
Technical Report
RAL-TR-96- 1 02

A Comparison of Frontal Software with
Other Sparse Direct Solvers

I S Duff and J A Scott

January 1997

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

0 Council for the Central Laboratory of the Research Councils 1997

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX1 1 OQX
Tel: 01 235 445384
E-mail library@rl.ac.uk

Fax: 01 235 446403

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

RAETR-96-102

A comparison of fiontal software with other
sparse direct solvers

Iain S. DUE and Jennifer A. Scott

ABSTRACT
We compare the performance of sparse frontal codes from the Harwell Subroutine Library
(HSL) against other HSL sparse direct solvers and consider the effect of ordering on the
frontal solver. We study both the w e of assembled and massembled systems for both
symmetric positive-definite and unsymmetric matrices. We use problems arising in real
engineering or industrial applications in our tests.

Keywords: sparse matrices, frontal solver, direct methods, finite-elements, BLAS.

AMS(M0S) subject classifications: 65F05, 65F50.

Current reports available by anonymous fip from matisa.cc.rl.ac.uk (internet 130.246.8.22)
in the directory "pub/reports". This report is in file dsRAL96102.ps.g~.

Department for Computation and Information
Atlas Centre
Rutherford Appleton Laboratory
Oxon OX11 OQX
December 23, 1996.

Contents

1

2

3

4

5

6

7

8

9

Introduction 1

Frontal methods 1

Harwell Subroutine Library frontal solvers

The problems and environment for numerical testing

3

4

6 The effect of ordering and elemental form

A comparison of the frontal code MA62 with other symmetric positive-
definite HSL codes 8

A comparison of the frontal code MA42 with other HSL codes

Performance in other environments 19

Conclusions 22

11

i

1 Introduction

The frontal method (Irons 1970, Hood 1976, Duff 1984, Duff and Scott 1993, Duff and
Scott 1996a) is a technique for the direct solution of linear systems

where A is a large sparse matrix. This approach has the merit of rather simple logic and
relatively little data movement and integer overhead. The floating-point arithmetic can
be performed using dense linear algebra kernels so that the computational rate, measured
in Mflop/s, is high. However, unless the matrix can be ordered so that the front is never
very large, frontal methods require many more floating-point operations for factorization
than other approaches. It is thus interesting to see how this trade-off works in practical
applications, and this is the main theme of this paper.

Although frontal methods can be used to factorize assembled matrices, the power of
the method, as we illustrate in Section 5, is more apparent when the matrix A comprises
contributions from the elements of a finite-element discretization. That is,

m
A = CA('), (L2)

1=1

where A(') is nonzero only in those rows and columns that correspond to variables in the
Ith element.

In Section 2, we discuss salient features of the frontal method and show how the
computational kernel consists of -GEMM, the Level 3 Basic Linear Algebra Subprogram
(BLAS) that implements dense matrix-matrix multiplication (Dongarra, Du Croz, DUE
and Hammarling 1990). We briefly discuss, in Section 3, the codes that are available in the
Harwell Subroutine Library (HSL 1996) for frontal solution and associated computation.
We use test matrices from real problems occurring in engineering or industry in the
subsequent experiments in our paper and we discuss their origins and characteristics in
Section 4. In Section 5 we consider the effect of reordering the system, the preassembly
of element problems, and the disassembly of assembled matrices. We compare our frontal
codes with other Hamell Subroutine Library codes in Sections 6 and 7, considering
symmetric positive-definite and unsymmetric systems respectively. We present some
concluding remarks in Section 9.

2 Frontal methods

It is easiest to describe the frontal method by reference to its application to elemental
problems where A is of the form (1.2). If ej and U$) denote the (i , j) th entry of A and
A(1), respectively, the basic assembly operation when forming A is of the form

It is evident that the basic operation in Gaussian elimination

may be performed as soon as all the terms in the triple product (2.2) are fully summed
(that is, are involved in no more sums of the form (2.1)). The assembly and Gaussian

- elimination processes can therefore be interleaved and the matrix A is never assembled

1

explicitly. This allows all intermediate working to be performed in a dense matrix, termed
the frontal mat&, whose rows and columns correspond to variables that have not yet been
eliminated but occur in at least one of the elements that have been assembled.

For non-element problems, the rows of A (equations) are added into the frontal matrix
one at a time. A variable is regarded as fully summed whenever the equation in which
it last appears is assembled. The frontal matrix will, in this case, be rectangular. A full
discussion of the equation input can be found in Duff (1984).

We now describe the method for element input in more detail. After the assembly of
an element, if all the fully summed variables are permuted to the first rows and columns
of the frontal matrix, we can partition the frontal matrix F in the form

Fll F12
F = (F2l F22)’

where F11 is a square matrix of order k and F22 is of order k1 x kl. Note that k+kl is equal
to the current size of the frontal matrix, and k << kl, in general. The rows and columns of
F11, the rows of F12, and the columns of F21 &re fully summed; the variables in F22 are not
yet fully summed. Pivots may be chosen from anywhere in F11. For symmetric positive-
definite systems, they can be taken from the diagonal in order but in the unsymmetric
case, pivots must be chosen to satisfy a threshold criteria. This is discussed in Duff (1984).
The pivot row and column are permuted to the first row and column of (2.3), row 1 of
F11 is scaled by the pivot and columns 2 to k of the permuted frontal matrix are updated
by elimination operations. Columns 2 to k of the updated matrix F11 are then searched
for the next pivot. When chosen, the pivot row and column are permuted to row 2 and
column 2 of (2.3), row 2 of F11 is scaled by the pivot, and columns 3 to k of the frontal
matrix are updated. This process continues until no more pivots can be found. Assuming
k pivots have been chosen, F12 is then updated using the Level 3 BLAS routine -TRSM

and, finally, F22 is updated using the Level 3 BLAS routine ,GEMM

F22 + F22 + F21F12-

In practice, for a general matrix A, stability restrictions may only allow r pivots to be
chosen (r < k) and, in this case, the first r rows of F12 are updated using -TRSM and then
the remaining k - T rows of F12, together with F22, are updated using -GEMM.

If the matrix factors are held in direct access files, the frontal method can solve quite
large problems with modest amounts of high-speed memory. We remark that, because the
size of the frontal matrix increases when a variable appears for the first time and decreases
whenever it is eliminated, the order in which the elements (or equations) are assembled
is critical. Elements (or equations) should be preordered to reduce the size of the frontal
matrices. Various algorithms have been developed for doing this, and we discuss the effect
of preordering in Section 5.

For the runs in this paper, we have assumed that the original unassembled elemental
problem can be held in main memory. This is to simplify the use of ordering strategies
when used with the frontal codes. Although our ordering routines require the integer data
to be held in main memory, our frontal codes do not require this. Indeed, if it is possible
to generate element matrices on demand, the original matrix need never be computed or
stored. This is a common situation for large finite-element problems.

2

3 Harwell Subroutine Library frontal solvers

The two frontal codes that we use in the following comparisons are the code MA62 for
symmetric positive-definite systems and the code MA42 for unsymmetric problems. Both
MA42 and MA62 are for real matrices A; a version of MA42 for complex matrices, ME42,
is also available. In this section, we describe characteristics of the user interface to our
frontal solvers and briefly discuss associated software in the Harwell Subroutine Library
(HSL). Further details are given in Duff and Scott (1993 and 1996b).

The symmetric positive-definite code, MA62, only permits input by elements, whereas
the unsymmetric code, MA42, allows input by either elements or equations. For assembled
matrices with a symmetric structure, we can use the HSL routine MC37 to generate a set
of element matrices that, if assembled, would yield the same matrix. This allows us to
,run MA62 on matrices that are supplied in assembled form.

Both MA42 and MA62 use reverse communication to obtain information from the user.
The structure of the problem is first provided by the user by calling a subroutine for each
element (or equation). The primary reason for these calls is to establish when variables
are fully summed and hence are candidates for use as pivots. Thereafter, for the positive-
definite solver MA62, a set of calls to another subroutine enables an accurate forecast to be
made for the size of the files required to hold the factors and the maximum order of the
frontal matrix so that the numerical factorization can be run efficiently and reliably. For
the unsymmetric MA42 code, the use of such a prediction routine is optional and will only
give lower bounds on the relevant quantities because of the possibility of numerical pivoting
in the factorization. In these symbolic phases, only the integer indexing information for
the elements (or equations) is used. Both codes can use direct access files for the matrix
factors, and the user must define these by a simple subroutine call if this option is required.

