
Numerical Analysis Group Progress Report

January 1994 - December 1995

I S DufF (Editor)

I

Morch 1996

COUNCIL FOR THE CENTRAL MBORAlORY Of THE RESEARCH COUNCltS

C m i d lsbmtuy of the Research Cuuncib
Libroy a d Inkmotion Swvicos
U- Appbtcm Loboratory
Chihon
Dkkot
oacbdshin
OX11 OQX
Td: 01 235 445384
E-mil iibrorycpri.ac.uk

Fax: 01 235 446403

ISSN 13586254

Ndhw h Council nor the CClbeKatory occupt any responsibility for loss or
dwnos+ d i n g from the use of infPnnat*lon contained in m y of heir

ot in a # r ~ communicdion about heir tests or investigabiru.

RAL-TR-96-015

NUMERICAL ANALYSIS GROUP

PROGRESS REPORT

January 1994 - December 1995

Edited by Iain S. Duff

Computing and Information Systems Department
Atlas Centre
Rutherford Appleton Laboratory
Oxon OX1 1 OQX

February 1996.

I

CONTENTS

1 Introduction (I.S. Duff) ... 1
2 Sparse Matrices ... 4

J.K. Reid) ... 4

The.design and use of algorithms for permuting large entries to the diagonal
(I. S. Duff and J. Koster). ... 6
An approximate minimum degree ordering (P.R. Amestoy, I.S. Duff, and T.A.

2.1 The direct solution of sparse unsymmetric linear sets of equations (IS. Duff and

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.1 1

2.12

2.13

Davis) ... 7
Developments in frontal solvers (I. S. Duff and J. A. Scott) 8

Fortran 90 version of Harwell frontal code MA42 (J.K. Reid and LA. Scott) 9

Element resequencing for use with a multiple front solver (J. A. Scott) 10

symmetric linear systems (I.S. Duff and J.K. Reid)

............
Exploiting zeros on the diagonal in the direct solution of indefinite sparse

12

13

15
A combined unifrontallmultifrontal method (T.A. Davis and I.S. Duff)
An unsymmetric multifrontal code (T.A. Davis and I.S. Duff).
Unsymmetric multifrontal methods for finite-element problems (A.C. Damhaug
and J.K. Reid) ... 16
MUPS: a Multifrontal Parallel Solver for sparse unsymmetric sets of linear
equations (P.R. Amestoy and I.S. Duff) ...
Multifrontal QR factorization in a multiprocessor environment (P.R. Amestoy ,
I.S. Duff, and C. Puglisi) .. 19

The solution of linear least-squares problems (J. Cardend, I.S. Duff, and J.

17

Jimenez) ... 20

Approximate-inverse preconditioners (N. I. M. Gould and J. A. Scott) 2.14

2.15

22

Linear algebra kernels for parallel domain decomposition methods (L. Carvalho,
I. S. Duff, and L. Giraud) .. 23

Solution of large sparse unsymmetric linear systems with a block iterative 2.16

method in a multiprocessor environment (M. Arioli, L. A. Drummond, I. S.

Duff, and D. Rub) ...
An evaluation of software for sparse nonsymmetric matrices (R. B.Lehoucq and
J.A. Scott) r ; ..
Sparse BLAS (I.S. Duff, M. Marrone, G. Radicati, andC. Vittoli)

24

2.17
26
27 2.18

2.19 Sparse matrix test pro&lems (IS. Dum ... 28

i

3

4

5

6

7

8

9
10

.. 29
29 3.1

3.2

LANCELOT (A.R. Copm, N.I.M. Goufd, and Ph.L. Toint)
bratcd-subs~ minimization me&ods (A. R. COM, N. I. M. Gould,

Ekment-by-clcment precornditioncrs in optimization (M. J. Day&, J.-Y.
L'Excellent, and N. 1. M. Gould) ... 31

3.4 Linearly constrained minimization (N. 1. M. Gwld) 32

4.1 34
Numerical Linear Algebra ... 36

5.1 Computational kernels on vector and parallel machines and on RISC
architectures (M.J. Day& and I.S. Duff) .. 36

5.2 Infinite weights in the Pbwell-Reid method for linear least squares problems
(J.K. Reid) .. 37

Miscellaneous Activities .. 38
6.1 CERFACS (I.S. Duff).. .. 38

6.2 Fortran 90 (J.K. Reid) .. 39

A.Sartenaer, and Ph. L. Toint) .. 30

3.3

Applied Mathematics ... 34

Automatic differentiation in Fortran 90 (D. Cowey, J.D. Pryce, and J.K. Reid) ...

Computing and Harwell Subroutine Library .. 41

7.1 The computing environment within the Group (N.I.M. Gould) 41

7.2 Harwell Subroutine Library ... 41
7.3 Release 12 of the Harwell Subroutine Library .. 42
7.4 New Library subroutines .. 44

Seminars 53
Reports issued in 1994-95 ... 54

External Publications in 19941995. ... 56

..

S M

Iain Duff.
Group Leader. Sparse matrices and vector and parallel'computers and computing.

Nick Gould.
Optimization and nonlinear equations particularly for large systems.

John Reid.
Sparse matrices and development of the Fortran programming language.

Jennifer Scott.
Sparse matrix software. Volterra integral equations. Seminar organization.

Visitors and Attached Staff

Andy Conn (EPSRC supported visitor from IBM Yorktown Heights)
Optimization.

David Cowey (CASE Student from RMCS Shrivenham)
Automatic differentiation.

Jean-Yves L'Excellent (Visitor from ENSEEIHT-IRIT supported by Alliance Programme)
Large-scale optimization. Element-by-element preconditioning.

Mike Hopper (Consultant)
Support for Harwell Subroutine Library. TSSD.

Richard Lehoucq (Visitor from Argonne National Lab)
Solution of sparse eigenvalue problems.

