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Abstract 

A report is given o f  a study o f  the resonant contribution to the scattering length for X- 

rays, evaluated using an atomic picture o f  the electrons. Armed with the scattering length 

one can calculate the attenuation coefficient, dichroic signal and cross-sections for the elastic 

and inelastic scattering o f  X-rays by magnetic materials. The formulation is more finely 

honed than the one used in two previous studies. The additional information in the scattering 

length relates to the spins o f  the electrons in the unfilled valence shell. For the d" 

f " configurations, tables o f  Racah unit spherical tensors are provided for ground states 

determined by Hund's rules. 
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$1. Introduction 

In two previous papers, we have investigated a theoretical framework, using an atomic 

description o f  electron states, for the interpretation o f  the attenuation and resonance- 

enhanced scattering o f  X-rays by magnetic materials. The instrument used in the 

investigation is the resonant scattering-length from which one can readily calculate the 

attenuation coefficient, dichroic signal, and the cross-sections for elastic and inelastic 

scattering. On reducing some information on the plethora o f  intermediate states in the 

scattering length, by summing over a judiciously chosen subset o f  intermediate-state 

quantum numbers, we created a framework in which the measurable quantities are expressed 

in terms o f  familiar atomic variables, e.g. magnetic multipoles and unit spherical tensors. 

Our scattering length, to which we attached the sobriquet idealized, has been shown by us to 

have much to recommend it. 

In the present study we explore, in much the same vein, a more finely honed reduction 

of the information on intermediate states in the resonant scattering-length. On the one hand 

the new scattering length is an improvement, in as much that it contains more information on 

the valence electrons than the idealized scattering-length, but weighed against this is an 

increased technical complexity. A way o f  describing the difference between the two 

scattering lengths is to note that the idealized one does not distinguish between the two 

spin-orbit split partners o f  a core state whereas the new one can. 

As before, we aim to make full use o f  Racah unit spherical tensors to describe the 

equivalent holes in the partly filled valence shell. Values o f  the tensors are listed for the d" 

and f configuration, appropriate for transition elements, lanthanides and actinides. Given 

a wave function for the valence-shell d or f-electrons couched in terms o f  atomic orbitals it is 

straightforward to calculate the scattering length, and from it the measurable quantities we 

have mentioned. In the event that a realistic wave function can be constructed fiom states in 

one J-manifold, the concept o f  operator equivalents brings the mean value o f  the scattering 

length, required to calculate both the dichroic signal and cross-section for Bragg diffraction, 

to as relatively simple and attractive form. 
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The measurable quantities of  interest are presented in the next section, together with 

the resonant contribution to the scattering length. These topics are fully discussed in our two 

previous papers on the subject; Lovesey and Balcar (1996) and Lovesey (1996), and 

hereafter referred to as papers I and 11, respectively. The following two sections focus on the 

information in the scattering length that is new relative to the idealized scattering length. To 

illustrate some aspects o f  the spin contributions to the scattering length, not found in the 

idealized scattering length, we give in section 5 two examples o f  the calculation o f  the 

circular dichroic signals for El and E2 absorption events. We choose not to give any 

examples o f  the cross-sections for Bragg diffiaction and inelastic scattering. These two 

topics are discussed in paper I, and it is a straightforward exercise to repeat the calculations 

reported there using in place o f  the idealized scattering length the more complete version 

given here in section 3. 

$2. Attenuation coefficient and cross-sections 

Let the primary and secondary X-rays in a scattering process have energies E and E‘, 

E = Acq = (2nAc/ A) with similar respectively, and wave vectors q and 9’; then, 

expressions for E’in terms o f  q‘ or A’. The initial and final (equilibrium) states o f  the target 

atoms are defined by labels p and p’, about which we have more to say later on. A matrix 

element o f  the scattering length for these two states is denoted byf(p;p’), and its mean value 

is denoted by ( f ) .  This last quantity determines *e cross-section for Bragg scattering, 

namely, 

where the double vertical bars indicate an average is taken with respect to the states of  

polarization in the primary beam o f  X-rays. -A method for performing the average, in which 

the polarization o f  the beam of  X-rays is defined in terms o f  a Stokes vector, is described by 

Lovesey and Collins ( 1  996). The differential cross-section for inelastic scattering is, 



Here, we have defined Ao = E - E', and E,, (E,,,) is the energy o f  the initial (final) atomic 

state. The factor p,, is the probability for the initial state to be available in the scattering 

process, and the sum o f  p,, is unity. 