The numerical factorization is then performed with the user required to call a further
subroutine for each element or equation. The information from the earlier symbolic
phases is used to control the pivot selection and elimination within the current frontal
matrix. Optionally, forward elimination can be performed on a set of elemental right-hand
side vectors, in which case a final back-substitution phase yields appropriate solutions.
Subsequent right-hand sides can be solved using the matrix factors, in which case the
right-hand sides are supplied as dense vectors and a single subroutine call is all that is
required. In the unsymmetric case, the same factors can be used by MA42 to solve the
equation ATx = b.

Routines for preordering elements for the frontal solvers have been developed using
logic similar to that for bandwidth minimization. The HSL code MC43 (Duff, Reid and
Scott 1989b) offers the choice of basing the ordering on the element structure or on the
usual sparse matrix pattern. These two approaches are termed direct and indirect element
ordering, respectively. There is little difference in the quality of the ordering from the two
approaches but, for the case where we use MC37 to generate elements from the assembled
matrix, we use the indirect algorithm because many small elements are generated so that
the former option is much slower. For example, MC37 generates 12992 elements for the
test problem BCSSTK15 of order 3948 (see Section 4). The times taken by MC43 using
the direct and indirect options on a single processor of a CRAY 5932 were 10.4 and 2.0
seconds, respectively.

The HSL code MC40 can be used to order symmetrically structured matrices. Since
MC40 provides an ordering for the elimination of the variables and the equation input to
MA42 needs an ordering for the assembly of the rows, we scan the rows and first order all
rows in which the f i s t variable in the elimination ordering appears, then those unordered
rows in which the second variable appears, and so on.

3

Other auxiliary routines for the HSL frontal codes concern their use for elemental
problems in a parallel computing environment. In this case, the user partitions the
underlying finite-element domain into subdomains and applies MA42 (element input) to
each subdomain. The HSL package MA52 is then used in completing the solution on the
whole domain. This is discussed by Duff and Scott (1994). Ordering schemes have been
developed to exploit this different structure (Scott 1996).

It is worth pointing out that there are several criteria on which orderings for frontal
or variable-band methods can be based. If the generic entry in the matrix A of order n is
aij, then the semi-bandwidth is defined as

max (i - j) }
l<i<n aij#O,j=l,..i max {

and is an appropriate measure for a variable-band code of the type we consider further in

. .

gives a better measure of both the storage and work required. More appropriate measures
for frontal schemes are based on the front size, that is the order of the frontal matrix (2.3)
after assemblies but before eliminations. If we denote by f i the front size after assembly of
element i , then an important measure, particularly for computing the amount of in-core
storage required, is the maximum front size

where there are m assembly steps. A prediction of the work involved in the frontal
algorithm can be obtained from the root-mean squared front size (rms front size) defined

We will use these measures in our later comparisons.

4 The problems and environment for numerical testing

In this section, we describe the test problems that we use for the comparisons in this
paper and the environment for our numerical testing. All the test problems arise in real
engineering and industrial applications. A brief description of each of the unasembled
finite-element test problems is given in Table 4.1. The first seven problems are from the
Harwell-Boeing Collection (Duff, Grimes and Lewis 1989a, Duff, Grimes and Lewis 1992),
the RAMAGEOl and RAMAGE02 problems are from Alison Ramage of the University of
Strathclyde (Ramage and Wathen 1993), the problem AEAC5081 is from Andrew Cliffe
of AEA Technology, and the remaining problems (TRDHEIM, CRPLAT2, OPT1, and
TSYL201) were supplied by Christian Damhaug of Det Norske Veritas, Norway. The
problem MAN5976 is a condensed version of a matrix from structural engineering. For
this problem, we assume that there are three variables at each node, giving a total of
17928 variables. For each of the finite-element test problems, values for the entries of the
matrix were generated using the HSL pseudo-random number generator FAO1. For the
symmetric positive-definite test cases, each element was made symmetric and diagonally

4

Identifier

CEGB3306
CEGB2919
CEGB3024
LOCK1074
LOCK2232
LOCK3491
MAN5976
RAMAGE01
AEAC5081
TRDHEIM
TSYL201
OPT1
CRpLAT2
RAMAGE02

Identifier

BCSPWR.10
BCSSTK15
BCSSTK18
B P 1600
GRE 1107
JPWH 991
LNS 3937
LNSP3937
NNC1374
ORSREG 1
PORES 3
SHERMAN3
WEST2021
PSMIGR 3
WANG3
GARON2
ONETONE2
TWOTONE
GOODWIN

Number of I Number of.

Order

5300
3948
3948
1600
1107
991

3937
3937
1374
2205

532
5005
2021
3140

26064
13535
36057

120750
7320

variables I
3222
2859
2996
1038
2208
3416

17928
1476
5081

22098
20685
15449
18010
16830

elements
791
128
551
323
944
684
784
128
800
813
960
977

3152
1400

Description/discipline

2.5D Ramework problem
3D cylinder with flange
2D reactor core section
Lockheed gyro problem
Lockheed tower problem
Lockheed cross-cone problem

3D Navier-Stokes
Double glazing problem
Mesh of the 'Ikondheim fjord
Part of oil production platform
Part of oil production platform
Corrugated plate field
3D Navier-Stokes

Structural engineering

Table 4.1: The unassembled finiteelement test problems

dominant. Unless stated otherwise, the elements were preordered using MC43 before the
frontal solvers were called.

The assembled matrices are shown in Table 4.2. The first fourteen problems are
taken from the Harwell-Boeing Collection, the remaining problems WANG3, GARON2,
ONETONE2, TWOTONE, and GOODWIN were supplied to us by Tim Davis, University
of Florida. For the assembled problems, if numerical values were provided with the matrix,
these values are used in our experiments. Otherwise, FAO1 is used to generate numerical
values. For element input to the frontal solvers, the symmetrically structured problems
were f i s t converted to an equivalent element& form using MC37.

All the HSL codes used in our numerical experiments have control parapleters with
default values. Unless otherwise stated, we use these defaults in each case, even if different
codes sometimes choose a different value for essentially the same parameter.

Number of
entries

13571
60882
80519

4841
5664
6027

25407
25407
8606

14133
3474

20033
7353

543162
177168
390607
227628

1224224
324784

Description/discipline

Eastern US Power Network
Model of an offshore platform
Nuclear power station
Basis matrix from LP problem
Simulation studies in computer systems
Circuit physics modelling
Fluid flow modelling
Fluid flow modelling
Nuclear reactor core modelling
Oil reservoir simulation
Oil reservoir simulation
Oil reservoir simulation
Chemical engineering
Population migration
3D semiconductor device simulation
2D Navier-Stokes
Harmonic balance method
Harmonic balance method
Nonlinear fluid mechanics problem

Table 4.2: The assembled test problems. First three problems are symmetric.

5

The experimental results quoted in this paper were obtained on a single processor
of a CRAY 5932 using 64-bit floating-point arithmetic, and the vendor-supplied BLAS.
In separate runs on the Level 3 BLAS subroutine SGEMM, we found that its peak
performance (rm) was 195 Mflop/s attained on dense matrices of order greater than 500,
that for matrices of order 100 the performance was 186 Mflop/s, and that the vector length
for half peak (qp) was 20. With the exception of the code VBAN (see Section 6), all the
codes used in our experiments are written in Fortran 77 and were compiled using the
C M Y Fortran compiler cf77-7, with compiler option -Zv. The Fortran 90 code VBAN was
compiled with the CRAY Fortran compiler f90, with default options. All times quoted are
CPU times in seconds and include the i/o overhead for the codes that use direct access
files. In some of our tables of results, the string “NS” is used to denote that we were
unable to run the code. This is usually because the CPU time required for factorization
exceeded 30 minutes. We discuss the performance of the BLAS and the effect of using
other computers for the experiments in Section 8.

In the tables of results presented in this paper, the “In-core” storage figures are the
minimum in-core storage requirements for performing the matrix factorization and solving
the linear system Ax = b. This figure includes both real and integer storage. Since, on
the CRAY, both integers and reals are stored in 64-bit words, the value is just the sum
of the number of real and the number of integer words needed. We remark that if this
minimum in-core storage is used, the performance of the codes in our study will often be
considerably degraded since either a large number of data compressions must be performed
or a large number of records written to direct access files. In all the tables in which the
number of floating-point operations (“ops”) are quoted, we count all operations (+,-,*,/)
equally. For the frontal codes, the operation counts assume that there are no zeros in the
frontal matrices.

We note that the “Solve” times quoted in the tables of results are for a single right-
hand side b and do not include the time required to perform iterative refinement. It should
be noted, however, that some of the problems in our test set are so ill-conditioned that
iterative refinement is needed for accurate solutions.