David Miron (Visitor from ANU Canberra)
Solution of sparse equations.

Philippe Toint (Visitor from Namur, Belgium)
Optimization

This report covcrs tht period hrn January I994 to December 1995 and describes work
performed by the Numerical Analysis Group within the Computing and l[nfbfimation Systems
Department at the Ruthe&ord Appleton Laboratory.

The &tails of our activities ace documented in the following pages. These words of
introduction are intended merely to provide an introduction and additional information on
activities that ate not appropriate for the detailed reports.

The support and development of the Harwell Subroutine Library (HSL) continues to be one
of our major activities. This reporting period has seen new releases of both HSL (Release 12)
and the NAG-marketed Harwell Sparse Matrix Library (Mark 2). The turbulent times at AEA
Technology have led to some confusion in their support for the marketing and sales of HSL
with three changes of management by them over the last year. For the moment, at least some
stability reigns and we are developing a good working relationship with Scott Roberts and
Richard Lee who took over from John Harding on the eve of Release 12. As in the previous
Release, we benefited greatly from the consultancy of Mike Hopper who, in modem parlance,
performed the quality control in the latter stages of code development. Our contacts with Ian
Jones and his CFDS group at Harwell continue on a very informal basis, and we have
continued our collaboration with Andrew Cliffe on the solution of finite-element equations by
frontal methods.

Most of our visitors have been fairly short-term although the interaction with them has been
quite intense. We continue our interaction with Oxford in support of the Joint Computational
Mathematics and Applications Seminar series and have hosted several talks at RAL through
that programme. We were involved in the successful CCLRC bid to host an HPCI Centre at
Daresbury, and we hosted a course on Numerical Calculations with Matrices at RAL in
December 1995 with the support of this Centre. It was a very successful course in which all
Group members participated and may well be the forerunner to subsequent similar courses in
numerical computation.

John has continued to combine his interests in Fortran and sparse matrices giving several
talks on these topics during the last two years. He has been very involved through IS0 WG5
in influencing-the development of Fortran 95 and has been their main architect of a proposal
for the inclusion of exception handling in Fortran 2OOO. He attended several X3J3 meetings,
primarily to promote and develop this proposal, and discusses this and other related Fortran
activities in Section 6.2. John has given talks on automatic differentiation at Oxford; Fortran
90 and Fortran 95 at RAL, NAG Users’ Association, RMCS Shrivenham, and JPL; and has
given courses on Fortran 90 at RAL and Shrivenham, where he is a visiting Professor. He had
a six-week visit to Australia, primarily-hosted by ANU Canberra, during which time he
worked and gave talks on Fortran 90, sparse matrices, CotlStTaincd least squares, and
automatic differentiation, the latter topic in which he supervises a CASE student, David

Cowey. John gave some MSc lectures on iterative methods at Reading University and has
given invited talks at meetings in Hamburg, RAL, St Girons, and Toulouse, and a contributed
falk in Lhkiiphg.

Nick’s collaboration with Conn and Toint continues to expand the theory and practice of
large-scale optimization. Much of their work is,embodied in the LANCELOT package for
which they were awarded the Beale-Orchard-Hays prize for excellence in computational
mathematical programming in August 1994. He still has joint research activities with contacts
made during his visit to CERFACS in 1993 and has had an Alliance grant from the British
Council to support this activity. He was a CO-supervisor of Jean-Yves L’Excellent, who
completed his thesis at ENSEEIHT-IRIT in Toulouse in November 1995. Another student of
Nick’s, Marli Hernandez at the Unversity of Hertfordshire, completed her thesis successfully
in 1995. Nick is a Visiting Fellow at RMCS Shrivenham. He was an invited speaker at
confertnces at CORE in Belgium, Manchester, RAL, St Girons, and Stockholm, has given
seminars at RAL and Durham and contributed talks at Dundee and Minneapolis.

Jennifer has developed several international collaborative projects over the past year,
primarily in the computation of sparse eigenvalues. Although she has continued her part-time
working, now on a five-day per week basis, she remains so productive that it is easy to forget
this fact. In addition to her work on eigensystems (in which she hosted a visit from Richard
Lehoucq), she has continued with her work on frontal solvers and has developed a suite of
iterative solvers and an approximate inverse preconditioning technique in collaboration with
Nick. Jennifer continues to coordinate our joint seminar series with Oxford University. She
gave an invited talk at Toulouse and posters and contributed talks at Utah, Dundee, and
Manchester.

Iain still leads a project at the European Centre for Research and Advanced Training in
Scientific Computation (CERFACS) at Toulouse in France and has welcomed all Group
members to Toulouse during the last year (see Section 6.1). Iain is a chief editor of the M A
Journal of Numerical Analysis, editor of the IMANA Newsletter, chairman of the M A
Programme Committee, an adjudicator for the Fox Prize, IMA representative on the CCIAM
International Committee that overseas the triennial international conferences on applied
mathematics, and a Visiting Professor at Strathclyde. In high perfomance computing, he has
given tutorials at Supercomputing ’94 (Washington DC), Supercomputing’95 (San Diego),
and HPCN Europe (Milan), is on the Scientific Council of the CRIWAN Centre in Rouen, and
was on an international panel that reviewed proposals for Supercomputing in Sweden. Iain has
batn on tht Rogrammc Committee for several international meetings and was on the
otganil.jllp c o d e for the Linear Algebra meeting in Manchester in July 1994. He has
given seminars in Berkeky, Boulder, Copenhagen, NASA Ames, Oak Ridge, Tennessee, and
h e & a d has given invited presentations at ASWM (Switzerland), BOM, Copenhagen,
Cbnobk, Hpmbprg, LhWping, oxfard, San Francisco, St Girons, St Malo, Skalsky DMU
(Czech Repubk), Toulouse, and Ydrohama

