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Abstract 

We consider the implementation of a frontal code for the solution of large sparse 
unsymmetric linear systems on a high performance computer where data must be 
in the cache before arithmetic operations can be performed on it. In particular, we 
show how we can modify the frontal solution algorithm to enhance the proportion 
of arithmetic operations performed using Level 3 BLAS thus enabling better reuse 
of data in the cache. We illustrate the effects of this on Silicon Graphics Power 
Challenge machines using problems which arise in real engineering and industrial 
applications. 
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1 INTRODUCTION 1 

1 Introduction 
The frontal solution scheme (Irons, 1970, Hood, 1976, Duff, 1984, Duff and Scott, 
1996b) is a technique for the direct solution of the linear systems of equations 

AX = B, (U) 

where the n x n matrix A is large and sparse, and B is an n x nrhs (nrhs 2 1) 
matrix of right-hand sides. The method is a variant of Gaussian elimination and 
involves the factorization of a permutation of A which can be written as 

where P and Q are permutation matrices, and L and U are lower and upper tri- 
angular matrices, respectively. The code MA42 developed by Duff and Scott (1996b) 
for the Harwell Subroutine Library (1996) uses a frontal scheme for solving systems 
of the form (1.1) with A unsymmetric. MA42 includes an option which allows the 
assembled matrix A to  be input by rows. However, as illustrated by Duff and Scott 
(1996d), the power of the frontal scheme is more apparent when the matrix A com- 
prises contributions from the elements of a finite-element discretization. That is, we 
can express A as the sum of elemental matrices 

where A(') is nonzero only in those rows and columns that correspond to  variables 
in the Z-th element. We shall be concerned with this case in the following. Our aim 
is to study the performance of a frontal solver on a machine where data must be in 
the cache before being operated upon. 

In Section 2,  we discuss salient features of the frontal scheme. In particular, we 
show how the computation in MA42 is organized to exploit -GEMM, the Level 3 Basic 
Linear Algebra Subprogram (BLAS) (Dongarra, DuCroz, Duff and Hammarling 
1990) that implements dense matrix-matrix multiplication. We show, in Section 3,  
how we can modify the frontal algorithm to  obtain a factorization which requires a 
larger number of floating-point operations but which is richer in Level 3 BLAS. The 
main theme of this paper is to see how this trade-off works in practical applications. 

We discuss the effect of a cache in Section 4 and indicate the effect of data 
reuse by looking at the performance of -GEMM on a Silicon Graphics Power Challenge 
machine. In Section 5 ,  we illustrate the effects of exploiting Level 3 BLAS in the 
frontal solver through experiments on Power Challenge machines using practical 
problems. Numerical experiments on an IBM RS/6000 and on a CRAY 5932 are 
also reported on. 

Finally, in Section 6,  we present some concluding remarks. 
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2 Frontal solution schemes 

2.1 The use of BLAS in frontal schemes 

A key feature of the frontal method is that the system matrix A is never assembled 
explicitly but the assembly and Gaussian elimination processes are interleaved, with 
each variable being eliminated as soon as its row and column are fully summed, that 
is, after the last occurrence in an elemental matrix A([). This allows all intermediate 
working to  be performed in a full matrix, termed the frontal matrix, whose rows and 
columns correspond to variables that have not yet been eliminated but have appeared 
in at least one of the elements that have been assembled. 

Using Fortran notation, the innermost loop of a typical frontal method for an 
elemental problem is of the form 

do j = 1,frnt 
pi = pr(j) 
if (pl .ne. 0.0) then 

do i = 1,fmt 

end do 
fa(i,j) = fa(i,j) + pc(i)*pl 

end if 
end do 

where fa is the frontal matrix, pc is the pivot column, pr is the pivot row, and 
frnt is the order of the frontal matrix. This code represents a rank-one update 
to the matrix that can be performed using the Level 2 BLAS routine -GER. After 
the assembly of an element, if there are k fully summed variables which can be 
eliminated, then k calls to -GER can be made. However, as we shall illustrate in 
Section 5 ,  the computation is made more efficient if we avoid updating the frontal 
matrix until all pivots for the current element have been chosen. If we delay the 
elimination operations in this way, the Level 3 BLAS routine -GEMM can be used. We 
now discuss in a little more detail how this is achieved in the Harwell Subroutine 
Library (HSL) code MA42. 