5 The effect of ordering and elemental form

As explained in Section 3, the order in which the elements or equations are presented to
the frontal solver has a significant effect on its performance. We have already reported on
the effect of element ordering on the unsymmetric frontal solver in Duff et al. (1989b). For
unsymmetric assembled problems, the Harwell Subroutine Library does not contain the
equivalent of a profile minimizer but, for problems with a nearly symmetric structure, a
good ordering for MA42 can be obtained by applying the profile reducing code MC40 to the
pattern of A + AT. The unsymmetric test problems ORSREG 1, LNS 3937, LNSP3937,
SHERMAN3, WANG3, and GARON2 have sparsity patterns which are symmetric or
nearly symmetric (LNSP3937 is a permutation of LNS 3937). For these problems, we
show the effects of the ordering on MA42 in Table 5.1. We see that a significant reduction
in the profile is achieved for each of the problems except LNSP3937, where there was
an excellent initial ordering. This is reflected in the much lower factorization times and
operation counts, although we note that the effect of using Level 3 BLAS means that
the poorer orderings have a higher Megaflop rate so that the ratio of times, before and
after ordering, is not as high as the operation count ratio. The increase in the analyse
time between “before” and “after” is the time taken to run MC40. The GARON2 problem
was not solved with the original ordering since the analyse phase showed that the frontal
matrix must be of order 11975 x 13535 (13535 is the order of the matrix A in this example).

6

Identifier Profile Number of ops Analyse time
(*103) (*108) (seconds)

Before After Before After Before After
ORSREG 1 789 157 12.65 0.49 0.15 0.43
LNS 3937 5616 204 95.11 0.49 0.27 0.31
LNSP3937 236 204 0.76 0.49 0.27 0.32
SHERMAN3 917 197 6.01 0.59 0.33 0.71
WANG3 22671 12844 804.01 285.41 1.80 5.87
GARON2 82220705 2059844 NS 1908.76 1.58 7.09

Table 5.1: The results of using MC40 to order matrices with a nearly symmetric pattern
for MA42 equation input. The GARON2 problem was not solved with the original ordering
due to excessive storage requirement.

Factorization time
(seconds)

Before After
12.94 1.22
96.29 1.70
2.15 1.84
7.73 1.90

643.84 252.79
NS 24.99

In Table 5.2, we show the results of using the element ordering code MC43 with our
symmetric positive-definite frontal solver, MA62. In some cases, a significant reduction
in the maximum and root mean squared (rms) front sizes are obtained and this is again
reflected in the reduced factorization times and operation counts. We note that, in all
cases, the original order is that provided by the application and, in most instances, this
was believed, by the originator of the problem, to be a “good7’ element order. Having
generated a new ordering, MC43 compares the maximum front size of the new ordering
with that of the original ordering, and then returns to the user the ordering with the
smallest maximum front size. However, it is possible that by doing this MC43 rejects the
ordering with the smallest rms front size (and hence the ordering which would give the
smallest operation count and factorization time when used with the frontal solver). In our
experiments we therefore made a minor alteration to MC43 so that the ordering with the
smallest rms front’ size was selected, even if the maximum front size was increased. We see
the effect of this on test problems AEAC5081 and TRDHEIM. We note, from the results
in Table 5.2, that usually there is a similar reduction in maximum front size and rms front
size, and that the number of operations is reduced by a factor of roughly the square of the
reduction in the rms front size. The “BLAS effect” is again seen in the lower reduction of
factorization time compared with the reduction in operation count.

As observed earlier, the unsymmetric frontal code MA42 has both an equation and
an element input. We can thus compare the efficiency of a frontal code on the original
elemental problem and its assembled form. To try and make a valid comparison, we
use MC43 to obtain an ordering for MA42 in the former case and MC40 for the ordering
in the latter. We can also take a symmetrically structured problem and split it into
elements using MC37, and then run MA42 on the elemental and assembled forms, again
preordering with MC43 and MC40, respectively. We show the results from these runs in
Table 5.3. Not unexpectedly, the factorization times and storage are less when advantage
is taken of the element structure in the elemental problems. Indeed the assembled matrix
typically requires almost twice the time and storage over using the unassembled elemental
formulation. However, perhaps more surprisingly, it is better to “disas~emble~~ assembled
problems, although the gains are slightly less in this case. These results suggest that, when
using a frontal solver, we should avoid preassembling an elemental problem and that, for
symmetrically structured assembled problems, significant savings in both the factorization
time and the storage required by the factors can be achieved by generating an equivalent
elemental problem, reordering the elements, and using the element input offered by MA42.

7

Identifier

CEGB3306
CEGB2919
CEGB3024
LOCK1074
LOCK2232
LOCK3491
MAN5976
RAMAGEOl
AEAC5081
TRDHEIM
TSYL2Ol
OPT1
CRPLAT2
RAM AGE02

rms front size
I

Max front size Number of ops
(*108)

Before
354
348
152
810

1266
834
197
457
150
276

1200
2681
1564
1717

After
78

291
132
126
72

217
205
372
161
348
540
983
538

1452

. I

Before I After I Before I After
123.5 I 30.2 I 2.1 I 0.2

Before
2.5
1.4
0.8
2.4

11.1
10.7
3.0
1.7
1.9
7.1

106.5
430.1
231.8
279.5

48.7
48.0

333.5
484.9
247.8
66.12
102.7
57.5
37.5

187.8
507.7
494.1
432.3

After
0.6
1.3
0.7
0.3
0.4
1.3
2.9
1.3
1.6
7.1

45.1
44.3
29.8

203.2

65.65
83.7

35.7
112.7
156.9
153.7
375.0

Identifier Factorization time
(seconds)

elements assembled
CEGB3306 1.0 1.8
CEGB2919 2.3 5.9
CEGB3024 1.2 1.9
LOCK1074 0.4 0.7
LOCK2232 0.6 0.9
LOCK3491 2.2 4.5
BCSPWR.10 2.7 2.1
BCSSTK15 7.3 12.9
BCSSTK18 57.7 81.5

4.89

154.3
633.8
252.2
378.3

Storage
(Kwords)

elements assembled
450 929

1087 2052
593 962
188 260
261 385

1039 1832
821 1452

3230 4184
11397 20770

1.0
0.2
0.1
0.1
0.7

4.88
1.2
0.7
4.9

65.3
56.6
26.0

282.7

Table 5.2: The results of using the MC43 ordering with MA62. The root mean-squared front
size is .denoted by “rms front size”.

6 A corn
symme

Table 5.3: The effect of preassembly on MA42.

?arison of the frontal code MA62 with other
;ric positive-definite HSL codes

In this section, we examine the performance of the frontal code MA62 and compare it with
the HSL code MA27 and the code VBAN, which is a development version of the HSL code
MASS.

The code MA27 uses a multifrontal algorithm (Duff and Reid 1982, Duff and Reid 1983).
During the analyse phase, pivots are selected from the diagonal using the minimum degree
criterion. During the factorization, this pivot sequence may be modified to maintain
numerical stability, and 2 x 2 diagonal block pivots can also be used. By this means, MA27
can stably factorize symmetric indefinite problems. However, if the matrix is known to be
positive definite, the user can set a parameter in the calling sequence so that a logically
simpler path in the code is followed. In all our tests using MA27, this option was used.

Our colleague John Reid at the Rutherford Appleton Laboratory is currently
developing a variable-band code for the solution of systems of equations whose matrix is

8

symmetric and positive-definite. It does no interchanges and takes advantage of variation
in bandwidth. The code optionally uses a direct access file to store the matrix factor. The
intention is that the new HSL code MA55 will replace the HSL code MA36. At present, the
development code is written in Fortran 90. A Fortran 77 version of MA55 will be made
available in the future. In our comparisons, we have used an early version of MA55 that
only uses Level 1 BLAS. It is intended that the MA55 code will use blocking and Level 3
BLAS. We have called this early version VBAN in the tables and in the following text.

We compare the three codes, first on our set of elemental problems described in
Table 4.1, then on the symmetric assembled matrices (the f i s t three problems in Table 4.2).
In the former case, the matrices are assembled before calling MA27 and VBAN; in the latter
case, an elemental problem is first created from the assembled problems using MC37, before
calling MA62. In neither case is the cost of this preprocessing included in the times quoted
in Table 6.1. Since the efficiency of VBAN depends upon the equations being ordered for
a small profile, the assembled matrix is ordered using MC40 prior to calling VBAN, and the
time taken to do this is given as the “Analyse” time for VBAN. For MA62, the “Analyse”
time is the time needed to order the elements using MC43 together with the time for the
symbolic phases discussed in Section 3. For MA27, the “Analyse” time is that taken to select
the pivot sequence using the minimum degree criterion and prepare the data structures
for subsequent numerical factorization. It is interesting that this more complicated MA27
analyse is usually faster than the “bandwidth reordering” for VBAN. This highlighted for
us some deficiencies in the MC40 ordering code which we are now attempting to rectify.
Similar deficiencies are also present in the MC43 code but are masked in the case of the
elemental matrices (see analyse times for MA62‘in these cases) because the ordering works
with the connectivity pattern of elements rather than variables. We note that the analyse
times for MA62 for the assembled problems are usually closer to the VBAN analyse times.

