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1 Introduction 

The frontal method (Irons 1970, Hood 1976, Duff 1984, Duff and Scott 1993, Duff and 
Scott 1996a) is a technique for the direct solution of linear systems 

where A is a large sparse matrix. This approach has the merit of rather simple logic and 
relatively little data movement and integer overhead. The floating-point arithmetic can 
be performed using dense linear algebra kernels so that the computational rate, measured 
in Mflop/s, is high. However, unless the matrix can be ordered so that the front is never 
very large, frontal methods require many more floating-point operations for factorization 
than other approaches. It is thus interesting to see how this trade-off works in practical 
applications, and this is the main theme of this paper. 

Although frontal methods can be used to factorize assembled matrices, the power of 
the method, as we illustrate in Section 5, is more apparent when the matrix A comprises 
contributions from the elements of a finite-element discretization. That is, 

m 
A = CA('), (L2) 

1=1 

where A(') is nonzero only in those rows and columns that correspond to variables in the 
Ith element. 

In Section 2, we discuss salient features of the frontal method and show how the 
computational kernel consists of -GEMM, the Level 3 Basic Linear Algebra Subprogram 
(BLAS) that implements dense matrix-matrix multiplication (Dongarra, Du Croz, DUE 
and Hammarling 1990). We briefly discuss, in Section 3, the codes that are available in the 
Harwell Subroutine Library (HSL 1996) for frontal solution and associated computation. 
We use test matrices from real problems occurring in engineering or industry in the 
subsequent experiments in our paper and we discuss their origins and characteristics in 
Section 4. In Section 5 we consider the effect of reordering the system, the preassembly 
of element problems, and the disassembly of assembled matrices. We compare our frontal 
codes with other Hamell Subroutine Library codes in Sections 6 and 7, considering 
symmetric positive-definite and unsymmetric systems respectively. We present some 
concluding remarks in Section 9. 

2 Frontal methods 

It is easiest to describe the frontal method by reference to its application to elemental 
problems where A is of the form (1.2). If ej and U$) denote the ( i , j ) th  entry of A and 
A(1), respectively, the basic assembly operation when forming A is of the form 

It is evident that the basic operation in Gaussian elimination 

may be performed as soon as all the terms in the triple product (2.2) are fully summed 
(that is, are involved in no more sums of the form (2.1)). The assembly and Gaussian 

- elimination processes can therefore be interleaved and the matrix A is never assembled 
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explicitly. This allows all intermediate working to be performed in a dense matrix, termed 
the frontal mat&, whose rows and columns correspond to variables that have not yet been 
eliminated but occur in at least one of the elements that have been assembled. 

For non-element problems, the rows of A (equations) are added into the frontal matrix 
one at a time. A variable is regarded as fully summed whenever the equation in which 
it last appears is assembled. The frontal matrix will, in this case, be rectangular. A full 
discussion of the equation input can be found in Duff (1984). 

We now describe the method for element input in more detail. After the assembly of 
an element, if  all the fully summed variables are permuted to the first rows and columns 
of the frontal matrix, we can partition the frontal matrix F in the form 

Fll F12 
F =  ( F2l F22)’  

where F11 is a square matrix of order k and F22 is of order k1 x kl. Note that k+kl is equal 
to the current size of the frontal matrix, and k << kl, in general. The rows and columns of 
F11, the rows of  F12, and the columns of F21 &re fully summed; the variables in F22 are not 
yet fully summed. Pivots may be chosen from anywhere in F11. For symmetric positive- 
definite systems, they can be taken from the diagonal in order but in the unsymmetric 
case, pivots must be chosen to satisfy a threshold criteria. This is discussed in Duff (1984). 
The pivot row and column are permuted to the first row and column of (2.3), row 1 of 
F11 is scaled by the pivot and columns 2 to k of the permuted frontal matrix are updated 
by elimination operations. Columns 2 to k of the updated matrix F11 are then searched 
for the next pivot. When chosen, the pivot row and column are permuted to row 2 and 
column 2 of (2.3), row 2 of F11 is scaled by the pivot, and columns 3 to k of the frontal 
matrix are updated. This process continues until no more pivots can be found. Assuming 
k pivots have been chosen, F12 is then updated using the Level 3 BLAS routine -TRSM 

and, finally, F22 is updated using the Level 3 BLAS routine ,GEMM 

F22 + F22 + F21F12- 

In practice, for a general matrix A, stability restrictions may only allow r pivots to be 
chosen (r < k )  and, in this case, the first r rows of F12 are updated using -TRSM and then 
the remaining k - T rows of F12, together with F22, are updated using -GEMM. 

If the matrix factors are held in direct access files, the frontal method can solve quite 
large problems with modest amounts of high-speed memory. We remark that, because the 
size of the frontal matrix increases when a variable appears for the first time and decreases 
whenever it is eliminated, the order in which the elements (or equations) are assembled 
is critical. Elements (or equations) should be preordered to reduce the size of the frontal 
matrices. Various algorithms have been developed for doing this, and we discuss the effect 
of preordering in Section 5. 

For the runs in this paper, we have assumed that the original unassembled elemental 
problem can be held in main memory. This is to simplify the use of ordering strategies 
when used with the frontal codes. Although our ordering routines require the integer data 
to be held in main memory, our frontal codes do not require this. Indeed, if it is possible 
to generate element matrices on demand, the original matrix need never be computed or 
stored. This is a common situation for large finite-element problems. 
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3 Harwell Subroutine Library frontal solvers 

The two frontal codes that we use in the following comparisons are the code MA62 for 
symmetric positive-definite systems and the code MA42 for unsymmetric problems. Both 
MA42 and MA62 are for real matrices A; a version of MA42 for complex matrices, ME42, 
is also available. In this section, we describe characteristics of the user interface to our 
frontal solvers and briefly discuss associated software in the Harwell Subroutine Library 
(HSL). Further details are given in Duff and Scott (1993 and 1996b). 

The symmetric positive-definite code, MA62, only permits input by elements, whereas 
the unsymmetric code, MA42, allows input by either elements or equations. For assembled 
matrices with a symmetric structure, we can use the HSL routine MC37 to generate a set 
of element matrices that, if assembled, would yield the same matrix. This allows us to 
,run MA62 on matrices that are supplied in assembled form. 

Both MA42 and MA62 use reverse communication to obtain information from the user. 
The structure of the problem is first provided by the user by calling a subroutine for each 
element (or equation). The primary reason for these calls is to establish when variables 
are fully summed and hence are candidates for use as pivots. Thereafter, for the positive- 
definite solver MA62, a set of calls to another subroutine enables an accurate forecast to be 
made for the size of the files required to hold the factors and the maximum order of the 
frontal matrix so that the numerical factorization can be run efficiently and reliably. For 
the unsymmetric MA42 code, the use of such a prediction routine is optional and will only 
give lower bounds on the relevant quantities because of the possibility of numerical pivoting 
in the factorization. In these symbolic phases, only the integer indexing information for 
the elements (or equations) is used. Both codes can use direct access files for the matrix 
factors, and the user must define these by a simple subroutine call if this option is required. 

The numerical factorization is then performed with the user required to call a further 
subroutine for each element or equation. The information from the earlier symbolic 
phases is used to control the pivot selection and elimination within the current frontal 
matrix. Optionally, forward elimination can be performed on a set of elemental right-hand 
side vectors, in which case a final back-substitution phase yields appropriate solutions. 
Subsequent right-hand sides can be solved using the matrix factors, in which case the 
right-hand sides are supplied as dense vectors and a single subroutine call is all that is 
required. In the unsymmetric case, the same factors can be used by MA42 to solve the 
equation ATx = b. 

Routines for preordering elements for the frontal solvers have been developed using 
logic similar to that for bandwidth minimization. The HSL code MC43 (Duff, Reid and 
Scott 1989b) offers the choice of basing the ordering on the element structure or on the 
usual sparse matrix pattern. These two approaches are termed direct and indirect element 
ordering, respectively. There is little difference in the quality of the ordering from the two 
approaches but, for the case where we use MC37 to generate elements from the assembled 
matrix, we use the indirect algorithm because many small elements are generated so that 
the former option is much slower. For example, MC37 generates 12992 elements for the 
test problem BCSSTK15 of order 3948 (see Section 4). The times taken by MC43 using 
the direct and indirect options on a single processor of a CRAY 5932 were 10.4 and 2.0 
seconds, respectively. 