After the assembly of an element, if the k fully summed variables are permuted 
to the leading rows and columns, the frontal matrix can be expressed in the form 

(5:: 5;;). 
where Fll is a square matrix of order k. The rows and columns of F11, the rows 
of F12, and the columns of F21 are fully summed; the variables in F 2 2  are not yet 
fully summed. Pivots may be chosen from anywhere in F11. The columns of F11 are 
searched for a pivot and, when chosen, the pivot row and column are permuted to 
the first row and column of (2.1). Row 1 of the permuted matrix F11 is scaled by 
the pivot and columns 2 to k of the permuted frontal matrix are updated by k - 1 
calls to  the Level 1 BLAS routine AXPY. Columns 2 to  k of the updated matrix Fll 
are then searched for the next pivot. When chosen, the pivot row and column are 
permuted to  row 2 and column 2 of (2.1), row 2 of F11 is scaled by the pivot, and 
columns 3 to k of the frontal matrix are updated. This process continues until no 
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more pivots can be found. Assuming k pivots have been chosen, F12 is then updated 
using the Level 3 BLAS routine -TRSM 

F12 + - 3 7 1 2 ,  (2.2) 

(2.3) 

and, finally, F22 is updated using the Level 3 BLAS routine -GEMM 

F22 4- F22 + F21F12. 

In practice, for a general matrix A, stability restrictions may only allow r pivots to 
be chosen (r < k) and, in this case, the first r rows of F12 are updated using -TFlSM 
and then the remaining k - r rows of F12, together with F22 are updated using 
-GEMM. Further details of how this strategy is implemented within the frontal code 
MA42 are given by Duff and Scott (19963). 

Once all the eliminations have been performed, the upper triangular part of F11 
(which we denote by Fu) and F12 are stored for the UQ factor and the lower triangu- 
lar part of F11 (denoted by FL) and FZ1 are stored for the PL factor. The triangular 
matrices FU and FL are held in packed form. To exploit the block structure, MA42 
uses direct addressing in the solution phase. At each stage of the forward elimina- 
tion, all the active components of the partial solution matrix Y (where (PL)Y = B) 
are put into an array W = (W1, W2)T, with W1 of dimension frnt  - r by nrhs 
and W2 of dimension r by nrhs, where frnt  is the current front size, r is the num- 
ber of pivots chosen and nrhs of the number of right-hand sides which are being 
solved (the second dimension of B). The operations 

W2 t -Fi'W2 (2-4) 

w1+ W1-k F21W2 (2.5) 

followed by 

are performed before W is unloaded into Y .  Similarly, during the back substitution, 
all the active components of the partial solution matrix Y are put into an array Z1 
of leading dimension r and the active variables of the solution matrix X are put into 
an array Z2 of leading dimension f rnt - r. The operations 

z1 4- z1- F12Z2 (2.6) 

z1 t Fu'z1 (2.7) 

and then 

are carried out before Z1 is unloaded into X (F, is the triangular matrix Fu with 
units on the diagonal). Provided r > 1, the forward elimination and back substi- 
tution are performed using the Level 2 BLAS kernels -GEMV and -TPSV if there is 
only one right-hand side (nrhs = 1), and the Level 3 routine -GEMM and the Level 2 
routine - P S V  if there are multiple right-hand sides (there is no Level 3 BLAS kernel 
for solving a triangular system of equations with the matrix held in packed form 
and multiple right-hand sides). We remark that the interior dimension in the call to 
-GEMM (or -GEM!) is r during the forward elimination and frnt  - r during the back 
substitution. At most stages of the solution phase, frnt  - r is larger than r and, 
in general, the Mflop rate for the forward elimination is therefore lower than for the 
back substitution. 
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2.2 The effect of reordering 

The order of the frontal matrix increases when a variable appears for the first time 
and decreases when it is eliminated. Consequently the order in which the elements 
are assembled has a crucial effect on the performance of the frontal solver. Ordering 
routines have been developed for frontal solvers and use similar logic to  bandwidth 
minimization. The HSL code MC43 offers the user the choice of basing the ordering on 
the element structure or on the usual sparse matrix pattern (Duff, Reid and Scott, 
1989). These two approaches are termed direct and indirect element reordering, 
respectively. The results presented by Duff et al. (1989) show that there is little 
difference in the quality of the ordering from the two approaches but, as observed 
by Duff and Scott (1996a), the former is generally faster if the problem has fewer 
elements than nodes. In the numerical experiments reported on in Section 5, the 
direct element reordering algorithm is used. 