Neither the MA27 nor the VBAN code use Level 3 BLAS. Although the CRAY 5932 is
not the best machine to see the importance of this (since Level 1 BLAS perform rather
well on this machine), we note that quite often MA62 will require less time for factorization
than VBAN although it needs more floating-point operations. In most cases, we see that the
minimum degree ordering as expected performs a much better job of reducing the number
of entries in the factors than our “band” orderings; sometimes there are nearly four times
fewer entries in the factors for MA27 than for the better of the other codes, although the
advantage is not usually so marked for the elemental problems. The number of entries in
the factors is slightly less for‘VBAN than for MA62 for the elemental problems, because the
blocking in MA62 for Level 3 BLAS creates additional zero entries in the factors. MA62 is
generally much worse on the assembled matrices since, for these problems, MA62 seldom is
able to choose a large enough pivot block size (order of F11 in (2.3)) to offset the costs of
having to store integer information on the factors. Both VBAN and MA62 store their factors
in direct access files and so, as expected, usually require much less “In-core” than MA27.
However, VBAN sometimes requires a lot of in-core storage (for example, BCSSTK15).
This will happen if there is just a single row of high bandwidth towards the end of the
reordered matrix. For the simple variable-band scheme used by VBAN, this would require
that many previous rows needed to update this be held in memory. The fiontal code does
not suffer from this problem; the only effect is to add one to the front size for most of the
computation. One remedy is to develop better orderings for the variable-band scheme and
this is currently being studied.

In nearly all cases, the use of a minimum degree ordering by MA27 gives a substantially
lower operation count for the factorization and much less storage for the factors. The
RAMAGEOZ problem, however, requires considerably more in-core storage and operations
for the factorization when using the minimum degree ordering. To check that it was indeed

9

t

Analyse
0.4
0.5
0.2
1.9
2.6

EEGB3306

CEGB2919 MA27
VBAN

Factorize Solve
0.6 0.03
1.1 0.04
0.6 0.08
3.6 0.04

, 3.7 0.05

LOCK1074

LOCK2232

Factor ops
(*lOS)

2.1
11.6
14.6
57.3

110.6

VBAN 0.8 1.3 0.04 17.7 106 219
MA62 0.2 I 0.7 0.10 23.1 18 295
MA27 0.3 0.5 0.01 4.9 109 71
VBAN 0.4 0.5 0.01 6.0 29 77
MA62 0.1 0.3 0.03 7.8 16 94
MA27 0.4 0.6 0.02 2.7 133 a3
VBAN 0.5 0.6 0.02 4.6 11 99

Storage
(Kwords)

590 384
402 526

MA62

11 MA62 I 0.1 I 1.3 I 0.08 I 99.5 I 542
CEGB3024 11 MA27 I 0.6 I ' 1.0 I 0.04 1 7.1 I 175 I 146

0.3 I 0.4 I 0.05 I 7.3 I 5 1 130

RAMAGEOl

AEAC5081

VBAN 1.3 3.0 0.05 65.4 322 428
MA62 0.2 , 1.3 0.12 67.3 47 518
MA27 1.3 4.0 0.03 94.0 549 345
VBAN 2.6 I 3.3 0.03 122.7 243 401
MA62 0.1 1.3 0.06 116.2 139 414
MA27 1.3 3.1 0.08 44.4 526 430
VBAN 1.5 3.7 0.07 69.8 95 564

OPT1

11 MA62 I 0.3 I 1.6 I 0.16 I 69.5 I 24 I 626
TRDHEIM 11 MA27 I 10.8 I 17.7 I 0.27 I 211.0 I 2893 I 2002

VBAN 22.3 96.4 1.18 5262.0 2079 10231
MA62 0.7 45.1 1.16 5532.6 292 10964
MA27 11.9 77.1 0.32 3648.9 7741 5975
VBAN 20.7 74.2 0.86 4116.5 3315 7215

11 VBAN I 15.3 I ~ 19.6 I 0.39 1. 459.0 I 798 1' 2958

RAMAGE02

11 MA62 I 0.6 I 7.3 I 0.55 I 491.6 I 121 I 3601
4285.0 I 8922 I 7069 TSYL2Ol 11 MA27 I 13.6 1 90.0 I 0.40 I

VBAN 9.4 54.9 0.77 2475.8 2276 6406
MA62 1.2 29.8 1.25 2597.0 290 7521
MA27 20.4 , 783.0 1.05 44988.9 30569 21297

2.16 29922.7 3692 21787 VBAN 39.1 I 338.3

BCSSTK18
.

]I MA62 I 0.8 I 44.3 I 1.01 I 5657.3 I 966 I 8936
CRPLAT2 11 MA27 I 5.3 I 40.2 I 0.30 I 1623.8 I 4554 I 3815

VBAN 1.0 7.0 0.08 230.7 524 904
MA62 2.9 , 4.8 0.36 253.2 144 1780
MA27 5.1 6.9 0.17 142.6 890 797

1043.2 1987 3097 VBAN 2.2 22.4 0.22
236 5709 MA62 4.9 , 16.3 1.16 1043.5

11 MA62 I 1.4 I 203.2 I 2.15 I 28272.8 I 2108 I 22646
BCSPWRlO (1 MA27 I 0.5 I 0.4 I 0.06 I 0.3 I 56 I 56

11 VBAN I 0.3 I ~ 1.1 I 0.05 I 9.5 I 71 I 205
11 MA62 I 1.2 I 1.2 I 0.22 I 11.1 I 4 1 41 1

BCSSTK15 11 MA27 I 2.7 I ' 7.1 I 0.07 I 219.4 1 951 I 788

Table 6.1: A comparison of MA62 and MA27 on symmetric positive-definite systems

10

the minimum degree ordering that caused the high operation count for the factorization, we
ran MA27 using the ordering produced by MC40 for VBAN. This reduced the operation count
for MA27 to the same as for VBAN, so we can offer RAMAGE02 to the community as an
example showing poor performance of minimum degree when used with a multifrontal
scheme. We intend to investigate this problem further. Interestingly the number of
operations to factorize this matrix if ordered by the approximate minimum degree ordering
(Amestoy, Davis and Duff 1996) is 34762 million, significantly less than that for minimum
degree. The fact that the approximate minimum degree ordering can do better on a
problem on which the minimum degree ordering does badly is also seen in the results of
Rothberg and Hendrickson (1996) and others.

It is apparent, from our results, that the frontal code performs well on unassembled
finite-element problems, particularly in the analyse and numerical factorization phases.
The benefit of holding the factors out-of-core in order to reduce the maximum amount of
storage needed to perform the factorization is evident from the MA62 results for both
assembled and unassembled matrices. However, storage for the factors is usually far
greater for the frontal method and this is reflected in the much poorer times for subsequent
solution, although it should be mentioned that MA62 is more efficient if multiple right-hand
sides are being solved at the same time. For example, for problem OPT1, the solve times
for MA62 for a single right-hand side and for 10 right-hand sides are 1.01 and 3.98 seconds,
respectively (see Duff and Scott (1996b) for further results). It is not generally advisable
to use a frontal method on an assembled matrix.

7 A comparison of the frontal code MA42 with other HSL
codes

In this section, we compare the performance of the frontal code MA42 for unsymmetric
problems with some other sparse direct codes from the H m e l l Subroutine Library. We
consider both assembled and unassembled problems. In the unsymmetric case, we have
several alternative HSL codes available, although unlike MA42 none hold the matrix factors
out-of-core.

All of the codes that we compare in this section will not accept a potential entry of the
reduced matrix, aij say, as a pivot in Gaussian elimination unless it satisfies an inequality
of the form

laijl 2 U. l s k l n m m l a k j l i

although the exact test differs from code to code. This type of numerical pivoting is called
threshold partial pivoting and the parameter U is called the threshold parameter.

We first consider codes for problems which are supplied in assembled form. For these
problems, we compare the MA42 equation input with the HSL codes MA38 (Davis and Duff
1993), MA41 (Amestoy and Duff 1989), and MA48 (Duff and Reid 1993, Duff and Reid 1996).
As discussed earlier, for test problems with a nearly symmetric pattern, the equations are
preordered for MA42 by applying MC40 to the pattern of A + AT but for the remaining
problems, the original ordering will be used for MA42.