The HSL code MC40 can be used to order symmetrically structured matrices. Since 
MC40 provides an ordering for the elimination of the variables and the equation input to 
MA42 needs an ordering for the assembly of the rows, we scan the rows and first order all 
rows in which the f i s t  variable in the elimination ordering appears, then those unordered 
rows in which the second variable appears, and so on. 
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Other auxiliary routines for the HSL frontal codes concern their use for elemental 
problems in a parallel computing environment. In this case, the user partitions the 
underlying finite-element domain into subdomains and applies MA42 (element input) to 
each subdomain. The HSL package MA52 is then used in completing the solution on the 
whole domain. This is discussed by Duff and Scott (1994). Ordering schemes have been 
developed to exploit this different structure (Scott 1996). 

It is worth pointing out that there are several criteria on which orderings for frontal 
or variable-band methods can be based. If the generic entry in the matrix A of order n is 
aij, then the semi-bandwidth is defined as 

max (i - j ) }  
l<i<n aij#O,j=l,..i max { 

and is an appropriate measure for a variable-band code of the type we consider further in 

. .  

gives a better measure of both the storage and work required. More appropriate measures 
for frontal schemes are based on the front size, that is the order of the frontal matrix (2.3) 
after assemblies but before eliminations. If we denote by f i  the front size after assembly of 
element i ,  then an important measure, particularly for computing the amount of in-core 
storage required, is the maximum front size 

where there are m assembly steps. A prediction of the work involved in the frontal 
algorithm can be obtained from the root-mean squared front size (rms front size) defined 

We will use these measures in our later comparisons. 

4 The problems and environment for numerical testing 

In this section, we describe the test problems that we use for the comparisons in this 
paper and the environment for our numerical testing. All the test problems arise in real 
engineering and industrial applications. A brief description of each of the unasembled 
finite-element test problems is given in Table 4.1. The first seven problems are from the 
Harwell-Boeing Collection (Duff, Grimes and Lewis 1989a, Duff, Grimes and Lewis 1992), 
the RAMAGEOl and RAMAGE02 problems are from Alison Ramage of the University of 
Strathclyde (Ramage and Wathen 1993), the problem AEAC5081 is from Andrew Cliffe 
of AEA Technology, and the remaining problems (TRDHEIM, CRPLAT2, OPT1,  and 
TSYL201) were supplied by Christian Damhaug of Det Norske Veritas, Norway. The 
problem MAN5976 is a condensed version of a matrix from structural engineering. For 
this problem, we assume that there are three variables at each node, giving a total of  
17928 variables. For each of the finite-element test problems, values for the entries of the 
matrix were generated using the HSL pseudo-random number generator FAO1. For the 
symmetric positive-definite test cases, each element was made symmetric and diagonally 
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Identifier 

CEGB3306 
CEGB2919 
CEGB3024 
LOCK1074 
LOCK2232 
LOCK3491 
MAN5976 
RAMAGE01 
AEAC5081 
TRDHEIM 
TSYL201 
OPT1 
CRpLAT2 
RAMAGE02 

Identifier 

BCSPWR.10 
BCSSTK15 
BCSSTK18 
B P  1600 
GRE 1107 
JPWH 991 
LNS 3937 
LNSP3937 
NNC1374 
ORSREG 1 
PORES 3 
SHERMAN3 
WEST2021 
PSMIGR 3 
WANG3 
GARON2 
ONETONE2 
TWOTONE 
GOODWIN 

Number of I Number of. 

Order 

5300 
3948 
3948 
1600 
1107 
991 

3937 
3937 
1374 
2205 

532 
5005 
2021 
3140 

26064 
13535 
36057 

120750 
7320 

variables I 
3222 
2859 
2996 
1038 
2208 
3416 

17928 
1476 
5081 

22098 
20685 
15449 
18010 
16830 

elements 
791 
128 
551 
323 
944 
684 
784 
128 
800 
813 
960 
977 

3152 
1400 

Description/discipline 

2.5D Ramework problem 
3D cylinder with flange 
2D reactor core section 
Lockheed gyro problem 
Lockheed tower problem 
Lockheed cross-cone problem 

3D Navier-Stokes 
Double glazing problem 
Mesh of the 'Ikondheim fjord 
Part of oil production platform 
Part of oil production platform 
Corrugated plate field 
3D Navier-Stokes 

Structural engineering 

Table 4.1: The unassembled finiteelement test problems 

dominant. Unless stated otherwise, the elements were preordered using MC43 before the 
frontal solvers were called. 

The assembled matrices are shown in Table 4.2. The first fourteen problems are 
taken from the Harwell-Boeing Collection, the remaining problems WANG3, GARON2, 
ONETONE2, TWOTONE, and GOODWIN were supplied to us by Tim Davis, University 
of Florida. For the assembled problems, if numerical values were provided with the matrix, 
these values are used in our experiments. Otherwise, FAO1 is used to generate numerical 
values. For element input to the frontal solvers, the symmetrically structured problems 
were f i s t  converted to an equivalent element& form using MC37. 

All the HSL codes used in our numerical experiments have control parapleters with 
default values. Unless otherwise stated, we use these defaults in each case, even if different 
codes sometimes choose a different value for essentially the same parameter. 

Number of 
entries 

13571 
60882 
80519 

4841 
5664 
6027 

25407 
25407 
8606 

14133 
3474 

20033 
7353 

543162 
177168 
390607 
227628 

1224224 
324784 

Description/discipline 

Eastern US Power Network 
Model of an offshore platform 
Nuclear power station 
Basis matrix from LP problem 
Simulation studies in computer systems 
Circuit physics modelling 
Fluid flow modelling 
Fluid flow modelling 
Nuclear reactor core modelling 
Oil reservoir simulation 
Oil reservoir simulation 
Oil reservoir simulation 
Chemical engineering 
Population migration 
3D semiconductor device simulation 
2D Navier-Stokes 
Harmonic balance method 
Harmonic balance method 
Nonlinear fluid mechanics problem 

Table 4.2: The assembled test problems. First three problems are symmetric. 
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The experimental results quoted in this paper were obtained on a single processor 
of a CRAY 5932 using 64-bit floating-point arithmetic, and the vendor-supplied BLAS. 
In separate runs on the Level 3 BLAS subroutine SGEMM, we found that its peak 
performance (rm) was 195 Mflop/s attained on dense matrices of order greater than 500, 
that for matrices of order 100 the performance was 186 Mflop/s, and that the vector length 
for half peak (qp) was 20. With the exception of the code VBAN (see Section 6), all the 
codes used in our experiments are written in Fortran 77 and were compiled using the 
C M Y  Fortran compiler cf77-7, with compiler option -Zv. The Fortran 90 code VBAN was 
compiled with the CRAY Fortran compiler f90, with default options. All times quoted are 
CPU times in seconds and include the i/o overhead for the codes that use direct access 
files. In some of  our tables of results, the string “NS” is used to denote that we were 
unable to run the code. This is usually because the CPU time required for factorization 
exceeded 30 minutes. We discuss the performance of the BLAS and the effect of using 
other computers for the experiments in Section 8. 

In the tables of results presented in this paper, the “In-core” storage figures are the 
minimum in-core storage requirements for performing the matrix factorization and solving 
the linear system Ax = b. This figure includes both real and integer storage. Since, on 
the CRAY, both integers and reals are stored in 64-bit words, the value is just the sum 
of the number of  real and the number of integer words needed. We remark that if this 
minimum in-core storage is used, the performance of the codes in our study will often be 
considerably degraded since either a large number of data compressions must be performed 
or a large number of records written to direct access files. In all the tables in which the 
number of floating-point operations (“ops”) are quoted, we count all operations (+,-,*,/) 
equally. For the frontal codes, the operation counts assume that there are no zeros in the 
frontal matrices. 

We note that the “Solve” times quoted in the tables of results are for a single right- 
hand side b and do not include the time required to perform iterative refinement. It should 
be noted, however, that some of the problems in our test set are so ill-conditioned that 
iterative refinement is needed for accurate solutions. 