For resonance-enhanced scattering the scattering length in (2.1) and (2.2) is just the 

resonant contribution to the scattering length. The latter quantity, evaluated for the forward 

scattering geometry (q = q') and averaged with respect to the states o f  polarization in the 

primary beam, determines the attenuation coefficient y. We will give a result for y expressed 

in terms o f  our formulation o f  the resonant scattering-length. 

Let A be the difference between the mean energy o f  the absorption edge and Ep, and let 

A' be the corresponding energy difference with respect to E,,.. More than likely, A and A' will 

be different for E l  and E2 absorption events. The resonant scattering-length evaluated for E 

close to A is taken to be, 

2 
f ( p ; p ' )  = - (T) (T){E-A+&l-'}-lx exp(-W(k)+ik.Ro)Z(p;pf:Ro). (2.3) 

Rn 

In this expression, the vectors {R,,} define the positions o f  the atoms, and I? is the total decay 

width. The Debye-Waller factor might depend on R,,, and it is unity in the forward direction 

o f  scattering, for which k = q - q' = 0. The matrix element Z (p;p':R,,), which is the 

principal subject o f  the paper, depends on R,, through chemical and magnetic order in the 

target sample. 

We are now in a position to give our result for the attenuation coefficient, for a foil in 

which the density o f  particles is no. The mean value o f  2 averaged with respect to states o f  

polarization in the primary beam, and evaluated for a forward scattering geometry is denoted 

by (ao. Taking the limit r+O, 

2 
y = 2nh no (e) 6 ( E  - A)(Z), . 
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The action of the delta function in (2.4) is to set h = (12.40/A)A with A expressed in units of 

keV. 

53. Matrix element 

Here, we provide an expression for the matrix element 2 (p;p'); for the most part, we 

omit the label R, to save on notation. 

In paper I we consider an El absorption event. Using an atomic model, so p and p' are 

shorthand for atomic quantum numbers v (seniority), S, L, J and M, we derive the 

expression, 

In this expression, (ZllC(l>llr) is the reduced matrix element of a spherical harmonic, 

normalized in the manner proposed by Racah, of rank one taken between states of angular 

momentum 1 and T . The physical process that (3.1) describes is the transfer of a hole from a 

valence shell I " to a filled core-state with angular momentum T ,  and (IIRIT) is the radial 

integral for the El  event. The sum on K = 0 , l  and 2 and m,( -K I rn, I K ) involves a matrix 

element (e = vSL) of a spherical tensor operator, T: , appropriate to n h holes in the valence 

shell. We return to this operator in a moment. The tensor X(K) depends only on the 

polarization vectors for the primary and secondary X-rays, and its components are listed in 

paper I, together with averages of X("), required to evaluate (2.4) for the attenuation 

coefficient, and averages of IX(K) 1' required to evaluate cross-sections. 

The expression for Z (p;p') for an E2 event, ,that corresponds to (3.1) for an El  event, 

has a structure very similar to (3.1). There are two really significant differences between the 

expressions for El  and E2 events. For the latter case the sum on K extends up to 4, and in 
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place of X(K) there is a more complicated tensor, denoted by H(K) in paper 11, that is formed 

from the polarization vectors of the primary and secondary X-rays, and unit vectors ij and 

ij' which define the directions of propagation of the two beams. The spherical tensor 

operator T:, which reflects the hole configuration in the valence shell, is common to the 

matrix elements for El,  E2 and higher-order events. 

We now give an expression for the matrix element of ct. The matrix element 

satisfies the Wigner-Eckart theorem, 

(3.2) 

where the quantity which multiplies the phase factor and 3j-symbol is the reduced matrix 

element for the absorption edge with total angular momentum 2 = t k 3. Of course, two 

matrix elements with 7 = + 3 and 7 = t - 3 can be used to describe a case in which an 

absorption edge does not closely correspond to one value of 7 .  Such a situation will arise if 

the strength of the spin-orbit interaction for the core state and the Coulomb interaction, 

measured in terms of Slater integrals, are similar in magnitude, and, in consequence, the core 

state contains sizable amounts of both the spin-orbit core states. In papers I and I1 we 

described physical processes using the foregoing expressions and a reduced matrix element, 

(3.3) 

and the corresponding scattering length was named an idealized scattering length. 

