
RAL-TR-98-016

Ordering symmetric sparse matrices
1for small profile and wavefront

2J. K. Reid and J. A. Scott

Abstract

The ordering of large sparse symmetric matrices for small profile and wavefront or for small bandwidth is
important for the efficiency of frontal and variable-band solvers. In this report, we look at the computation of
pseudoperipheral nodes and compare the effectiveness of using an algorithm based on level-set structures with
using the spectral method as the basis of the Reverse Cuthill-McKee algorithm for bandwidth reduction. We
also consider a number of ways of improving the performance and efficiency of Sloan’s algorithm for profile
and wavefront reduction, including the use of different weights, the use of supervariables, and implementing
the priority queue as a binary heap. We also examine the use of the spectral ordering in combination with
Sloan’s algorithm. The design of software to implement the reverse Cuthill-McKee algorithm and a modified
Sloan’s algorithm is discussed. Extensive numerical experiments that justify our choice of algorithm are
reported on.

Keywords: sparse matrices, symmetric pattern, reordering algorithms, profile reduction, Sloan
algorithm, Reverse Cuthill-McKee algorithm, spectral method.

AMS(MOS) subject classifications: 65F50, 68R10.

ACM classification system: G.1.3.

Computing and Information Systems Department,
Rutherford Appleton Laboratory,
Chilton, Didcot,
Oxon OX11 0QX.

February 1998.

1Available by anonymous ftp from matisa.cc.rl.ac.uk in directory pub/reports in the file
rsRAL98016.ps.gz

2Email addresses: jkr@rl.ac.uk and J.A.Scott@rl.ac.uk

CONTENTS

1 Introduction ………………………………………………………………………… 1
2 Background ………………………………………………………………………… 3

2.1 Frontal and variable-band methods ……………………………………… 3
2.2 The row-by-row frontal method for unsymmetric matrices ……………… 4

3 Finding start and end nodes for Sloan’s method…………………………………… 5
3.1 Finding a pseudodiameter using level sets………………………………… 5
3.2 Interchanging the ends of the pseudodiameter …………………………… 7
3.3 The spectral pseudodiameter ……………………………………………… 8
3.4 Using the supervariable graph …………………………………………… 9

4 Sloan’s algorithm…………………………………………………………………… 10
4.1 The Sloan priority function ……………………………………………… 10
4.2 Sloan’s search ……………………………………………………………… 11
4.3 Managing the binary heap ………………………………………………… 12
4.4 Interchanging the start and end nodes …………………………………… 12
4.5 Adjusting Sloan’s weights ………………………………………………… 13
4.6 Other adjustments of the priority function ………………………………… 15
4.7 Other start and end nodes ………………………………………………… 15

5 The hybrid method ………………………………………………………………… 16
6 Software design …………………………………………………………………… 18

6.1 MC60A …………………………………………………………………… 19
6.2 MC60B …………………………………………………………………… 19
6.3 MC60C …………………………………………………………………… 20
6.4 MC60D, MC60E, MC60F, and MC60G ………………………………… 21
6.5 The driver MC61 ………………………………………………………… 21

7 Concluding discussion ……………………………………………………………… 22
8 Acknowledgements ………………………………………………………………… 23
9 References ………………………………………………………………………… 24
Appendix 1. MC60 specification document …………………………………………… 26
Appendix 2. MC61 specification document …………………………………………… 35

ii

1 Introduction

We consider the ordering of symmetric sparse matrices for small profile and wavefront or for

small bandwidth. We are primarily concerned with matrices that are positive definite, so we

work only with the pattern of the matrix and do not take into account any permutations

needed for numerical stability. The work is useful also for a matrix that is non-definite or is

symmetric only in the pattern of its entries, but in these cases it must be appreciated that the

actual factorization may be more expensive and require more storage. For finite-element

applications, we assume that the matrix has been assembled. We treat unassembled

finite-element matrices differently and this will be the subject of a separate report.

In recent years, much attention has been paid to the problem of ordering symmetric sparse

systems (see, for example, Paulino, Menezes, Gattass, and Mukherjee 1994 for a discussion

and list of references). One method which has been widely used for profile reduction is that

of Sloan (1986, 1989). Sloan exploits the close relationship between a symmetric matrix A =

{a } of order n and its undirected graph with n nodes. Two nodes i and j are neighbours (orij

are adjacent) in the graph if and only if a is nonzero. Sloan’s algorithm has two distinctij

phases. In the first, a start node and an end node are chosen. In the second phase, the chosen

start node is numbered first and a list of nodes that are eligible to be numbered next is

formed. At each stage of the numbering, the list of eligible nodes comprises the neighbours of

nodes which have already been numbered and their neighbours. The next node to be

numbered is selected from the list of eligible nodes by means of a priority function. A node

has a high priority if it causes either no increase or only a small increase to the current front

size and is at a large distance from the end node.

The Harwell Subroutine Library code MC40 (Duff, Reid, and Scott 1989) implements the

ordering algorithm of Sloan (1986) and has been in satisfactory use for a decade. We decided

that a revision was needed mainly because Kumfert and Pothen (1997) have found that, for

the larger problems that are handled nowadays, there is a considerable efficiency gain from

the use of a binary heap to manage the list of eligible nodes in the second phase of Sloan’s

algorithm. Another reason is for the economy of working with supervariables (sets of

variables for which the corresponding matrix columns have identical patterns) when the

number of supervariables is significantly less than the number of variables. We have added

an option that permits users to provide a global priority vector because Kumfert and Pothen

have found that the final ordering can be significantly better if we use a hybrid algorithm that

combines a spectral ordering (see, for example, Barnard, Pothen, and Simon 1995) with the

Sloan algorithm. We have also taken the opportunity to revise the code in a number of other

ways, including adding an option for performing the Reverse Cuthill-McKee algorithm and

allowing the user to specify the weights in Sloan’s algorithm. The new code is called MC60,

1

and we also provide a simple driver called MC61.

This report is organized as follows. In Section 2, we briefly review frontal and

variable-band methods. In Section 3, we look at computing start and end nodes for Sloan’s

algorithm. We examine modifications to improve the performance of the algorithm of Gibbs,

Poole, and Stockmeyer (1976) for finding a pseudodiameter. We also look at using the

spectral method to find a pseudodiameter and consider the effect of interchanging the ends of

the pseudodiameter on the quality of the Reverse Cuthill-McKee algorithm. The numbering

phase of Sloan’s algorithm is considered in Section 4. We discuss the priority function and

compare the performance of a simple sequential search for finding the node of highest

priority with that of a binary heap implementation. We look at the effect of adjusting the

weights in the priority function and of using the spectral pseudodiameter for the start and end

nodes. In Section 5, we describe a modified version of the hybrid method of Kumfert and

Pothen (1997). The design of our codes MC60 and MC61 is discussed in Section 6. Finally, a

concluding discussion is given in Section 7.

To illustrate our ideas and findings, throughout this report we use the test examples of

Everstine (1979) and of Kumfert and Pothen (1997). It should be noted that, although the

Everstine problems have been widely used for testing algorithms of this kind, they are small

by current standards. Their order varies from 59 to 2680 and Sloan reports root-mean-square

wavefronts, following his ordering, varying from 3 to 40. The orders for the Kumfert and

Pothen set vary from 6019 to 100196 and the root-mean-square wavefronts, following

Sloan’s ordering, vary from 59 to 1399.

All the results presented in this report are for Fortran 77 code compiled with the EPC

(Edinburgh Portable Compilers, Ltd) Fortran 90 compiler with optimization − O running on a

143 MHz Sun Ultra 1. All timings are in CPU seconds.

2

2 Background

Two methods for solving large sparse symmetric systems of equations Ax = b that are widely

used, especially in finite-element analysis, are the variable-band (profile) and frontal

methods. The efficiency of these methods is affected substantially by the ordering of the

variables. In this section, we briefly discuss the parameters which measure the efficiency of

variable-band and frontal methods.

2.1 Frontal and variable-band methods

Sloan’s method aims to find an elimination order that is suitable for the frontal method

applied to a symmetric and positive-definite matrix. A variable is in the front if it has not yet

been eliminated but is adjacent to a variable that has been eliminated or is about to be

eliminated. There is an underlying assumption that full matrix storage is used for the frontal

matrix (the submatrix corresponding to the rows and columns of the front) and that no

advantage is taken of zeros within it. The order of the frontal matrix is known as the

wavefront. Of interest is

the maximum wavefront, since this affects the in-core storage needed,

the sum of the wavefronts, known as the profile, since this is the total storage needed

for either of the factors, and

the root-mean-square wavefront, since the work performed when eliminating a variable

is proportional to the square of the current wavefront.

The elimination order is also relevant for the variable-band method. Here, instead of the

maximum wavefront, of relevance is

the maximum semibandwidth, which affects the number of matrix rows that need to be

held in-core at once (unless we are willing to reread parts of the factors from disk).

If no advantage is taken of zeros within the band, the profile is of relevance because again it

is the total storage needed for either of the factors. The root-mean-square wavefront is also

important since it bears the same relationship to the work performed as for the frontal

method.

3

2.2 The row-by-row frontal method for unsymmetric matrices

In the frontal method, the matrix A need not be assembled explicitly. Instead, the assembly

and elimination operations are interleaved with each variable being eliminated as soon as its

row and column are fully summed. If the matrix is already assembled, a frontal code may

accept the matrix row-by-row and treat each row as an element matrix (see, for example,

Duff, Erisman, and Reid 1986, Section 10.6). We will call this the row-by-row frontal

method. The Harwell Subroutine Library frontal code MA42 (Duff and Scott 1996) includes

such an option. In the row-by-row frontal method, a variable is eliminated when its index

appears in an index list for the entries of a row for the last time. We use the terms row front

size and column front size for the numbers of rows and columns in the rectangular frontal

matrix involved. For efficiency, the rows need to be numbered for small row and column

front sizes. Of interest here are

the maximum row and column front sizes, and

the root-mean-square row and column front sizes

for the permuted matrix.

If the matrix A is unsymmetric but has a symmetric sparsity pattern, Sloan’s method may

be used to give an efficient elimination order. We can then obtain a row ordering for the

row-by-row frontal method by first ordering all the rows that have an entry in the column of

the first variable in the elimination order, then any remaining rows that have an entry in the

column of the second variable, and so on.

Given this row order, a row-by-row frontal code will use a very similar elimination order

to that specified, but it is unlikely to be identical since several columns may become fully

summed at the same time. Usually the sequence of numbers of rows in the front will be

identical to the sequence of wavefront sizes, but even this need not be so. It may happen that

a column becomes fully summed before its variable is reached in the specified elimination

order; in this case, it can be eliminated at once and the numbers of rows in the front will be

less than the corresponding wavefront sizes until the variable’s position in the specified

elimination order is reached. For example, consider the matrix with entries

× × ×
× × ×
× ×

× ×

and the natural elimination order 1, 2, 3, 4. Rows 1 to 3 are loaded into the front, then

variable 1 is eliminated. At this point, variable 3 is fully summed and can be eliminated

although it has not yet been reached in the elimination order.

4

3 Finding start and end nodes for Sloan’s method

In this section, we consider finding pairs of nodes that are at maximum or nearly maximum

distance apart, since experience has shown that such nodes are good candidates for starting

nodes for profile and wavefront reduction algorithms and for bandwidth reduction algorithms

(see, for example, Gibbs 1976, Gibbs, Poole, and Stockmeyer 1976, Sloan and Randolph

1983, Sloan 1986). In our discussion we assume that the matrix A is irreducible so that its

associated graph G is connected (if not, we work with each component of the graph

separately).

We first introduce notation that we will use throughout this report and recall some standard

terminology and concepts from elementary graph theory (see Gibbs et al. 1976). The degree

of a node P ∈ G is the number of nodes that are adjacent to P. The distance d(P, Q) between

two nodes P and Q in G is defined to be the length of the shortest path connecting them (one

less that the number of nodes on the path). The diameter length of G is the greatest distance

between any two nodes in G. A diameter is a shortest path between two nodes P and Q

whose distance apart is equal to the diameter length. A pseudodiameter is either a diameter

or a shortest path between two nodes in G whose distance apart is slightly less than the

diameter length. An end of a pseudodiameter is called a pseudoperipheral node. It is

convenient here to refer to pseudodiameters, but actually we will only ever be interested in

the pairs of pseudoperipheral nodes that define them.