5 The effect of ordering and elemental form 

As explained in Section 3, the order in which the elements or equations are presented to 
the frontal solver has a significant effect on its performance. We have already reported on 
the effect of element ordering on the unsymmetric frontal solver in Duff et al. (1989b). For 
unsymmetric assembled problems, the Harwell Subroutine Library does not contain the 
equivalent of a profile minimizer but, for problems with a nearly symmetric structure, a 
good ordering for MA42 can be obtained by applying the profile reducing code MC40 to the 
pattern of A + AT. The unsymmetric test problems ORSREG 1,  LNS 3937, LNSP3937, 
SHERMAN3, WANG3, and GARON2 have sparsity patterns which are symmetric or 
nearly symmetric (LNSP3937 is a permutation of LNS 3937). For these problems, we 
show the effects of the ordering on MA42 in Table 5.1. We see that a significant reduction 
in the profile is achieved for each of the problems except LNSP3937, where there was 
an excellent initial ordering. This is reflected in the much lower factorization times and 
operation counts, although we note that the effect of using Level 3 BLAS means that 
the poorer orderings have a higher Megaflop rate so that the ratio of times, before and 
after ordering, is not as high as the operation count ratio. The increase in the analyse 
time between “before” and “after” is the time taken to run MC40. The GARON2 problem 
was not solved with the original ordering since the analyse phase showed that the frontal 
matrix must be of order 11975 x 13535 (13535 is the order of the matrix A in this example). 
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Identifier Profile Number of ops Analyse time 
(*103) (*108) (seconds) 

Before After Before After Before After 
ORSREG 1 789 157 12.65 0.49 0.15 0.43 
LNS 3937 5616 204 95.11 0.49 0.27 0.31 
LNSP3937 236 204 0.76 0.49 0.27 0.32 
SHERMAN3 917 197 6.01 0.59 0.33 0.71 
WANG3 22671 12844 804.01 285.41 1.80 5.87 
GARON2 82220705 2059844 NS 1908.76 1.58 7.09 

Table 5.1: The results of using MC40 to order matrices with a nearly symmetric pattern 
for MA42 equation input. The GARON2 problem was not solved with the original ordering 
due to excessive storage requirement. 

Factorization time 
(seconds) 

Before After 
12.94 1.22 
96.29 1.70 
2.15 1.84 
7.73 1.90 

643.84 252.79 
NS 24.99 

In Table 5.2, we show the results of using the element ordering code MC43 with our 
symmetric positive-definite frontal solver, MA62. In some cases, a significant reduction 
in the maximum and root mean squared (rms) front sizes are obtained and this is again 
reflected in the reduced factorization times and operation counts. We note that, in all 
cases, the original order is that provided by the application and, in most instances, this 
was believed, by the originator of the problem, to be a “good7’ element order. Having 
generated a new ordering, MC43 compares the maximum front size of the new ordering 
with that of the original ordering, and then returns to the user the ordering with the 
smallest maximum front size. However, it is possible that by doing this MC43 rejects the 
ordering with the smallest rms front size (and hence the ordering which would give the 
smallest operation count and factorization time when used with the frontal solver). In our 
experiments we therefore made a minor alteration to MC43 so that the ordering with the 
smallest rms front’ size was selected, even if the maximum front size was increased. We see 
the effect of this on test problems AEAC5081 and TRDHEIM. We note, from the results 
in Table 5.2, that usually there is a similar reduction in maximum front size and rms front 
size, and that the number of operations is reduced by a factor of roughly the square of the 
reduction in the rms front size. The “BLAS effect” is again seen in the lower reduction of 
factorization time compared with the reduction in operation count. 

As observed earlier, the unsymmetric frontal code MA42 has both an equation and 
an element input. We can thus compare the efficiency of a frontal code on the original 
elemental problem and its assembled form. To try and make a valid comparison, we 
use MC43 to obtain an ordering for MA42 in the former case and MC40 for the ordering 
in the latter. We can also take a symmetrically structured problem and split it into 
elements using MC37, and then run MA42 on the elemental and assembled forms, again 
preordering with MC43 and MC40, respectively. We show the results from these runs in 
Table 5.3. Not unexpectedly, the factorization times and storage are less when advantage 
is taken of the element structure in the elemental problems. Indeed the assembled matrix 
typically requires almost twice the time and storage over using the unassembled elemental 
formulation. However, perhaps more surprisingly, it is better to “disas~emble~~ assembled 
problems, although the gains are slightly less in this case. These results suggest that, when 
using a frontal solver, we should avoid preassembling an elemental problem and that, for 
symmetrically structured assembled problems, significant savings in both the factorization 
time and the storage required by the factors can be achieved by generating an equivalent 
elemental problem, reordering the elements, and using the element input offered by MA42. 
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Identifier 

CEGB3306 
CEGB2919 
CEGB3024 
LOCK1074 
LOCK2232 
LOCK3491 
MAN5976 
RAMAGEOl 
AEAC5081 
TRDHEIM 
TSYL2Ol 
OPT1 
CRPLAT2 
RAM AGE02 

rms front size 
I 

Max front size Number of ops 
(*108) 

Before 
354 
348 
152 
810 

1266 
834 
197 
457 
150 
276 

1200 
2681 
1564 
1717 

After 
78 

291 
132 
126 
72 

217 
205 
372 
161 
348 
540 
983 
538 

1452 

. I  

Before I After I Before I After 
123.5 I 30.2 I 2.1 I 0.2 

Before 
2.5 
1.4 
0.8 
2.4 

11.1 
10.7 
3.0 
1.7 
1.9 
7.1 

106.5 
430.1 
231.8 
279.5 

48.7 
48.0 

333.5 
484.9 
247.8 
66.12 
102.7 
57.5 
37.5 

187.8 
507.7 
494.1 
432.3 

After 
0.6 
1.3 
0.7 
0.3 
0.4 
1.3 
2.9 
1.3 
1.6 
7.1 

45.1 
44.3 
29.8 

203.2 

65.65 
83.7 

35.7 
112.7 
156.9 
153.7 
375.0 

Identifier Factorization time 
(seconds) 

elements assembled 
CEGB3306 1.0 1.8 
CEGB2919 2.3 5.9 
CEGB3024 1.2 1.9 
LOCK1074 0.4 0.7 
LOCK2232 0.6 0.9 
LOCK3491 2.2 4.5 
BCSPWR.10 2.7 2.1 
BCSSTK15 7.3 12.9 
BCSSTK18 57.7 81.5 

4.89 

154.3 
633.8 
252.2 
378.3 

Storage 
(Kwords) 

elements assembled 
450 929 

1087 2052 
593 962 
188 260 
261 385 

1039 1832 
821 1452 

3230 4184 
11397 20770 

1.0 
0.2 
0.1 
0.1 
0.7 

4.88 
1.2 
0.7 
4.9 

65.3 
56.6 
26.0 

282.7 

Table 5.2: The results of using the MC43 ordering with MA62. The root mean-squared front 
size is .denoted by “rms front size”. 

6 A corn 
symme 

Table 5.3: The effect of preassembly on MA42. 

?arison of the frontal code MA62 with other 
;ric positive-definite HSL codes 

In this section, we examine the performance of the frontal code MA62 and compare it with 
the HSL code MA27 and the code VBAN, which is a development version of the HSL code 
MASS. 

The code MA27 uses a multifrontal algorithm (Duff and Reid 1982, Duff and Reid 1983). 
During the analyse phase, pivots are selected from the diagonal using the minimum degree 
criterion. During the factorization, this pivot sequence may be modified to maintain 
numerical stability, and 2 x 2 diagonal block pivots can also be used. By this means, MA27 
can stably factorize symmetric indefinite problems. However, if  the matrix is known to be 
positive definite, the user can set a parameter in the calling sequence so that a logically 
simpler path in the code is followed. In all our tests using MA27, this option was used. 

Our colleague John Reid at the Rutherford Appleton Laboratory is currently 
developing a variable-band code for the solution of systems of equations whose matrix is 
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symmetric and positive-definite. It does no interchanges and takes advantage of variation 
in bandwidth. The code optionally uses a direct access file to store the matrix factor. The 
intention is that the new HSL code MA55 will replace the HSL code MA36. At present, the 
development code is written in Fortran 90. A Fortran 77 version of MA55 will be made 
available in the future. In our comparisons, we have used an early version of MA55 that 
only uses Level 1 BLAS. It is intended that the MA55 code will use blocking and Level 3 
BLAS. We have called this early version VBAN in the tables and in the following text. 