The code MA38 is based on a combined unifrontal/multifrontal algorithm (Davis and
Duff 1995) and uses an approximate minimum degree ordering (Amestoy et al. 1996).
MA38 does not have separate analyse and factorize phases, but can rapidly factorize a
matrix with the same sparsity pattern as one which it has previously factorized. During
the factorization, threshold partial pivoting is used, with a default threshold parameter
of 0.1. The solve step can be used to solve Ax = b or ATx = b, and an option exists for
performing iterative refinement.

11

. . . .

Code Time (seconds)

Analyse Factorize Solve
MA37 3.59 7.34 0.01
MA41 0.46 1.51 0.03

Identifier r Factor ops Storage
(*lOS) (Kwords)

In-core Factors
104.9 687 349
100.3 697 334

LNS 3937

LNSP3937

SHERMAN3

WEST2021

PSMIGR 3

MA41

MA37
MA41

MA4lt
0.22 0.23 0.01 4.7 138 77
0.24 0.23 0.01 4.7 138 77
0.06 0.07 0.01 0.1 16 15
0.06 0.06 0.01 0.2 33 16

MA4lt I 0.28 I 0.11 I 0.01 I 0.8 I 68 I 35
MA37 I 0.33 I 0.37 I 0.01 I 4.4 I 108 I 74

MA41
MA4lt
MA37
MA41
MA4lt
MA37
MA41

0.31 0.59 0.01 21.5 288 288
0.33 0.59 0.01 21.5 271 192
0.23 10.74 0.02 62.3 481 320
0.20 0.52 0.01 9.2 209 154
0.40 . 0.76 0.01 22.4 159 217
0.78 1.00 0.03 14.8 251 207
0.71 0.61 0.03 14.4 315 205

MA4lt I 0.07 I 0.06 I 0.01 I 0.2 I 33 I 16
MA37 I 0.79 I 1.32 I 0.01 I 26.0 I 284 I 210

MA4 1
MA4lt
MA37
MA41
MA4lt
MA37
MA41

0.96 2.20 0.04 73.9 754 575
1.95 . 3.79 0.04 208.2 1276 1037

' 1.12 5.79 0.04 94.6 728 643
1.00 2.04 0.04 63.6 731 546
1.45 3.44 0.04 168.2 1196 937
1.10 1.52 0.05 19.3 320 275
1.75 0.96 0.05 18.0 447 276

MA41t I 0.76 I 0.61 I 0.03 I 14.4 1 315 I 205
MA37 I 1.16 I 5.61 I 0.05 I 80.7 I 674 I 615

MA4lt I 1.83 I 0195 I 0.05 [18.0 1. 447 I 2 76
MA37 I 5.82 I 40169 I 0.04 I 586.6 I 1939 I 1147
MA41 1 ::23: I ::: I I 45::; I 1;:; 1 9:;
MA4lt
MA37 1084.25 573.08 0.18 8646.8 18121 6995
MA41 20.09 184.04 0.19 9213.9 20756 6466
MA41t 21.81 175.69 0.17 8973.5 18579 6389

Table 7.1: A comparison of MA37 and MA41 on unsymmetric assembled problems.
(Threshold parameter 0.1). t denotes the matrix is first preordered to have a zero-free
diagonal.

12

Identifier

BP 1600

JPWH 991

PORES 3

GRE 1107

NNC1374

ORSREG 1

LNS 3937

LNSP3937

SHERMAN3

WEST2021

Code Time (seconds) I Factor ops I Storage

MA42
MA4lt
~ ~ 4 8
MA38
MA42
MA41
u 4 a

MA42
MA41
~ ~ 4 8

MA42
MA41
u 4 a

MA42
MA41
~ ~ 4 a

MA42#
MA41
~ ~ 4 8

MA42#
MA41
u 4 a

MA42$
MA41
w 4 a

MA42#
U 4 1
u 4 a

MA42
MA41t
~ ~ 4 a
MA38

u 3 a

w3a

~ ~ 3 8

~ ~ 3 8

~ 3 a

~ ~ 3 a

~ ~ 3 3

u 3 a

Analyse
0.06
0.29
0.13

0.08
0.23
0.72

0.04
0.06
0.20

0.08
0.32
0.81

0.10
0.21
1.01

0.41
0.75
3.67

0.77
0.99

13.39

0.72
1.05

10.02

0.69
1.76
5.49

0.13
0.37
0.34

Solve I I In-core I Factors
0.076 I 18.70 I 441 341

I
Factorize

0.44
0.12
0.03
0.22
0.58
0.24
0.24
0.55
0.22
0.06
0.09
0.24
1.28
0.61
0.35
0.86
0.45
0.54
0.44
1.41
1.22
0.66
1.65
1.86

35
0.005

Fast
Factorize

0.44
0.12
0.01
0.07
0.58
0.24
0.16
0.17
0.22
0.06
0.03
0.08
1.28
0.61
0.18
0.22
0.45
0.54
0.20
0.34
1.22
0.66
1.07
0.58

0.008 I 0.03 I 17
0.106 I 21.24 I 164 I 372
0.012
0.006
0.012
0.034
0.007
0.003
0.008
0.186
0.013
0.007
0.014
0.050
0.013
0.010
0.019
0.301
0.028
0.016
0.026
0.426
0.043
0.033

0.425
0.044
0.033
0.059
0.505
0.051
0.029
0.046
0.153
0.026
0.011
0.021

0.057

4.68 138 77
7.87 142 129
4.72 118 76
5.05 11 106
0.16 33 16
0.98 26 18
0.18 34 20

84.58 75 813
20.47 282 192
6.50 144 131
6.19 161 101
8.18 5 201
9.19 209 154
5.01 155 135
5.64 184 129

487.39 21 931
14.44 315 205
60.02 597 564
35.91 423 318
49.22 8 1217
32.65 575 415

194.75 1287 1231

49.21 8 1209
32.64 ,574 414
97.46 981 926
89.87 937 621
58.70 16 1190
18.03 447 276
52.29 630 590
32.55 520 386
70.21 54 774
0.35 104 45
0.05 44 2E
0.06 73 4:

124.68 1097 738

Table 7.2: A comparison of HSL codes on unsymmetric assembled problems. t denotes
the matrix is first preordered to have a zerefree diagonal. $ denotes MC40 used to reorder
the pattern of A + AT.

1.70
1.33
4.97
6.53
1 .84
1.33
3.97
5.62
1.90
0.94
2.04
2.34
1.33
0.22
0.12
0.85

13

1.70
1.33
3.38
1.90
1.84
1.33
2.43
1.62
1.90
0.96
1.26
0.80
1.33
0.22
0.03
0.27

MA41 is a multifrontal code. Although options exist for using it on shared memory
parallel computers, we set the parameters to run it in sequential mode. In this default
mode, it is similar to an earlier HSL code, MA37, but MA41 offers more options and exploits
high-level BLAS. The analyse phase of MA41 performs an approximate minimum degree
ordering on the structure of A + AT and does not consider the numerical values of the
entries. It is thus ideally suited to nearly structurally symmetric matrices where diagonal
entries will be suitable as pivots. The factorize phase performs numerical pivoting using
threshold partial pivoting (choosing off-diagonal entries if necessary) so that any matrix
can be stably factorized. The default value for the threshold parameter is 0.01. The more
the numerical pivoting perturbs the ordering given by the analyse phase, the more work
and storage will likely be needed for the factorization. If the matrix is very unsymmetric
(that is for many entries uij # 0 but uji = 0), we have found that the effect of the
perturbation to the analyse pivot sequence is much reduced if the matrix is permuted to
have a zero-free diagonal before the analyse phase. Indeed further gains can sometimes
be obtained by permuting entries with large modulus to the diagonal (Duff and Koster
1996). As we shall see from the results in this section, this enables MA41 to perform well
on a wide range of matrices. The solve step can be used to solve Ax = b or ATx = b,
optionally using iterative refinement.

For this
comparison, both codes use a threshold parameter of 0.1 (the default value for MA37).
In this table and the other tables of results presented in this section, a t by MA41 denotes
that the matrix has first been preordered to have a zero-free diagonal. It is clear that, for
many problems, MA41 offers a significant improvement over MA37, particularly in terms of
the analyse and factorize times and the factor storage. For some problems (for example,
WEST2021) we see the advantages which can be gained by the initial preordering. We also
note the effect of using an approximate minimum degree ordering in MA41. The quality
of the ordering does not vary much from the minimum degree ordering used by MA37,
although the analyse times are significantly reduced, particularly on example PSMIGR 3.
Because of the apparent superiority of MA41, we use MA41 and not MA37 in our comparisons.