2.3 The use of direct access files 

Another principal feature of the frontal method is that by holding the PL and VQ 
factors in direct access files, large problems can be solved using a relatively small 
amount of in-core memory. A lower bound on the in-core memory required can 
be obtained by performing a symbolic factorization, which is an option offered by 
the code MA42. This is only a lower bound because numerical pivoting during the 
factorization may increase the memory requirements. MA42 uses three direct access 
files, one each for the reals in PL and UQ and one for the row and column indices 
of the variables in the factors. Corresponding to  each of the direct access files is a 
buffer (or workspace), which is held in-core. During the factorization, each time a 
block of pivots is chosen and the frontal matrix (2.1) updated, a record is written to 
each of the buffers. Once a buffer becomes full (or the final eliminations have been 
performed), it is written to the appropriate direct access file. Use of direct access 
files is not needed if sufficient in-core storage is available. 

In the integer buffer, each record holds lists of the (global) row and column 
indices of the variables in the front. Each variable enters and leaves the front once 
only. By storing the row and column indices of all the variables in the front in 
each record, more integer storage than necessary is used by MA42. In practice, the 
repetition of the storage of variable indices in MA42 does not require a prohibitively 
large amount of storage because, as explained earlier, blocks of pivots are used and a 
record is only written once a block of pivots has been chosen. In our experience, for 
elemental problems the required integer storage is in the range 15n to 50n and the 
number of integers stored is less than a quarter the number of reals stored (detailed 
results are given by Duff and Scott, 1993 and in Section 5 below). 

3 Modification for Level 3 BLAS enrichment 
We saw, in Section 2.1 ,  that if r pivots are chosen after the assembly of an element 
into the frontal matrix, the code MA42 uses the Level 3 BLAS routine -GEMM with 
interior dimension r to  update the frontal matrix prior to the next element assembly. 
If r is small, there may be little advantage gained by using Level 3 BLAS. We can 
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increase the Level 3 BLAS component by delaying updating the frontal matrix until 
the number of pivot candidates is at least some prescribed minimum, say rmin. 
Suppose, at some stage, that the number of fully summed variables is k, then the 
maximum number of pivots which we can choose is k. If k < rmin and not all the 
elements have been assembled, we do not look for pivots but repeat the process 
of assembling another element into the frontal matrix until either the number of 
fully summed variables exceeds rmin or there is insufficient storage allocated for the 
frontal matrix to  accommodate the next element. We then go ahead and choose as 
many pivots as possible and update the frontal matrix, before assembling the next 
element. 