3.1 Finding a pseudodiameter using level sets

Gibbs, Poole, and Stockmeyer (1976) find a pseudodiameter by constructing level-set

structures. The algorithm we propose is a modified version of their procedure. The level-set

structure rooted at a node P is defined as the partitioning of the nodes in G into level sets

L (P), L (P), ..., L (P) such that1 2 h

(i) L (P) = {P} and1

(ii) for i > 1, L (P) is the set of all nodes that are adjacent to nodes in L (P) but are not ini i−1

L (P), L (P), ..., L (P).1 2 i−1

Note that all the nodes in L (P) are at the distance i from P. The level-set structure rooted ati+1

P is denoted by L(P). We refer to the number h of level sets in a level-set structure as its

depth and the greatest number of nodes in a level set as its width. Gibbs, Poole, and

Stockmeyer choose a starting node P of minimum degree and generate L(P). They then

generate the level structures rooted at each of the nodes in the final level set L (P). If theh

level-set structure L(Q) rooted at such a node Q has a greater depth than L(P), the whole

process is recommenced with Q replacing P.

5

Constructing level-set structures for all the nodes in the final level set is obviously

expensive. George and Liu (1979) therefore recommended terminating the construction of

any level-set structure whose width reaches or exceeds that of the narrowest level-set

structure so far found. The significance of the width is that it is closely related to the

wavefront of the matrix if the level-set structure is used for ordering. Lewis (1982)

recommended that the nodes should also be sorted by degree, since pseudoperipheral nodes

usually have low degree. Sloan (1986) incorporated both these modifications into his

algorithm for finding pseudoperipheral nodes. He also used the empirical observation that

nodes with high degrees are not often selected as potential start or end nodes to introduce a

shrinking strategy that reduces the number of nodes in the final level set L for whichh

level-set structures are generated. Sloan chose to shrink L by taking the first int(m/2)+1h

nodes (sorted in ascending sequence of degree), where int is the Fortran int function

(truncation towards zero) and m is the number of nodes in L .h

In earlier work (Duff, Reid, and Scott 1989), we tried the strategy of rejecting any node in

L that had a neighbour that had already been tested, but rejected this on the grounds of itsh

being more expensive than Sloan’s shrinking strategy. Instead, we decided to limit the search

to one representative of each degree, which we found to be significantly more economical

while having little effect on the quality of the final ordering. This strategy was used in the

code MC40. When publishing a Fortran implementation of his algorithm, Sloan (1989, p.

2655) followed us, saying ‘this often minimizes the number of level structures that need to be

generated without affecting the quality of the pseudoperipheral nodes’.

Since two nodes may have the same degree while being well separated with quite different

level-set structures, the strategy that we now recommend is to consider up to five nodes in the

final level set in order of increasing degree, omitting any that is a neighbour of a node already

considered. We follow George and Liu in terminating the construction of any level-set

structure whose width reaches or exceeds that of the narrowest level-set structure so far

found. We will refer to our procedure as the MGPS (modified Gibbs Poole Stockmeyer)

algorithm. On the Kumfert and Pothen test matrices, we found no case where the depth was

increased by using this strategy in place of that proposed of Duff et al. (1989), but for a few

(notably nasasarb and onera_dual) the width was significantly reduced. The computation

times were generally very similar. We present in Table 1 the cases that showed different

widths. Column 3 shows the number of nodes of the final level set that were considered.

6

Problem Code No. tries Time Level-set RCM semi-
Depth Width bandwidth

barth5 MC40 1 0.06 103 380 394
MGPS 5 0.13 103 359 373

copter2 MC40 2 0.45 54 2226 2322
MGPS 2 0.45 54 2204 2280

nasasarb MC40 3 0.92 176 864 882
MGPS 5 1.16 176 540 577

onera_dual MC40 1 0.58 84 3270 3479
MGPS 2 0.58 84 2712 2768

shuttle_eddy MC40 4 0.07 176 236 239
MGPS 5 0.07 176 225 227

tandem_vtx MC40 7 0.28 30 1471 1602
MGPS 5 0.25 30 1472 1565

Table 1. The cases where the new pseudodiameter algorithm gave different widths.

Cuthill and McKee (1969) proposed that the ordering associated with the level-set

structure be used as a basis for an ordering for the variable-band method and George (1971)

found that there are advantages in reversing the resulting order. For an explanation of why

this is so, see Duff, Erisman, and Reid (1986, page 155). We provide this ordering as an

option in our new codes MC60 and MC61 (see Section 6). In Table 1, we also present the

resulting semibandwidths when the level-set structures computed by our new strategy and by

the MC40 strategy are used for the Reverse Cuthill-McKee ordering. We refer to this as the

RCM ordering.

We remark that our limit of five nodes in the final level set is somewhat arbitrary, but

without such a limit, we found that we could do significantly more work without improving

the quality of the final result.

3.2 Interchanging the ends of the pseudodiameter

In almost all of our test problems, we found that the widths seen from the two ends of the

pseudodiameter were different, sometimes by a significant amount. The columns labelled

Widths MGPS in Table 2 show the widths from the opposite ends. If the width is important,

there seems to be no alternative to computing it from both ends and choosing as the start node

the one whose level-set structure has the lesser width. We do this in our codes MC60 and

MC61. This usually involves no overhead, but can require one more level-set structure to be

constructed to find the distances to the end node (we need to do this anyway whenever the

most recently computed level-set structure is not of least width, see Section 6.3).

7

Problem Depths Widths RCM semibandwidths
MGPS Spectral MGPS Spectral MGPS Spectral

barth 70 64 69 192 180 190 192 200 194 201 199
barth4 71 65 66 212 196 184 202 220 198 188 208
barth5 103 102 102 359 392 399 377 373 403 412 389

bcsstk30 34 32 29 2504 2639 2639 2504 2827 2814 2814 2827
commanche_dual 157 140 156 152 127 123 127 158 134 129 134

copter1 42 42 42 917 915 915 917 935 963 963 935
copter2 54 53 53 2204 2609 2869 2197 2280 2754 2950 2270

finance256 56 53 52 2010 2010 2010 2010 2016 2016 2014 2014
finance512 88 87 87 1208 1211 1211 1211 1307 1307 1319 1319

ford1 143 130 134 252 303 319 295 257 312 332 307
ford2 244 234 230 956 961 1009 939 962 986 1021 955

nasasrb 176 161 173 540 864 1068 900 577 881 1080 944
onera_dual 84 80 72 2712 5074 3780 3454 2768 5164 3809 3535

pds10 16 16 16 3419 3290 3419 2917 4117 3803 4117 3392
shuttle_eddy 176 170 176 225 167 198 167 227 177 201 177

skirt 57 57 56 1879 1776 1913 1972 2071 1994 2071 2174
tandem_dual 103 104 98 2139 2331 2285 2167 2206 2387 2325 2173
tandem_vtx 30 31 31 1472 1774 1584 1508 1565 1848 1681 1571

Table 2. Depths, widths, and RCM semibandwidths, using the MGPS and
spectral orderings from both ends of the pseudodiameter.

3.3 The spectral pseudodiameter

In this section, we briefly discuss a recent method that has been proposed for finding a

pseudodiameter, without constructing level-set structures. Barnard, Pothen, and Simon

(1995) described a spectral algorithm that associates a Laplacian matrix L with the given

matrix A with a symmetric sparsity pattern,

−1 i ≠ j, a ≠ 0ij

L = {l } = 0 i ≠ j, a = 0ij ij



 |l | i = j.∑ iji ≠ k

An eigenvector corresponding to the smallest positive eigenvalue of the Laplacian matrix is

termed a Fiedler vector. The spectral permutation of the variables is computed by sorting the

components of a Fiedler vector into monotonically nonincreasing or nondecreasing order and

Barnard et al. found that this gave good profile sizes.

Paulino, Menezes, Gattass, and Mukherjee (1994) suggested using the first and last nodes

of the spectral permutation to define a pseudodiameter. They take the better of the RCM

orderings based on these two nodes. In Table 2, we show the depths, widths, and RCM

semibandwidths that result from using the two ends of the MGPS and spectral

pseudodiameters. In our experiments, the Fiedler vector was obtained using Chaco 2.0

8

(Hendrickson and Leland 1995). We used the SymmLQ/RQI option and the input parameters

were chosen to be the same as those used by Kumfert and Pothen (1997).

We remark that for the spectral pseudodiameter, if the level-set structure rooted at one end

is constructed, the other end does not necessarily lie in the final level set. Therefore the

depths as well as the widths of the level-set structures rooted at each end of the

pseudodiameter can differ. We see from our results that only for tandem_vtx and one end of

tandem_dual does the spectral pseudodiameter yield a level-set structure with a greater depth

than the MGPS pseudodiameter, but in about half the cases, it produces a narrower width and

smaller RCM semibandwidth. We highlight in bold the greatest depths, the narrowest widths,

and the smallest RCM semibandwidths. For both methods, the importance of using the end of

the pseudodiameter with the narrower level-set structure is apparent. Paulino et al. report the

results of taking the better of the two ends for the spectral method, but do not try reversing

the ends for the Gibbs Poole Stockmeyer algorithm. It is our belief that it is because of this

that in their paper the spectral method yielded slightly improved results and not because the

spectral pseudodiameter is inherently superior for bandwidth reduction algorithms. In our

code, we always use the end of the pseudodiameter that yields the level-set structure with the

lesser width.

3.4 Using the supervariable graph

For efficiency, our new codes offer the option of working with supervariables. A

supervariable is defined to be the set of variables that correspond to a set of columns of A

with identical patterns. A permutation is constructed that places the variables of each

supervariable together. The pattern of A is replaced by that of the permuted matrix

represented as supervariables (that is, by its condensed or compressed equivalent). We call

this the supervariable graph and is used in place of the graph associated with the original

matrix. The potential savings in the computation times by using the supervariable graph are

illustrated by Duff et al. (see also Table 8 in Section 7).

When a node is introduced into a level set in the original graph, all the nodes of its

supervariable will be introduced too, unless one of them is the start node. The other nodes of

the start supervariable will be in level 2 if the corresponding matrix rows have diagonal

entries and in level 3 otherwise. Thus there is no significant difference between the properties

of the variable and supervariable graphs. The depths will be the same, except for the trivial

cases where the depth is 2 or 3.

In processing the supervariable graph, we take the numbers of variables in the

supervariables into account when calculating the width of a level-set structure, but not for the

9

degrees of the supervariables in the list of potential start nodes. Our reasoning for these

choices is that

the width has a direct bearing on the wavefront or semibandwidth when the ordering is

used without alteration and calculating it is a small overhead in the loop that adds

supervariables to the level set; and

the supervariable degree is likely to have greater topological relevance and, if there are

substantially fewer supervariables than variables, is significantly cheaper to calculate.

4 Sloan’s algorithm

In this section, we discuss the second phase of Sloan’s algorithm, that is, the numbering

phase. We will again assume that the matrix A is irreducible. It is straightforward to apply the

algorithm to each component of a reducible (block diagonal) matrix and Sloan’s code (and

ours) allows for this.

4.1 The Sloan priority function

In the first phase of his algorithm, Sloan finds a pseudodiameter and, in the second phase,

uses this to guide his ordering. One end s of the pseudodiameter is used as the start node and

the other e is used as a target end node. In fact, Sloan ensures that the position of a variable in

his ordering is not very far away from one for which the distance from the target end node is

monotonic decreasing. He is able to improve the profile and wavefront by localized

reordering. He begins at the start node s and uses the priority function

P = −W c + W d(i, e) (1)i 1 i 2

for node i, where W and W are integer weights, c (which he calls the current degree) is the1 2 i

amount that the wavefront will increase if node i is numbered next, and d(i, e) is the distance

to the target end node. At each stage, the next node in the ordering is chosen from a list of

eligible nodes to maximize P . Thus, a balance is kept between the aim of keeping thei

number of nodes in the front small and including nodes that have been left behind (further

away from the target end node than other candidates). Based on his numerical experiments,

Sloan recommends the pair (2,1) for the weights. Following further experiments, we also

used these values in our Harwell Subroutine Library code MC40.