The code MA48 is a general sparse code using Gaussian elimination for solving
unsymmetric systems whose coefficient matrix need not even be square. The analyse
phase first permutes the matrix to block triangular form and then, on each submatrix
of the block diagonal, uses a Markowitz criterion for maintaining sparsity and threshold
partial pivoting for numerical stability (the default value of the threshold parameter is
0.1). Although numerical factorization is performed during the analyse phase, the factors
are not saved and the analyse phase is terminated immediately the reduced matrix is
deemed to be sufficiently dense. The point at which this switch is made has a significant
effect on performance and the best value is machine dependent. A subsequent factorize
phase must then be used to generate the factors. There is a second factorize option to
rapidly factorize a matrix with the same sparsity structure as one previously factorized
by the routine. The solve step can be used to solve Ax = b or ATx = b, and an option
exists for performing iterative refinement.

In Tables 7.2 and 7.3, the results of running the HSL codes MA42 (equation input),
MA41, MA48, and MA38 on the assembled test problems are presented. No results are given
for MA48 for the problem WANG3 and for MA42 for the problem TWOTONE since our
CPU limit of 30 minutes was exceeded. For MA41, the default threshold parameter of 0.01
was used for all the tests except for problem TWOTONE. For this problem, we used a
value of 0.1 since the solution obtained with the default value was not sufficiently accurate.
By comparing the MA41 results in Table 7.1 with those in Table 7.2 we see that there is not
usually much difference in the performance of MA41 between using a threshold parameter

In Table 7.1, the performance of MA41 is compared with that of MA37.

14

Identifier 11 Code I Time (seconds) I Factor ops I Storage

3.7
215.4

2.6
28.7
44.9

NS
456.3
392.3

1.1
3.0

198.5

PSMIGR 3

WANG3

GARON2

ONETONE2

TWOTONE

GOODWIN

12.4 12.4
92.2 75.2
59.1 45.8
92.3 92.3
14.8 14.8
14.3 8.1
36.5 6.6
NS NS

560.7 560.7
163.7 143.4
430.7 77.9

7.7 7.7
5.4 5.4

85.5 68.8
40.3 22.0

-
MA42
MA41
MA48
MA38
HA42t
HA41
MA48
MA38
MA42$
MA41
MA48
MA38
MA42
MA4lt
MA48
MA38
MA42
HA4lt
MA48
MA38
MA42
MA41
MA48
MA38

0.16
0.31
0.20
5.92
0.46
0.24
0.48
NS

1.93
0.94
1.97
0.38
0.08
0.17
0.14

153.6
111.9
69.9

342.
4393.
5235.
7687.
601.
281.
159.
NS

59925.
14094.

.. 6988.
617.
156.

3772.
2169.

72.0
6.3 I 252.8 I 252.8

3746
12972
12348

223
4538
3126
2873
. NS

55418
23330

~ 19194

’ 2327
10993

~ 7700

47

37.2 125.7
NS I NS I l2k;

I 369.8 I 522.9
7.6 I 25.0 I 25.0

Solve I I In-core I Factors
0.88 I 18386. I 7783 I 11346

9214. I I 6466
OS2O 0.09 I 10512. 12831
0.10 I 9565. I 22945 I 6453

13.74 I 28541. I 918 I 75983
10438. 16420 11970

0*46 NS 1 NS 1 NS 1 NS
0.72 I 46956. I 55061 I 33241
1.09 I . 1909. I 164 I 9439

2585
12165
8533

37747
3000
2627
1734

NS
35142
21546
11543
4107
2327

10330
5687

Table 7.3: A comparison of HSL codes on unsymmetric assembled problems. t denotes
the matrix is first preordered to have a zero-free diagonal. $ denotes MC40 used to reorder
the pattern of A + AT. Cases marked NS were not solved since the CPU limit of 30
minutes was exceeded.

of 0.01 as opposed to 0.1, although occasionally (for example LNS 3937) there can be a
significant reduction in factorization time when the threshold parameter is reduced.

In Tables 7.2 and 7.3, the “fast factorize” time is the time to factorize a matrix with
the same sparsity structure as one which has already been factorized. For the codes MA42
and v41, this is the same as the factorize time since these codes do not offer a fast
factorize option. In our tests, when doing subsequent factorizations we did not have to
change the pivot sequence chosen by the initial matrix factorization. For most of our test
problems, the fast factorize offered a significant saving for codes MA48 and MA38. However,
for the problem WANG3, the fast factorize offered by MA38 was si&cantly slower than
the original factorization.

For the assembled problems, no one code is clearly better than the others. The choice
of code is dependent on the problem being solved. As expected, MA41 generally has the
fastest factorize time for problems with a nearly symmetric structure. For these problems,
the ordering obtained by applying MC40 to the pattern of A + AT enables MA42 to perform
the matrix factorization more rapidly than both MA38 and MA48, but the frontal code has
the disadvantage of generally producing many more entries in the factors than the other
codes. For problems which are far from symmetric in structure, the factorize time for
MA38 is less than the “Analyse + Factorize” time for MA48, except for matrices which are
very sparse. Since for MA48 there is an integer associated with each real.in the sparse part
of the factors, the storage for the MA48 factors is greater than that for MA38, unless the

15

matrix is very sparse.
For elemental problems, we compare MA42 directly with the multifrontal code MA46

(Damhaug and Reid 1996), which uses element input. We also assemble the elements
and then solve the resulting assembled system with the codes MA38, MA41, and MA48.
The multifrontal code MA46 requires the matrix to be input in the form of element-node
connectivity lists. The analyse phase uses this unassembled form to determine the ordering
of the nodes and builds the necessary information for the factorization and solve steps. The
minimum degree heuristic is used to reorder the matrix. The factorization step accepts
the tentative pivot sequence provided by the analyse step and, if necessary, modifies it
to maintain stability. The default threshold partial pivoting parameter used by MA46 is
0.1. Once the numerical factorization is complete, the solve step allows the user to solve
for several right-hand sides at once. The performance of the MA46 factorization phase
is affected by a control parameter ICNTL(8) that should be set to the size of the cache
memory in KBytes. The code uses this parameter to subdivide matrix-matrix updates
into blocks. The default value for ICNTL(8) is 64. The CRAY 5932 is not a cache-based
machine so we also performed some runs with the cache-size parameter set to 0. Our
findings are presented in Table 7.4. For the large test problems, we see that using a cache
size of zero can reduce the factorize time significantly. For the problems considered, the
number of operations and the storage requirements were the same for the two settings
of the parameter. In the remainder of this section, the results presented for MA46 on the
CRAY are for ICNTL(8) = 0, even though this is different from the default value.

' Identifier

TRDHEIM

Cache Factorize
Size Time

(KBytes) (seconds)
64 6.0

TSYL2Ol 64 I 71.2

The results of running the HSL codes MA42 (element input), MA46, MA41, MA48, and
MA38 on the elemental problems are given in Tables 7.5 and 7.6. It is again clear that
for these problems it is advantageous to use a code that accepts input by elements. For
all the test problems except RAMAGEO2, MA46 had the fastest factorization time. In all
cases, MA42 had the fastest analyse time. The analyse times for the two multifrontal codes
MA41 and MA46 were similar for all the problems except MAN5976. For this problem, the
analyse phase of MA46 was able to exploit the fact that each node had several variables
associated with it. For all the problems except RAMAGEO2, the factors produced by MA41
and MA46 required similar storage that was usually somewhat less than for the other codes.
We remark that, whereas for the assembled problems, MA42 required more storage for the
factors than the other codes; for the elemental problems, less storage is required for the
MA42 factors than those produced by MA48 and, for a significant number of test problems,
the MA42 factors required less storage than the MA38 factors.