Delaying the search for pivots until the number of fully summed variables is at 
least rmin (rmin > 1) will have several effects on the factorization. Firstly, the total 
number of calls to  the Level 3 BLAS routine XEMM will decrease but the average 
interior dimension will increase since, on most of the calls, the interior dimension will 
be at least rmin (numerical considerations may prevent all the potential pivots from 
being chosen). Secondly, when looking for pivots there will generally be a larger 
number of fully summed variables to test as potential candidates. Once a pivot 
is chosen, each of the fully summed columns not yet selected as a pivot column is 
updated using the Level 1 BLAS routine AXPY. Therefore, the number of calls to  
AXPY will increase. This increase can be restricted by making greater use of Level 2 
BLAS. We now explain how this can be achieved. As discussed in Section 2.1, once 
MA42 has chosen a pivot, all the remaining fully summed columns are updated using 
calls to  AXPY, and then these columns are searched in turn for the next pivot. The 
process is repeated until no further pivots can be found. An alternative approach 
is to delay updating the i-th fully summed column until it is to be searched for a 
possible pivot. Assuming columns 1 to i - 1 have already been successfully used 
as pivot columns, column i is updated using the Level 2 BLAS routines _TRsV and 
-GEMV. There is a problem with this approach if column i is updated using the Level 
2 BLAS kernels and then is found to be unsuitable for use as a pivot column. In 
this case, column i + 1 is updated using _TRSV and AEMV and then searched. If 
column i + 1 is chosen as a pivot column, column i is again updated, but since 
it has already been updated for the first i - 1 pivots, AXPY is used to perform a 
single update, and then column i is restested. Keeping track of which of the fully 
summed columns have been updated by which of the pivot columns adds to  the 
complexity of this approach. It also requires that the fully summed columns are 
permuted to  lie in a block before the search for pivots begins, whereas MA42 limits 
the amount of swapping of rows and columns by holding the positions of the fully 
summed variables and delaying permuting the pivot rows and columns into a block 
until all the pivots following an assembly have been chosen. Furthermore, since our 
numerical experiments show that the cost of the calls to  the Level 1 BLAS kernels 
is much less than the total cost of the Level 3 BLAS calls (see Table 5.4), using 
Level 2 BLAS in place of Level 1 BLAS would not have a dramatic effect on the 
total factorization time and so we have not used the Level 2 BLAS implementation 
in our numerical experiments. 

Performing additional assemblies before choosing pivots will lead to an increase 
in the average and maximum front sizes. The number of operations used to  perform 
the matrix factorization will also rise, with many operations being performed on 
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zeros. The real storage required to hold the matrix factors will increase but, since 
fewer records will be written to  the buffers, the repetition of the storage of the 
row and column indices will be reduced and the integer storage will consequently 
decrease. 

There will also be effects on the solution phase. In the forward elimination, 
if nrhs > 1 (respectively, nrhs = l), the interior dimension of the calls to -GEMM 
(respectively, -GEMV) will increase. The interior dimension for the back substitution 
is f r n t  - r, where f r n t  is the order of the frontal matrix and r the number of 
pivots chosen. Our new strategy will lead to an increase in f r n t  and in r although, 
in general, the increase in f r n t  will be greater than the increase in r. Therefore, at 
most stages of the back substitution, the interior dimension will also increase. During 
the forward elimination and back substitution there will be a smaller number of calls 
to the Level 2 routine -TPSV, but the order of the matrix in each call will increase. 
Fewer records will be written to the buffers and, as a result, the time taken by the 
use of direct addressing during the solution phase will decrease. Since the amount 
of data which must be copied from the partial solution matrix into the arrays used 
for direct addressing is related to the number of right-hand sides, the time saved 
will depend on the number of right-hand sides, nrhs. 

4 The reuse of cache 
In this section, we discuss the performance of BLAS kernels on cache-based ma- 
chines. We present a very simple model for such machines with a multiply-add pipe 
and derive a formula that gives an upper bound on the performance of the Level 3 
BLAS routine DGEMM in terms of a number of parameters that characterize the ma- 
chine. This result is compared with the observed performance of a Silicon Graphics 
Power Challenge X L  with 75 MHz R8000 processors. 

In our model, we assume that the machine has a clock speed of C MHz and that, 
if data is in the cache, f floating-point multiply-add pairs can be performed in each 
clock period. We also suppose that the size of the cache line is c words and that the 
latency of the cache is 1 clocks. We assume that the memory to cache operations 
cannot be overlapped with the floating-point operations (the cache is a blocking 
cache), although after the first word of the cache line is accessed computation can 
be overlapped with the transfer of subsequent words into the cache line. 

Now consider using the Level 3 BLAS routine -GEMM to,perform the operation 

C t aAB + PC, (4.1) 

where A and B are matrices of order m x r and r x m, respectively. We are interested 
in the case where m >> r and m is sufficiently large that C will not fit in the cache. 