2

We have tried to subdivide our activities to fwilitatc the reading of this report. This is to
some extent an arbitrary subdivision since much of our work spans these subdivisions. Our
main research areas and intensts lie in sparse matrix research, nonlinear algebra and
optimization, applied mathematics, and numerical linear algebra. Work pertaining to these
amas is discussed in Sections 2 to 5, respectively. We group some misctllaneous topics in
Section 6. Much of our restarch and development resuits in high quality advanced
mathematical software for the Harwell Subroutine Library. The organization, maintenance,
documentation, and distribution of this Library is in itself a major task and we report on work
in these areas in Section 7. Lists of seminars (in the joint series with Oxford), technical
reports, and publications are given in Sections 8,9, and 10, respectively. Current information
on the activities of the Group and on Group members can be found through page
http://www .cis.rl.ac .uk/struct/ARCD/NUM. html of the World Wide Web.

.

3

2.1 Tht direct Sduth of sparse I lnspmeMc linear sets of equations (Is Duff
d J.K.RM)

We have compkted a new code, MA48, for the direct solution of a sparse unsymmetric set of
lia&arequations

where A is usually square and nonsingular. The main features are:

(i) a fast and robust solution to sparse unsymmetric sets of linear equations,
(ii) a user-fiiendly input format (entries in any order in a real array and corresponding

row and column indices in two parallel integer arrays, with duplicates allowed
and summed),

(iii) the code switches to full-matrix processing when the reduced matrix is
sufficiently dense, using Basic Linear Algebra Subprograms (BLAS) at Levels 1,
2, and 3,

(iv) the pivot sequence is normally chosen automatically from anywhere in the
matrix, but the choice may be limited to the diagonal or the pivot sequence may
be specified,

(v) in the event of insufficient storage allocation by the user, the package continues
with the computation to obtain a good estimate of the amount required,

(vi) the code computes and uses the block triangular form,
(vii) entries smaller than a threshold are dropped from the factorization,
(viii) singular or rectangular matrices are permitted,
(ix) another matrix of the same pattern may be factorized with or without additional

(x) there is an option of specifying that some columns have not changed when

(xi) another problem with the same matrix or its transpose may be solved,
(fi) iterative refinement of the solution is available to improve its accuracy or provide

row interchanges for stability,

factorizing another matrix,

an error estimate.

A most exciting development is the work of Gilbert and kierls [3] for economically
generating the patterns of the columns of the factors when factorizing with a given column
sequence but allowing for row interchanges. The overall complexity is O(n)+ O(f) where f is
the number of floating-point operations. There rn overheads, associated with the
racomputation of the sparsity patterns of the columns and the row interchanges may cause
extra fill-ins, so in MA48 we p r o v i d e two ‘factorizes’ which we callfirst andf ‘ i The first
factthe mufit be p v i d d with a column sequcw’~. Thus, the analyse phase need only
parovide 8 mxmmded pivot sequence; them is no need for this phase to provide the sparsity

4

pattern of the factr#izad matrix- We have t &mfa designed the d y e phpse to pmvidc the
permutations without the actual fators. This saves storage since working s t o w is then
needed only for the active submatrix of the block on the diagonal of the block triangular form
that is currently being processed. It may save time since the vectors that hold the active
columns are shorter and data compressions are much less likely to be needed.

Since the Harwell Subroutine Library code MA28 is a benchmark standard in thc solution of
sparse unsymmetric equations, we have compared MA48 with MA28 on three computing
environments, taking ratios of storage and execution times for the various phases in the
solution of (1). The results are summarized in Table 2.1.1 which shows the median and
quartiles for these ratios. MA28 always produces a factorization when it pexforms an analysis
and its only form of factorization is without pivoting. The MA28 analyse time is therefore
strictly comparable with the sum of the analyse and factorize times of MA48, and this
comparison is shown in column “Analyse + Fact.”. However, analyse alone or factorize with
pivoting may also be needed by the user, so we also use the MA28 analyse time to compare
separately with the analyse (column “Analyse”) and first factorize (column “First Fact.”)
times of MA48.

In view of these satisfactory results, we regard MA28 as having been rendered obsolescent
by MA48 and have thus flagged it for removal in a later Release of HSL. The design of MA4 8 is
described in [l] and in more detail in [2].

CRAY

SUN

RS/6000

Array Analyse First AnalYSe
size reqd Fact. + Fact.

lower quartile 0.50 2.87 7.84 2.03
median 0.69 4.47 12.10 3.26
upper quartile 0.71 7.2 1 21.41 5.1 1
lower quartile 0.50 2.20 3.88 1.38
median 0.68 3.17 5.09 1.89
upper quartile 0.74 6.39 9.7 1 3.52
lower quartile 0.50 2.67 7.99 2.04
d i m 0.68 3.58 1 1.69 2.64
upper quartile 0.74 7.07 24.33 5.06

Table 2.1.1. MA2 8 results divided by those with MA48.

Fast
Fact.
1.92
2.6 1
3.4 1
1.27
1.79
2.2 1
2.03
2.6 1
4.17

Solve

1.79
2.20
2.35
0.70
0.83
1.03
1.03
1.16
1.36

References

[11 Duff, I.S. and Reid, J.K. (1995). The design of MA48, a code for direct solution of sparse
unsymetric linear system of equations. Report RAGTR-95439, Rutherford Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX1 1 OQX. To appear in ACM Trms. Math.
sofhu. 1

[2] Duff, I.S. and Reid, J.K. (1993). MA48, a Fortran code for direct solution of sparse
unsymmetric linear systems of equations. Report RAL-93472, Rutherford Appleton
Laboratory, Chilton, Didcot, oxfordshire OX1 1 OQX.