If the current degree c of a node drops to zero, it should be chosen as the next node to bei

10

renumbered since eliminating the corresponding variable next is bound to reduce the size of

the front. Since testing for zero c is not a big overhead, we do this in our code. This can onlyi

improve the quality of the result, but such a node is likely to be chosen anyway if the ratio

W /W is large because c cannot be negative.1 2 i

4.2 Sloan’s search

For his list of eligible nodes, Sloan takes all nodes that are in the front (neighbours of one or

more renumbered nodes) or are neighbours of one or more nodes in the front. He performs a

simple sequential search of the list to find the node with highest priority that is to be

numbered next. Sloan noted that the simple search was faster than using a binary heap search

for most of Everstine’s (1979) test problems, but suggested that the binary heap search will

inevitably become the method of choice for large problems where the root-mean-square

wavefront exceeds several hundred nodes The recent work of Kumfert and Pothen (1997)

confirms this expectation. To make our code efficient both on the small problems used by

Sloan and the much larger problems which are common today, we commence with code that

performs Sloan’s simple search, but switch to code that uses a binary heap if the number of

eligible nodes exceeds a threshold. Our experience is that the performance is not very

sensitive to this threshold. Based on our numerical experiments, we use a threshold of 100 in

our code. We show timings for six test problems in Table 3, chosen to illustrate the

performance in cases that each vary from the next by a factor of about 10 in the time taken

when a simple search is used (threshold n). For small problems, our method with threshold

100 can be slightly less efficient than the simple search (probably because once we have

switched to the heap, we do not return to the simple search), but there are substantial gains on

the largest cases.

DWT 59 DWT 221 DWT 869 shuttle_eddy tandem_vtx onera_dual
Order (n) 59 221 869 10,429 18,454 85,567

Threshold
0 0.00042 0.0028 0.015 0.16 0.53 1.7

10 0.00041 0.0028 0.015 0.16 0.53 1.7
20 0.00035 0.0028 0.016 0.16 0.53 1.7
50 0.00035 0.0026 0.015 0.16 0.53 1.7

100 0.0025 0.014 0.16 0.53 1.7
500 0.014 0.19 0.54 1.8

1000 0.19 0.64 1.8
n 0.00035 0.0024 0.014 0.19 1.51 25.4

Table 3. Effect on reordering times of the threshold for using the heap.

11

4.3 Managing the binary heap

We hold the list of indices of eligible nodes in an array QUEUE, with the root in QUEUE(1), its

children in QUEUE(2) and QUEUE(3), the children of QUEUE(2) in QUEUE(4) and

QUEUE(5), etc. Thus the parent of QUEUE(J) is always in QUEUE(J/2). We ensure that the

priority value for a node is never more than that of its parent. As a result, the root is always

the node with the highest priority, so no search is needed to choose the next node for

renumbering.

To restore the binary heap after removing the root, we move its child with greater priority

into its place, then do the same for the child, continuing until the bottom of the heap is

reached. About log l steps are needed for a list of length l.2

When a node is added to the list of eligible nodes, it is added to the bottom of the heap. To

ensure that the heap still has the required properties, we need to compare the value of the

priority function with that of its parent. If necessary, an interchange with the parent is made

and the same comparison is made at the parent node. This continues until the root is reached

or a correctly ordered parent and child is reached. At most log l steps are needed for a list of2

length l.

The part of the algorithm which is potentially expensive is maintaining the priorities of the

eligible nodes as nodes are renumbered. When the value of the priority function of an eligible

node changes, it is always an increase caused by a neighbour being included in the front. We

need to compare the new value of the priority function with that of its parent as in the

previous paragraph. At most log l steps are again needed, but our experience is that in most2

cases, no interchanges at all are needed.

4.4 Interchanging the start and end nodes

We observed in Table 1 that which end of the pseudodiameter is chosen as the start node can

have a marked effect on the width of the level-set structure and on the RCM semibandwidth.

To a lesser extent, which end is chosen as the start node affects the Sloan algorithm. In Table

4, we show the level-set widths and the Sloan profiles for the Kumfert and Pothen test set. For

each problem, we report the results for the better of the pairs of weights (2,1) and (16,1) (see

Section 4.5 for a discussion of the choice of weights). In column 2, we give the narrowest

width and in column 4, the corresponding profile. We highlight the best profile (if the profiles

for both ends of the pseudodiameter differ by less than 2%, both are highlighted). It can be

seen that for most problems the final profile is not very sensitive to which end is used as the

start node but there appears to be a slight advantage in choosing the pseudoperipheral node

that gives the narrowest width as the start node. We therefore take this node as the start node

12

s in our code, since we feel that the added expense of running the second phase of Sloan’s

algorithm using both nodes would not be justified.

MGPS Sloan
Problem Widths Profiles

barth 180 192 0.47 0.47
barth4 196 212 0.33 0.34
barth5 359 392 1.44 1.49

bcsstk30 1208 1211 16.15 11.16
commanche_dual 127 152 0.33 0.33

copter1 915 917 6.05 6.05
copter2 2204 2609 37.96 38.87

finance256 2012 2012 6.35 6.35
finance512 2504 2639 11.91 11.94

ford1 252 303 2.35 2.61
ford2 956 961 41.05 41.66

nasasrb 540 864 19.01 18.63
onera_dual 2712 5074 87.75 103.41

pds10 3290 3419 9.36 12.53
shuttle_eddy 167 225 0.62 0.59

skirt 1776 1879 36.60 34.16
tandem_dual 2139 2331 66.21 72.98
tandem_vtx 1472 1774 5.72 5.75

Table 4. MGPS widths and Sloan profiles (in millions) for the two pseudoperipheral nodes.

4.5 Adjusting Sloan’s weights

As already mentioned, Sloan recommends the pair (2,1) for the weights. However, the results

of Kumfert and Pothen (1997) indicate that, for some problems, there are considerable

advantages in using other values. We have examined the profile sizes for the 13 pairs of

weights (1,64), (1,32), (1,16), ..., (1,1), (2,1), ..., (64,1) on all the Everstine and Kumfert and

Pothen test matrices. Some examples illustrating our findings are shown in Table 5, where

percentage increases from the best value are shown. In both test sets, there are cases for

which the profile rises rapidly for large values of W /W . Kumfert and Pothen call these1 2

problems class two and the rest class one.

The first three examples in Table 5 are class-one problems and the rest are class-two

problems. The examples barth5 and finance512 were used by Kumfert and Pothen to

exemplify classes one and two, respectively. We see from the table that, for class-one

problems, it may be important to choose a large value of W /W . For class-two problems,1 2

(1,1) or Sloan’s choice of (2,1) both seem reasonable. Our results for the whole test set show

that using the weights (2,1) rarely gives profiles for class-two problems that are more than

5% bigger than the best of those we computed. From the Kumfert and Pothen test set, the

13

class-two problem for which the Sloan choice gave the worst result was skirt. Results for this

problem are given in the final column of Table 5. For class-one problems, it seems to be

rarely advantageous to go beyond a ratio of 16, and can be slightly disadvantageous. Kumfert

and Pothen have no suggestion for predicting to which class a problem belongs. It seems to us

that, if the class of problem is not known, it is necessary to try more than one pair of weights.

To allow for this, in our code MC60 the weights are input parameters which must be set by the

user. The default option in the driver MC61 is to compute orderings for the pairs (2,1) and

(16,1) and to choose the one with the smallest profile. MC61 also allows the user to specify

other choices for the weights.

barth5 copter2 onera_dual finance512 ford1 skirt

Weights

(1,64) 100.3 53.5 55.0 32.1 10.9 23.0
(1,32) 100.3 53.5 55.0 32.0 10.9 23.0
(1,16) 100.3 53.7 55.0 32.1 10.9 22.6
(1,8) 100.3 53.4 55.0 32.0 10.7 13.4
(1,4) 100.4 51.3 55.0 30.6 9.8 2.7
(1,2) 99.1 41.7 52.2 16.1 7.7 0.0
(1,1) 88.5 26.4 41.7 7.4 4.2 3.3
(2,1) 73.5 13.7 27.8 1.2 0.0 16.1
(4,1) 47.8 7.5 12.2 0.0 0.9 46.4
(8,1) 14.8 5.8 1.6 44.9 8.5 80.6
(16,1) 1.5 0.0 0.0 318.0 10.3 130.7
(32,1) 0.0 0.9 0.3 796.9 24.6 131.6
(64,1) 0.0 0.9 0.3 954.4 25.8 131.7

Table 5. Percentage increases in profiles for different weights.

Both Sloan and Kumfert and Pothen use an integer priority function, but this seems to us to

be an unnecessary restriction. We use real values, which have the same storage requirement

in the usual case of 4-byte integers and 4-byte reals. We found that there was an increase in

execution time, but it was very slight. Using reals means that no tests are needed to ensure

that integer overflow does not occur.

Sloan’s algorithm will generally avoid very large semibandwidths simply because of not

departing far from the underlying rooted level-set structure ordering, but this may be give an

ordering that is not satisfactory for an out-of-core variable-band solver. One possibility is to

increase the weight W , but the direct use of the Reverse Cuthill-Mckee order is likely to be1

better from this point of view.

14

4.6 Other adjustments of the priority function

Kumfert and Pothen (1997) point out that the current degree c varies between 0 and ∆ + 1,i

where ∆ is the maximum degree of a node, while d(i, e) varies between 0 and h, the level-set

depth. They therefore suggest replacing (1) by the priority function

P = −W int(h /∆)c + W d(i, e). (2)i 1 i 2

Our feeling is that it is inappropriate to take the depth into account. What matters is the local

nature of the graph and, for the second term in P , it is to which level sets the candidate nodesi

belong. This varies by one from each level set to the next so is already properly normalized.

Using (2), we have examined the profile sizes for the 13 pairs of weights used in the

previous section on all the Everstine and Kumfert and Pothen test matrices without seeing

any evidence that normalization is needed. Therefore, we do not use (2) in our

implementation of Sloan’s algorithm.

Strictly speaking, the equations (1) and (2) do not define the priority function fully since

we give maximum priority to a node with c = 0. Thus the priority function is really nonlineari

in c . Nick Gould suggests [Private Communication] that further nonlinearity might bei

helpful, but we have not investigated this.

4.7 Other start and end nodes

Recall from Section 3.3 that Paulino et al. suggested using the spectral method to find a

pseudodiameter and then using the better of the RCM orderings based on the two ends of this

pseudodiameter. We can also use the spectral pseudodiameter to give start and target end

nodes (s, e) for the numbering phase of Sloan’s method. We again choose the start node to be

the end of the pseudodiameter which gives the narrowest level-set structure. This is not a big

overhead as it just requires one more level-set structure to be constructed. We found the

overall quality of the results to be very similar to those obtained using the MGPS

pseudodiameter – spectral start and end nodes were better on some problems and worse on

others. This is illustrated by the results presented in column ‘Sloan Spectral’ of Table 6 in

Section 5.

15

5 The hybrid method

Kumfert and Pothen (1997) observed that spectral orderings do well in a global sense but

often do poorly locally. They therefore proposed using the spectral method to provide a

global ordering to guide Sloan’s method. Their results showed that this can yield a much

better final ordering than using either the spectral method alone or Sloan’s method with the

rooted level-set structure ordering. Kumfert and Pothen propose the priority function

P = −W int(n /∆)c + W d(i, e) − W p , (3)i 1 i 2 3 i

where p is the position of node i in the spectral ordering and call this the hybrid method.i

The normalization has been changed to balance the maximum values of the factors for W1

and the new W . They use the spectral pseudodiameter to find the end node e and leave the3

distance d(i, e) unnormalized, which gives the second term in (3) only a small influence.

Although in their paper they report that choosing W to be equal to one generally does2

significantly better than setting W to zero, they later say [Private Communication] that they2

regret including this term.

To make the normalization similar to that of the priority function (1), in place of (3) we

have chosen to use the priority function

P = −W c − W (h /n)p , (4)i 1 i 2 i

where h is the level-set depth. This makes the factor for W vary up to h, as in (1). Our results2

are summarized in the column ‘Hybrid Perm.’ of Table 6. For some problems, including

tandem_dual and onera_dual, we found a significant improvement by using the whole

spectral order as a guide for Sloan’s method. It appears that the spectral ordering of the

interior nodes is important. We see no possible justification for using both the level-set order

and the spectral order to guide the Sloan algorithm and our results are comparable with those

reported by Kumfert and Pothen. We again tried a range of values for W and W . For1 2

class-two problems, we found that a value of W /W that was smaller than that used by Sloan1 2

was advantageous. Based on our numerical experiments, for the hybrid method for this class,

we recommend using the weights (1,2) rather than (2,1). In Table 6, for the hybrid method we

take the better of the results for the weights (1,2) and (16,1). In general, the best weight for pi

must depend on the quality of the permutation and the higher weight that we have found

useful with the spectral order indicates that it is of good quality.