We compare the three codes, first on our set of elemental problems described in 
Table 4.1, then on the symmetric assembled matrices (the f i s t  three problems in Table 4.2). 
In the former case, the matrices are assembled before calling MA27 and VBAN; in the latter 
case, an elemental problem is first created from the assembled problems using MC37, before 
calling MA62. In neither case is the cost of this preprocessing included in the times quoted 
in Table 6.1. Since the efficiency of VBAN depends upon the equations being ordered for 
a small profile, the assembled matrix is ordered using MC40 prior to calling VBAN, and the 
time taken to do this is given as the “Analyse” time for VBAN. For MA62, the “Analyse” 
time is the time needed to order the elements using MC43 together with the time for the 
symbolic phases discussed in Section 3. For MA27, the “Analyse” time is that taken to select 
the pivot sequence using the minimum degree criterion and prepare the data structures 
for subsequent numerical factorization. It is interesting that this more complicated MA27 
analyse is usually faster than the “bandwidth reordering” for VBAN. This highlighted for 
us some deficiencies in the MC40 ordering code which we are now attempting to rectify. 
Similar deficiencies are also present in the MC43 code but are masked in the case of the 
elemental matrices (see analyse times for MA62‘in these cases) because the ordering works 
with the connectivity pattern of elements rather than variables. We note that the analyse 
times for MA62 for the assembled problems are usually closer to the VBAN analyse times. 

Neither the MA27 nor the VBAN code use Level 3 BLAS. Although the CRAY 5932 is 
not the best machine to see the importance of this (since Level 1 BLAS perform rather 
well on this machine), we note that quite often MA62 will require less time for factorization 
than VBAN although it needs more floating-point operations. In most cases, we see that the 
minimum degree ordering as expected performs a much better job of reducing the number 
of entries in the factors than our “band” orderings; sometimes there are nearly four times 
fewer entries in the factors for MA27 than for the better of the other codes, although the 
advantage is not usually so marked for the elemental problems. The number of entries in 
the factors is slightly less for‘VBAN than for MA62 for the elemental problems, because the 
blocking in MA62 for Level 3 BLAS creates additional zero entries in the factors. MA62 is 
generally much worse on the assembled matrices since, for these problems, MA62 seldom is 
able to choose a large enough pivot block size (order of F11 in (2.3)) to offset the costs of 
having to store integer information on the factors. Both VBAN and MA62 store their factors 
in direct access files and so, as expected, usually require much less “In-core” than MA27. 
However, VBAN sometimes requires a lot of in-core storage (for example, BCSSTK15). 
This will happen if there is just a single row of high bandwidth towards the end of the 
reordered matrix. For the simple variable-band scheme used by VBAN, this would require 
that many previous rows needed to update this be held in memory. The fiontal code does 
not suffer from this problem; the only effect is to add one to the front size for most of the 
computation. One remedy is to develop better orderings for the variable-band scheme and 
this is currently being studied. 

In nearly all cases, the use of a minimum degree ordering by MA27 gives a substantially 
lower operation count for the factorization and much less storage for the factors. The 
RAMAGEOZ problem, however, requires considerably more in-core storage and operations 
for the factorization when using the minimum degree ordering. To check that it was indeed 
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t 

Analyse 
0.4 
0.5 
0.2 
1.9 
2.6 

EEGB3306 

CEGB2919 MA27 
VBAN 

Factorize Solve 
0.6 0.03 
1.1 0.04 
0.6 0.08 
3.6 0.04 

, 3.7 0.05 

LOCK1074 

LOCK2232 

Factor ops 
(*lOS) 

2.1 
11.6 
14.6 
57.3 

110.6 

VBAN 0.8 1.3 0.04 17.7 106 219 
MA62 0.2 I 0.7 0.10 23.1 18 295 
MA27 0.3 0.5 0.01 4.9 109 71 
VBAN 0.4 0.5 0.01 6.0 29 77 
MA62 0.1 0.3 0.03 7.8 16 94 
MA27 0.4 0.6 0.02 2.7 133 a3 
VBAN 0.5 0.6 0.02 4.6 11 99 

Storage 
(Kwords) 

590 384 
402 526 

MA62 

11 MA62 I 0.1 I 1.3 I 0.08 I 99.5 I 542 
CEGB3024 11 MA27 I 0.6 I ' 1.0 I 0.04 1 7.1 I 175 I 146 

0.3 I 0.4 I 0.05 I 7.3 I 5 1  130 

RAMAGEOl 

AEAC5081 

VBAN 1.3 3.0 0.05 65.4 322 428 
MA62 0.2 , 1.3 0.12 67.3 47 518 
MA27 1.3 4.0 0.03 94.0 549 345 
VBAN 2.6 I 3.3 0.03 122.7 243 401 
MA62 0.1 1.3 0.06 116.2 139 414 
MA27 1.3 3.1 0.08 44.4 526 430 
VBAN 1.5 3.7 0.07 69.8 95 564 

OPT1 

11 MA62 I 0.3 I 1.6 I 0.16 I 69.5 I 24 I 626 
TRDHEIM 11 MA27 I 10.8 I 17.7 I 0.27 I 211.0 I 2893 I 2002 

VBAN 22.3 96.4 1.18 5262.0 2079 10231 
MA62 0.7 45.1 1.16 5532.6 292 10964 
MA27 11.9 77.1 0.32 3648.9 7741 5975 
VBAN 20.7 74.2 0.86 4116.5 3315 7215 

11 VBAN I 15.3 I ~ 19.6 I 0.39 1. 459.0 I 798 1' 2958 

RAMAGE02 

11 MA62 I 0.6 I 7.3 I 0.55 I 491.6 I 121 I 3601 
4285.0 I 8922 I 7069 TSYL2Ol 11 MA27 I 13.6 1 90.0 I 0.40 I 

VBAN 9.4 54.9 0.77 2475.8 2276 6406 
MA62 1.2 29.8 1.25 2597.0 290 7521 
MA27 20.4 , 783.0 1.05 44988.9 30569 21297 

2.16 29922.7 3692 21787 VBAN 39.1 I 338.3 

BCSSTK18 
. 

]I MA62 I 0.8 I 44.3 I 1.01 I 5657.3 I 966 I 8936 
CRPLAT2 11 MA27 I 5.3 I 40.2 I 0.30 I 1623.8 I 4554 I 3815 

VBAN 1.0 7.0 0.08 230.7 524 904 
MA62 2.9 , 4.8 0.36 253.2 144 1780 
MA27 5.1 6.9 0.17 142.6 890 797 

1043.2 1987 3097 VBAN 2.2 22.4 0.22 
236 5709 MA62 4.9 , 16.3 1.16 1043.5 

11 MA62 I 1.4 I 203.2 I 2.15 I 28272.8 I 2108 I 22646 
BCSPWRlO (1 MA27 I 0.5 I 0.4 I 0.06 I 0.3 I 56 I 56 

11 VBAN I 0.3 I ~ 1.1 I 0.05 I 9.5 I 71 I 205 
11 MA62 I 1.2 I 1.2 I 0.22 I 11.1 I 4 1  41 1 

BCSSTK15 11 MA27 I 2.7 I ' 7.1 I 0.07 I 219.4 1 951 I 788 

Table 6.1: A comparison of MA62 and MA27 on symmetric positive-definite systems 

10 



the minimum degree ordering that caused the high operation count for the factorization, we 
ran MA27 using the ordering produced by MC40 for VBAN. This reduced the operation count 
for MA27 to the same as for VBAN, so we can offer RAMAGE02 to the community as an 
example showing poor performance of minimum degree when used with a multifrontal 
scheme. We intend to investigate this problem further. Interestingly the number of 
operations to factorize this matrix if ordered by the approximate minimum degree ordering 
(Amestoy, Davis and Duff 1996) is 34762 million, significantly less than that for minimum 
degree. The fact that the approximate minimum degree ordering can do better on a 
problem on which the minimum degree ordering does badly is also seen in the results of 
Rothberg and Hendrickson (1996) and others. 

It is apparent, from our results, that the frontal code performs well on unassembled 
finite-element problems, particularly in the analyse and numerical factorization phases. 
The benefit of holding the factors out-of-core in order to reduce the maximum amount of 
storage needed to perform the factorization is evident from the MA62 results for both 
assembled and unassembled matrices. However, storage for the factors is usually far 
greater for the frontal method and this is reflected in the much poorer times for subsequent 
solution, although it should be mentioned that MA62 is more efficient if multiple right-hand 
sides are being solved at the same time. For example, for problem OPT1, the solve times 
for MA62 for a single right-hand side and for 10 right-hand sides are 1.01 and 3.98 seconds, 
respectively (see Duff and Scott (1996b) for further results). It is not generally advisable 
to use a frontal method on an assembled matrix. 