The number of operations required by (4.1) is rm2 floating-point multiply-add 
pairs plus a further m2 + mr floating-point multiplications. The total number of 
memory to cache operations is m2 + 2mr. In practice, this is likely to be an under- 
estimate because it may be necessary to load A and/or B from memory to cache 
several times during the operation. Thus the estimate we derive here for the speed 
of the operation will be greater than that actually observed. 
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The time (in clocks) taken for the memory to cache operations is 

(m2 + 2mr)l/c. 

The time (in clocks) taken for the floating-point operations is 

(rm2 + m2 + m r ) / f .  

We then estimate the speed of -GEMM (in Mflops) to be 

c ( ( ~ T  + l)m2 + mr)/[(m2 + 2rnr) l /c  + ( (T  + l)m2 + mr)/f] .  

That is, 

fc ( (2r  + l)m2 + mr)/[m2(If/c  + r + 1) + mr(2Zf/c + I)]. 
Using our assumption m >> T ,  this simplifies to 

2fC(r  + 1/2) / (1f /c  + T + 1). 

For the Power Challenge workstation with 75 MHz Et8000 processors and using 
double precision arithmetic the parameters have the following values: 

c = 75, 

f = 2,  
c = 16, 
1 x 56. 

This leads to an approximate speed of 300(r + 1 / 2 ) / ( ~  + 8) Mflops for the DGEMM 
operation with interior dimension T .  In Figure 1 the estimated and observed speeds 
of DGEMM (in Mflops) are plotted against the interior dimension T .  For these results, 
m = 1000 was used. 

Using similar analysis, we can estimate the speed of a rank-one update (DGEFt) 
to be 300/8 = 37.5 Mflops. Note that this is less than the estimated speed of 50 
Mflops which is given by our DGEMM formula with T = 1. 

5 The performance of the modified frontal code 
In this section, we illustrate the effects of using the Level 3 BLAS enriched ver- 
sion of the frontal code MA42 when solving a range of problems arising from real 
engineering and industrial applications. We first present results for two examples 
which arise from groundwater flow calculations undertaken by AEA Technology. 
Although practical applications can often call for significantly larger models, these 
problems are typical of the problems which AEA Technology wants to solve using 
its code NAMMU (Hartley, Jackson and Watson, 1996). NAMMU uses a frontal 
solver and it is important that the frontal solver is as efficient as possible. The first 
problem, GFLOW2D, is a two-dimensional coupled groundwater flow salt transport 
calculation. The problem has 20000 9-noded quadrilateral elements with a total of 
80200 degrees of freedom. The second problem, GFLOWSD, is a three-dimensional 
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Figure 1: The estimated (continuous line) and observed speeds (stars) of DGEMM as 
a function of the interior dimension (rank of update) on an SGI Power Challenge 
workstation. 

groundwater flow problem with pressure interpolated using a mixture of 27-noded 
triquadratic brick elements and 18-noded prism elements. The problem has 8820 
elements with 73943 degrees of freedom. The results quoted in Table 5.1 were ob- 
tained using a Silicon Graphics Power Challenge X L  with 4 75MHz R8000 processors 
and a cache size of 4 Mbytes, running IIUX 6.2. All runs were performed on a single 
processor using double precision arithmetic and the vendor-supplied BLAS. 

In all the tables of results in this section in which the number of floating-point 
operations (“flops”) are quoted, we count all operations (+,-,*,,/) equally and assume 
that there are no zeros in the frontal matrices. All CPU timings are given in seconds. 

It is clear from the results presented in Table 5.1 for rmin = s and rmin = 1 
that there are considerable benefits to be gained from the standard MA42 strategy of 
delaying the elimination of pivots until all possible pivots following an assembly have 
been chosen. The benefits are greater for the three dimensional problem than for the 
two dimensional problem. The reason for this is that each of the three dimensional 
elements has significantly more degrees of freedom. This means that the number of 
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Maximum Largest Factor flops 
rmin front size pivot block (*10") Identifier 

GFLOW2D 

GFLOW3D 

Factor 
time 

(seconds) 

9 

Table 5.1: Performance of different pivot block sizes for groundwater flow problems. 
rmin = s denotes all pivot blocks are of size 1. 

variables which become fully summed at each stage tends to be larger, resulting in 
larger pivot blocks and better performance of the BLAS kernel -GEMM when updating 
the frontal matrix. 