For the hybrid method, we again experimented with interchanging the ends of the

pseudodiameter. We constructed the level-set structures rooted at the two ends and selected

as the starting node the one with the narrowest level structure. We found that for some

problems this gave a reduction in the profile but for other problems it gave an increase. We

16

do not think the differences in the profile are large enough to justify the expense of running

the Sloan algorithm from both nodes so in our code we use only one.

We have also tried using the Fiedler vector from the spectral method directly, again

adjusting the normalization so that the factor for W in (4) varies up to the depth h. We found2

(see column ‘Hybrid Vector’ of Table 6) that overall this did not significantly improve the

quality of the results. We also show in Table 6 (column ‘Spectral’) the profiles for the

spectral ordering. A comparison of columns 5 and 7 demonstrate that it is worthwhile to use

Sloan’s method to refine the spectral ordering.

Problem Sloan Sloan Sloan Hybrid Hybrid Spectral
MC40 MGPS Spectral Perm. Vector

barth 0.49 0.47 0.48 0.40 0.40 0.46
barth4 0.45 0.33 0.37 0.29 0.29 0.33
barth5 2.43 1.44 1.48 1.29 1.29 1.42

bcsstk30 15.72 16.15 14.86 7.88 8.20 9.14
commanche_dual 0.44 0.33 0.34 0.35 0.35 0.35

copter1 7.09 6.05 6.05 6.11 6.11 7.61
copter2 43.24 37.96 35.28 32.78 32.78 42.00

finance256 6.57 6.35 6.51 6.44 6.70 9.17
finance512 12.22 11.91 14.25 11.72 11.41 19.13

ford1 2.34 2.35 2.74 1.95 1.88 2.17
ford2 40.63 41.05 41.78 35.97 35.64 40.30

nasasrb 18.35 19.01 19.38 19.30 19.21 25.10
onera_dual 113.67 87.75 81.88 46.67 46.66 53.39

pds10 13.68 9.36 9.87 8.81 8.89 16.06
shuttle_eddy 0.59 0.62 0.62 0.59 0.59 0.76

skirt 34.12 36.60 33.38 27.87 29.26 30.51
tandem_dual 87.79 66.21 79.85 42.22 42.22 48.38
tandem_vtx 6.29 5.72 5.46 5.22 5.22 6.19

Table 6. Profiles (in millions) with different algorithms.

In Table 6, we highlight in bold the smallest profile for each problem and any within 2% of

the smallest. We also show MC40 profiles for these problems. Note that tie-breaking can

affect all these results so that too much notice should not be taken of small differences. For

example, MC40 gives slightly better profiles than Sloan MGPS on six problems but generally

its results are less good because it uses only the weights (2,1).

The hybrid method was intended for very large problems, but we felt that it would be of

interest to see how it performs on some of the Everstine problems, since these have been

widely used as a test set and very good profiles have been obtained for them by Armstrong

(1985) using simulated annealing (which would not be suitable for everyday software). In

Table 7, we compare Armstrong’s profiles with those obtained with the hybrid method and

17

with the Sloan MGPS method. On this size of problem, there seems to be little advantage in

using the hybrid algorithm; the profiles are within 2% of each other in five cases, and each is

significantly better than the other in two cases. In one case, however, the hybrid profile is less

than Armstrong’s.

n Sloan Hybrid Armstrong
MGPS Perm.

758 7.3 7.5 7.1
869 13.9 15.7 13.2
878 19.4 19.2 17.8
918 17.0 17.3 15.9
992 33.5 33.4 32.5

1005 34.7 30.8 32.5
1007 22.7 20.4 19.9
1242 36.5 39.8 33.1
2680 89.7 91.4 84.9

Table 7. Profiles (in thousands) for the three algorithms on the nine largest Everstine problems.

We remark that although we have only used the spectral ordering in the hybrid algorithm,

any input ordering can be used. Our codes are written to allow this.

6 Software design

In this section, we discuss the design of new codes for reordering sparse symmetric matrices.

Our new subroutines are named according to the naming convention of the Harwell

Subroutine Library (HSL 1995). The codes themselves are available; please contact one of

the authors for details of price and conditions of use.

Our previous code MC40 provided the user with a single subroutine. It accepted the strictly

lower triangular part of the matrix and returned the permutation and the values of the profiles

for the original and permuted orderings. While the design of our new software includes a

simple driver, MC61, we have decided that it is very worthwhile to give the user the greatest

possible flexibility so in the MC60 package we provide user entries to the component parts of

the reordering algorithm. These are described in the following subsections. For further

details, the user should refer to the specification sheets (see appendices).

18

6.1 MC60A

MC60A accepts the pattern of the lower-triangular part of the matrix A and constructs the

pattern of the whole matrix. Each is held by columns, with pointers to the column starts. For

economy of storage, the work is done in place. A first pass looks for any out-of-range or

repeated indices and removes them, or terminates if this has been requested. A second pass

counts the number of entries that need to be added to each row to include the upper triangle.

A third pass works through the rows in reverse order, moving them back to allow space for

the additional entries. A final pass inserts the additional entries. There are extensive checks

on the data. If the user already has the pattern of the whole matrix and does not wish to

checks to made on the data, MC60A is not needed.

6.2 MC60B

MC60B constructs supervariables, given the pattern of the whole matrix. This is done in

O(n + τ) time, where n is the order of the matrix and τ is the number of entries, by working

progressively so that after j steps we have the supervariable structure for the submatrix of the

first j columns. We start with all variables in one supervariable (for the submatrix with no

columns), then split it into two according to which rows do or do not have an entry in column

1, then split these according to the entries in column 2, etc. The splitting is done by moving

the variables one at a time to the new supervariable. Further details are given by Duff and

Reid (1996).

Note that this strategy requires the user to provide the indices of the entries on the diagonal

since these affect whether the structures of columns are identical. This contrasts with MC40,

which assumes that the diagonal entries are all nonzero.

Unless all the supervariables consist of a single variable, we now compress the pattern.

This is held in the form of the index list for column 1, followed by the index list for column 2,

etc., with pointers to column starts. In order that this compression can be performed in place,

we identify for each supervariable the member variable with least index as its key variable.

This permits us to visit the supervariables in the order of their key variables, picking up the

index list of that variable, using it to construct the supervariable index list, and placing the

constructed list in its final position without fear of overwriting any information needed later.

Note that the supervariable pattern and the map of variable to supervariable indices provides

a complete representation of the original pattern. For efficiency, we also hold an array of

numbers of variables in supervariables.

The use of MC60B is optional. If it is known that there are few supervariables, MC60B will

not be needed. On the other hand, MC60B may be used in combination with another algorithm

19

for choosing an ordering.

6.3 MC60C

MC60C controls the main part of the algorithm. It works with the supervariable graph (Section

3.4) and returns a supervariable permutation. It allows for the matrix being reducible (a

permutation of a block diagonal matrix). In this case, each diagonal block of the permuted

matrix will correspond to a component of the graph (set of nodes with no connections to other

nodes). It orders any trivial components first by choosing any nodes that have degree zero. It

then orders each nontrivial component in turn by calling other subroutines, which allows

these other subroutines to work with a single component.

The user has to choose whether Sloan’s algorithm or RCM is required for each component.

For Sloan’s algorithm, the user may specify a global priority vector whose components p arei

used in the priority function (4). This will normally come from a spectral ordering, but is not

restricted to this. Apart from this case, a pseudodiameter must be found.

By default, MC60C calls MC60H to compute a pseudodiameter, as explained in Section 3.1.

MC60H also distinguishes between the ends, as explained in Section 3.2. Alternatively, the

user may specify the two end nodes. In either case, the level-set structure rooted on the end

node is needed to provide distances to the end node in Sloan’s method and the ordering itself

for the RCM method. This is always returned by MC60H; if the end nodes are specified, the

level-set structure is computed by calling MC60L directly from MC60C (MC60L is also called

from MC60H).

It is this need for the level-set structure that leads to the choice of end node possibly adding

an overhead (see Section 3.2). If we do not mind which end is used and if the most recent

level-set structure was constructed in full (the construction is terminated early if its width is

found to be greater than the narrowest encountered so far, see Section 3.1), a final call of

MC60L is not needed.

If Sloan’s method is required, this is performed by MC60J, using weights W and W1 2

supplied by the user and switching from a simple search to using a binary heap if the front

gets large (see Section 4.2). If RCM is required, we have only to reverse the order that we

already have.

20

6.4 MC60D, MC60E, MC60F, and MC60G

MC60D, MC60E, MC60F, and MC60G are simple utilities that convert the supervariable ordering

to an ordering for variables or rows, or provide statistics.

MC60D constructs the permutation for the variables that corresponds to a given permutation

for the supervariables.

MC60E uses a given permutation for the supervariables to construct the corresponding

ordering for the rows, as required by a row-by-row frontal solver such as MA42 (equation

entry).

MC60F uses a given permutation for the supervariables to compute the profile, the maximum

wavefront, the semibandwidth, and the root-mean-square wavefront for the permuted matrix.

MC60G uses a given row order to compute the maximum row and column front sizes and the

root-mean-square row and column front sizes for a row-by-row frontal method.

6.5 The driver MC61

For our driver MC61, there are just two entries. The subroutine MC61I must be called to

provide default values for the parameters that control the execution of the package. If the user

wishes to use values other than the defaults, the corresponding parameters should be reset

after the call to MC61I. MC61A accepts the pattern of the lower-triangular part of A, performs

full checks on the data, and either

chooses a permutation of the variables that aims to reduce the profile and wavefront of the

matrix,

chooses a permutation of the variables that aims to reduce the bandwidth of the matrix, or

constructs an ordering for the rows that is efficient when used with a row-by-row frontal

solver.

Although MC61 has a user interface which is similar to that of MC40, it provides a much

wider range of options. The user may choose whether or not to use supervariables. The user

may also specify the weights for the Sloan priority function (1) and can optionally supply the

vector {p } and weights for the hybrid priority function (3).i

21

7 Concluding discussion

In this report, we have discussed the design and development of a software package, MC60,

for computing a symmetric permutation to reduce the profile and wavefront of a large sparse

matrix with a symmetric sparsity pattern. The driver MC61 provides the user with a

straightforward interface to MC60. In the next release (Release 13) of the Harwell Subroutine

Library, MC61 will supersede MC40.

As we discussed in Section 4.5, if Sloan’s algorithm (combined with the MGPS algorithm

for finding a pseudodiameter) is selected, we recommend computing profiles for the pairs of

weights (2,1) and (16,1) and taking the best. This is the default option in MC61. Although the

pseudodiameter does not need to be recomputed, the use of two pairs of weights does

represent an overhead. To illustrate this and to compare the efficiency of the old and new

ordering codes, in Table 8 we report timings for MC40 and MC61 for the Kumfert and Pothen

test examples. For MC61 we show times for a single pair of weights and for two pairs of

weights, using variables and using supervariables. The results in column 8 are those for the

default MC61 parameters.

MC61

One pair Two pairs
weights weights

Problem Order Nsup MC40 Var. SVar. Var. Svar.

barth 6,691 6,691 0.17 0.18 0.21 0.28 0.31
barth4 6,019 6,019 0.12 0.15 0.14 0.21 0.24
barth5 15,606 15,606 0.56 0.45 0.52 0.71 0.78

bcsstk30 28,924 9,289 6.29 3.82 1.91 6.40 2.28
commanche_dual 7,920 7,920 0.13 0.13 0.16 0.22 0.24

copter1 17,222 17,222 1.44 0.57 0.70 0.99 1.09
copter2 55,476 55,476 11.55 2.39 2.80 4.12 4.52

finance256 37,376 37,376 1.93 1.10 1.29 1.85 2.04
finance512 74,752 74,752 3.41 2.12 2.50 3.57 3.95

ford1 18,728 18,210 0.60 0.38 0.44 0.65 0.69
ford2 100,196 97,906 8.68 2.63 2.92 4.39 4.60

nasasrb 54,870 24,954 4.59 5.05 2.99 8.51 3.85
onera_dual 85,567 85,567 21.83 2.50 2.84 4.16 4.51

pds10 16,558 16,558 5.40 0.56 0.65 0.92 1.02
shuttle_eddy 10,429 10,363 0.22 0.30 0.35 0.47 0.53

skirt 45,361 14,956 8.97 4.83 2.58 8.20 3.17
tandem_dual 94,069 94,069 16.96 2.57 2.90 4.12 4.51
tandem_vtx 18,454 18,454 1.33 0.81 0.94 1.27 1.40

Table 8. Timings for MC40 and MC61. Nsup denotes the number of supervariables.
Var. indicates that variables are used. Svar. indicates that supervariables are used.