7 A comparison of the frontal code MA42 with other HSL 
codes 

In this section, we compare the performance of the frontal code MA42 for unsymmetric 
problems with some other sparse direct codes from the H m e l l  Subroutine Library. We 
consider both assembled and unassembled problems. In the unsymmetric case, we have 
several alternative HSL codes available, although unlike MA42 none hold the matrix factors 
out-of-core. 

All of the codes that we compare in this section will not accept a potential entry of the 
reduced matrix, aij say, as a pivot in Gaussian elimination unless it satisfies an inequality 
of the form 

laijl 2 U. l s k l n  m m  l a k j l i  

although the exact test differs from code to code. This type of numerical pivoting is called 
threshold partial pivoting and the parameter U is called the threshold parameter. 

We first consider codes for problems which are supplied in assembled form. For these 
problems, we compare the MA42 equation input with the HSL codes MA38 (Davis and Duff 
1993), MA41 (Amestoy and Duff 1989), and MA48 (Duff and Reid 1993, Duff and Reid 1996). 
As discussed earlier, for test problems with a nearly symmetric pattern, the equations are 
preordered for MA42 by applying MC40 to the pattern of A + AT but for the remaining 
problems, the original ordering will be used for MA42. 

The code MA38 is based on a combined unifrontal/multifrontal algorithm (Davis and 
Duff 1995) and uses an approximate minimum degree ordering (Amestoy et al. 1996). 
MA38 does not have separate analyse and factorize phases, but can rapidly factorize a 
matrix with the same sparsity pattern as one which it has previously factorized. During 
the factorization, threshold partial pivoting is used, with a default threshold parameter 
of 0.1. The solve step can be used to solve Ax = b or ATx = b, and an option exists for 
performing iterative refinement. 
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. .  . .  

Code Time (seconds) 

Analyse Factorize Solve 
MA37 3.59 7.34 0.01 
MA41 0.46 1.51 0.03 

Identifier r Factor ops Storage 
(*lOS) (Kwords) 

In-core Factors 
104.9 687 349 
100.3 697 334 

LNS 3937 

LNSP3937 

SHERMAN3 

WEST2021 

PSMIGR 3 

MA41 

MA37 
MA41 

MA4lt 
0.22 0.23 0.01 4.7 138 77 
0.24 0.23 0.01 4.7 138 77 
0.06 0.07 0.01 0.1 16 15 
0.06 0.06 0.01 0.2 33 16 

MA4lt I 0.28 I 0.11 I 0.01 I 0.8 I 68 I 35 
MA37 I 0.33 I 0.37 I 0.01 I 4.4 I 108 I 74 

MA41 
MA4lt 
MA37 
MA41 
MA4lt 
MA37 
MA41 

0.31 0.59 0.01 21.5 288 288 
0.33 0.59 0.01 21.5 271 192 
0.23 10.74 0.02 62.3 481 320 
0.20 0.52 0.01 9.2 209 154 
0.40 . 0.76 0.01 22.4 159 217 
0.78 1.00 0.03 14.8 251 207 
0.71 0.61 0.03 14.4 315 205 

MA4lt I 0.07 I 0.06 I 0.01 I 0.2 I 33 I 16 
MA37 I 0.79 I 1.32 I 0.01 I 26.0 I 284 I 210 

MA4 1 
MA4lt 
MA37 
MA41 
MA4lt 
MA37 
MA41 

0.96 2.20 0.04 73.9 754 575 
1.95 . 3.79 0.04 208.2 1276 1037 

' 1.12 5.79 0.04 94.6 728 643 
1.00 2.04 0.04 63.6 731 546 
1.45 3.44 0.04 168.2 1196 937 
1.10 1.52 0.05 19.3 320 275 
1.75 0.96 0.05 18.0 447 276 

MA41t I 0.76 I 0.61 I 0.03 I 14.4 1 315 I 205 
MA37 I 1.16 I 5.61 I 0.05 I 80.7 I 674 I 615 

MA4lt I 1.83 I 0195 I 0.05 [ 18.0 1. 447 I 2 76 
MA37 I 5.82 I 40169 I 0.04 I 586.6 I 1939 I 1147 
MA41 1 ::23: I ::: I I 45::; I 1;:; 1 9:; 
MA4lt 
MA37 1084.25 573.08 0.18 8646.8 18121 6995 
MA41 20.09 184.04 0.19 9213.9 20756 6466 
MA41t 21.81 175.69 0.17 8973.5 18579 6389 

Table 7.1: A comparison of MA37 and MA41 on unsymmetric assembled problems. 
(Threshold parameter 0.1). t denotes the matrix is first preordered to have a zero-free 
diagonal. 
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Identifier 

BP 1600 

JPWH 991 

PORES 3 

GRE 1107 

NNC1374 

ORSREG 1 

LNS 3937 

LNSP3937 

SHERMAN3 

WEST2021 

Code Time (seconds) I Factor ops I Storage 

MA42 
MA4lt 
~ ~ 4 8  
MA38 
MA42 
MA41 
u 4 a  

MA42 
MA41 
~ ~ 4 8  

MA42 
MA41 
u 4 a  

MA42 
MA41 
~ ~ 4 a  

MA42# 
MA41 
~ ~ 4 8  

MA42# 
MA41 
u 4 a  

MA42$ 
MA41 
w 4 a  

MA42# 
U 4 1  
u 4 a  

MA42 
MA41t 
~ ~ 4 a  
MA38 

u 3 a  

w3a 

~ ~ 3 8  

~ ~ 3 8  

~ 3 a  

~ ~ 3 a  

~ ~ 3 3  

u 3 a  

Analyse 
0.06 
0.29 
0.13 

0.08 
0.23 
0.72 

0.04 
0.06 
0.20 

0.08 
0.32 
0.81 

0.10 
0.21 
1.01 

0.41 
0.75 
3.67 

0.77 
0.99 

13.39 

0.72 
1.05 

10.02 

0.69 
1.76 
5.49 

0.13 
0.37 
0.34 

Solve I I In-core I Factors 
0.076 I 18.70 I 441 341 

I 
Factorize 

0.44 
0.12 
0.03 
0.22 
0.58 
0.24 
0.24 
0.55 
0.22 
0.06 
0.09 
0.24 
1.28 
0.61 
0.35 
0.86 
0.45 
0.54 
0.44 
1.41 
1.22 
0.66 
1.65 
1.86 

35 
0.005 

Fast 
Factorize 

0.44 
0.12 
0.01 
0.07 
0.58 
0.24 
0.16 
0.17 
0.22 
0.06 
0.03 
0.08 
1.28 
0.61 
0.18 
0.22 
0.45 
0.54 
0.20 
0.34 
1.22 
0.66 
1.07 
0.58 

0.008 I 0.03 I 17 
0.106 I 21.24 I 164 I 372 
0.012 
0.006 
0.012 
0.034 
0.007 
0.003 
0.008 
0.186 
0.013 
0.007 
0.014 
0.050 
0.013 
0.010 
0.019 
0.301 
0.028 
0.016 
0.026 
0.426 
0.043 
0.033 

0.425 
0.044 
0.033 
0.059 
0.505 
0.051 
0.029 
0.046 
0.153 
0.026 
0.011 
0.021 

0.057 

4.68 138 77 
7.87 142 129 
4.72 118 76 
5.05 11 106 
0.16 33 16 
0.98 26 18 
0.18 34 20 

84.58 75 813 
20.47 282 192 
6.50 144 131 
6.19 161 101 
8.18 5 201 
9.19 209 154 
5.01 155 135 
5.64 184 129 

487.39 21 931 
14.44 315 205 
60.02 597 564 
35.91 423 318 
49.22 8 1217 
32.65 575 415 

194.75 1287 1231 

49.21 8 1209 
32.64 ,574 414 
97.46 981 926 
89.87 937 621 
58.70 16 1190 
18.03 447 276 
52.29 630 590 
32.55 520 386 
70.21 54 774 
0.35 104 45 
0.05 44 2E 
0.06 73 4: 

124.68 1097 738 

Table 7.2: A comparison of HSL codes on unsymmetric assembled problems. t denotes 
the matrix is first preordered to have a zerefree diagonal. $ denotes MC40 used to reorder 
the pattern of A + AT. 

