7 with E = 0.40,6 = 0.07 or case 8 with the same E and 6 both give a fairly good 
match as well. 

Model 4 is different in the sense that it possesses a hierarchy between the 12 and 
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21 entries of the effective Yukawa couplings: 

1 0 0.0007 0 
0.004 0.03 0 . 

0 0.03 1 

Here, case 1 with 6 = 0 . 2 , ~  = .15 predicts 

0.004 0.03 4.10-3 , 
3.10-7 0.0007 4.10-3 

10-5 0.03 1 1 
an extremely good match to Eq.82. Case 6 with E = 0.28,6 = 0.11 provides a good 
match also. 

Thus we see that we can explain the hierarchies and texture zero structures of the 
models that fit the data best. In general, it seems likely that we have enough freedom 
in setting charges to attain the required hierarchies for the Yukawa matrices. Before 
passing to the conclusions, let us briefly comment on how the basic features of the 
U(l )x  symmetries that we have discussed arise in string constructions. 

In realistic free fermionic string models [23, 161 there are some general features: 
At a scale Matring - Figstring x 1017GeV, one obtains an effective N = 1 supergravity 
model with a gauge symmetry structure which is usually a product of non-Abelian 
groups times several U( 1) factors. The non-Abelian symmetry contains an observable 
and a hidden sector. The massless superfields accommodating the higgs and known 
chiral fields transform non-trivially under the observable part and usually carry non- 
zero charges under the surplus U(1)-factors. The latter, act as family symmetries in 
the way described above. Some of them are anomalous, but it turns out that one 
can usually define new linear U(1) combinations where all but one are anomaly-free. 
The anomalous U(1) is broken by the Dine Seiberg Witten mechanism [24], in which a 
potentially large Fayet-Iliopoulos D-term is generated by the VEV of the dilaton field. 
A D-term however breaks supersymmetry and destabilizes the string vacuum, unless 
there is a direction in the scalar potential which is D-flat and F-flat with respect to  
the non-anomalous gauge symmetries. If such a direction exists, some of the singlet 
fields will acquire a VEV, canceling the anomalous D term, so that supersymmetry 
is restored. Since the fields corresponding to such a flat direction typically also carry 
charges for the non-anomalous D-terms, they break all U( 1) symmetries spontaneously. 
For the string model in ref.[16], the expected order of magnitude for the VEV of the 
singlet fields is < @i >- (0.1 - 0.3) x MString. Thus, their magnitude is of the right 

t 
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order to produce the required mass entries in the mass matrices via non-renormalisable 
operators. 

Finally we mention that the presence of a gauged family symmetry such as U(l)x 
is in principle quite dangerous since its presence can lead to large off-diagonal squark 
and slepton masses which can mediate flavour-changing processes at low energy. In 
particular the D term associated with U(l)x is in general only approximately flat due 
to soft supersymmetry breaking terms, and this can lead to family-dependent squark 
and slepton masses with unacceptably large mass splittings. This is a generic problem 
of any model with a gauged family symmetry, however the U(l)x symmetry here is 
non-Gymptotically free with a large beta function so that its gauge coupling rapidly 
becomes very small below the string scale, leading to small X gaugino masses. It 
has been suggested [25] that the possible infra-red structure of the theory could help 
by relating the soft scalar masses to the small gaugino masses, thereby making them 
naturally smaller than the squark and slepton masses, or by enforcing < 8 >=< # > as 
an infra-red fixed point of the theory. We refer the reader to ref.[25] for more details. 

‘ 

7 Conclusions 

We have combined the idea of a gauged U(l)x family symmetry with that of quark- 
lepton unification within the framework of a string-inspired Pati-Salam model. Our 
basic assumption is that the non-renormalisable operators above the unification scale 
are of the form in Eq.26. These operators factorise into a factor (HH) and a fac- 
tor involving the singlet fields e,#. The singlet fields S,8 break the U(l)x sym- 
metry and provide the horizontal family hierarchies while the H,H fields break the 
S U ( ~ ) @ S U ( ~ ) L @ S U ( ~ ) R  symmetry and give the vertical splittings arising from group 
theoretic Clebsch relations between different charge sectors. The factor (HR) also 
provides an additional flavour independent suppression factor 6 which helps the fit. 
The quark and lepton masses and quark mixing angles are thus described at high ener- 
gies by single unified Yukawa matrix whose flavour structure is controlled by a broken 
U( 1 ) ~  family symmetry, and all vertical splittings controlled Clebsch factors. 