Our expression for T(K: 7) involves unit spherical tensors W('j6)K , which are standard 

quantities in the theory of atomic spectra. The indices a and b refer to different parts of the 

atomic system, and K is the rank of the unit tensor. With our notation, which follows the one 

adopted by Judd (1 963), the index a is the rank of the spin operator and b is the rank of the 

orbital operator. The ordering of spin versus orbital operators is tied to the coupling of spin 

and orbital quantum numbers in a Clebsch-Gordan coefficient, which we choose to be 
(SM,LM,IJM) (NB a mixture in a calculation of SL and LS coupling schemes can produce 
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non-trivial errors). The reduced matrix elements o f  T(K) and W(o.K)K are related, o f  course, 

and differ only by a numerical factor which is given in (A.2). For the convenience o f  the 

reader, an Appendix to this paper contains the salient features o f  the unit spherical tensors. 

Also, we give in tables listings o f  values o f  the reduced matrix elements o f  W(ob)K 
appropriate to the ground states o f  d” and f” as determined by Hund’s rules. 

We have arranged our result for the reduced matrix element o f  T(K:J) so as to 

highlight the information from a = 1 that is additional to the information from a = 0, which is 

all contained in the reduced matrix element o f  T(K). One finds, for 7 = f 3 ,  

It is at once clear that (3.4) satisfies (3.3), since the right-hand side o f  (3.4) has an equal 

magnitude and opposite sign for the two allowed values of I, which describes the total 

angular momentum o f  the hole in the core state. The variable t depends on the nature o f  the 

absorption event; €or an El event t = 1 and for an E2 event t = 2. The range o f  the sum on 

the integer b is restricted by two triangle conditions in the 9j-symbol, namely, 

01 b I 22 and I K-1 I I b I (K+l). A further restriction on b placed by the 9j-symbol is that 

(b+K) must be an odd integer, otherwise the symbol is zero (this follows on noting that the 

9j-symbol is unaltered by interchanging its top two rows, and this move also multiplies it by 

a phase factor(-1) ) . Many values o f  the 9j-symbol which are required in the study of 

rare earth atoms are tabulated by Balcar and Lovesey (1  989), together with short tables of 3j 

and 6j-symbols. An extensive compilation o f  3j and 6j-symbols is given by Rotenberg et al. 

(1959). Lastly, (f + 2 + f ) is an even integer, by virtue o f  a property o f  (TllC(f)ll1> . 

I+b+K 

We conclude this section with a few words about the derivation o f  (3.4). For one hole, 

the resonant scattering-length contains a product o f  one-particle matrix elements, 
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where q and q’label spherical components. In the energy denominator associated with (3.5) 

is the energy of the intermediate state, ZJ M . If we set aside the dependence of this energy 

on J and a, say, we can perform a sum over these labels in the product of matrix elements. 

This is the basis of the formulation given in papers I and 11. The result is extended to 

describe a valence shell with n ,, holes by using Racah’s methods for equivalent particles in 

an atomic shell, and the energy of the intermediate state is replaced by some mean value that 

remains to be chosen. The current work follows the same line of reasoning, except at the 

start we sum over a, and leave 5 as a variable. 

-- - 

The exercise that brings us to the result (3.4) is relatively straightforward, uses 

standard identities for nj-symbols, and can be described in a few sentences. First, use, 

and a similar expression for the second matrix element in (3.5). The result (3.6) is given by 

Judd (1963) equation (3-38) (a small printing error in (3-38), which has round brackets 

(indicating a 3j-symbol) instead of curly brackets, is a glitch at first sight). The sum on a 
can be converted to a sum over products of 3j and 6j-symbols. Here, the key step is to 

arrange one of the 3j-symbols to be of the form demanded by the Wigner-Eckart theorem 

(3.2). The next step is to isolate in one 6j-symbol, achieved by twice using the sum-rule 

of Biedenharn and Elliott. Having reached this point the remaining product of four 6j- 

symbols, that do not contain in their arguments, can be expressed as a product of two 

9j-symbols. The identities used in the foregoing are found in Rotenberg et al. (1959), 

equations (2.8), (2.19), (3.1) and (3.22). The result for the one-particle matrix element is 

extended to n h equivalent holes by the method proposed by Racah, and results in the 

appearance of unit spherical tensors. Finally, to get the result for the reduced matrix element 
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of  T(K:J)  as it appears in (3.4) we have used an analytic expression for the one 6j-symbol 

whichcontains J= rk&.  