1.70 
1.33 
4.97 
6.53 
1 .84 
1.33 
3.97 
5.62 
1.90 
0.94 
2.04 
2.34 
1.33 
0.22 
0.12 
0.85 
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1.70 
1.33 
3.38 
1.90 
1.84 
1.33 
2.43 
1.62 
1.90 
0.96 
1.26 
0.80 
1.33 
0.22 
0.03 
0.27 



MA41 is a multifrontal code. Although options exist for using it on shared memory 
parallel computers, we set the parameters to run it in sequential mode. In this default 
mode, it is similar to  an earlier HSL code, MA37, but MA41 offers more options and exploits 
high-level BLAS. The analyse phase of MA41 performs an approximate minimum degree 
ordering on the structure of  A + AT and does not consider the numerical values of the 
entries. It is thus ideally suited to nearly structurally symmetric matrices where diagonal 
entries will be suitable as pivots. The factorize phase performs numerical pivoting using 
threshold partial pivoting (choosing off-diagonal entries if necessary) so that any matrix 
can be stably factorized. The default value for the threshold parameter is 0.01. The more 
the numerical pivoting perturbs the ordering given by the analyse phase, the more work 
and storage will likely be needed for the factorization. If the matrix is very unsymmetric 
(that is for many entries uij # 0 but uji = 0), we have found that the effect of the 
perturbation to the analyse pivot sequence is much reduced if the matrix is permuted to 
have a zero-free diagonal before the analyse phase. Indeed further gains can sometimes 
be obtained by permuting entries with large modulus to the diagonal (Duff and Koster 
1996). As we shall see from the results in this section, this enables MA41 to  perform well 
on a wide range of  matrices. The solve step can be used to solve Ax = b or ATx = b, 
optionally using iterative refinement. 

For this 
comparison, both codes use a threshold parameter of 0.1 (the default value for MA37). 
In this table and the other tables of results presented in this section, a t by MA41 denotes 
that the matrix has first been preordered to have a zero-free diagonal. It is clear that, for 
many problems, MA41 offers a significant improvement over MA37, particularly in terms of 
the analyse and factorize times and the factor storage. For some problems (for example, 
WEST2021) we see the advantages which can be gained by the initial preordering. We also 
note the effect of using an approximate minimum degree ordering in MA41. The quality 
of the ordering does not vary much from the minimum degree ordering used by MA37, 
although the analyse times are significantly reduced, particularly on example PSMIGR 3. 
Because of the apparent superiority of MA41, we use MA41 and not MA37 in our comparisons. 

The code MA48 is a general sparse code using Gaussian elimination for solving 
unsymmetric systems whose coefficient matrix need not even be square. The analyse 
phase first permutes the matrix to block triangular form and then, on each submatrix 
of the block diagonal, uses a Markowitz criterion for maintaining sparsity and threshold 
partial pivoting for numerical stability (the default value of the threshold parameter is 
0.1). Although numerical factorization is performed during the analyse phase, the factors 
are not saved and the analyse phase is terminated immediately the reduced matrix is 
deemed to be sufficiently dense. The point at which this switch is made has a significant 
effect on performance and the best value is machine dependent. A subsequent factorize 
phase must then be used to generate the factors. There is a second factorize option to 
rapidly factorize a matrix with the same sparsity structure as one previously factorized 
by the routine. The solve step can be used to solve Ax = b or ATx = b, and an option 
exists for performing iterative refinement. 

In Tables 7.2 and 7.3, the results of running the HSL codes MA42 (equation input), 
MA41, MA48, and MA38 on the assembled test problems are presented. No results are given 
for MA48 for the problem WANG3 and for MA42 for the problem TWOTONE since our 
CPU limit of 30 minutes was exceeded. For MA41, the default threshold parameter of 0.01 
was used for all the tests except for problem TWOTONE. For this problem, we used a 
value of 0.1 since the solution obtained with the default value was not sufficiently accurate. 
By comparing the MA41 results in Table 7.1 with those in Table 7.2 we see that there is not 
usually much difference in the performance of  MA41 between using a threshold parameter 

In Table 7.1, the performance of MA41 is compared with that of MA37. 
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Identifier 11 Code I Time (seconds) I Factor ops I Storage 

3.7 
215.4 

2.6 
28.7 
44.9 

NS 
456.3 
392.3 

1.1 
3.0 

198.5 

PSMIGR 3 

WANG3 

GARON2 

ONETONE2 

TWOTONE 

GOODWIN 

12.4 12.4 
92.2 75.2 
59.1 45.8 
92.3 92.3 
14.8 14.8 
14.3 8.1 
36.5 6.6 
NS NS 

560.7 560.7 
163.7 143.4 
430.7 77.9 

7.7 7.7 
5.4 5.4 

85.5 68.8 
40.3 22.0 

- 
MA42 
MA41 
MA48 
MA38 
HA42t 
HA41 
MA48 
MA38 
MA42$ 
MA41 
MA48 
MA38 
MA42 
MA4lt 
MA48 
MA38 
MA42 
HA4lt 
MA48 
MA38 
MA42 
MA41 
MA48 
MA38 

0.16 
0.31 
0.20 
5.92 
0.46 
0.24 
0.48 
NS 

1.93 
0.94 
1.97 
0.38 
0.08 
0.17 
0.14 

153.6 
111.9 
69.9 

342. 
4393. 
5235. 
7687. 
601. 
281. 
159. 
NS 

59925. 
14094. 

.. 6988. 
617. 
156. 

3772. 
2169. 

72.0 
6.3 I 252.8 I 252.8 

3746 
12972 
12348 

223 
4538 
3126 
2873 
. NS 

55418 
23330 

~ 19194 

’ 2327 
10993 

~ 7700 

47 

37.2 125.7 
NS I NS I l2k; 

I 369.8 I 522.9 
7.6 I 25.0 I 25.0 

Solve I I In-core I Factors 
0.88 I 18386. I 7783 I 11346 

9214. I I 6466 
OS2O 0.09 I 10512. 12831 
0.10 I 9565. I 22945 I 6453 

13.74 I 28541. I 918 I 75983 
10438. 16420 11970 

0*46 NS 1 NS 1 NS 1 NS 
0.72 I 46956. I 55061 I 33241 
1.09 I . 1909. I 164 I 9439 

2585 
12165 
8533 

37747 
3000 
2627 
1734 

NS 
35142 
21546 
11543 
4107 
2327 

10330 
5687 

Table 7.3: A comparison of HSL codes on unsymmetric assembled problems. t denotes 
the matrix is first preordered to have a zero-free diagonal. $ denotes MC40 used to reorder 
the pattern of A + AT. Cases marked NS were not solved since the CPU limit of 30 
minutes was exceeded. 

of 0.01 as opposed to 0.1, although occasionally (for example LNS 3937) there can be a 
significant reduction in factorization time when the threshold parameter is reduced. 

In Tables 7.2 and 7.3, the “fast factorize” time is the time to factorize a matrix with 
the same sparsity structure as one which has already been factorized. For the codes MA42 
and v41, this is the same as the factorize time since these codes do not offer a fast 
factorize option. In our tests, when doing subsequent factorizations we did not have to 
change the pivot sequence chosen by the initial matrix factorization. For most of our test 
problems, the fast factorize offered a significant saving for codes MA48 and MA38. However, 
for the problem WANG3, the fast factorize offered by MA38 was si&cantly slower than 
the original factorization. 

For the assembled problems, no one code is clearly better than the others. The choice 
of code is dependent on the problem being solved. As expected, MA41 generally has the 
fastest factorize time for problems with a nearly symmetric structure. For these problems, 
the ordering obtained by applying MC40 to the pattern of A + AT enables MA42 to perform 
the matrix factorization more rapidly than both MA38 and MA48, but the frontal code has 
the disadvantage of generally producing many more entries in the factors than the other 
codes. For problems which are far from symmetric in structure, the factorize time for 
MA38 is less than the “Analyse + Factorize” time for MA48, except for matrices which are 
very sparse. Since for MA48 there is an integer associated with each real.in the sparse part 
of the factors, the storage for the MA48 factors is greater than that for MA38, unless the 
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matrix is very sparse. 
For elemental problems, we compare MA42 directly with the multifrontal code MA46 

(Damhaug and Reid 1996), which uses element input. We also assemble the elements 
and then solve the resulting assembled system with the codes MA38, MA41, and MA48. 
The multifrontal code MA46 requires the matrix to be input in the form of element-node 
connectivity lists. The analyse phase uses this unassembled form to determine the ordering 
of the nodes and builds the necessary information for the factorization and solve steps. The 
minimum degree heuristic is used to reorder the matrix. The factorization step accepts 
the tentative pivot sequence provided by the analyse step and, if necessary, modifies it 
to maintain stability. The default threshold partial pivoting parameter used by MA46 is 
0.1. Once the numerical factorization is complete, the solve step allows the user to solve 
for several right-hand sides at once. The performance of the MA46 factorization phase 
is affected by a control parameter ICNTL(8) that should be set to the size of the cache 
memory in KBytes. The code uses this parameter to subdivide matrix-matrix updates 
into blocks. The default value for ICNTL(8) is 64. The CRAY 5932 is not a cache-based 
machine so we also performed some runs with the cache-size parameter set to 0. Our 
findings are presented in Table 7.4. For the large test problems, we see that using a cache 
size of zero can reduce the factorize time significantly. For the problems considered, the 
number of operations and the storage requirements were the same for the two settings 
of the parameter. In the remainder of this section, the results presented for MA46 on the 
CRAY are for ICNTL(8) = 0, even though this is different from the default value. 