OPT1

CRpLAT2

RAMAGEOS

16

0 55.4
64 58.4

0 44.6
64 16.7
0 16.2

64 1706.0
0 478.5

Identifier

CEGB3306

CEGB2919

CEGB3024

LOCK1074

Code

MA42
MA46
MA41
MA48
MA38
MA42
MA46
MA41
MA48
MA38
MA42
MA46
MA41
MA48
MA38
MA42
MA46
MA41
MA48

Time (seconds)

I na re
6

244
397
450
445

85
938

1580
2463
2279

18
324
503
754
713

16
179
277
397

Analyse Factorize Solve _LI
(Kwords)

mctors
450
170
176
294
221

1087
773
720

1814
993
593
269
268
539
416
188
138
136
292

0.58
0.60
2.85

0.10
2.17
2.41

15.88

0.19
0.70
0.72
5.04

0.14
0.49
0.39
1.98 I 0.97 I 0.01
0.27 I 0.58 I 0.04

0.41 0.04
0.61 0.02
1.14 0.02
1.55 0.02
2.26 0.07
1.51 0.04
3.22. 0.03
8.94 0.04
7.03 0.02
1.21 0.09
0.54 0.05
0.88 0.03
2.33 0.02
2.40 0.03
0.41 0.02
0.26 0.01
0.48 0.01
1.09 0.01

0.69
0.61
2.68

LOCK2232

LOCK3491

MAN5976

0.24
1.29
1.24
9.63

0.36
1.83

15.68
403.31

MA38
MA42
MA46
MA41
MA48
MA38
MA42
MA46
MA41
MA48
MA38
MA42
MA46
MA41
MA48
MA38

0.40
0.66
1.39

238 173
399 189
487 322
450 212

47 1039
604 503
935 482

~ 1359 1031
1309 706
378 19108

10186 9122
15343 9879
26801 22717
25772 16448

0.03
0.02
0.01 + 2.18

0.95
1.73
4.79
3.84

76.13
28.48
49.66

222.60
119.74

0.05
0.03
0.03
0.03
1.05
0.21
0.25
0.42
0.31

-

Factor ops
(*lOS)

23.3
4.3
5.0
6.7
7.0

183.3
111.9
96.4

237.8
184.2
39.3
10.4
12.0
19.4
33.5
12.8
8.5
8.8

15.3
10.9
11.0
5.4
7.6
7.8
8.2

120.6
37.8
38.7

~ 60.2

9217.4
3482.6
4284.0
8468.2 L 10457.5

Table 7.5:
problems. For MA46, ICNTL(8) = 0.

A comparison of HSL. codes on Harwell-Boeing unsymmetric elemental

17

Identifier

TRDHEIM

TSYL2Ol

Code

HA46
HA41
HA48
HA38
HA42
HA46
HA41
HA48
HA38
HA42
HA46
HA41
HA48

HA48
11 HA38

AEAC5081 11 HA42

OPT1

CRpLAT2

i

RAMAGE02

Time (second

9.0

0.3 2.7
1.6
1.7

19.7

0.5
11.5
14.4

131.8

0.7
16.6
19.2

671.8

0.8
14.8
15.6

429.1

1.2
7.3
7.4

253.0

1.7
2.7
9.2
7.2

11.5
6.0

16.0
50.8
36.7
85.8
55.4
73.3

354.8
153.6
87.6
44.6
66.6

241.7
165.2
53.4
16.2
24.7

138.3

26.2
27.7
NS
NS

478.5
424.8
NS
NS

Solve
0.05
0.02
0.02
0.02
0.02
0.14
0.09
0.05
0.05
0.04
0.48
0.16
0.17
0.25
0.15
1.04
0.33
0.31
0.54
0.30
0.92
0.29
0.22
0.40
0.28
1.13
0.27
0.21
0.32
0.24
2.66
0.69
0.56
NS
NS

-

Factor ops
(*lOS)

221.
187.
186.
439.
249..
122.
99.
71.

187.
242.
884.
356.
344.
492.

Storage
(Kwords)

1410 684

1912
25

1076
1342
2327
2397

121
4160
8113

11613
691. , 11;

7254. 15814
7160. 20606

15115. 37623
13768. 32295
11098.
6192. 13140
6549. 18961

12508. 29556

10753.

846
1257
917
794

1922
1378
7221
3847
3734
7700
5273

21955
13310
13119
32673
19961
17891
11057
11079
25665

17547. 1 30424 I 18745
4996. I 292 I 15056
1687.
1807.
5124.

6744
9093

18131

6006
6130

16175
5082. I 16073 I 10813

55926. I 2190 I 45313
78598.
62140.

NS

57097
55805
NS

39617
35651
NS

NS I NS I NS

Table 7.6: A comparison of HSL codes on'unsymmetric elemental problems. Cases marked
NS were not solved due to excessive computation requirement. For MA46, ICNTL(8) = 0.

18

8 Performance in other environments

In our experiments on the CRAY 5932, we have used the vendor-supplied BLAS which,
as we noted in Section 4, have a high Megaflop rate and a fairly low 71112 value. However,
we also performed some runs on the CRAY using a standard Fortran implementation of
the BLAS and found that, although most factorization times increased, a few decreased
and sometimes by a significant amount. For example, the factorization time for MA62 on
the unordered element problem OPT1 reduced from 430 seconds with the system BLAS
to 343 seconds with the Fortran BLAS. Similarly, the factorization time for the equation
input to MA42 on ONETONE2 with the original ordering reduced from 92 to 51 seconds.
On further investigation, we found that these improvements in performance were caused
by a test within the Fortran implementation of the Level 3 BLAS kernel -GEMM for zeros
in the outer loop whose presence suppresses an execution of the inner loop. The frontal
matrices in MA42 and MA62 can contain a large number of zero entries if the matrix is not
well ordered, and this is particularly true for the equation input to MA42. We can monitor
the zeros in the front by looking at the number of zeros in the factors. For the problem
ONETONEZ, the MA42 factors have 246*105 entries but 210*105 of these are zeros. The
zeros in the front account for the reduction in the factorization time when the Fortran
BLAS are used. In some experiments where we timed the Fortran implementation of -GEMM
with matrices having a large number of zero entries, we apparently achieved performances
that were significantly better than the peak speed of the CRAY 5932.

In order to explore further the effect of different BLAS on the comparative behaviour
of the codes, we performed some runs on other machines, namely an IBM RS/6000 550 and
a DEC 7000. We show the results in Tables 8.1 and 8.2. For most of the problems tested,
MA42 takes at least twice as long to perform the factorization on the RS/6000 compared
with the CRAY, although the analyse times are faster on the RS/6000. By contrast, for
the assembled problems, the factorization phase of MA48 is generally slightly faster on the
RS/6000 than on the CRAY. This reflects the fact that the amount of integer processing
is higher for MA48 than for the other codes and that integer processing is poorer on the
CRAY, relative to floating-point computations, than on the other machines. We observe
from both Table 8.1 and Table 8.2 that the time for the factorization phase of MA42 relative
to that of MA41 is poorer on the RS/SOOO and the DEC than on the CRAY. For instance,
for ONETONEZ, the factorize time for MA42 is approximately 6 times that for MA41 on
the CRAY, but MA42 is almost 11 times slower than MA41 on the DEC.

The DEC 7000 has a cache size of 4 MBytes. On this machine, the MA46 runs were
performed with the control parameter ICNTL(8) set to 4000. For large problems, the
factorization times on the DEC increase substantially if the default value of 64 is used.
For the problem TSYL201, the factorization time goes up from 96 to 146 seconds but
there was no effect on the factorization time for TRDHEIM. Even if ICNTL(8) is set to
4000, the performance of MA46 relative to that of MA41 is poorer on the DEC than on the
CRAY.

The solve times for MA42 on the DEC are very high. Further investigation shows
that the overheads for out-of-core working are considerable and reading the factors from
the direct access files accounts for most of the solve time. For example, for TRDHEIM,
approximately 6.8 seconds of the solve time of 7.4 seconds is used to read the factors. For
TSYL201 the corresponding times are 22.0 and 23.2 seconds, respectively. On the DEC,
the use of direct access files can also have a significant effect on the factorization time. If
we hold the factors in-core, then the MA42 factorization time for TRDHEIM reduces from
28.2 seconds to 15.8 seconds.

’

19

Identifier Code

II I Analyse I F'actorize 1 Factorize I Solve
BP 1600 11 HA42 I 0.01 I 0.96 I 0.96 I 0.06

Time (seconds)
I I Fast I

HA42t 0.10 0.08 0.08 0.01 (1 HA48 I '0.07 I 0.02 1 0.01 1 0.01

0.27
4.29

0.38
p.42

17.70

0.05
0.46
0.70

17.59

HA38 I I 0.16 I 0.07 I 0.01
JPWH 991 1 HA42 I 0.02 I 1.50 I 1.50 I 0.10

0.60 0.60 0.03
1.77 1.49 0.03
2.57 1.17 0.05
3.31 3.31 0.35
1.65 1.65 0.04
4.96 4.02 0.06
9.50 4.06 0.09
6.05 6.05 0.09
5.65 5.65 0.05
4.65 4.65 0.06

10.33 9.59 0.07
11.98 7.61 0.06

HA41 0.10 0.30 0.30 0.01 11 HA48 I 0.44 I 0.25 I 0.18 I 0.01
11 HA38 I I 0.57 I 0.25 I 0.01

PORES3 II HA42 I '0.01 I 0.41 I 0.41 I 0.01

0.07 I 0.01
GRE 1107 11 MA42 I 0.04 I 4.75 I 4.75 I 0.22

ORSREG 1

LNS 3937

RAMAGE01

I 0.98 I 0.33 I 0.02
0.20 I 3.24 I 3.24 I 0.27

HA38
HA421
HA41
HA48
HA38
HA42t
HA41
HA48
MA38
HA42
HA46
HA41
HA48
HA38

-

-

-

Table 8:l: A comparison of HSL codes on the RS/SOOO. t denotes the matrix is first
preordered to have a zero-free diagonal. $ denotes MC40 used to reorder the pattern of
A + A ~ .