Kumfert and Pothen report that the hybrid method is more than six times more expensive

than the Sloan method. In this study we do not include timings for the hybrid method because

the Chaco package that we use to find the Fiedler vector is written in C and we do not

22

currently have a Fortran code within the Harwell Subroutine Library for computing the

Fiedler vector.

As anticipated, for the larger problems, using the binary heap gives significant savings so

that, for these problems, MC61 with two pairs of weights is still generally faster than MC40.

For the smaller problems, MC61 can be slower than MC40, but the quality of the MC61 ordering

is usually superior. Only three of the test problems, skirt, nasarb, and bcsstk30, have

significantly fewer supervariables than variables (highlighted in bold). For these problems,

we see there is a substantial saving in the execution times when supervariables are used. For

the other problems, searching for supervariables increases the reordering time but the

increase is generally limited to about 15 per cent for a single pair of weights and about 10 per

cent for two pairs. We therefore recommend that, unless the user knows his or her problem

does not compress well, supervariables with two pairs of weights should be used, and this is

the default in MC61.

8 Acknowledgements

We are grateful to Gary Kumfert and Alex Pothen of Old Dominion University and to Scott

Sloan of the University of Newcastle, New South Wales for helpful discussions. We would

like to thank Gary Kumfert for providing us with the test examples used this report. Finally,

we would like to thank Scott Sloan, Alex Pothen, and our colleagues Iain Duff and Nick

Gould for their helpful comments on drafts of this report.

23

9 References

Armstrong, B. A. (1985). Near-minimal matrix profiles and wavefronts for testing nodal

resequencing algorithms. Int. J. Numer. Meth. Engng. 21, 1785-1790.

Barnard, S. T., Pothen, A., and Simon, H. (1995). A spectral algorithm for envelope reduction

of sparse matrices. Numerical Linear Algebra with Applications 2, 317-334.

Cuthill, E. and McKee, J. (1969). Reducing the bandwidth of sparse symmetric matrices.

Proceedings 24th National Conference of the Association for Computing Machinery,

Brandon Press, New Jersey, 157-172.

Duff, I. S. and Reid, J. K. (1996). Exploiting zeros on the diagonal in the direct solution of

indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 22, 227-257.

Duff, I. S. and Scott, J. A. (1996). The design of a new frontal code for solving sparse,

unsymmetric systems. ACM Trans. Math. Softw. 22, 30-45.

Duff, I. S., Erisman, A. M., and Reid, J. K. (1986). Direct methods for sparse matrices.

Oxford University Press, London.

Duff, I. S., Reid, J. K., and Scott, J. A. (1989). The use of profile reduction algorithms with a

frontal code. Int. J. Numer. Meth. Engng. 28, 2555-2568.

Everstine, G. C. (1979). A comparison of three resequencing algorithms for the reduction of

matrix profile and wavefront. Int. J. Numer. Meth. Engng. 14, 837-853.

George, A. (1971). Computer implementation of the finite-element method. Report STAN

CS-71-208, Ph.D Thesis, Department of Computer Science, Stanford University, Stanford,

California.

George, A. and Liu, J. W. H. (1979). An implementation of a pseudoperipheral node finder.

ACM Trans. Math. Softw. 5, 284-295.

Gibbs, N. E., Poole, W. G., Jr., and Stockmeyer, P. K. (1976). An algorithm for reducing the

bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal. 13, 236-250.

Gibbs, N. E. (1976). A hybrid profile reduction algorithm. ACM Trans. Math. Softw. 2,

378-387.

Hendrickson, B. and Leland, R. (1995). The Chaco user’s guide: Version 2.0, Tech. Rep.

SAND94-2692, Sandia National Laboratories, Albuquerque, NM.

HSL (1995). Harwell Subroutine Library Catalogue (Release 12). AEA Technology,

Harwell.

Kumfert, G. and Pothen, A. (1997). Two improved algorithms for envelope and wavefront

24

reduction. BIT 18, 559-590.

Lewis, J. G. (1982). Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King

algorithms. ACM Trans. Math. Softw. 8, 180-189 and 190-194.

Paulino, G. H., Menezes, I. V. M., Gattass, M., and Mukherjee, S. (1994). A new algorithm

for finding a pseudoperipheral vertex or the endpoints of a pseudodiameter in a graph.

Communications in Numer. Meth. Engng. 10, 913-926.

Sloan, S. W. (1986). An algorithm for profile and wavefront reduction of sparse matrices. Int.

J. Numer. Meth. Engng. 23, 239-251.

Sloan, S. W. (1989). A Fortran program for profile and wavefront reduction. Int. J. Numer.

Meth. Engng. 28, 2651-2679.

Sloan, S. W. and M. F. Randolph (1983). Automatic element reordering for finite element

analysis with frontal solution schemes. Int. J. Numer. Meth. Engng. 19, 1153-1181.

25

Appendix 1. MC60 specification document

1 SUMMARY

This subroutine uses a variant of Sloan’s method to calculate a symmetric permutation that aims to reduce
the profile and wavefront of a sparse matrix A with a symmetric sparsity pattern. Alternatively, the
Reverse Cuthill-McKee Method may be requested to reduce the bandwidth. There are optional facilities for
looking for sets of columns with identical patterns and taking advantage of them. There is also an option for
computing a row order that would be appropriate for use with a row-by-row frontal solver (for example, the
equation entry to MA42). These optional facilities may also be used independently.

ATTRIBUTES — Versions: MC60A, MC60AD. Calls: None. Date: January 1998. Origin: J. K. Reid and J. A.
Scott (Rutherford Appleton Laboratory). Conditions on external use: (i), (ii), (iii) and (iv).

2 HOW TO USE THE PACKAGE

2.1 Argument lists

There are seven entries to this package:

MC60A accepts the pattern of the lower-triangular part of the matrix and constructs the pattern of the whole
matrix. There are extensive checks on the data. This is the usual initial entry.

MC60B looks for sets of columns with identical patterns. We refer to the set of variables that correspond to a set
of identical columns as a supervariable. A permutation is constructed that places the variables of each
supervariable together. The pattern is replaced by that of the permuted matrix represented as
supervariables (that is, by its condensed equivalent).

MC60C chooses a supervariable permutation that aims to reduce the profile and wavefront or the bandwidth. It
also provides pseudoperipheral pairs of nodes of the components of the supervariable graph of the matrix.

MC60D constructs the permutation for the variables that corresponds to a given permutation for the
supervariables.

MC60E uses a given permutation for the supervariables to construct the corresponding row order, as required by
a row-by row frontal solver, such as MA42.

MC60F uses a given permutation for the supervariables to compute the profile, the maximum wavefront, the
semibandwidth, and the root-mean-square wavefront for the permuted matrix.

MC60G uses a given row order to compute the maximum row and column front sizes and the root-mean-square
row and column front sizes for a row-by-row frontal method.

Only the initial entry provides extensive checks on the data. If it is known that there are few supervariables,
MC60B will not be needed. On the other hand, MC60B may be used in combination with another algorithm for
choosing a permutation.

2.1.1 Initial entry

The single precision version

CALL MC60A(N,LIRN,IRN,ICPTR,ICNTL,IW,INFO)

The double precision version

CALL MC60AD(N,LIRN,IRN,ICPTR,ICNTL,IW,INFO)

N is an INTEGER variable that must be set by the user to the order of the matrix. N is not altered. Restriction:
N ≥ 1.

LIRN is an INTEGER variable that must be set by the user to the length of the array IRN, which must be large
enough to hold the pattern of the whole matrix (excluding duplicated and out-of-range indices).
2*(ICPTR(N+1)–1) is always sufficient. LIRN is not altered.

IRN is an INTEGER array of length LIRN whose leading part must be set by the user to hold the row indices of

26

the entries in the lower triangle (including those on the diagonal) of the matrix A. The entries of each
column must be contiguous. The entries of column J must precede those of column J+1, J=1,2, ..., N-1,
and there must be no wasted space between the columns. Row indices within a column may be in any
order. On successful return, the array will be changed to hold the row indices of the whole matrix A in the
same format.

ICPTR is an INTEGER array of length N+1 that must be set by the user so that ICPTR(J) points to the position in
the array IRN of the first entry in column J, J=1,2, ..., N, and ICPTR(N+1)–1 must be the position of the
last entry. On successful return, ICPTR holds corresponding data for the revised IRN.

ICNTL is an INTEGER array of length 2 that controls the action:

ICNTL(1) controls whether the computation terminates if duplicated or out-of-range indices are detected:

0 – Terminates if any duplicated or out-of-range indices found.

1 – Any duplicated or out-of-range indices are ignored.

ICNTL(2) controls printing of diagnostic messages:

0 – No diagnostic messages are required.

> 0 – The unit number for diagnostic messages.

ICNTL is not altered.

IW is an INTEGER array of length N that is used by the subroutine as workspace.

INFO is an INTEGER array of length 4 that need not be set by the user.

INFO(1) is used as an error flag. On a successful exit, it is set to:

0 – No out-of-range or duplicated indices.

1 – Some out-of-range or duplicated indices when ICNTL(1)=1.

If a fatal error has been detected, it is set to a negative value:

–1 – N < 1 or LIRN less than ICPTR(N+1)–1. Immediate return with IRN and ICPTR
unchanged.

–2 – LIRN is too small. INFO(4) is set to the minimum value that will suffice. If
ICNTL(1)=1, any out-of-range or duplicated variable indices will have been excluded
from IRN and ICPTR. Otherwise, IRN and ICPTR are unchanged.

–3 – ICNTL(1)=0 and one or more variable indices either lies outside the lower triangle of
the matrix or is duplicated (see INFO(2) and INFO(3)). IRN and ICPTR are
unchanged.

INFO(2) holds the number of variable indices in IRN found to be out-of-range.

INFO(3) holds the number of indices in IRN that represent duplicates of previous entries.

INFO(4) holds the minimum value that will suffice for LIRN, unless INFO(1)=–1.

2.1.2 To find supervariables and compress the pattern

The single precision version

CALL MC60B(N,LIRN,IRN,ICPTR,NSUP,SVAR,VARS,IW)

The double precision version

CALL MC60BD(N,LIRN,IRN,ICPTR,NSUP,SVAR,VARS,IW)

N is an INTEGER variable that must be set by the user to the order of the matrix. N is not altered.

LIRN is an INTEGER variable that must be set by the user to the length of the array IRN. LIRN is not altered.

IRN is an INTEGER array of length LIRN. On entry, it may be as returned by MC60A/AD. Alternatively, it may
be set by the user to hold the row indices of the whole matrix. The entries of each column must be
contiguous. The entries of column J must precede those of column J+1, J=1,2, ..., N-1, and there must

27

be no wasted space between the columns. The row indices within a column may be in any order. Columns
with no entries are permitted. No checks on the format are performed. On successful return, IRN holds the
row indices of the entries in the condensed matrix, using the same format.

ICPTR is an INTEGER array of length N+1. On entry, it may be as returned by MC60A/AD. Alternatively, it may
be set by the user so that ICPTR(J) points to the position in the array IRN of the first entry in column J,
J=1,2, ..., N, and ICPTR(N+1)–1 points to the last entry. On successful return, ICPTR holds
corresponding data for the condensed matrix.

NSUP is an INTEGER variable that need not be set on entry. On return, it holds the number of supervariables.

SVAR is an INTEGER array of length N that need not be set on entry. On successful return, SVAR(I) holds the
supervariable to which variable I belongs, I=1,2, ..., N.