[3] Gilbert, J.R and kierls, T. (1988). Sparse partial pivoting in time proportional to
d h ~ ~ ~ t i c operations. S’AMJ. Ski. SW. Cornput. 9,862-874.

5

We have dtvebpcd software for permuting a sparse matrix so that the diagonal of the
permuted matrix ?sas entries of large absolute value. We have modified and extended Harwell
Submutine Library routine ~ ~ 2 1 , which finds a maximum transversal of any unsymmetric
sparsc matrix. A maximum transversal is a set of entries of maximum cardinality where no
two mmbcrs of the set 8fe in the same row or column. For a structurally nonsingular matrix,
this cardinality will be equal to the matrix order. Our extension consists of taking into account
the values of the matrix entries and finding, among all maximum transversals, one that
maximiZes the minimum entry on the diagonal. We call such a transversal a bottleneck
transversal. We have explored several ways of doing this and have designed one that is in
practice similar in execution time to only a few calls to MC21 itself.

There are many ways in which the permutation of a matrix to put the bottleneck transversal
on the diagonal can be useful and we are investigating several of these. For example, many
cunent algorithms for the solution of sparse sets of linear equations (for example MA37 and
MA41) pcrf'orm an analysis phase that assumes that diagonal entries will be suitable as pivots
during a subsequent numerical factorization phase. Now, while there is no guarantee that
having a bottleneck transversal on the diagonal will ensure the pivots selected by the analysis
are numerically satisfactory, we intuitively feel that this should be better than a more arbitrary
set of entries on the diagonal. We are currently experimenting with this preordering using the
MA41 code. Initial findings are encouraging.

We are also examining the use of bottleneck transversals in the context of a block iterative
scheme like that developed in [l]. In such a scheme, a direct solution scheme is used on
blocks of the matrix, and the overall .solution is obtained by iterating over the blocks. By
placing large entries on to the diagonal, we can improve the robustness of our direct solver, in
a similar fashion to the discussion in the previous paragraph, while at the same time helping
the iterative part of the solver by reducing the influence of the overlapping part of the blocks.

Finally, we are also examining the use of bottleneck transversals in techniques for obtaining
preconditioning matrices for iterative solution. Clearly, it would appear that a diagonal
preconditioner consisting of the bottleneck transversal might perform better than an arbitrary
one and this effect might also influence more sophisticated preconditioners.

A M e r discussion of this work will shortly be available [2].

111 Arioh, M., Duff, I. S., Nodes, f., and Ruiz, D. (1992). A block projection method for
sp8c~e eqUati0n~. SI'. J. Ski. Stat. C ~ M . 13,47-70.

[Z] Duff, I. S. d Koster, J. (1996). Tht &sign and use of algorithms for permuting large
entries to the dmgod of gpars;t matrices. To 45xa.r.

6

2.3 An approximate minimum degree ordering (P.R. Amestoy, IS. M, and
TA. Davis)

The minimum degree reordering scheme for symmetric matrices is one of the oldcst known
reordering schemes for sparse matrices [3]. At each stage of the elimination, the next pivot is
chosen as a diagonal entry in the reduced matrix with least number of other entries in its row.
This very simple algorithm is a highly successful ordering scheme for reducing work and
fill-in when performing Gaussian elimination. However, on larger problems, as commonly
occur today, it can be quite slow. Most of the time is spent on the degree updak, that is
updating the row counts after a pivoting step. This cost is even more noticeable because of the
recent increase in the speed of the numerical factorization algorithms.

The purpose of our work, which is described in more detail in [11, is to design an ordering
scheme that closely approximates the minimum degree ordering, and so retains its good
properties, while at the same time executes much more quickly than the best available
implementation of minimum degree.

We use the same quotient graph model as most current implementations of minimum
degree to represent the symbolic factorization but replace the costly degree update by an

approximate update, which in many cases will be exact. The resulting algorithm is typically
much faster than previous minimum degree ordering algorithms and produces results that are
comparable in quality with the best orderings from other minimum degree algorithms.

We show a comparison in Table 2.3.1 of our new algorithm with m, the multiple
minimum degree algorithm of Liu [2], and the minimum degree ordering from the Harwell
Subroutine Library code m27. This clearly illustrates the power of our new algorithm. It has
been incorporated in the Harwell Subroutine Library at Release 12 as subroutine MC47.

Matrix

RAEFSKY3
BCSSTK3 1
FINAN5 1 2
BBMAT
0-678
PSMIGR1

~

Order

21200
35588
74752
38744
2529
3140

733784
5729 14
261 120

12741 41
85426

410781

~~

Number of entries in L
(in thousands)

MC4 7

4709
51 15
4778

19673
147

3020

MMD

4779
523 1
8180

19876
147,

2974

MA2 7

5041
6056
8159

21 139
147

2966

~~

Time

(seconds on SUN SPARC 10)
MC47

1.05
4.55

15.03
27.80
5.49

10.6 1

MMD

2.79
1 1 . 6 0

895.23
200.86
124.99
186.07

Table 2.3.1. Comparison of MC47 with MMD and MA27 orderings.

References

MA2 7

1.23
7.92

40.3 1
134.58
124.66
229.5 1

[l] Amestoy, P. R., Davis, T. .A., and Duff, 1. S. (1995). An approximate minimum d e p

7

ordcring algorithm. Technical Report TR/PA/95/09, CEWACS, Toulouse. To appear in
S I . J. Matrix Anal. and Applics.

[2] Liu, J. W. H. (1985). Modification of the minimum degree algorithm by multiple
elimination. AC" Trans. Math. &@W. 11, 141-153.

[3] Tinney, W. F. and Walker, J. W. (1967). Direct solutions of sparse network equations by
optimally ordered triangular factorization. Proc. IEEE 55, 1801 - 1809.