It is also clear there are additional benefits to be gained from the Level 3 BLAS 
enrichment modification. In both two and three dimensions, the operation count 
and the total factorization time does not appear to  be very sensitive to the value of 
rmin. This suggests that, in practice, it is not necessary to choose the value carefully 
and it is likely that good performance will be achieved for a wide range of problems 
with values for rmin of about 15 and 40 for two and three-dimensional problems, 
respectively. 

We now present, in more detail, results for test problems from a range of other 
application areas. A brief description of each of the problems is given in Table 5.2. 
For these problems only the sparsity pattern of the matrix was available and values 
for the matrix entries were generated using the Harwell Subroutine Library pseudo- 
random number generator FA04. The experimental results in Tables 5.3 and 5.4 were 
obtained on a 6 processor Silicon Graphics Power Challenge with the MIPS RlOOOO 
chip running at 195 MHz. The runs were performed on a single processor and again 
double precision arithmetic and the vendor-supplied BLAS were used. In each case, 
the elements were preordered using MC43 before the frontal solver was used. 

In Table 5.3, the size of the largest pivot block used, the maximum front size, the 
total number of floating-point operations for factorizing the matrix, and the real and 
integer storage are shown for rmin = s and for values of rmin in the range 1 to  40. The 
real storage is for holding both the PL and the UQ factors (although, in practice, 
MA42 only requires PL to  be stored if the user wishes to  solve for subsequent right- 
hand sides or to solve transpose systems ATX = B). It is apparent that modest 
increases in rmin have little effect on the size of the largest pivot block and on the 
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Identifier 

RAM AGE02 
AEAC5081 
TRDHEIM 
CRPLAT2 
OPT1 
TSYL201 

Order 

16830 
5081 

22098 
18010 
15449 
20685 

Number of 
elements 

1400 
800 
813 

3152 
977 
960 

Description/discipline 

3D Navier-Stokes 
Double glazing problem 
Mesh of the Trondheim fjord 
Corrugated plate field 
Part of oil production platform 
Part of oil production platform 

Table 5.2: The test problems 

maximum front size, and that the real storage requirement and the operation count 
grow slowly with rmin .  However, since large values of r m i n  reduce the repetition 
of the storage of the row and column indices, increasing rmin can give substantial 
savings in the amount of integer storage used. Conversely, if only single pivots are 
chosen (rmin = s), there is much repetition in the integer storage. 

Table 5.4 presents the CPU times for the calls to the Level 1 and Level 3 BLAS 
kernels, and the total time for the matrix factorization, together with the time taken 
to solve for 1, 2, and 10 right-hand sides. The total factorization time and the solve 
times include all the overheads for the out-of-core working. We again observe that 
if no Level 3 BLAS are used (rmin = s), the factorization is significantly more 
expensive than if the frontal matrix is updated at each stage using ils many pivots 
as are available (that is, as in the standard version of MA42, rmin = 1). In the 
latter case, the calls to the Level 1 BLAS kernels account for a small part of the 
total factorization cost. As rmin is increased, the Level 1 BLAS account for a larger 
proportion of the factorization time until a point is reached where the savings in the 
Level 3 BLAS time is more than offset by the increase in the Level 1 BLAS time. 
The value of rmin at which this occurs is problem-dependent, but our results suggest 
that, in general, it is advantageous to use a value of about 16. However, if we want 
to solve for a large number of right-hand sides, it can be beneficial to use an even 
larger value of rmin. 

The results in Table 5.4 were all obtained on an SGI Power Challenge machine. 
We have also performed some experiments on a subset of our test problems on an 
IBM RS/6000 3BT and on a single processor of a CRAY 5932. The results are 
given in Tables 5.5 and 5.6, respectively. In each case, the vendor-supplied BLAS 
are used. We see that, on the RS/6000, there are considerable savings to be made 
by not forcing all pivot blocks to be of size 1, and further modest savings in the 
factorization and solve times can result from choosing r m i n  to be greater than 1. 
The Level 1 BLAS perform well on the CRAY and this is reflected in our results 
since, on this machine, the difference between the times for factorizing the matrix 
with r m i n  = s and r m i n  2 1 are less significant. However, because of the significant 
savings in both the time taken to read the integer data from the direct access file 
and the time used by the direct addressing in the solution phase, the solve times are 
substantially reduced by allowing r m i n  2 1. 