An important feature of  the scheme is the existence of Clebsch zeroes which allow 
an entirely new class of  textures to be obtained. For example the RRR solutions 
3 and 5 may be reproduced by this scheme which are complementary to the RRR 
solution 2 favoured by the IR approach. These Clebsch zeroes were also a feature of 
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the non-symmetric textures discussed in Ref. [17], which were previously analysed in 
the absence of any family symmetry. We have extended these models to incorporate 
the U( l)x family symmetry and found that although one prediction is lost, new models 
exist which appear to fit the data better than the original models. To be precise, a 
global fit to  the data with 3 dof is described, in which three models are singled out 
with X2/dof< 1. B y  comparison a recent paper [26] performed a global x2 analysis for 
some SO(10) models, including the mass and mixing data. With 3 dof, they obtain 
a x2/dofw 1/3 for the best model. While our fit to model 3 has a smaller X2/dof 
than this, it is difficult to make a comparison as in ref.[26] quark mass correlations 
from data, as well as the effect of large tanP on ?'nb has been included15. Moreover, at 
this level of difference of x2 between models, the x2 test is subject to large statistical 
fluctuations. Similarly, we do not statistically distinguish between the fits in Tables 3,4 
since both contain good fits to the data with X2/dof< 1. 

We find it remarkable that the tight constraints coming from the restricted Clebsch 
structures of the unified theory, and the non-trivial allowed family patterns dictated 
by the U(l)x symmetry can both be satisfied and allow such successful fits to the 
quark and lepton masses and mixing angles. However our new approach brings with 
it new unanswered questions which more complete theories should address. The main 
unanswered question of the present models is that of the flavour dependence of the 
Clebsch factors: why is one specific group theoretical contraction in a particular entry 
of the Yukawa matrix singled out to be dominant over the others? Also, why do the 
dominant non-renormalisable operators always contain the HH pair? The answers 
to these questions must lie in a more fundamental model. If this model were of the 
FN type with extra heavy fields that produce the spaghetti diagrams that yield the 
necessary operators, the model would have to include some adjoint representations. 
This is essentially because all of the models require a Clebsch coefficient lYg/&tl = 3 
and all of the operators providing this factor (see Table 7) involve Cl5, the adjoint 
tensor of SU(4) from Eq.85. This could take some of the motivation for the model 
away, as one of its benefits is that it fits into string models easily because of its lack of 
non-fundamental represent ations of the gauge group. 

We could solve this apparent difficulty by adding an extra operator in the 22 position 
but this would diminish the predictivity of the model. Alternatively, one may re- 
examine models like those in refs.[l5, 161 in which the string construction leaves us 

15These involve the soft terms, thus a larger number of parameters are involved in the fit. 
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with a supersymmetric 422 effective field theory below the string scale. One would then 
have to check whether it is possible to construct a phenomenologically viable model 
of flavour that gives the correct choice of operators once a particular flat direction is 
chosen. Our preliminary investigations of these questions show that the gross features 
of the string construction of refs.[l5, 161 that lead to the gauge group of Eq.13 are 
similar to our model but with some noticeable differences. U(1)x family symmetries 
are a consequence of the string construction, but there are four of them with one being 
anomalous. There are several charged singlets to take the role of the 8 fields and 
the HH pair is charged under U(1)x. It will clearly be interesting to examine the 
consequences of the string construction in detail, and we hope to return to these issues 
in a future publication [27]. 
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Appendix 1. n = 1 Operators 