One point that merits comment is the removal o f  a constraint on 7 brought about by 

making the sum on 2. The loss o f  the constraint means (3.4) is not suitable for a valence 

shell with one hole, which is properly described by T(K) and the prior knowledge, derived 

from the 6j-symbol in (3.6), that 7 satisfies a triangle condition with r and J. This triangle 

condition is not carried through in the process o f  summing the product o f  matrix elements on 

a. However, the second triangle condition on 7 in (3.6), namely, 7 = 1 k 4, is carried 

through. 

In applying the results to the calculation o f  the cross-sections and attenuation 

coefficient one may be faced with atomic wave functions that contain several atomic states. 

The additions to the state determined purely by Hund’s rules will result from the actions o f  

inter-atomic forces, and perturbations to the valence shell created by the environment of the 

atom, including like atoms. In this regard, note that the dependence on the magnetic 

quantum numbers M and M o f  a matrix element o f  T t  appears solely in the 3j-symbol 

which features in the Wigner-Eckart theorem. Hence, i f  the degeneracy with respect to these 

quantum numbers i f  lifted, e.g. by an external field or a molecular fieM capable o f  inducing 

long-range magnetic order in the sample, the averaging to be done involves effecting the 

average o f  3j-symbols. 

Some observable quantities take on a very simple structure when the atomic wave 

function is drawn from one J-manifold. In this case one can adopt the practice, widespread 

in other branches o f  spectroscopy, of  using operator equivalents, e.g., 

- 

The average with respect to the magnetic quantum numbers is then represented by displaying 

the operator in angular brackets, (I:K)), which is in accord with our chosen notation of 
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angular brackets to denote the mean value of the enclosed quantity. For K = 1, which 

appears in (A.9), 

( Jqr:lqJM) = 1 (JIIJIIJ), 

where (JIIJIIJ) is the reduced matrix element of the angular momentum, and, 

in which c labels the magnetic quantization axis. 

94. Spin-dependent contributions 

In what follows we focus on the physical interpretation of the contributions to the 

resonant scattering-length on the right-hand side o f  (3.4). These new contributions arise 

from a = 1 and are additions to the idealized scattering-length obtained for a = 0. The 

dependence of the new contributions on the atomic spin is quite simply seen in the rank-one 

term W( l *O ) l .  For J = J ', W ('*')' is proportional to (g - 1) where g is the Land6 factor. This 

finding married with (3.7), which is valid within a J-manifold, leads to a contribution to ( f ) 

and to (2)' that is proportional to (g - 1) ( J c )  = (se). 

It seems natural to consider the contributions according to their rank K, because the 

value of K determines the nature of the thermodynamic quantity. In simple cases, the 

thermodynamic quantity is a magnetic multipole, e.g. the magnetic moment (K = 1) or 

quadrupole moment (K = 2). The reduced matrix elements of W('**)K are nothing more than 

weighting factors, although, having said this, they can have a profound effect on the 

observed quantity. As an example of what can occur consider an f "  configuration and 

K = 3. For n = 2,5 ,9  and 12 and Hund-rules ground states = 0, so in this instance there 

is no pure orbital contribution to the idealized scattering-length. However, both @ v 2 )  and 

W(1,4) are non-zero for these configurations and therefore, there are non-zero spin-dependent 

contributions to the scattering length. 
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As a step toward giving a physical interpretation o f  the rank-zero contribution we note 

that the reduced matrix element o f  the spin-orbit coupling in the valence shell is proportional 

to the reduced matrix element o f  F@'*')'; i f j  labels the electrons in the valence shell, we find, 

The selection rules on F@',lP are thus the same as those familiar to us for the spin-orbit 

coupling. This contrasts with the selection rules in T(O), which is diagonal with respect to 

the total angular momentum, and diagonal with respect to 8 = vSL. 

For an El event in an atomic state that satisfies Hund's rules we find (K=O), 

In this expression, derived from (3.1) and (A.I2), E and E' are the polarization vectors for the 

primary and secondary X-rays, and the sign (T) is dictated by the sign in = I & 4. The 

sign o f  the term (1/S) is appropriate for n h I (21 + l), and it is reversed for n ,, > (21 + 1). 

This dependence of  sign with n h stems from the value o f  an even-order unit tensor, in this 

case F@'*'), for a state and its conjugate, namely, for the two states (0~~FV('*')~~0) has equal 

magnitudes and opposite signs. 

The thermodynamic properties o f  the odd-rank contributions to the matrix element o f  2 

are sensitive to the existence o f  long-range magnetic order in the target sample, and feature 

in the circular dichroic signal. Taking K = 1 there are two values fofb, viz. b = 0 and b = 2. 