' Identifier 

TRDHEIM 

Cache Factorize 
Size Time 

(KBytes) (seconds) 
64 6.0 

TSYL2Ol 64 I 71.2 

The results of running the HSL codes MA42 (element input), MA46, MA41, MA48, and 
MA38 on the elemental problems are given in Tables 7.5 and 7.6. It is again clear that 
for these problems it is advantageous to use a code that accepts input by elements. For 
all the test problems except RAMAGEO2, MA46 had the fastest factorization time. In all 
cases, MA42 had the fastest analyse time. The analyse times for the two multifrontal codes 
MA41 and MA46 were similar for all the problems except MAN5976. For this problem, the 
analyse phase of MA46 was able to exploit the fact that each node had several variables 
associated with it. For all the problems except RAMAGEO2, the factors produced by MA41 
and MA46 required similar storage that was usually somewhat less than for the other codes. 
We remark that, whereas for the assembled problems, MA42 required more storage for the 
factors than the other codes; for the elemental problems, less storage is required for the 
MA42 factors than those produced by MA48 and, for a significant number of test problems, 
the MA42 factors required less storage than the MA38 factors. 

OPT1 

CRpLAT2 

RAMAGEOS 

16 

0 55.4 
64 58.4 

0 44.6 
64 16.7 
0 16.2 

64 1706.0 
0 478.5 



Identifier 

CEGB3306 

CEGB2919 

CEGB3024 

LOCK1074 

Code 

MA42 
MA46 
MA41 
MA48 
MA38 
MA42 
MA46 
MA41 
MA48 
MA38 
MA42 
MA46 
MA41 
MA48 
MA38 
MA42 
MA46 
MA41 
MA48 

Time (seconds) 

I na re  
6 

244 
397 
450 
445 

85 
938 

1580 
2463 
2279 

18 
324 
503 
754 
713 

16 
179 
277 
397 

Analyse Factorize Solve _LI 
(Kwords) 

mctors 
450 
170 
176 
294 
221 

1087 
773 
720 

1814 
993 
593 
269 
268 
539 
416 
188 
138 
136 
292 

0.58 
0.60 
2.85 

0.10 
2.17 
2.41 

15.88 

0.19 
0.70 
0.72 
5.04 

0.14 
0.49 
0.39 
1.98 I 0.97 I 0.01 
0.27 I 0.58 I 0.04 

0.41 0.04 
0.61 0.02 
1.14 0.02 
1.55 0.02 
2.26 0.07 
1.51 0.04 
3.22. 0.03 
8.94 0.04 
7.03 0.02 
1.21 0.09 
0.54 0.05 
0.88 0.03 
2.33 0.02 
2.40 0.03 
0.41 0.02 
0.26 0.01 
0.48 0.01 
1.09 0.01 

0.69 
0.61 
2.68 

LOCK2232 

LOCK3491 

MAN5976 

0.24 
1.29 
1.24 
9.63 

0.36 
1.83 

15.68 
403.31 

MA38 
MA42 
MA46 
MA41 
MA48 
MA38 
MA42 
MA46 
MA41 
MA48 
MA38 
MA42 
MA46 
MA41 
MA48 
MA38 

0.40 
0.66 
1.39 

238 173 
399 189 
487 322 
450 212 

47 1039 
604 503 
935 482 

~ 1359 1031 
1309 706 
378 19108 

10186 9122 
15343 9879 
26801 22717 
25772 16448 

0.03 
0.02 
0.01 + 2.18 

0.95 
1.73 
4.79 
3.84 

76.13 
28.48 
49.66 

222.60 
119.74 

0.05 
0.03 
0.03 
0.03 
1.05 
0.21 
0.25 
0.42 
0.31 

- 

Factor ops 
(*lOS) 

23.3 
4.3 
5.0 
6.7 
7.0 

183.3 
111.9 
96.4 

237.8 
184.2 
39.3 
10.4 
12.0 
19.4 
33.5 
12.8 
8.5 
8.8 

15.3 
10.9 
11.0 
5.4 
7.6 
7.8 
8.2 

120.6 
37.8 
38.7 

~ 60.2 

9217.4 
3482.6 
4284.0 
8468.2 L 10457.5 

Table 7.5: 
problems. For MA46, ICNTL(8) = 0. 

A comparison of HSL. codes on Harwell-Boeing unsymmetric elemental 
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Identifier 

TRDHEIM 

TSYL2Ol 

Code 

HA46 
HA41 
HA48 
HA38 
HA42 
HA46 
HA41 
HA48 
HA38 
HA42 
HA46 
HA41 
HA48 

HA48 
11 HA38 

AEAC5081 11 HA42 

OPT1 

CRpLAT2 

i 

RAMAGE02 

Time (second 

9.0 

0.3 2.7 
1.6 
1.7 

19.7 

0.5 
11.5 
14.4 

131.8 

0.7 
16.6 
19.2 

671.8 

0.8 
14.8 
15.6 

429.1 

1.2 
7.3 
7.4 

253.0 

1.7 
2.7 
9.2 
7.2 

11.5 
6.0 

16.0 
50.8 
36.7 
85.8 
55.4 
73.3 

354.8 
153.6 
87.6 
44.6 
66.6 

241.7 
165.2 
53.4 
16.2 
24.7 

138.3 

26.2 
27.7 
NS 
NS 

478.5 
424.8 
NS 
NS 

Solve 
0.05 
0.02 
0.02 
0.02 
0.02 
0.14 
0.09 
0.05 
0.05 
0.04 
0.48 
0.16 
0.17 
0.25 
0.15 
1.04 
0.33 
0.31 
0.54 
0.30 
0.92 
0.29 
0.22 
0.40 
0.28 
1.13 
0.27 
0.21 
0.32 
0.24 
2.66 
0.69 
0.56 
NS 
NS 

- 

Factor ops 
(*lOS) 

221. 
187. 
186. 
439. 
249.. 
122. 
99. 
71. 

187. 
242. 
884. 
356. 
344. 
492. 

Storage 
(Kwords) 

1410 684 

1912 
25 

1076 
1342 
2327 
2397 

121 
4160 
8113 

11613 
691. , 11; 

7254. 15814 
7160. 20606 

15115. 37623 
13768. 32295 
11098. 
6192. 13140 
6549. 18961 

12508. 29556 

10753. 

846 
1257 
917 
794 

1922 
1378 
7221 
3847 
3734 
7700 
5273 

21955 
13310 
13119 
32673 
19961 
17891 
11057 
11079 
25665 

17547. 1 30424 I 18745 
4996. I 292 I 15056 
1687. 
1807. 
5124. 