The n = 1 operators are by definition all of those operators which can be constructed 
from the five fields F F h H H  by contracting the group indices in all possible ways, as 
discussed in Appendix 1. After the Higgs fields H and H develop VEVs at MGUT of the 
form (H"') = = v H ,  @Iaz) = (If41) = DH, the operators listed in the appendix 
yield effective low energy Yukawa couplings with small coefficients of order 
However, as in the simple example discussed previously, there will be precise Clebsch 
relations between the coefficients of the various quark and lepton component fields. 
These Clebsch relations are summarised in Table 7, where relative normalisation factor 
has been applied to each. The table identifies which SU(4) and SU(2) structures have 
been used to construct each individual operator by reference to EQs. 86,87. 

The n = 1 operators are formed from different group theoretical contractions of the 
indices in 

OBWt apyw G F"F~Zh~H,,HP". (84) 

It is useful to define some SU(4) invariant tensors C, and SU(2)R invariant tensors R 
as follows: 

where r 9 ,  capwx, uy', cwz are the usual invariant tensors a SI 

(85) 

( 2 ) ~ .  The SU(4) 
indices on c1,6,10,ls are contracted with the SU(4) indices on two fields to combine them 
into 10,s representations of SU(4) respectively. Similarly, the s U ( 2 ) ~  indices on 
R1,3 are contracted with SU(2)R indices on two of the fields'to combine them into 1, 3 
representation of SU(2)R. 

The SU(4) structures in Table 7 are 
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- 
oA 
OB 
OC 
OD 
OE 
OF 
OG 
OH 
0' 
0 J ,  
OK 
OL 
OM 
ON 
O0 
OP 
OQ 
OR 
OS 
OT 
OU 
OV 
O* 
OX 
OY 
OZ 
0" 
Ob 
0" 
Od 
Oe 
Of 
09 

Oh 
Oi 
Oj - 

SU(2) 
I 
I1 
I 
I1 
I11 
11 
I11 
IV 
V 
VI 
V 
IV 
I11 
V 
V 
I 
I1 
I11 
VI 
IV 
VI 
V 
I11 
IV 
VI 
V 
I 

IV 
VI 
I 
I1 
VI 
I 
I1 
I11 
IV 

SU(4) 
I 
I 
I1 
I1 
I11 
I11 
IV 
IV 
V 
V 
VI 
VI 
I 

111 
IV 
VI 
VI 
VI 
VI 
I 
I 
I 
I1 
I1 
I1 
I1 

t I11 
I11 
I11 
IV 
IV 
IV 
V 
V 
V 
V 

Table 7: When the Higgs fields develop their VEVs, the n = 1 operators lead to the effective 
Yukawa couplings with Clebsch coefficients as shown. 
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and the SU(2) structures are 

The operators are then given explicitly by contracting Eq.84 with the invariant tensors 
of Eq.85 given by Table 7 and Eqs.86,87. 
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Appendix 2. Review of Analysis of Ref.[17] 

In ref.[17] we assumed that the Yukawa matrices at Mx are all of the form 

where E <<.1 and some of the elements may have approximate or exact texture zeroes 
in them. First, we examine closer the assumption that the operator in the (33) position 
of the Yukawa matrices is the renormalisable one. It has been suggested in the past 
that the large value of tan@ required by the constraint 

such as is predicted by the renormalisable operator, leads to some phenomenological 
problems. One such problem is that a moderate fine tuning mechanism is required 
to radiatively break the electro-weak symmetry in order to produce the necessary 
hierarchy of Higgs VEVs 2r1/212 M m t / m b  [28],[29]. One could set about trying to 
extend the present model in a manner that would lead to an arbitrary choice of tanp, 
for example by introducing extra Higgs bidoublets. This route has its disadvantages in 
that a low value of tan@ has been shown [30] in most schemes to be inconsistent with 
& ( M G U T )  = &(MGuT) unification if the tau neutrino mass constitutes the hot dark 
matter requiring the Majorana mass of the right handed tau neutrino to be M$ N 

O(10l2) GeV. To a very good approximation, the largest diagonalised Yukawa coupling 
in A' is equal to its 33 entry &. (One may obtain small t a n p  solutions consistent 
with mb-m7 unification and an intermediate neutrino scale, in specific models: Either 
large mixing in the p - r charged leptonic sector has to occur [31] or the Dirac-type 
Yukawa coupling of the neutrino has to be very suppressed [32].) 