VARS is an INTEGER array of length N that need not be set on entry. On successful return, VARS(IS) holds the
number of variables in supervariable IS, IS=1,2, ..., NSUP.

IW is an INTEGER array of length 2*N+2 that is used by the subroutine as workspace.

2.1.3 To find supervariable permutation

A normal call to MC60C/CD will follow a successful call to MC60B/BD, in which case the arguments N, NSUP,
LIRN, IRN, ICPTR, and VARS should be unchanged since return from MC60B/BD. However, it may be called
independently, so we describe these arguments as if they were provided afresh.

By making each supervariable consist of a single variable, MC60C/CD may also be used to find a permutation
for the variables. In this case, NSUP must equal N and all elements of VARS must equal 1; N, LIRN, IRN, ICPTR
will normally be unchanged since return from MC60A/AD, but they may be provided afresh. We do not
recommend this option unless it is known that the problem has few supervariables.

The single precision version

CALL MC60C(N,NSUP,LIRN,IRN,ICPTR,VARS,JCNTL,PERMSV,WEIGHT,PAIR,INFO,IW,W)

The double precision version

CALL MC60CD(N,NSUP,LIRN,IRN,ICPTR,VARS,JCNTL,PERMSV,WEIGHT,PAIR,INFO,IW,W)

N is an INTEGER variable that must be set by the user to the order of the matrix. This argument is not altered.

NSUP is an INTEGER variable that must be set to hold the number of supervariables. NSUP is not altered.

LIRN is an INTEGER variable that must be set by the user to the length of the array IRN. LIRN is not altered.

IRN is an INTEGER array of length LIRN. It must be set by the user to hold the row indices of the condensed
matrix. The entries of each column must be contiguous. The entries of column J must precede those of
column J+1, J=1,2, ..., NSUP-1, and there must be no wasted space between the columns. The row
indices within a column may be in any order. No checks on the format are performed. IRN is not altered.

ICPTR is an INTEGER array of length NSUP+1. It must be set by the user so that ICPTR(J) points to the position
in the array IRN of the first entry in column J, J=1,2, ..., NSUP, and ICPTR(NSUP+1)–1 points to the last
entry. ICPTR is not altered.

VARS is an INTEGER array of length NSUP. VARS(IS) must hold the number of variables in supervariable IS,
IS=1,2, ..., NSUP. VARS is not altered.

JCNTL is an INTEGER array of length 2 that controls the action:

JCNTL(1) controls the choice of algorithm:

0 – Sloan’s algorithm for reducing profile and wavefront.

1 – Reverse Cuthill-McKee algorithm (RCM) for reducing bandwidth.

JCNTL(2) controls algorithmic details:

0 – Automatic choice of pseudoperipheral pairs.

1 – Pseudoperipheral pairs specified in PAIR.

28

2 – Global priority vector given in PERMSV (Sloan’s algorithm only).

JCNTL is not altered.

PERMSV is an INTEGER array of length NSUP. It need be set on entry only if JCNTL(2)=2, and in this case must
hold positive global priority values for the supervariables; this may be a permutation, in which case the
supervariable for which PERMSV(IS) = 1 is likely to be chosen first and the supervariable for which
PERMSV(IS) = NSUP is likely to be chosen last. On exit, the position of supervariable IS in the new
ordering is given in all cases by PERMSV(IS), IS = 1,2, ..., NSUP.

WEIGHT is a REAL (DOUBLE PRECISION in the D version) array of length 2. For Sloan’s algorithm
(JCNTL(1)=0), it must be set to the weights W and W in the priority function that is minimized when1 2
choosing the next supervariable in the order. The value of the function is

W deg(s) + W ν glob(s)1 2

where deg(s) is the number of variables that will enter the front if supervariable s is chosen next, ν is a
normalizing factor (see Section 4.3), and glob(s) is the (positive) global priority value of supervariable s
(generated automatically or provided in PERMSV). The choice of weights is discussed in Section 4.3.

PAIR is an INTEGER array of shape (2,NSUP/2). If JCNTL(2)=0, it need not set on entry and on return
PAIR(1,IC), PAIR(2,IC) hold the pseudoperipheral pair for nontrivial component IC, IC = 1,2, ...,
INFO(1). The first component is the largest. If JCNTL(2)=1, it must be set on entry to the
pseudoperipheral pairs of the components and is not altered; the first component need not be the largest. If
JCNTL(2)=2, it is not used.

INFO is a INTEGER array of length 4 that need not be set by the user. On exit,

INFO(1) holds the number of nontrivial components (two or more nodes) in the graph of the condensed
matrix,

INFO(2) holds the number of variables in the largest component of the graph,

INFO(3) holds the number of level sets in the level-set structure of the largest component, and

INFO(4) holds the width of the level-set structure of the largest component.

IW is an INTEGER array of length 3*NSUP+1 that is used by the subroutine as workspace.

W is a REAL (DOUBLE PRECISION in the D version) array of length NSUP that is used by the subroutine as
workspace.

2.1.4 To find permutation for variables from supervariable permutation

The single precision version

CALL MC60D(N,NSUP,SVAR,VARS,PERMSV,PERM,POSSV)

The double precision version

CALL MC60DD(N,NSUP,SVAR,VARS,PERMSV,PERM,POSSV)

N is an INTEGER variable that must hold the order of the matrix. N is not altered.

NSUP is an INTEGER variable that must hold the number of supervariables. NSUP is not altered.

SVAR is an INTEGER array of length N. SVAR(I) must hold the supervariable to which variable I belongs,
I=1,2, ..., N. SVAR is not altered.

VARS is an INTEGER array of length NSUP. VARS(IS) must hold the number of variables in supervariable IS,
IS=1,2, ..., NSUP. VARS is not altered.

PERMSV is an INTEGER array of length NSUP. It may be as returned by MC60C/CD. Alternatively, it may be set
by the user so that PERMSV(IS) holds the position to which supervariable IS is permuted, IS=1,2, ...,
NSUP. PERMSV is not altered..

PERM is an INTEGER array of length N that need not be set by the user. On return, PERM(I) holds the position of
variable I, I=1,2, ..., N, in the permuted list of variables.

29

POSSV is an INTEGER array of length NSUP that need not be set by the user. On return, POSSV(IS) holds the
position of the first variable of supervariable IS, IS=1,2, ..., NSUP, in the permuted list of variables.

2.1.5 To find a row-by-row frontal order from a supervariable permutation

The single precision version

CALL MC60E(N,NSUP,LIRN,IRN,ICPTR,SVAR,VARS,PERMSV,PERM,IW)

The double precision version

CALL MC60ED(N,NSUP,LIRN,IRN,ICPTR,SVAR,VARS,PERMSV,PERM,IW)

N is an INTEGER variable that must hold the order of the matrix. N is not altered.

NSUP is an INTEGER variable that must hold the number of supervariables. NSUP is not altered.

LIRN is an INTEGER variable that must be set by the user to the length of the array IRN. LIRN is not altered.

IRN is an INTEGER array of length LIRN. It must be as for MC60C/CD. No checks on the format are performed.
IRN is not altered.

ICPTR is an INTEGER array of length NSUP+1. It must be as for MC60C/CD. No checks on the format are
performed. ICPTR is not altered.

SVAR is an INTEGER array of length N. SVAR(I) must hold the supervariable to which variable I belongs,
I=1,2, ..., N. SVAR is not altered.

VARS is an INTEGER array of length NSUP. VARS(IS) must hold the number of variables in supervariable IS,
IS=1,2, ..., NSUP. VARS is not altered.

PERMSV is an INTEGER array of length NSUP. It may be as returned by MC60C/CD. Alternatively, it may be set
by the user so that PERMSV(IS) holds the new index for supervariable IS, IS=1,2, ..., NSUP. On return,
the row-by-row order for the rows of the condensed matrix is PERMSV(1), PERMSV(2), ...,
PERMSV(NSUP).

PERM is an INTEGER array of length N that need not be set by the user. On return, the row-by-row order for the
rows of the matrix A is PERM(1), PERM(2), ..., PERM(N).

IW is an INTEGER array of length NSUP that is used by the subroutine as workspace.

2.1.6 To compute the profile and wavefront for a supervariable permutation

The single precision version

CALL MC60F(N,NSUP,LIRN,IRN,ICPTR,VARS,PERMSV,IW,RINFO)

The double precision version

CALL MC60FD(N,NSUP,LIRN,IRN,ICPTR,VARS,PERMSV,IW,RINFO)

N is an INTEGER variable that must hold the order of the matrix. N is not altered.

NSUP is an INTEGER variable that must hold the number of supervariables. NSUP is not altered.

LIRN is an INTEGER variable that must be set by the user to the length of the array IRN. LIRN is not altered.

IRN is an INTEGER array of length LIRN. It must be as for MC60C/CD. No checks on the format are performed.
IRN is not altered.

ICPTR is an INTEGER array of length NSUP+1. It must be as for MC60C/CD. No checks on the format are
performed. ICPTR is not altered.

VARS is an INTEGER array of length NSUP. VARS(IS) must hold the number of variables in supervariable IS,
IS=1,2, ..., NSUP. VARS is not altered.

PERMSV is an INTEGER array of length NSUP. It may be as returned by MC60C/CD. Alternatively, it may be set
by the user so that PERMSV(IS) holds the new index for supervariable IS, IS=1,2, ..., NSUP. If data for
the original order are required, PERMSV(IS) should be set to IS, IS=1,2, ..., NSUP. PERMSV is not
altered.

30

IW is an INTEGER array of length 2*NSUP+1 that is used by the subroutine as workspace.

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 4 that need not be set by the user. On
exit RINFO(1), RINFO(2), RINFO(3), and RINFO(4) hold, respectively, the profile, the maximum
wavefront, the semibandwidth, and the root-mean-square wavefront for the permuted matrix.

2.1.7 To compute the front sizes for a row-by-row frontal method

The single precision version

CALL MC60G(N,NSUP,LIRN,IRN,ICPTR,VARS,PERMSV,IW,RINFO)

The double precision version

CALL MC60GD(N,NSUP,LIRN,IRN,ICPTR,VARS,PERMSV,IW,RINFO)

N is an INTEGER variable that must hold the order of the matrix. N is not altered.

NSUP is an INTEGER variable that must hold the number of supervariables. NSUP is not altered.

LIRN is an INTEGER variable that must be set by the user to the length of the array IRN. LIRN is not altered.

IRN is an INTEGER array of length LIRN. It must be as for MC60C/CD. No checks on the format are performed.
IRN is not altered.

ICPTR is an INTEGER array of length NSUP+1. It must be as for MC60C/CD. No checks on the format are
performed. ICPTR is not altered.

VARS is an INTEGER array of length NSUP. VARS(IS) must hold the number of variables in supervariable IS,
IS=1,2, ..., NSUP. VARS is not altered.

PERMSV is an INTEGER array of length NSUP. It may be as returned by MC60E/ED. Alternatively, it may be set
by the user so that the row-by-row order for the condensed matrix is PERMSV(1), PERMSV(2), ...,
PERMSV(NSUP). PERMSV is not altered.

IW is an INTEGER array of length NSUP that is used by the subroutine as workspace.

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 4 that need not be set by the user. On
exit RINFO(1), RINFO(2), RINFO(3), and RINFO(4) hold, respectively, the maximum row and column
front sizes and the root-mean-square row and column front sizes.

3 GENERAL INFORMATION

Use of common: None.

Other routines called directly: The subroutines documented here call the following subroutines of the MC60
package: MC60H/HD, MC60J/JD, MC60L/LD, MC60O/OD, and MC60P/PD.

Input/output: If ICNTL(2) > 0 , diagnostic messages on unit ICNTL(2) (MC60A/AD only).

Restrictions: N ≥ 1.

4 METHOD

4.1 MC60A

For economy of storage, MC60A performs its work in place. A first pass looks for any out-of-range or repeated
indices and removes them, or terminates if this has been requested. A second pass counts the number of entries
that need to be added to each row to include the upper triangle. A third pass works through the rows in reverse
order, moving them back to allow space for the additional entries. A final pass inserts the additional entries.
There are extensive checks on the data. If the user already has the pattern of the whole matrix and does not wish
to checks to made on the data, MC60A is not needed.