The reduced matrix element of  F@',')' is found in (A.7); it is diagonal with - respect to 0, and 

I J -  11 I J' I ( J +  1). Hence, this term allows inelastic scattering to occur between states 

J and J * 1 ,  and in the mean value off or 2 it will give contributions i f  the wave function 
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contains admixtures of these manifolds. For the special case J = S the reduced matrix 

element of @'*')' is very simple and the result is (A.8). 

Turning to @lV2)', we note that, 

where R is a unit position vector for an electron. This result is the basis of  a discussion in 

the appendix which leads us to conclude that, the thermal average values o f  the magnetic 

dipole operator is proportional to ( JE ) multiplied by a factor that contains the right-hand side 

of (4.3). Following Carra et al. (1993), it is usual to denote this value of the magnetic dipole 

operator by - (T,) . 

The 9j-symbol that accompanies F V ( ' 9 ' ) '  in T(1;J) is proportional to a 6j-symbol that 

can be evaluated analytically with a formula in Edmonds (1960). With @'$*)' it is useful to 

exploit the result, 

1 1 2 = &(&y2[ (1))Z))Z) (rllrllr)J{ (21 - 1)(21+ 3) t(t + 1)(2t + 1)) I-' [ I :i 
(4.4) 

[ 1(1 + 1) {1(1+ 1) + 21(1+ 1) + 2t(t + l)} - 3{ t(t + 1) - [(I + 1)}2 1. 

Higher-rank T( R J)s can contain reduced matrix elements of W(',') found in lower- 

By and rank tensors, e.g. T(2: J )  contains @','), which we encountered in T(Q ]), and 

large, there is not too much that can be usefully added in the way of physical intuition to the 

meaning of the higher-order W(',')S. Relations analogous to (4.1) and (4.3) can be found, 

using a little ingenuity, but they seem to have little value in extending our understanding 

about the physical properties o f  the valence electrons, simply because the relations involve 
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complex combinations o f  electron operators. Instead, we refer the reader to table 1 which 

contains the reduced matrix elements (8.@V('P)KI18J) for the d" and f" configuration and 

values o f  8 = vSL and J determined by Hund's rules. Table 2 contains all the 9j-symbols that 

accompany these reduced matrix elements in (8JIT(K: J>lleJ). 

55. Dichroic signal 

B y  way o f  illustrations, we report two examples o f  the use o f  (3.4) to calculate the 

circular dichroic signal. First, we consider El events and give a general expression for the 

signal in terms o f  atomic variables, and, secondly, we report the value o f  the signal for E2 

events and a valence shell f with a pure Hund-rules ground state. 

The dichroic signal is defrned to be the difference in the attenuation coefficient 

evaluated for two values o f  the mean helicity o f  the primary beam o f  equal magnitude and 

opposite sign. In the notation o f  Lovesey and Collins (1996), which is used here, the mean 

helicity is P,, the second parameter in the Stokes vector that describes the states o f  

polarization in a beam o f  X-rays. A look at equation (2.4) for the attenuation coefficient 

reveals that, it is sufficient to study the quantity, 

(5.1) 

For El absorption events (ao contains (E'X E) averaged with respect to states o f  polarization 

in the primary beam and evaluated for the forward scattering geometry. The result is given 

in paper I, and it is (iP,i) where ij is a unit vector in the direction o f  propagation o f  the 

primary beam. Using this result, and (3.4) to evaluate the matrix element (3.1), we arrive at, 

- (1IRIl -'l), 
M =  P28 - (J) 2(412 - 1 )  

(21 + 3) 
(JIIJIIJ) (2  - g)(2J + 1) f $(1- 1) l(g - 1) + i 

Here, J = f f 4 and the reduced matrix element of T is defined in (4.3). In arriving at (5.2) 

we have assumed that the wave functions used to calculate the mean value of 2 are drawn 

from one J-manifold, which then permits the use o f  an operator equivalent. Note that the 
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result (5.2) comes solely from the tensor o f  rank one, and the temperature dependence is that 

o f  the magnetic moment. 

The coefficients o f  (L), (S)  and the magnetic dipole operator inside { } in (5.2) agree 

with the values reported by Carra et al. (1993); see, also, Ankudinov and Rehr (1995). This 

finding implies that, the physical picture behind our scattering length is the same as that in 

the calculation, specific to the dichroic sum-rule, by Carra et al. In this connection, also note 

that our idealized scattering length reproduces the sum rule for dichroic signals due to Thole 

et al. (1992). 