To force things to work in a generic scheme, one solution could be to use a non- 
renormalisable operator in the 33 position which has some Clebsch factor x > 1 such 
that 

At ( M G U T )  = ZAb ( M G U T )  = ZAT ( M G U T ) .  (90) 

Eq.90 would preserve the bottom-tau Yukawa unification, but lower the prediction 
of t a n p  due to the bigger contribution to the top Yukawa coupling. It may only 
be reasonable to examine n = 1 operators in this context since we know that the 
third family [17] Yukawa coupling is N O(1) and higher dimension operators could 
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be expected to provide a big suppression factor. Systematically examining the n = 1 
operators we find that only the operator O&, which leads to the prediction ' 

At (MGUT )  = 2xb (MGUT )  = 2x7 (MGUT)  (91) 

can decrease tan p. The change is minimal, from 56.35 to 55.19 for cy~(Mz) = 0.117 and 
M;;I = 0(1Ol2) GeV. The reason that the change is minimal is due to the fact that the 
Yukawa couplings are approximately at their quasi fixed points [33] and so even a large 
change to Xt,b,T(MX) produces only a small change in Xt,b,r(m), which are the quantities 
that require a high tan@ through the relations in Eq.60. Another possibility would 
be to include Og, 0; which would allow arbitrary tan p (in particular intermediate 
tan p - 10 - 20.) However, this would reduce the predictivity of the scheme as tan p 
would become an input. One might also be skeptical about whether a parameter - 1 could be generated by a non-renormalisable operator in a perturbative scheme. It 
would certainly require the heavy mass scales M to be very close to the VEVs H, If, e,# 
and we might therefore naively expect large corrections to any calculation based on 
this model. We thus abandon these ideas and continue with the usual renormalisable 
operator in the 33 position of the Yukawa matrices that leads to Eq.89. We note in 
any case that a recent analysis [34] explains that in gauge mediated supersymmetry 
breaking models, the radiative mechanism of electroweak symmetry breaking can be 
such that no fine tuning occurs for large tanp. In these models high t a n p  admits 
solutions of the hot dark matter problem in which the Yukawa couplings unify [30]. 

The hierarchy assumed in Eq.88 allows us to consider the lower 2 by 2 block of the 
Yukawa matrices first. In diagonalising the lower 2 by 2 block separately, we introduce 
corrections of order e2 and so the procedure is consistent to  first order in e. We found 
several maximally predictive ansatze that were constructed out of the operators whose 
Clebsch coefficients are listed in table 3 for the n = 1 operators. The explicit n = 1 
operators in component form are listed in the Appendix 1. We label the successful 
lower 2 by 2 ansatze Ai: 
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We now note that solutions A 2 4  require a parameter H23 N 0(1) to attain the correct 
Ap and Vd. Any calculation based on the hierarchy assumed in Eq.88 is therefore 
inconsistent and so we discard these solutions. We also note that 0 3 2  only has the 
effect of fixing Vd to a good approximation and so can consist of any operator in 
Table 7 that has a different Clebsch coefficient for up quark and down quark Yukawa 
couplings. The precise operator responsible for V& has no bearing on the rest of the 
calculation and we therefore just make an arbitrary choice of O$ for the rest of this 
paper. We also note that for the phenomenologically desirable and predictive relation 

to hold, we may replace O,”, - 0% in A1 with Og + Og, O& + O,”, or any other 
combination of two operators which preserves Eq.lOO and allows A& to be smaller and 
independent of AZE. In fact, the preferred solution is that the dominant operator in 
that position be O$ which does not give a contribution to the up quark mass. Then, 
a subdominant operator would be responsible for the entry A& and would therefore be 
suppressed naturally by one or more powers of 6 .  
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