2.4 Developments in frontal solvers (I. S. Duff and J. A. Scott)

We are concerned with the solution of n x n linear systems of equations

where A is a large sparse matrix arising from finite-element analysis. The matrix A is a sum of
elemental matrices

m

&=I
A =CA(~).

Each matrix A(k) has entries only in the principal submatrix corresponding to the variables in
element k and represents contributions from this element. This principal submatrix is assumed
to be dense. The matrix A may be unsymmetric but the form (2) implies that the sparsity
pattern is symmetric with nonzero diagonal entries. One possible direct solution method for
(l), and the one which is still frequently the method of choice in many structural engineering
applications, is the frontal method.

There are two major deficiencies with the frontal method.

Far more arithmetic may be done than is required by the numerical factorization

There is little scope for parallelism, other than that which can be obtained through the use of
high level B U S .

We have been concerned with looking at ways in which we can improve the performance of
the frontal method and, in particular, the performance of our frontal code MA42 (Duff and

scott HI, PI).
One possible approach is to extend the basic frontal algorithm to use multiple fronts (Duff

and Scott [3]). In a multiple fiont algorithm, the finite-element domain is partitioned into a
number of subciomains and a hntal decomposition is performed on each subdomain
separately. Since the factorizarions of the subproblems are independent, this can be done in
parallel. Once the assembly and eliminations on the subdomains are complete, there remains
an interface problem to be solved. In our experiments, we solved the interface problem using
a frontal method. To implement the multiple front algorithm, we developed the package MA52.

8

This is a collection of subroutines, that can be used in conjunction with the MA42 package.

We examined the performance of MA52 and ~ ~ 4 2 in two parallel environments: on an eight
processor shared memory CRAY Y-MPSI and on a network of five DEC Alpha workstations
using PVM. The results we obtained for a model finite-element problem are encouraging and
indicate that, for sufficiently large problems, high performance and good s p d u p s can be
achieved. Full details are given in [3].

For high performance computers where data must be cache resident before arithmetic
Qperations can be performed on it, we are looking at enhancing the performance of MA42 by
increasing the proportion of arithmetic operations performed using Level 3 BLAS. This is
done by only performing eliminations once a block of pivots of a predetermined size is
available. This can increase the amount of arithmetic but enables better reuse of data in the
cache. Preliminary experiments on the Silicon Graphics Power Challenge machine using
different pivot block sizes suggest that significant improvements in performance can be
achieved using this approach.

References

[l] Duff, I.S. and Scott, J.A. (1993). MA42 - a new frontal code for solving sparse
unsymmetric systems. Report RAL-93-064, Rutherford Appleton Laboratory, Chilton,
Didcot, Oxfordshire OX1 1 OQX.

[2] Duff, I. S. and Scott, J. A. (1996). The design of a new frontal code for solving sparse
unsymetric systems. ACM Trans. Math. So@., to appear.

[3] Duff, I. S. and Scott, J. A. (1994). The use of multiple fronts in Gaussian elimination.
Report RAL-94-040, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire
ox11 OQX.

2.5 Fortran 90 version of Harwell frontal code MA42 (J.K. Reid and J.A. Scott)

The code MA42 [11 performs frontal elimination for a finite-element problem, normally using
direct-access files for holding the factors. There may be significant efficiency gains from
splitting a large problem into subdomains, using MA42 on each subdomain to create a Schur
complement matrix for the variables on the boundary of the subdomain, and finally using
MA42 for the interface problem. This multiple front approach is hard to organize because of
the long argument lists and the need for distinct workmays and direct-access files. We have
therefore constructed a Fortran 90 version that collects everything pertaining to a problem in a
single object.

Using the Fortran 90 version, a typical run looks like this:

USE HSLMA42
TYPE(MA42DATA) DATA ! DATA holds everything about the problem.

9

CALL MA42-INITIALIZE (DATA)
DO I = 1, NUMELT ! Read the integer data for the elements, one by one.

READ* 0

CALL M A ~ ~ J W U J Y S E (LIST (1 : LEN) , DATA)
ENDDO
DO I = 1, NUMELT ! Read the r e a l data for the elements, one by one.

R E A D * * e

CALL MA82-FACTORIZE (LIST (1 : LEN) ', &
REALS (1 : LEN, 1 : LEN) , DATA)

mD0
READ . . ! Read the data for the right-hand side.
CALL MA42-SOLW (B,X,DATA)

The module looks after everything in DATA, except a few control or informative variables.
Options may be specified in extra calls such as

CALL MA42-FILES (LENBUF , LENFILE I DATA)
which provides information on the files, by use of optional arguments, such as

CALL MA42-SOLVE(B,X,DATAITRANS)
or setting components of the data structure, such as

and extra information may be retrieved by accessing components, such as
DATA%ALtPHA = 0.001

FLOP-COUNT = DATA%FLOPS

The Fortran 90 code does run a little slower that the Fortran 77 code, hardly surprising since
we call the old code from within a Fortran 90 jacket. Depending on the compiler and
computer, we have found that the overhead varies from about 5% to about 50%.

References

[l] Duff, I.S. and Scott, J.A. (1993). MA42 - a new frontal code for solving sparse
unsymetric systems. Report RAL-93-064, Rutherford Appleton Laboratory, Chilton,
Didcot, Oxfordshire OX1 1 OQX.

2.6 Element resequencing for use with a multiple front solver (J. A. Scott)

The efficiency of a fiontal scheme, in terms of both storage and computation time, is
dependent upon the ordering of the elements. This is because, in the frontal method, the
system matrix A is never assembled explicitly but the assembly and Gaussian elimination
processes are interleaved, with each variable being eliminated as soon as its row and column
are fully summed. This allows all intermediate working to be performed in a full matrix,
kxmed thejkontal matrix, whose rows and columns cornspond to variables that have not yet
been eliminated but occur in at least one of the elements that have been assembled. Since the
order of the frontai matrix increases when a variable appears for the first time and decreases

10

whenever a variable is eliminate& the oTdcr in which the elements is input is critical. In m t
years, many algorithms for automatically ordering f~te elements have beta proposed in the

literatwe.