As a final topic, we consider the E2 dichroic signal for the valence shell configuration 

= 1 - t = 1. This configuration is appropriate for Dy3+, f 9, 6Hlsn, for which g = (4/3), and 

and the E2 dichroic signal o f  dysprosium has been measured by Lang et al. (1995). 

The appropriate expression for the matrix element o f  2 in terms o f  the reduced matrix 

element o f  T(K: f) is found in paper 11. For the case in hand, 

and we use entries in tables 1 and 2 to evaluate the right-hand side o f  (3.4). The rank-one 

contribution to A2 is (K = l), 

A 2 = - (@P2 4 - (J) / 945)( 2 f  + 1 f $1, 

where the (k) sign prefaces the contibution made by the spin-dependent part o f  the 

scattering length, and the choice o f  sign goes with = f i = 4 or 3 . Evidently, the rank- 

one contibution to the dichroic signal is largest at the edge with = 4. The term in the 

rank-three contribution with a = 0 is zero. (This result is found for f” with n = 2, 5, 9 and 

12.) In consequence, the rank-three contribution to the dichroic signal for Dy3+, in the 

ground state determined by Hund’s rules, arises solely from the spin-dependent contribution 

to the matrix element o f  2. We find (K = 3), 
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A z = f 0.059 a H(~).(I(~)). 

The seven spherical components o f  HO) are given in paper 11, and 1°) has components defined 

by, 

For the special case in which the wave function o f  the electrons in the valence shell has a 

spatial symmetry so high that mean values o f  1°) with rn, = M - M # 0 are zero it is 

convenient to use for (I;~)) the octupole operator-equivalent given in paper 11. Continuing 

the calculation for this special case, the total E2 dichroic signal for D F  is then 

(K= 1 and 3), 

Here, the magnetic quantization axis is labelled by c and ic is the projection o f  the unit 

vector 4 on this axis. Note that, for a saturated magnetic atom the octupole moment has the 

value, 

(&)(Jc{5Jf -?}) = 3 1 2 ,  

and this is to be compared to the corresponding value o f  the magnetic moment ( Jc ) = 15 / 2 .  

56. Comments 

It has been demonstrated that, the information in the proposed resonant scattering- 

length not present in the idealized scattering-length is related to the spins o f  the electrons in 

the valence shell o f  the magnetic atom. The idealized scattering-length provides information 

on the number o f  holes in the shell and its orbital properties. However, in these matters it 

should be borne in mind that the difference between spin and orbital contributions to the 

resonant scattering-length depends on the representation of the atomic variables, e.g. for a 

simple atomic wave function the thermodynamic quantities are magnetic multipoles and one 

uses relations like (S)  = (g - 1) (J) and (L) = (2 - g) (J) to convey the physical origin o f  

contributions to the scattering length. We have illustrated this point in section 5 in a 

treatment of the E2 circular dichroic signal for DF. The result, (5.3), contains two 
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multipoles, of ranks one and three, created with J and there are no explicit references to spin 

or orbital operators. 

The formulation presented here, and in papers I and 11, provides a framework for the 

interpretation of measured signals. In applying it to a particular measurement, on a magnetic 

material, the first step is to create a realistic wave function for the electrons in the valence 

shell, often a major task and the source of the input of much of the information on the 

chemical and physical properties of the target sample. Atomic states derived from the 

application of Hund’s rules are likely to be a guide, at best, to observed features. 
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Appendix 

Here we bring together some information on the reduced matrix element 

(OdIW("*')Klle'J') that appears in (OdIT(K:J)lle'J') from which our matrix element o f  the 

resonant scattering-length is constructed. The label 8 = vSL where v is the seniority 

quantum number. We adopt the definition of  the reduced matrix element proposed by Judd 

(1963); in this case, (~~IW("b)Kll~'J ' )  is proportional to a second reduced matrix element, 

(e~~W("b'Ile'), that is o f  the type studied by Racah (1943). The proportionality constant 

carries the dependence o f  (OdIW("b)KIle'J') on J and J '. The indices a and b refer to 

different atomic variables, and with Judd's notation and phase convention the index a is the 

rank o f  the spin variable and b is the rank o f  the orbital variable. The second type o f  reduced 

matrix element is built from fractional parentage coefficients. In one sense, (€)~~W(" ' )~~€) ' )  are 

quantities characteristic of  the n-electron configuration I", and they satisfy u s e l l  symmetry 

relations (Racah 1943). The symmetry with respect to a state and its conjugate (both states 

have the same quantum numbers) is grouped according to whether (a + b) is an even or odd 

integer, and it is summarized in paper I. 