5 THE PERFORMANCE OF THE MODIFIED FRONTAL CODE 11 

AEAC5081 I- 

c 

I Largest I Maximum I Factor flops I Storage (Kwords) I 
rmin I pivotblock I front size I (*Io') I  ea^ I Integer 

S 1 . 1453 55910 41808 41892 

1458 56462 42033 
32 54 1474 57082 42275 1074 
40 54 1484 57392 42397 912 

S 1 154 202 1431 1456 I 
1 12 154 202 1431 243 
8 16 157 205 1441 129 

16 26 166 223 1502 86 
32 42 182 245 1573 58 
40 50 190 264 1630 53 

S 1 277 961 7551 5232 
1 36 277 961 7551 597 
8 36 277 961 7551 597 

16 42 289 985 7661 550 
32 61 308 1073 8039 469 
40 68 315 1128 8248 452 

S 1 538 5065 13012 13089 
1 19 539 5065 13012 2133 
8 24 545 5141 13116 1101 

16 27 550 5221 13225 754 
32 44 568 5466 13553 399 
40 49 574 5552 13662 346 

S 40 984 10764 16466 16215 
1 40 984 10764 16466 1190 
8 39 984 10771 16471 1163 

16 45 996 10875 16573 863 
32 59 1012 11204 16800 628 
40 68 1016 11268 16939 565 

10741 20919 20925 
10741 20919 

543 10743 20921 1017 
551 10759 20944 985 

32 572 11202 21369 541 
40 73 579 11257 21424 534 

Table 5.3: Storage requirements for different pivot block sizes. r,,,,,, = s denotes all 
pivot blocks are of size 1. 
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12 

Factor Time (seconds) Solve Time (seconds) 
nrhs=l I nrhs=2 I nrhs=lO Total I BLAS 3 I BLAS 1 Identifier 

RAM AGE02 

AEAC5081 

TRDHEIM 

CRPLAT2 

OPT1 

TSYL2Ol 

40 2.0 0.96 0.38 0.17 0.19 0.35 
S 17.3 0.00 10.75 2.49 3.05 6.33 
1 7.8 3.82 0.49 1.41 1.49 2.42 
8 7.7 3.84 0.47 1.39 1.40 2.40 

16 7.7 3.81 0.61 1.14 1.24 2.17 
32 8.3 3.73 1.21 1.21 1.30 2.12 
40 8.9 3.76 1.60 1.24 1.33 2.21 

s 235.6 0.00 212.00 5.02 5.86 15.71 
1 57.0 46.52 0.54 2.94 2.83 5.44 
8 43.4 31.64 0.96 2.69 2.85 4.48 

16 40.3 28.20 1.47 2.32 2.71 4.25 
32 38.6 24.97 3.12 2.07 2.21 3.58 
40 38.2 24.26 3.76 2.07 2.22 3.49 

s 538.4 0.00 493.86 5.98 7.27 19.28 
1 92.7 71.24 2.38 2.78 3.10 5.48 
8 92.0 70.53 2.43 2.99 2.96 5.32 

16 83.8 61.43 3.67 2.78 3.35 5.48 
32 81.6 54.70 5.55 2.87 3.31 4.92 
40 82.5 53.03 7.49 2.75 3.32 5.00 

s 606.1 0.00 555.63 8.83 10.08 26.61 
1 82.7 58.30 3.08 4.21 4.20 6.74 
8 83.4 58.63 3.02 3.77 3.96 6.56 

16 83.3 57.86 3.17 3.63 4.06 6.76 
32 75.7 50.01 6.41 3.20 3.46 5.65 
40 75.9 49.77 6.42 3.18 . 3.76 5.51 

Table 5.4: Performance for different pivot block sizes. rmin = s denotes all pivot 
blocks are of size 1 .  nrhs denotes the number of right-hand sides. 
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- 
S 59.9 4.99 6.80 23.69 
1 54.8 1.23 . 1.57 5.14 
8 47.6 0.87 1.10 3.51 