31

4.2 MC60B

MC60B constructs supervariables in O(n + τ) time, where n is the order of the matrix and τ is the number of
entries, by working progressively so that after j steps we have the supervariable structure for the submatrix of
the first j columns. We start with all variables in one supervariable (for the submatrix with no columns), then
split it into two according to which rows do or do not have an entry in column 1, then split these according to the
entries in column 2, etc. The splitting is done by moving the variables one at a time to the new supervariable.
Further details are given by Reid and Scott (1998).

Note that this strategy requires the user to provide the indices of the entries on the diagonal since these affect
whether the structures of columns are identical. This contrasts with MC40, which assumes that the diagonal
entries are all nonzero.

The use of MC60B is optional. If it is known that there are few supervariables, MC60B will not be needed. On
the other hand, MC60B may be used in combination with another algorithm for choosing an ordering.

4.3 MC60C

MC60C controls the main part of the algorithm. It works with the supervariable graph, which has nsup nodes
and an edge between nodes i and j if entry i, j is present in the condensed matrix. It allows for the matrix being
reducible (a permutation of a block diagonal matrix). In this case, each diagonal block of the permuted matrix
will correspond to a component of the graph (set of nodes with no connections to other nodes). It orders any
trivial components first by choosing any nodes that have no connections to other nodes. It then orders each
nontrivial component in turn by calling other subroutines, which allows these other subroutines to work with a
single component.

If JCNTL(2)=0, a pair of well-separated nodes (a pseudoperipheral pair) is selected for each nontrivial
component by using a procedure which is a modification of that given by Gibbs, Poole, and Stockmeyer (1976).
Further details are given by Reid and Scott (1998). Alternatively, the pairs may be specified by the user
(JCNTL(2)=1).

Given a pseudoperipheral node, a level-set structure rooted on the node consists of the node itself at level 1
and at each level i the nodes that are neighbours of nodes at level i−1 but are not members of levels 1, 2, ..., i−1.
The depth is the number of level sets and the width is the greatest number of variables associated with all the
nodes of a single level. Once we have a pseudoperipheral pair, we chose the node whose rooted level set has the
greater depth or, if they have the same depth, the lesser width. The ordering associated with this node by taking
its last level set first, then its penultimate level set, etc. is used directly for the RCM method. The corresponding
level-set indices are used as a global priority vector for Sloan’s algorithm. The global priority vector may also
be supplied by the user, for example, from a spectral ordering (see Barnard, Pothen, and Simon 1995), in which
case we normalize it with the factor ν, chosen to make the range the same as if the level-set indices were in use.

In the method of Sloan (1986), each successive node is chosen to minimize a weighted average of the global
priority function and the number of variables that will enter the front if this node is chosen next. For the weights,
Sloan recommends the pair (2,1) if the global priority vector is based on a rooted level-set structure. For global
priority vectors based on the spectral method, we found that (1,2) was often to be preferred. However the global
priority vector was generated, we have found that on some problems the weights (16,1) are significantly better.
By default, our driver MC61 therefore calls MC60C twice, either with weights (2,1) and (16,1) or with weights
(1,2) and (16,1), and takes the better result. It also checks that there is an improvement over the natural order.

Further details about the MC60C algorithms and their performance are given by Reid and Scott (1998).

4.4 MC60D, MC60E, MC60F, and MC60G

The remaining subroutines perform straightforward tasks of converting a supervariable ordering to an
ordering for variables or rows, or providing statistics.

References

Barnard, S. T., Pothen, A., and Simon, H. (1995). A spectral algorithm for envelope reduction of sparse
matrices. Numerical Linear Algebra with Applications 2, 317-334.

Gibbs, N.E., Poole, W.G., and Stockmeyer, P.K. (1976). An algorithm for reducing the profile and bandwidth of

32

a sparse matrix. SIAM J. Numer. Anal. 13, 236-250.

Reid, J.K. and J.A. Scott. (1998). Ordering symmetric sparse matrices for small profile and wavefront.
Technical Report RAL-TR-98-016, Rutherford Appleton Laboratory.

Sloan, S.W. (1986). An algorithm for profile and wavefront reduction of sparse matrices. Inter. J. Numer. Meth.
Engng 23, 239-251.

5 EXAMPLE OF USE

The following program provides a simple example of the use of MC60. It works with or without looking for
supervariables.

INTEGER LIRN,MAXN
PARAMETER (LIRN=20, MAXN=5)
INTEGER CASE,N,NNZ,IRN(LIRN),ICPTR(MAXN+1),ICNTL(2),
* IW(3*MAXN+1),INFO(4),NSUP,I,SVAR(MAXN),VARS(MAXN),
* PERM(MAXN),PERMSV(MAXN),JCNTL(2),PAIR(2,MAXN/2)
REAL WEIGHT(2),W(MAXN),RINFO(4)
CHARACTER ALG

C Set parameter values
ICNTL(1) = 0
ICNTL(2) = 6
JCNTL(1) = 0
JCNTL(2) = 0
WEIGHT(1) = 2.0
WEIGHT(2) = 1.0

DO 20 CASE = 1,2
C Read in data for the lower-triangular part

READ (5,*) N,NNZ
READ (5,*) (IRN(I),I = 1,NNZ)
READ (5,*) (ICPTR(I),I = 1,N+1)

C Construct pattern of whole matrix
CALL MC60A(N,LIRN,IRN,ICPTR,ICNTL,IW,INFO)

C Check for an error return
IF (INFO(1).NE.0) THEN

WRITE(6,'(A,2I3)')' MC60A failed with INFO=',INFO
STOP

END IF

READ(5,*) ALG
IF (ALG.EQ.'S') THEN

C Work with supervariables
CALL MC60B(N,LIRN,IRN,ICPTR,NSUP,SVAR,VARS,IW)
WRITE(6,'(A,5I4)') 'The number of supervariables is', NSUP
CALL MC60C(N,NSUP,LIRN,IRN,ICPTR,VARS,JCNTL,PERMSV,WEIGHT,

* PAIR,INFO,IW,W)
CALL MC60F(N,NSUP,LIRN,IRN,ICPTR,VARS,PERMSV,IW,RINFO)
CALL MC60D(N,NSUP,SVAR,VARS,PERMSV,PERM,IW)

ELSE
C Work with variables

NSUP = N
DO 10 I = 1,N
VARS(I) = 1

10 CONTINUE
CALL MC60C(N,NSUP,LIRN,IRN,ICPTR,VARS,JCNTL,PERM,WEIGHT,

* PAIR,INFO,IW,W)
CALL MC60F(N,NSUP,LIRN,IRN,ICPTR,VARS,PERM,IW,RINFO)

END IF

33

WRITE(6,'(A,5I4)') 'The chosen permutation is', PERM
WRITE(6,'(A,F4.0,/)') 'The profile is', RINFO(1)

20 CONTINUE

END

Suppose we wish to reduce the profile of a matrix with the following sparsity pattern:

× × × × ×
× × ×

A = × × × .
× ×
× ×

The following input data works with and then without supervariables. In each case, the lower-triangular part is
provided column by column. format.

5 10
1 2 3 4 5 2 3 3 4 5
1 6 8 9 10 11
Variables

5 10
1 2 3 4 5 2 3 3 4 5
1 6 8 9 10 11
Supervariables

This produces the output:

The chosen permutation is 3 5 4 1 2
The profile is 10.

The number of supervariables is 4
The chosen permutation is 3 5 4 1 2
The profile is 10.

The pattern of the reordered matrix is:

× ×
× ×

× × × × × .
× × ×
× × ×

34

Appendix 2. MC61 specification document

1 SUMMARY

Let A be an n × n sparse matrix with a symmetric sparsity pattern. Given the sparsity pattern of A, this
subroutine uses a variant of Sloan’s method to calculate a symmetric permutation that aims to reduce the
profile and wavefront of A. Alternatively, the Reverse Cuthill-McKee (RCM) method may be requested to
reduce the bandwidth, or the user may request an ordering for the rows of A that is efficient when used with a
row-by-row frontal solver (for example, equation entry to MA42).

MC61 provides the user with a straightforward interface to the MC60 package when detailed control of the
steps in constructing a symmetric permutation or row ordering is not required.

ATTRIBUTES — Remark: MC61 supersedes MC40. Versions: MC61A, MC61AD. Calls: MC60. Date: January
1998. Origin: J. K. Reid and J. A. Scott (Rutherford Appleton Laboratory). Conditions on external use: (i),
(ii), (iii) and (iv).

2 HOW TO USE THE PACKAGE

2.1 Argument lists

There are two entries:

(a) The subroutine MC61I/ID must be called to initialize the parameters that control the execution of the
package.

(b) MC61A/AD either chooses a variable permutation that aims to reduce the profile and wavefront or
bandwidth of the matrix or constructs an ordering for the rows that is efficient when used with a
row-by-row frontal solver, such as MA42 (equation entry) or MA43.

2.1.1 The initialization subroutine

To initialize control parameters, the user should make a call of the following form:

The single precision version

CALL MC61I(ICNTL,CNTL)

The double precision version

CALL MC61ID(ICNTL,CNTL)

ICNTL is an INTEGER array of length 10 that need not be set by the user. This array is used to hold control
parameters. On exit, ICNTL contains default values. If the user wishes to use values other than the
defaults, the corresponding entries in ICNTL should be reset after the call to MC61I/ID. The default values
are as follows:

ICNTL(1) is the stream number for error messages. It has the default value 6. Printing of error messages is
suppressed if ICNTL(1) ≤ 0.

ICNTL(2) is the stream number for warning messages. It has the default value 6. Printing of warning
messages is suppressed if ICNTL(2) ≤ 0.

ICNTL(3) controls the action taken if duplicate or out-of-range indices are detected. If ICNTL(3)=0 and
such indices are detected, the computation terminates with IRN and ICPTR unchanged. If
ICNTL(3)=1, a warning is issued and the computation continues with such indices ignored. The
default value is 0.

ICNTL(4) controls whether supervariables are used (a supervariable is a set of variables that correspond to a
set of identical columns and the condensed matrix is the representation of A by supervariables).
If ICNTL(4) = 0, supervariables are used and are not used if ICNTL(4) = 1. If the problem has
significantly fewer supervariables than variables, using supervariables will substantially reduce
the execution time and amount of integer workspace used. The default value is 0.

35

ICNTL(5) indicates whether the user wishes to supply a global priority function. If ICNTL(5) = 0, no
priority function is supplied; if ICNTL(5) = 1, a priority function is supplied in PERM. The default
value is 0.

ICNTL(6) controls whether the user wishes to supply the weights for the priority function (JOB = 1 or 3) (see
Section 4). If ICNTL(6) = 0, the code will use the pairs of weights (2,1) and (16,1) and will return
results for whichever pair yields the best permutation; if ICNTL(6) = 1, the pairs of weights (1,2)
and (16,1) will be used and results for whichever pair yields the best permutation will be
returned; if ICNTL(6) = 2, the weights in CNTL(1) and CNTL(2) will be used. The weights
which are used to give the final permutation are returned in RINFO(9) and RINFO(10). The
default value is 0.

ICNTL(7) to ICNTL(10) are given the default value 0. They are currently not used but may be used in a
later release of the code.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that need not be set by the user. This
array is used to hold control parameters. On exit, CNTL contains default values. If the user wishes to use
values other than the defaults, the corresponding entries in CNTL should be reset after the call to
MC61I/ID. The default values are as follows:

CNTL(1) and CNTL(2) hold the weights W and W that are used in the priority function in the case1 2
ICNTL(6) = 2. The default values are 2.0 and 1.0, respectively.

CNTL(3) to CNTL(5) are given the default value zero. They are currently not used but may be used in a
later release of the code.

2.1.2 To find a variable permutation or a row ordering

The single precision version

CALL MC61A(JOB,N,LIRN,IRN,ICPTR,PERM,LIW,IW,W,ICNTL,CNTL,INFO,RINFO)

The double precision version

CALL MC61AD(JOB,N,LIRN,IRN,ICPTR,PERM,LIW,IW,W,ICNTL,CNTL,INFO,RINFO)

JOB is an INTEGER variable that must be set by the user to 1 if a variable permutation to reduce the profile and
wavefront of the matrix is required, to 2 if a variable permutation to reduce the bandwidth is required, and
to 3 if a row ordering for a row-by-row frontal solver is required. This argument is not altered.
Restriction: JOB = 1, 2, or 3.