In the following material we use the angular momentum coupling scheme o f  Russell 

and Saunders. Papers I and I1 contain results for this scheme and the jj-coupling scheme. 

Applications o f  the latter to properties o f  the dichroic signal are also explored by van der 

Laan and Thole (1 996). 

First of all, 

(2 J + 1)(2 K + 1)(2 J '  + 1) 
(2a + 1)(2b + 1) 

(edlw(asb)KIlev ' )  = { 

For a = 0 or b = 0 the 9j-symbol is proportional to a 6j-symbol. Properties o f  nj-symbols are 

reviewed by Rotenberg et al. (1959), Edmonds (1960) and Judd (1963), among others. For 

example, i f  a = 0 then b = K and S= S, and, 

A key relation in our work is, 
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in which we have used, 

Values o f  (ellV(K)lle') for p", d" and f" configurations are given by Nielson and Koster 

(1963), and the values required in the study of rare earth atoms are listed by us in papers I 
and 11. For K = 0 (OIlV(K>lle') is diagonal with respect to 8 and proportional to the number 

o f  holes, n h, in the configuration. This and several more results are found in paper I. 

Other results used here are, 

In these expressions, the reduced matrix elements o f  S, L and 1 are {S(S + 1)(2S + l)}In and 

similar results for L and 1. (If both expressions are written in terms of spin and orbital 

variables they are symmetric in the variables, and we have chosen to write them down using 

the explicit values (2s + 1) = 2 and (sllslls) = $(3 / 2).) From, 
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and (A.4), 

An important special case for the last expression is its value for J= J ', 

where g.is the Land6 factor. The corresponding result for (041W(o*')11brJ) is proportional to 

(2 - g). We recall that, within a J-manifold, (S) = (g - 1) (J) and (L) = (2 - g) (a. 

For a = 1 and K = 1, the next in line of the reduced matrix elements is the one with 

b = 2 (matrix elements with (a + b + K )  = odd integer do not appear in T(E J )  ). A standard 

exercise reveals, e.g. Edmonds (1 960), 

where R and s are, respectively, the unit position vector and spin operators of electrons 

labelled by j in the.. I" - configuration. For a saturated magnetic atom, A4 = J, and on 

adapting a result given by Carra et al. (1993), the value of the right-hand side of (A.9) is 

found to be (n I ( 21+  l)), 

(I - n  +i)(L(L + l)[L(L + 1) + 2S(S+ 1) +2J(J+ 1)]-3(S- J)'(S+ J+ 1)2}  
(A. 10) 

/[.2(21+ 3)(21- 1)(2L - 1)S(J + l)]. 
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The odd tensor (8IlW('**)~~8) has the property that its values for n electrons and n h holes With 

n = n h are the same. Hence, for n >(21 + 1) the appropriate value of (A.10) is found by 

replacing n by n h = 2(21+ 1) - n. 

A little ingenuity enables one to go beyond (A.9) and construct other operators to 

represent higher-order reduced matrix elements. Since they become quite complicated, and 

so have only a modest physical appeal, we shall not go further than the result (A.9). 

We conclude with a special case for W ('J) that has a simple expression. The reduced 

matrix element of W(',') evaluated for a 8 given by Hund's rules is, 

(A. 1 1) 

where the upper (lower) sign is correct for n h I (21 + 1) (n h > 21 + 1). From (A.11) we get, 

(A. 12) 

This expression is used to calculate the mean value of the spin-orbit interaction in a Hund- 

rules ground state, and it leads to the Land6 rule of intervals. Using (A.11) and (4.4) one can 

obtain an analytic expression for (8JIIW(',')' (l8J) . 
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Table 1 