In a multiple h n t algorithm (Duff and Scott [l]), the finite-element domain is partitioned
into a number of subdomains and a frontal decomposition is performed on each subdomain
separately. For a given partitioning of the domain, the efficiency of the multiple front
algorithm depends on the ordering of the elements within each subdomain. The aim of our

study was to look at the limitations of existing element reordering algorithms when applied to
a subdomain and to consider how these limitations may be overcome.

The problem of ordering elements for use with a multiple front algorithm is more
complicated than that of sequencing elements for a frontal solver on a single domain since it is
necessary to distinguish between variables which can be eliminated once they are fully
summed and interface variables that cannot be eliminated within the subdomain. We have
considered two approaches which involve two different ways of locating a suitable starting
element s for the reordering procedure. Once a starting element has been selected, both

methods use a modification of the method of Sloan [2] to reorder the remaining elements. Our
first method for choosing s is based on finding pseudo-peripheral nodes of the element
communication graph. The second method introduces an artificial element, the guard element,
and uses this extra element to find an element lying as far from the interface boundary as

possible and uses this to start the reordering. We have tested both approaches on a range of
problems and compared their performance with that of the Harwell Subroutine Library code
MC43, which is designed for single domain problems. Both approaches give significant
improvements over MC43, and the second method was almost always the method of choice.
On the basis of our findings, a code MC53 implementing this second method has been
developed and is included in Release 12 of the Harwell Subroutine Library.

References

[13 Duff, I. S. and Scott, J. A. (1994). The use of multiple fronts in Gaussian elimination.
Report RAL-94-040, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire
ox11 OQX.

[2] S. W. Sloan (1986). An algorithm for profile and frontsize reduction of sparse matrices.
Int. J. Numer. Meth. Engng. 23,239-251.

[3] J. A. Scott (1995). Element resequencing for use with a multiple front algorithm. Report
RAL-95429, Rutherford Appleton- Laboratory, Chilton, Didcot, Oxfordshire OX 1 1

oQx*

2.7 E~pkuMhg zerr)(p on the d h g d in the direct solution of indefinife sparse
finear systems (IS. Duff and J.K. Reid)

We consider the direct solution of sparse sets of n linear equations

when the matrix A is symmetric and has a significant number of zero diagonal entries. An
example of applications in which such linear systems arise is the equality-constrained
least-squares problem

subject to

Cx=d.

This is equivalent to solving the sparse symmetric linear system

(I 0 I)(;) = (ff).
BT CT 0 x

(3)

(4)

O u r earlier Harwell Subroutine Library code MA27 uses a multifrontal solution technique
and is unusual in being able to handle indefinite matrices. It has a preliminary analysis phase
that chooses a tentative pivot sequence from the sparsity pattern alone, assuming that the
matfix is definite so that all the diagonal entries are nonzero and suitable as 1 x 1 pivots. For
the indefinite case, this tentative pivot sequence is modified in the factorization phase to
maintain stability by delaying the use of a pivot if it is too small or by replacing two pivots by
a 2 x 2 block pivot.

The assumption that all the diagonal entries are nonzero is clearly violated in the above
example. For such problems, the fill-in during the factorization phase of MA27 can be
significantly greater than predicted by the analysis phase. Duff, Gould, Reid, Scott, and
Turner [11 found that the use of 2 x 2 pivots with zeros on the diagonal alleviated this problem
and also assisted the preservation of sparsity during the analysis phase. Our new code, ~ ~ 4 7 ,

is based upon this work and, like MA27, uses a multifrontal method. It will work for the
definite case, but there are many opportunities for simplifications and efficiency
improvements, so we plan to provide a separate code for this special case.

The design of the new code, M47, is described in [2] and in more detail in [3]. It was hoped
that ~ ~ 4 7 would replace MA27 for the indefinite case, but our experience is that it is not always
superior. A comparison summary is shown in Table 2.7.1 of runs on a CRAY Y-MP and a
SUN SPARCstation 10 on a collection of test problems. The analyse phase of MA47 is more
complicated and is inevitably more expensive, but we expect actual applications to amortize
this over sevcd factorizations and many solves. For factorization and solution, in general,
MA47 with its ckWt outperforms MA27 with its default, but it is clear that MA27 will continue

12

to be needed for some problems. We are keeping both codes in the HaweU Subroutine
Library.

CRAY

SUN

Total storage
R e d i d

lower quartile 0.96
median 1.45
upper quartile 1.86
lower quartile 0.96
median 1.45
upper quartile 1.86

Storage for factors
Redicted Actual
0.59 0.3 1
1.15 0.57
1.46 1.21
0.59 0.3 1
1.15 0.57
1.46 1.12

Time
Analyse Factorize Solve
1.69 0.53 1.44
2.64 1.38 1.82
5.41 2.04 2.18
1.88 0.25 0.45
3.32 0.96 0.75
5.58 1.88 1.40

Table 2.7.1. MA4 7 to MA27 ratios using default parameter settings.

References

[11 Duff, I.S., Gould, N.I.M., Reid, J.K., Scott, J.A. and Turner, K. (1990). Factorization of
sparse symmetric indefinite matrices. M A J. Numer. Anal. 11, 181-204.

[Z] Duff, I.S. and Reid, J.K. (1995). Exploiting zeros on the diagonal in the direct solution of
indefinite sparse symmetric linear systems. Report RAL-TR-95-040, Rutherford
Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX. To appear in ACM
Trans. Math. So@.