N is an INTEGER variable that must be set by the user to the order of the matrix A. This argument is not
altered. Restriction: N ≥ 1.

LIRN is an INTEGER variable that must be set by the user to the length of the array IRN, which must be large
enough to hold the sparsity pattern of the whole matrix. 2*(ICPTR(N+1)–1) is always sufficient. This
argument is not altered.

IRN is an INTEGER array of length LIRN whose leading part must be set by the user to hold the row indices of
the entries in the lower triangle of the matrix, including those on the diagonal. The entries of each column
must be contiguous. The entries of column J must precede those of column J+1 (J=1,2, ..., N-1), and
there must be no wasted space between the columns. Row indices within a column may be in any order.
On successful exit, IRN holds the row entries of the condensed matrix (upper and lower triangular parts),
using the same format.

ICPTR is an INTEGER array of length N+1 that must be set by the user so that ICPTR(J) points to the position in
the array IRN of the first entry in column J (J=1,2, ..., N), and ICPTR(N+1)–1 must be the position of the
last entry. On successful exit, ICPTR holds corresponding data for the condensed matrix.

PERM is an INTEGER array of length N. This array need be set on entry only if ICNTL(5) = 1 (the default is
ICNTL(5) = 0). If ICNTL(5) = 1, PERM must be set by the user to hold positive global priority values for
the variables (see Section 4); this may be a permutation, in which case the variable for which PERM(I) =
1 is likely have a low index in the new ordering and the variable for which PERM(I) = N is likely to appear
towards then end of the new ordering. In all cases, on exit, the new ordering is contained in PERM. If a

36

variable permutation is requested (JOB = 1 or 2), the new index for variable I is given by PERM(I) (I =
1,2, ..., N). If a row order is requested (JOB = 3), the order in which the rows should be presented to the
row-by-row frontal solver is PERM(1), PERM(2), ..., PERM(N).

LIW is an INTEGER variable that must be set by the user to the length of the array IW. LIW must be at least
2+4*N and 2+8*N is always sufficient. If ICNTL(5) = 1 (the default is 0), a sufficient value is 2+7*N and
if ICNTL(5) = 1 and ICNTL(6) = 2 (the default is 0), a sufficient value is 2+6*N. Note that if
supervariables are used (ICNTL(4) = 0, which is the default), 2+2*N+max(2*N, 6*nsup) is always
sufficient, where nsup is the number of supervariables (see INFO(2)). This argument is not altered.
Restriction: LIW ≥ 2+4*N.

IW is an INTEGER array of length LIW that is used by the routine as workspace.

W is a REAL (DOUBLE PRECISION in the D version) array of length N that is used by the routine as
workspace.

ICNTL is an INTEGER array of length 10 that must be set by the user to hold control parameters. This argument
is not altered.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that must be set by the user to hold
control parameters. This argument is not altered.

INFO is an INTEGER array of length 10 that need not be set by the user. On exit, INFO returns the following
information:

INFO(1) is used as an error flag. If a call to MC61A/AD is successful, on exit INFO(1) has value 0. A
negative value for INFO(1) is associated with a fatal error. If ICNTL(1) > 0, a
self-explanatory message is, in each case, output on unit ICNTL(1). The negative values for
INFO(1) are:

–1 – JOB is not equal to 1, 2, or 3, or N < 1, or LIRN < ICPTR(N+1)-1. Immediate return
with input parameters unchanged.

–2 – LIRN is too small. INFO(6) is set to the minimum value which will suffice for
LIRN. If ICNTL(3)=1, any out-of-range or duplicated variable indices will have
been excluded from IRN and ICPTR. Otherwise, the input parameters are
unchanged.

–3 – LIW is too small. INFO(3) is set to a value which will suffice for LIW.

–4 – ICNTL(3)=0 and one or more variable indices either lies outside the lower triangle
of the matrix or is duplicated. Further information is contained in INFO(4) and
INFO(5).

A positive value of INFO(1) is associated with a warning message. If ICNTL(2) > 0, a
self-explanatory message is, in each case, output on unit ICNTL(2) and further information is
contained in INFO(3) to INFO(6).

Note that if a fatal error is detected during a call to MC61A/AD, the information contained in INFO
and RINFO will be incomplete.

INFO(2) holds, on successful exit, the total number of supervariables in the problem. If supervariables
are not used (ICNTL(4) = 1), INFO(2) is set to N.

INFO(3) holds the amount of workspace used by the routine. If the user has provided insufficient
workspace (INFO(1) = –3), INFO(3) is set to a value which will suffice for LIW.

INFO(4) holds the number of out-of-range indices in IRN.

INFO(5) holds the number of duplicate indices in IRN.

INFO(6) holds the minimum value which will suffice for LIRN.

INFO(7) to INFO(10) are currently not used but may be used in a later release of the code.

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 15 that need not be set by the user. If

37

JOB = 1 or 2, on successful exit RINFO returns the following information:

RINFO(1) holds the profile of the matrix A.

RINFO(2) holds the maximum wavefront of the matrix A.

RINFO(3) holds the semibandwidth of the matrix A.

RINFO(4) holds the root mean squared wavefront of the matrix A.

RINFO(5) holds the profile of the permuted matrix.

RINFO(6) holds the maximum wavefront of the permuted matrix.

RINFO(7) holds the semibandwidth of the permuted matrix.

RINFO(8) holds the root mean squared wavefront of the permuted matrix.

If JOB = 3, on successful exit RINFO returns the following information:

RINFO(1) and RINFO(2) hold the maximum row and column front sizes for the original row order 1,
2, ..., N.

RINFO(3) and RINFO(4) hold the root mean squared row and column front sizes for the original row
order 1, 2, ..., N.

RINFO(5) and RINFO(6) hold the maximum row and column front sizes for the new row order
PERM(1), PERM(2), ..., PERM(N).

RINFO(7) and RINFO(8) hold the root mean squared row and column front sizes for the new row
order PERM(1), PERM(2), ..., PERM(N).

In addition, if JOB = 1 or 3, on successful exit, RINFO(9) and RINFO(10) hold the pair of weights that are
used to give the final permutation (see ICNTL(6)).

RINFO(11) to RINFO(15) are currently not used but may be used in a later release of the code.

3 GENERAL INFORMATION

Use of common: None.

Other routines called directly: MC60A/AD, MC60B/BD, MC60C/CD, MC60D/DD, MC60E/ED, MC60F/FD,
MC60G/GD.

Input/output: In the event of errors, diagnostic messages are printed. Stream ICNTL(1) is used for error
messages and stream ICNTL(2) for warnings.

Restrictions: JOB = 1, 2, or 3, N ≥ 1, LIW ≥ 2+4*N.

4 METHOD

MC61 first calls MC60A to construct the pattern of the whole matrix A and to perform extensive checks on the
data. If JOB = 1 or 2, MC60F computes the profile, the maximum wavefront, the semibandwidth, and the root
mean squared wavefront of A, and if JOB = 3, MC60G computes the maximum row and column front sizes and
the root mean squared row and column front sizes for the original row order.

If supervariables are being used (ICNTL(4) = 0), MC61 calls MC60B to look for sets of columns with identical
patterns. A permutation is constructed that places the variables of each supervariable together. The pattern of A
is replaced by that of the permuted matrix represented as supervariables (that is, by its condensed equivalent).

MC61 then calls MC60C to construct a supervariable (ICNTL(4) = 0) or variable (ICNTL(4) = 1) permutation
that aims to reduce either the profile and wavefront of the matrix or the bandwidth. If JOB = 1 or 3, the priority
function for supervariable s is

W deg(s) + W ν glob(s),1 2

where W and W are weights, deg(s) is the number of supervariables that will enter the front if supervariable s1 2

38

is chosen next, ν is a normalizing factor, and glob(s) is the positive global priority function (generated
automatically or provided in PERM). If JOB = 2, the Reverse Cuthill McKee algorithm is used to reduce the
bandwidth.

If JOB = 1 or 2, MC60F computes the profile, the maximum wavefront, the semibandwidth, and the root mean
squared wavefront for the permuted matrix and, if supervariables are being used, MC60D constructs the
permutation for the variables that corresponds to the permutation for the supervariables. If JOB = 3, MC60E uses
the supervariable permutation to construct an ordering for the rows, as required by a row-by-row frontal solver,
and MC60G computes the maximum row and column front sizes and the root mean squared row and column front
sizes for the new row order.

Further details of the method are given in the MC60 specification document and by Reid and Scott (1998).

References

Reid, J.K. and J.A. Scott. (1998). Ordering symmetric sparse matrices for small profile and wavefront.
Technical Report RAL-TR-98-016, Rutherford Appleton Laboratory.

5 EXAMPLE OF USE

The following program provides an example of the use of MC61. We wish to reduce the profile of a matrix
with the following sparsity pattern.

× × × × ×
× ×

A = × × .
× ×
× ×

The input data will be the lower triangle of A in column-wise format. Using the program:

C Code to illustrate use of MC61

INTEGER LIRN,MAXN
PARAMETER (LIRN=20, MAXN=5)
INTEGER I,JOB,LIW,N,NZ
INTEGER IRN(LIRN),ICPTR(MAXN+1),PERM(MAXN),IW(8*MAXN+2),
+ ICNTL(10),INFO(10)
REAL CNTL(5),RINFO(15),W(MAXN)

C Read in data
READ (5,*) N,NZ
READ (5,*) (IRN(I),I = 1,NZ)
READ (5,*) (ICPTR(I),I = 1,N+1)

C Set control parameters
CALL MC61I(ICNTL,CNTL)

C Prepare to call MC61A
JOB = 1
LIW = 8*N + 2
CALL MC61A(JOB,N,LIRN,IRN,ICPTR,PERM,LIW,IW,W,ICNTL,CNTL,
+ INFO,RINFO)

C Check for an error return
IF (INFO(1).LT.0) THEN

WRITE (6,*) ' Unexpected error return!'
STOP

END IF

C Write out the profile
WRITE (6,'(/A,F6.0)') ' The profile initially is ', RINFO(1)
WRITE (6,'(/A,F6.0)') ' The profile after MC61 is ', RINFO(5)
END

39

on the data

5 9
1 2 3 4 5 2 3 4 5
1 6 7 8 9 10

produces the output:

The profile initially is 15.

The profile after MC61 is 9.

40

	Abstract
	CONTENTS
	1 Introduction
	2 Background
	2.1 Frontal and variable-band methods
	2.2 The row-by-row frontal method for unsymmetric matrices

	3 Finding start and end nodes for Sloan’s method
	3.1 Finding a pseudodiameter using level sets
	3.2 Interchanging the ends of the pseudodiameter
	3.3 The spectral pseudodiameter
	3.4 Using the supervariable graph

	4 Sloan’s algorithm
	4.1 The Sloan priority function
	4.2 Sloan’s search
	4.3 Managing the binary heap
	4.4 Interchanging the start and end nodes
	4.5 Adjusting Sloan’s weights
	4.6 Other adjustments of the priority function
	4.7 Other start and end nodes

	5 The hybrid method
	6 Software design
	6.1 MC60A
	6.2 MC60B
	6.3 MC60C
	6.4 MC60D, MC60E, MC60F, and MC60G
	6.5 The driver MC61

	7 Concluding discussion
	8 Acknowledgements
	9 References
	Appendix 1. MC60 specification document
	1 SUMMARY
	2 HOW TO USE THE PACKAGE
	2.1 Argument lists
	2.1.1 Initial entry
	2.1.2 To find supervariables and compress the pattern
	2.1.3 To find supervariable permutation
	2.1.4 To find permutation for variables from supervariable permutation
	2.1.5 To find a row-by-row frontal order from a supervariable permutation
	2.1.6 To compute the profile and wavefront for a supervariable permutation
	2.1.7 To compute the front sizes for a row-by-row frontal method

	3 GENERAL INFORMATION
	4 METHOD
	4.1 MC60A
	4.2 MC60B
	4.3 MC60C
	4.4 MC60D, MC60E, MC60F, and MC60G

	5 EXAMPLE OF USE

	Appendix 2. MC61 specification document
	1 SUMMARY
	2 HOW TO USE THE PACKAGE
	2.1 Argument lists
	2.1.1 The initialization subroutine
	2.1.2 To find a variable permutation or a row ordering

	3 GENERAL INFORMATION
	4 METHOD
	5 EXAMPLE OF USE