6744 
9093 

18131 

6006 
6130 

16175 
5082. I 16073 I 10813 

55926. I 2190 I 45313 
78598. 
62140. 

NS 

57097 
55805 
NS 

39617 
35651 
NS 

NS I NS I NS 

Table 7.6: A comparison of HSL codes on'unsymmetric elemental problems. Cases marked 
NS were not solved due to excessive computation requirement. For MA46, ICNTL(8) = 0. 
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8 Performance in other environments 

In our experiments on the CRAY 5932, we have used the vendor-supplied BLAS which, 
as we noted in Section 4, have a high Megaflop rate and a fairly low 71112 value. However, 
we also performed some runs on the CRAY using a standard Fortran implementation of 
the BLAS and found that, although most factorization times increased, a few decreased 
and sometimes by a significant amount. For example, the factorization time for MA62 on 
the unordered element problem OPT1 reduced from 430 seconds with the system BLAS 
to 343 seconds with the Fortran BLAS. Similarly, the factorization time for the equation 
input to MA42 on ONETONE2 with the original ordering reduced from 92 to 51 seconds. 
On further investigation, we found that these improvements in performance were caused 
by a test within the Fortran implementation of the Level 3 BLAS kernel -GEMM for zeros 
in the outer loop whose presence suppresses an execution of the inner loop. The frontal 
matrices in MA42 and MA62 can contain a large number of zero entries if the matrix is not 
well ordered, and this is particularly true for the equation input to MA42. We can monitor 
the zeros in the front by looking at the number of zeros in the factors. For the problem 
ONETONEZ, the MA42 factors have 246*105 entries but 210*105 of these are zeros. The 
zeros in the front account for the reduction in the factorization time when the Fortran 
BLAS are used. In some experiments where we timed the Fortran implementation of -GEMM 
with matrices having a large number of zero entries, we apparently achieved performances 
that were significantly better than the peak speed of the CRAY 5932. 

In order to explore further the effect of different BLAS on the comparative behaviour 
of the codes, we performed some runs on other machines, namely an IBM RS/6000 550 and 
a DEC 7000. We show the results in Tables 8.1 and 8.2. For most of the problems tested, 
MA42 takes at least twice as long to perform the factorization on the RS/6000 compared 
with the CRAY, although the analyse times are faster on the RS/6000. By contrast, for 
the assembled problems, the factorization phase of MA48 is generally slightly faster on the 
RS/6000 than on the CRAY. This reflects the fact that the amount of integer processing 
is higher for MA48 than for the other codes and that integer processing is poorer on the 
CRAY, relative to floating-point computations, than on the other machines. We observe 
from both Table 8.1 and Table 8.2 that the time for the factorization phase of MA42 relative 
to that of MA41 is poorer on the RS/SOOO and the DEC than on the CRAY. For instance, 
for ONETONEZ, the factorize time for MA42 is approximately 6 times that for MA41 on 
the CRAY, but MA42 is almost 11 times slower than MA41 on the DEC. 

The DEC 7000 has a cache size of 4 MBytes. On this machine, the MA46 runs were 
performed with the control parameter ICNTL(8) set to 4000. For large problems, the 
factorization times on the DEC increase substantially if the default value of 64 is used. 
For the problem TSYL201, the factorization time goes up from 96 to 146 seconds but 
there was no effect on the factorization time for TRDHEIM. Even if ICNTL(8) is set to 
4000, the performance of MA46 relative to that of MA41 is poorer on the DEC than on the 
CRAY. 

The solve times for MA42 on the DEC are very high. Further investigation shows 
that the overheads for out-of-core working are considerable and reading the factors from 
the direct access files accounts for most of the solve time. For example, for TRDHEIM, 
approximately 6.8 seconds of the solve time of 7.4 seconds is used to read the factors. For 
TSYL201 the corresponding times are 22.0 and 23.2 seconds, respectively. On the DEC, 
the use of direct access files can also have a significant effect on the factorization time. If 
we hold the factors in-core, then the MA42 factorization time for TRDHEIM reduces from 
28.2 seconds to 15.8 seconds. 

’ 
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Identifier Code 

II I Analyse I F'actorize 1 Factorize I Solve 
BP 1600 11 HA42 I 0.01 I 0.96 I 0.96 I 0.06 

Time (seconds) 
I I Fast I 

HA42t 0.10 0.08 0.08 0.01 (1 HA48 I '0.07 I 0.02 1 0.01 1 0.01 

0.27 
4.29 

0.38 
p.42 

17.70 

0.05 
0.46 
0.70 

17.59 

HA38 I I 0.16 I 0.07 I 0.01 
JPWH 991 1 HA42 I 0.02 I 1.50 I 1.50 I 0.10 

0.60 0.60 0.03 
1.77 1.49 0.03 
2.57 1.17 0.05 
3.31 3.31 0.35 
1.65 1.65 0.04 
4.96 4.02 0.06 
9.50 4.06 0.09 
6.05 6.05 0.09 
5.65 5.65 0.05 
4.65 4.65 0.06 

10.33 9.59 0.07 
11.98 7.61 0.06 

HA41 0.10 0.30 0.30 0.01 11 HA48 I 0.44 I 0.25 I 0.18 I 0.01 
11 HA38 I I 0.57 I 0.25 I 0.01 

PORES3 II HA42 I '0.01 I 0.41 I 0.41 I 0.01 

0.07 I 0.01 
GRE 1107 11 MA42 I 0.04 I 4.75 I 4.75 I 0.22 

ORSREG 1 

LNS 3937 

RAMAGE01 

I 0.98 I 0.33 I 0.02 
0.20 I 3.24 I 3.24 I 0.27 

HA38 
HA421 
HA41 
HA48 
HA38 
HA42t 
HA41 
HA48 
MA38 
HA42 
HA46 
HA41 
HA48 
HA38 

- 

- 

- 

Table 8:l: A comparison of HSL codes on the RS/SOOO. t denotes the matrix is first 
preordered to have a zero-free diagonal. $ denotes MC40 used to reorder the pattern of 
A + A ~ .  
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Identifier 

PSMIGR 3 

WANG3 

ONETONE2 

GOODWIN 

TRDHEIM 

TSYL2Ol 

HA42 
HA41 
HA48 
HA38 
HA424 
HA41 

HA42 

HA48 
HA38 
HA42 
MA41 
HA48 
HA38 
HA42 
HA46 
HA41 
HA48 
HA38 
HA42 
HA46 
HA41 
HA48 
HA38 

w3a 

HA41t 

Analyse 
0.4 
4.5 

29.6 

4.1 
7.4 

0.9 
5.3 

27.5 

0.3 
0.5 

287.1 

0.1 
1.1 
3.0 

93.1 

0.1 
1.5 
3.8 

1123.3 

38.2 
28.2 ' 
7.2 
8.0 

25.9 
19.1 

190.3 
146.1 
78.2 

487.3 
205.4 

Factorize 
312.5 
133.5 
106.8 
159.4 
877.7 
110.1 
644.0 
165.2 
11.2 
7.4 

32.0 0.68 
28.2 7.38 

7.2 0.55 
8.4 0.51 

21.8 0.80 
15.5 0.66 

190.3 23.17 
96.1 1.61 
78.2 1.48 

~ 

5.88 
205.6 2.39 

Fast 
Factorize 

312.5 
133.5 
104.9 
130.7 
877.7 
110.1 
890.9 
165.2 
11.2 
5.9 

Solve 
11.76 

84.62 

5.54 
42.76 
0.45 
0.32 

10.5 I 4.6 I 0.37 
16.4 I 16.4 I 3.92 

. .  
. .  

. . .  

... . 

. .. . .. . 

Table 8.2: A comparison of HSL codes on the DEC. t denotes the matrix is first preordered 
to have a zerehee diagonal. $ denotes MC40 used to reorder the pattern of A + AT. For 
MA46, ICNTL(*) = 4000. 
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9 Conclusions 

We have shown in our runs on the CRAY 5932 that frontal codes can be a very 
powerful approach for the solution of large sparse systems and are particularly efficient for 
unassembled finite-element problems when a good ordering can be found. We notice that, 
in this case, although other approaches may result in much less fill-in, the frontal code 
is often better in terms of the analyse time and the Megallop rate and, if the factors are 
held in direct access files, is far superior in terms of main memory. Indeed, in some cases, 
this reduction in main memory requirement meant that it was feasible to solve a problem 
with our frontal schemes which could not be solved by other methods. This has indicated 
to us the desirability of developing out-of-core versions of some of our multifrontal codes. 
For most assembled problems, the use of approaches other than the frontal method might 
be better and, if a good ordering is not available, frontal methods can perform badly. 

Our experiments, reported in Section 8, suggest that it is important to exploit sparsity 
within the Level 3 BLAS, that the performance of our out-of-core frontal schemes are 
significantly affected by the efficiency of the i/o, and that it is important to exploit machine 
characteristics, such as cache, for efficient implementation. 

Finally, it is clear that the performance of some of the codes that we tested is very 
dependent on the machine and some of’the parameters, like the cache size parameter for 
MA46 and the switch to full code in MA’48. We are currently doing further tests on the 
sensitivity of the codes to such parameters and would warn against making too sweeping 
a conclusion on the merits of a code without considering the fine-tuning further. 
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