[3] Duff, I.S. and Reid, J.K. (1995). MA47, a Fortran code for direct solution of indefinite
sparse symmetric linear systems. Report RAL-95-00 1, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxfordshire OX 1 1 OQX.

2.8 A combined unifrontaUmultifront1 method (T.A. Dads and I.S. Duff)

Frontal methods (see Section 2.4) are particularly powerful inasmuch as they make
considerable use of the Level 3 BLAS kernels while keeping the amount of integer overhead
and data movement low. However, they usually require a far greater number of floating-point
operations than methods using an ordering based on Markowitz or minimum degree.
Multifrontal methods attempt to capture the benefits of both the full arithmetic of frontal
schemes and the orderings designed to reduce fill-in and arithmetic. They are quite successful
at this but still involve more data movement and indirect addressing than a frontal method.
The object of this work is to combine elements of a frontal solver into a multifrontal solver in
order to obtain a factorization that is efficient in arithmetic, number of operations, and
overhead operations.

In the multifrontal method, several frontal matrices are used. Each is used for one or more
pivot steps, and the resulting Schur complement is summed with other Schur complements to

generate another fiontal matrix. Although this means that arbitrary sparsity patterns can be
handled efficiently, extra work is required to add the Schur complements together and can be
costly because indirect addressing is required. The (uni-)frontal method avoids this extra
work by factorizing the matrix with a single frontal matrix. Rows and columns are added to

13

thc h t a i matrix, and pivot rows and columns arc removed. Data movement is simpler, but
hi* fill-in can result if the matrix cannot be permuted into a variable-band form with small
profle. We consider a combined unifjronWmultifiontal algorithm to enable general fill-in
reducing orderings to be applied without the data movement of previous multibntal
approaches.

Order

Suppose we attempt to factorize a matrix with the frontal method, but we give it a smaller
working array than it requires. The factorization proceeds until the point at which the fiont
size would grow larger than the working array. At this point the frontal method halts, unable
to proceed. However, the remaining terms in the current frontal matrix form a Schur
complement (which we refer to as a contribution block). We store the contribution block and
deallocate the working array. A new pivot is then selected based on a fill-in reducing heuristic
on the whole reduced matrix, and a new fiontal matrix started with this starting pivot, in a

newly allocated working array. The contribution block from the first frontal matrix is
eventually assembled into a subsequent frontal matrix. This is the combined
unihntal/multifrontal method, described in more detail in [11.

Entries

In Table 2.8.1, we compare an earlier version of our unsymmetric multifrontal code (old)
with one incorporating this new device (new) and include a comparison of these codes with
the frontal code, MA42. The test matrices, from the Harwell-Boeing Collection and some large
examples collected by Tim Davis, show quite clearly the advantage of using our combined
uni fron tdmul t i frontal technique.

MA42

0.1
2.2
4.1
0.7
1.1

Matrix

Multifrontal

(old) (new)

0.3 0.2
0.4 0.3
1.1 1 .o
1.5 0.8
0.6 0.4

GREl107
GEMAT11
ORANI678
LHRo4
HYDR1

(old)

0.30
0.18
2.07
2.5 1
1.05

(new)

0.30
0.20
1.36
1.79
1.10

1107
4929
2529
4101
5308

-

5664
33185
90158
82682
23752

~ ~ ~~ ~

Time
(seconds on CRAY C-98)

MA42

0.2 1
15.95
9.62
4.21
8.01

Table 2.8.1. Comparison of unsymmetric multifrontal codes with MA42.

References

[l] Davis, T.A. and Duff, I.S. (1995). A combined unifbntaUmdtifrontal method for
unsymmetric sparse matrices. Technical Report TR-95-020, Computer and Informab;.oa

Science Departmeat, University of Florida.

14

2.9 An u11sylllg3effjtric mul-nw d e (TA. Davis and 15. Duil)

secs)
MA3 8

We have used the work discussed in Section 2.8 to design and develop a new multihntal
code for the solution of sets of sparse unsymmetric equations and have included this code in
Release 12 of HSL as code MA38. Unlike MA37 and MA41, MA38 does not assume any
symmetry in the matrix and its initial pivot selection copsiders also the values of the matrix
entries and only selects a pivot if it satisfies the normal threshold test. In the current version of
our code, we only offer a factorize which uses the same pivot sequence as in an earlier call to
the analyse-factorize entry.

(106 words)

MA48 I MA38

The underlying representation for this unsymmetric multifrontal method is a directed
acyclic graph, rather than the elimination or assembly trees used by our other multifrontal
codes. The frontal matrices are rectangular rather than square and the internal data

organization during factorization is more complicated since frontal matrices are not usually
absorbed at the parent node in the graph. In this respect, the approach is similar to that of the
HSL code ~ ~ 4 7 (see 2.7).

0.30
1.36

22.61
1.78 .
1.10

In common with other multifrontal codes, high computational performance is obtained
through the use of higher Level BLAS on the factorizations within the dense frontal matrices.
This code will thus be most efficient when the matrix structure gives rise to large dense
subblocks during the factorization. The algorithm also incorporates the use of unifrontal
processing as discussed in Section 2.8.

0.3 0.2
0.8 1 .o

20.9 25.2
2.2 1.2
0.4 0.4

We show, in Table 2.9.1 below, a comparison of the performance of M A ~ 8 with M A ~ 8 on a

range of our standard test problems from the Harwell-Boeing Collection and some matrices
collected by Tim Davis. We see clearly that, on some matrices, this new code is very
competitive with ~ ~ 4 8 and can significantly outperform it on some problems. We note,
however, that the functionality of the codes is somewhat different which more than justifies
keeping both in the Harwell Subroutine Library.