Racah unit spherical tensors which appear in (3:4) and (A.2) are listed for d" and 

f valence shells. The quantum numbers are determined by the application o f  Hund's 

rules. The numerical values are given in two forms, namely, powers o f  prime numbers ( an 

underline denotes a negative power, and an asterisk a negative sign in front o f  the square 

root) and as fractions. Note that our unit spherical tensors are for holes, not electrons. This 

means that, for (a + b) = even integer our unit spherical tensors have an opposite sign to 

those for electrons; for (a + b) = odd integer values for holes and electrons are the same. 
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Ti3+ U!' n h  = 9 I 

cr3+ d3 n h  = 7 

' 4  - 
5 

- 2 f i  5 

LJz  15 3 

6 
35 
- 

I Mn3+ d4 n h  = 6 I 



Co3+ d6 n h  = 4 

321 

21 - 

*2202,1 

*OU 

11 

- -  1111 

l l O I , )  1 

*4203,1 

- 

Ni3+ d7 n h  = 3 

02 

- 1100, I 

*2J01,1 

*U 
0 ~ 0 0 , l  

om,1 
- 1200, l  

- 2102,l  



I Zn3+ d9 nh = 1 



Ce3+ f1  T Z ~  = 13 

*0101, 

2012 

*1202 

01 12 

*0002,1 

*2201 

*0012 

3112 

2212 

*0213 

* 1 1 u  

2312,l 

2003 

*1012 

pr3+ f 2  n h  = 12 

* 1201 

1311 

*1uo, 12 

0 

1000,21 

*I101 

*31U 

2231,02 

2110,L 

0 

*ouo ,  12 

*33JO, 22 

0 

2010,g 



Nd3+ f 3  7th = 1 1  

*0211 

- 2111 ,1  

*1021,3 

* 4 0 1 2 , a  

4211,412 

*a1 1 

*0311,1 

lOll,3 

OZll,1 

4010 ,3  

*1012, 31 

*6612,412 

* 6 0 1 0 , a  

*1021, 512 

pm3+ f 4  n h  = 10 

* a 0 1  

*51lJ 

*0011) 2 

0112, 1 
4111,3 

- 2112 ,3  

5512,402 

* 5 0 0 1 , Z  

*0012, 512 



I sm3+ f 5  nh = 9  I 
*0121 

0212 

- 1202,02 

0 

*0032 

*13& 02 

0012 

0 

m , 0 2  

2512,12 

0 

1212,22 



Tb3+ f 8  n h  = 6 

1201,Ol 

- 4000,Ol 

*4120,11 

0100,11 

*0200,211 

*3l-01,01 

0000,01 

- 3300,Ol 

- 3110,11 

*all, 11 
*fioo, 11 
2300,21 

2401,111 

*1410,311 



r H O ~ +  fi0 nh = 4 
~ 

3001,001 

- 4301,001 

*4021, 001 1 

* ~ 0 0 ~ , 0 0 1 1  

- 4201 -,- 1111 

* ~ 0 1 , 0 0 1  

0101) 001 

- -  3021,001 

- -  3011,0011 

- -  5012,0011 

*3022,0011 

*BO& 1011 

*ZOO& 0111 

*3011, 211 1 

I Er3+ fl' nh = 3 

3201 

3Oll,OOl 

3022,001 

*20u, 011 1 

*2002,1111 

*3101 

30ll,OOl 

*433l, 001 

40l2,OOl 

2013,001 

3032,0111 

4212.1111 

*4203, 011 1 

*3212,2111 



Tm3+ f12 nh = 2 

l O O l , O l  

- 4220,Ol 

- 4120,Il 

0 

*4400,211 

*3321,01 

0 ~ 0 0 , 0 1  

* S O O ,  01 

- 3330,Il 

0 

lJO0,Ll 

6500,21 

0 

- 1210,311 

2001 

0302 

0022 

lOO2,l 

1202 

*OLOl 

2102 

*loo2 

1012 

*1013 

0002,l 

*3202 

3003,l 

*0012, J. 



Table 2 

Values o f  9j-symbols needed in the reduced matrix element (3.4) are listed for d" and f " 
configurations, and El and E2 absorption events. 
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- 
1 = 1,1= 2 , t  = 1 

1 1 0  

1 0  1 

1 2 1  

1 1 2 * %  

1 3 2  

a h K I 9 j  -symbol 

221 

*m 
2321 

113 



t= 2,1=3,t  = 1 

a b I( 
1 1 0  

1 0 1  

1 2  1 

1 1 2  

1 3  2 

9 j  - symbol 

3411 

* O U  

3231 

*3431 

1 0 2  
- 
I = 1,1 = 3 , t = 2  

a b K I 9j-symbol 

1 1 0  

1 0  1 

1 2 1  

1 1 2  

1 3 2  

1 2 3  

1 4 3  

1 3 4  

1 5 4  

1311 

* O U  

3231 

*3322 

1123 

*01% 

1m,1 

* 1 m  

0402 