16 48.0 0.74 0.93 2.89 
32 44.1 0.62 0.77 2.38 
40 44.7 0.63 0.79 2.34 

CRPLAT2 i 

I Factor Time I Solve Time (seconds) 
rmin I (seconds) I nrhs=l I nrhs=2 I nrhs=lO 

S 9.9 0.51 0.62 2.64 
1 3.3 0.14 0.21 0.71 
8 2.8 0.09 0.15 0.45 

16 3.1 0.05 0.13 0.44 
32 3.5 0.15 0.18 0.45 
40 4.0 0.14 0.12 0.42 

S 216.0 3.73 5.83 33.80 
1 69.4 1.27 1.84 8.09 
8 60.2 1.17 1.70 6.31 

16 58.6 1.15 1.46 5.39 
32 62.5 1.01 1.46 4.44 
40 63.7 0.89 1.45 4.25 

S 455.6 4.19 7.34 40.63 
1 115.5 1.39 2.00 . 7.18 
8 115.3 1.47 2.08 6.99 

16 107.1 1.16 1 .89 5.98 
32 110.1 1.25 1.76 5.46 
40 112.3 1.21 1.75 5.19 

Table 5.5: Performance for different pivot block sizes on an IBM RS/SOOO. rmin = s 
denotes all pivot blocks are of size 1 .  nrhs denotes the number of right-hand sides. 

Identifier 
AEAC5081 

CRPLAT2 

OPT1 

I Factor Time I Solve Time (seconds) I 
rmin I (seconds) I nrhs=l I nrhs=2 I nrhs=lO 

S 5.3 0.79 1.12 3.43 

Table 5.6: Performance for different pivot block sizes on CRAY 5932. rmin = s 
denotes all pivot blocks are of size 1. nrhs denotes the number of right-hand sides. 
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6 Concluding remarks 
We have shown how the frontal method can be implemented to  enhance the use of 
Level 3 BLAS and, using a range of practical problems, we have illustrated that, on 
cache-based machines, this leads to very good performance in terms of Mflops. The 
implementation of the frontal method which uses only pivot blocks of size 1 does 
reasonably well on vector machines but performs poorly on cache-based machines. 
The plot given in Figure 1 of the speed of DGEMM against the interior dimension 
indicates that the choice of the minimum pivot block size parameter is not crucial. 
This is important from a practical point of view since it is possible to get good 
performance without having to optimize the parameter from run to run. 

A disadvantage of frontal schemes is that they usually perform many more op- 
erations than are necessary for the numerical factorization and the factors normally 
have many more entries than those obtained by other techniques. This is illustrated 
by Duff and Scott (1996~) .  However, in practice we have found that the convenience 
of being able to  specify memory requirements in advance and being able to hold the 
factors out-of-core more than compensates for this. As a result, we have made ex- 
tensive use of MA42 and its predecessor, MA32, for more than 15 years. For problems 
in three dimensions, other techniques ,are clearly needed, but for two dimensional 
problems, ease of use and performance mean the frontal method remains our method 
of choice. 

Clearly, it is important that we implement our algorithms to make effective use 
of machines which have a hierarchical memory structure. The techniques which 
we have discussed in this paper for making better reuse of data in the cache are 
applicable to other direct solvers. 

7 Availability of software 
MA42 and the element ordering routine MC43 are included in Release 12 of the Harwell 
Subroutine Library. A complex frontal solver, ME42, as well as a frontal solver for 
symmetric positive-definite systems, MA62, are also available. These codes are all 
written in standard Fortran 77; a Fortran 90 version of MA42 is also included in 
Release 12 of the HSL. Anyone wishing to use the codes should contact the HSL 
Manager: Dr. S. J. Roberts, Harwell Subroutine Library, AEA Technology, Building 
552, Harwell, Oxfordshire, OX11 ORA, England, tel. +44 (0) 1235 434714, fax +44 
(0) 1235 434136, or e-mail Scott  . RobertsQaeat . C O .  uk, who will provide details of 
price and conditions of use. 
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