20

Identifier

PSMIGR 3

WANG3

ONETONE2

GOODWIN

TRDHEIM

TSYL2Ol

HA42
HA41
HA48
HA38
HA424
HA41

HA42

HA48
HA38
HA42
MA41
HA48
HA38
HA42
HA46
HA41
HA48
HA38
HA42
HA46
HA41
HA48
HA38

w3a

HA41t

Analyse
0.4
4.5

29.6

4.1
7.4

0.9
5.3

27.5

0.3
0.5

287.1

0.1
1.1
3.0

93.1

0.1
1.5
3.8

1123.3

38.2
28.2 '
7.2
8.0

25.9
19.1

190.3
146.1
78.2

487.3
205.4

Factorize
312.5
133.5
106.8
159.4
877.7
110.1
644.0
165.2
11.2
7.4

32.0 0.68
28.2 7.38

7.2 0.55
8.4 0.51

21.8 0.80
15.5 0.66

190.3 23.17
96.1 1.61
78.2 1.48

~

5.88
205.6 2.39

Fast
Factorize

312.5
133.5
104.9
130.7
877.7
110.1
890.9
165.2
11.2
5.9

Solve
11.76

84.62

5.54
42.76
0.45
0.32

10.5 I 4.6 I 0.37
16.4 I 16.4 I 3.92

. .
. .

. . .

... .

.

Table 8.2: A comparison of HSL codes on the DEC. t denotes the matrix is first preordered
to have a zerehee diagonal. $ denotes MC40 used to reorder the pattern of A + AT. For
MA46, ICNTL(*) = 4000.

21

9 Conclusions

We have shown in our runs on the CRAY 5932 that frontal codes can be a very
powerful approach for the solution of large sparse systems and are particularly efficient for
unassembled finite-element problems when a good ordering can be found. We notice that,
in this case, although other approaches may result in much less fill-in, the frontal code
is often better in terms of the analyse time and the Megallop rate and, if the factors are
held in direct access files, is far superior in terms of main memory. Indeed, in some cases,
this reduction in main memory requirement meant that it was feasible to solve a problem
with our frontal schemes which could not be solved by other methods. This has indicated
to us the desirability of developing out-of-core versions of some of our multifrontal codes.
For most assembled problems, the use of approaches other than the frontal method might
be better and, if a good ordering is not available, frontal methods can perform badly.

Our experiments, reported in Section 8, suggest that it is important to exploit sparsity
within the Level 3 BLAS, that the performance of our out-of-core frontal schemes are
significantly affected by the efficiency of the i/o, and that it is important to exploit machine
characteristics, such as cache, for efficient implementation.

Finally, it is clear that the performance of some of the codes that we tested is very
dependent on the machine and some of’the parameters, like the cache size parameter for
MA46 and the switch to full code in MA’48. We are currently doing further tests on the
sensitivity of the codes to such parameters and would warn against making too sweeping
a conclusion on the merits of a code without considering the fine-tuning further.

Acknowledgements
We are grateful to Andrew ClHe, Christian Damhaug, Tim Davis, and Alison Ramage for
providing test problems and to Patrick Amestoy and John Reid for their comments on an
earlier draft.

References

Amestoy, P. R. and Duff, I. S. (1989), ‘Vectorization of a multiprocessor multifrontal code’,
Int. J. of Supercomputer Applics. 3, 41-59.

Amestoy, P. R., Davis, T. A. and Duff, I. S. (1996), ‘An approximate minimum degree
ordering algorithm’, SIAM J. Matrix Analysis and Applications 17(4), 886-905.

Damhaug, A. C. and Reid, J. K. (1996), MA46, a Fortran code for direct solution of sparse
unsymmetric linear systems of equations from finite-element applications, Technical
Report RAL-TR-96-10, Rutherford Appleton Laboratory.

i

Davis, T. A. and Duff, I. S. (1993), An unsymmetric-pattern multifrontal method for sparse
LU factorization, Technical Report RAL 93-036, Rutherford Appleton Laboratory. To
appear in SIAM J. Matrix Analysis and Applications, January 1997.

Davis, T. A. and Duff, I. S. (1995), A combined unifrontal/multifrontal method
for unsymmetric sparse matrices, 1 Technical Report TR-95-020, Computer and
Information Science Department, University of Florida.

Dongarra, J. J., Du Croz, J., Duff, I. S. and Hammarling, S. (1990), ‘A set of Level 3
Basic Linear Algebra Subprograms.’, ACM %ns. Math. Softw. 16, 1-17.

22

Duff, I. S. (1984), ‘Design features of a frontal code for solving sparse unsymmetric linear
systems out-of-core’, SIAM J. Scientific and Statistical Computing 5 , 270-280.

Duff, I. S. and Koster, J. (1996), The design and use of algorithms for permuting large
.entries to the diagonal of sparse matrices, Technical Report To appear, RAL.

Duff, 1. S. and Reid, J. K. (1982), MA27 - A set of Fortran subroutines for solving sparse
symmetric sets of linear equations, Technical Report AERE R10533, Her Majesty’s
Stationery Office, London.

Duff, I. S. and Reid, J. K. (1983), ‘The multifrontal solution of indefinite sparse symmetric
linear systems’, ACM %ns. Muth. Softw. 9, 302-325.

Duff, I. S. and Reid, J. K. (1993), MA48, a Fortran code for direct solution of sparse
unsymmetric linear systems of equations, Technical Report RAL 93-072, Rutherford
Appleton Laboratory.

Duff, I. S. and Reid, J. K. (1996), ‘The design of MA48, a code for the direct solution
of sparse unsymmetric linear systems of equations’, ACM Zhns. Muth. Softw.
22(2), 187-226.

Duff, 1. S. and Scott, J. A. (1993), MA42 - a new frontal code for solving
sparse unsymmetric systems, Technical Report RAL 93-064, Rutherford Appleton
Laboratory. .

Duff, I. S. and Scott, J. A. (1994), The use of multiple fronts in Gaussian elimination,
in J. G. Lewis, ed., ‘Proceedings of the Fifth SIAM Conference on Applied Linear
Algebra’, SIAM Press, Philadelphia, pp. 567-571.

Duff, I. S. and Scott, J. A. (1996u), ‘The design of a new frontal code for solving sparse
unsymmetric systems’, ACM Zhns. Muth. Softw. 22(1), 30-45.

Duff, I. S. and Scott, J. A. (1996b), MA62 - a frontal code for sparse positive-definite
symmetric systems from finite-element applications, Technical Report To appear,
Rutherford Appleton Laboratory.

Duff, I. S., Grimes, R. G. and Lewis, J. G. (1989u), ‘Sparse matrix test problems’, ACM
Bans. Meth. Softw. 15(1), 1-14.

Duff, I. S., Grimes, R. G. and Lewis, J. G. (1992), Users’ guide for the Harwell-Boeing
sparse matrix collection (Release I), Technical Report RAL 92-086, Rutherford
Appleton Laboratory.

Duff, I. S., Reid, J. K. and Scott, J. A. (1989b), ‘The use of profile reduction algorithms
with a frontal code’, Int J. Numerical Methods in Engineering 28, 2555-2568.

Hood, P. (1976), ‘Frontal solution program for unsymmetric matrices’, Int J. Numericul
Methods in Engineering 10, 379-400.

HSL (1996), Humell Subroutine Library. A Cutalogue of Subroutines (Release 12),
AEA Technology, Harwell Laboratory, Oxfordshire, England. For information
concerning HSL contact: Dr Scott Roberts, AEA Technology, 552 Harwell, Didcot,
Oxon OX11 O R A , England (tel: +441235-434714, fax: +44-1235-434136, email:
Scott .Roberts@aeat .Co.&).

23

Irons, B. M. (1970), ‘A frontal solution program for finite-element analysis’, Int J.

Ramage, A. and Wathen, A. J. (1993), Iterative solution techniques for the Navier-Stokes
equations, Technical Report AM-93-01, School of Mathematics, University of Bristol.

Numerical Methods in Engineering 2, 5-32.

Rothberg, E. and Hendrickson, B. (1996), Sparse matrix ordering methods for interior
point linear programming, Technical Report 96-0475 J, SANDIA National Laboratory.

Scott, J. A. (1996), ‘Element resequencing for use with a multiple front algorithm’, Int J.
Numerical Methods in Engineering 39, 3999-4020.

24