Matrix

GREl107
ORANI678
PSMIGR1
LNS 3937
HYDR1

Order

1107
2529
3140
3937
5308

Entries

5664
90158

543 162
25407
23752

Factorization 1 Total storage

time
MA4 8

0.38
1.01

28.86
3.37
0.8 1

Number fl-pt ops
(106)

MA4 8

8.1
14.2

10465.3
280.4
0.9

MA3 8

6.7
7.2

9489.8
84.1
2.7

Table 2.9.1. Comparison of MA38 with MA48. Times in seconds on a CRAY C-98.

References

[11 Davis, T. A. and Duff, I. S. (1993). An unsymmetric-pattern multifrontal method for sparse

1s

Lu factorization. Report RAL 93-036, Rutherford Appleton Laboratory, Chilton,
Didcot, oxfordshire OX1 1 OQX. To appear in SZAM J. Matrix Anal. and Applics.

[2] Davis, T.A. and Duff, I.S. (1995). A combined unifrontaVmultifrontal method for
unsymmetric sparse matrices. Technical Report TR-95-020, Computer and Information
Science Department, University of Florida.

2.10 UnSymmetric multffrontal methods for finitelelemeat problems (A.C.
Damhaug and J.K. Reid)

We have constructed a new multifrontal code for unsymmetric finite-element sets of linear
equations AX = B, which has been included in the Harwell Subroutine Library as M A ~ 6. The
matrix A must be input by elements and be of the form

Where
nodes

A(') is nonzero only in those rows and columns that correspond to variables of the
of the k-th element. Optionally, the user may pass an additional matrix A, of

coefficients for the diagonal. A is then of the form

The right-hand side B is expressed through the summation

The analysis phase accepts the matrix pattern by element-node connectivity lists and
chooses diagonal pivots for Gaussian elimination to preserve sparsity while disregarding
numerical values. The ordering is done with the minimum-degree heuristic. The final
assembly tree is reordered to reduce the size of the working stack.

To support any kind of data base that might hold the element stiffness matrices, we use
'reverse communication' for the matrix factorization. The routine must be called by the user
NB times, where NB is the number of assembly steps (internal nodes of the assembly tree),
determined by the analysis code. In each call, the user must pass a specified sequence of
finite-element coefficient matrices. Pivoting with the usual relative pivot tolerance is
included.

For good performance on machines with cache storage, the user may provide the cache
size. If nectss8fy, the actual elimination is performed in blocks of columns of a size that
allows the active part of the matrix to reside in the cache. On the biggest problem that we ran
in perf6- tests, this reduced the factorization time with pufe Fortran code fiom 1607 to
1149 secs on a SUN Sparcmer 670 mp and from 342 to 229 secs on a DEC 3000-400.

16

We use Level 3 BLAS for the actual computation. Whexe optimizcd vendor veasiolrs we
available, very good pedorinance can be obtained. Indeed, on the DEC our blocking for good
cache usage did not help, presumably because the vendor-supplied B U S itself uses blocking.
For the big problem mentioned in the previous paragraph, the time was reduced to 197 secs by
using vendor-supplied BLAS.

The new code comfortably outperformed the code ~ ~ 3 7 in our tests. These are summarized
in Table 2.10.1.

DEC 3000-400 SUN Sparcserver 670 mp CRAY Y-MP
Analyse Factorize Solve Analyse Factorize Solve Analyse Factorize Solve

lower quartile 2.3 2.5 1.1 2.1 1.8 0.9 1.5 3.2 1 .o
median 3.3 2.7 1.4 2.9 2.0 1.1 1.7 3.8 1.2
upper quartile 13.7 3.7 1.6 11.5 2.2 1.2 7.0 4.0 1.4

Table 2.10.1. ~ ~ 3 7 times divided by U 4 6 times.

More detail is available in the report [11.

References

[13 Damhaug, A.C. and Reid, J.K. (1996). MA46, a FORTRAN code for direct solution of
sparse unsymmetric linear systems of equations from finite-element applications. Report
RAL-TR-96-0 10, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX 1 1

OQX-

2.11 MUPS: a Multifrontal Parallel Solver for sparse unsymmetric sets of
linear equations (P.R. Amestoy and I.S. Duff)

We have developed our prototype MUPS package to produce a new HSL code, m41, for the
solution of sets of sparse unsymmetric equations using a multifrontal method. MA41 is similar
to ~ ~ 3 7 in the sense that the initial analysis is performed on a symmetrized pattern of the
original matrix and assumes that pivots can be chosen from the diagonal in any order. It is thus
best suited to systems which are structurally symmetric or nearly so and which are diagonally
dominant. It differs from MA37 in several respects.

We have reorganized the structure of the code along the lines described in [3] and [4] so
that it is no longer assumed that the code is being executed on a single processor. This makes
the internal data structures a little more complicated but the overhead for uniprocessor
running is almost negligible. We also require a more complex data management policy so that
garbage collections do not interfere with parallel efficiency, see [2]. Another main change
from ~ ~ 3 7 is that we make extensive use of the higher Level BLAS which increases
computational efficiency on all machines, particularly those with caches or vector chips [11.
Other enhancements to ~ ~ 3 7 include options for scaling, permutation so that the diagonal is
zero-free, error analysis, and iterative refinement.

The uniprocessor version is included in the standard release of the Harwell Subroutine

17

Library (Release 12), but vcTGiolls for s h a d memry parallel computers are also available on
request. The code is design& so that it is relatively simple to develop a version for any shared
memory machine sincc the only primitives used by the code involve task stating and locks.
At present, we have fully tested versions for the CRAY YMP/c90 range of machines and for
an Alliant W80 and are currently writing a version for multiprocessor Sun workstations.
Versions of the code have also been designed and run on some virtual shared memory
machines, for example on a BBN TC 2000 and a KSR-1.

Analyse time I Entries

We show, in Table 2.1 1.1 below, a comparison of the performance of the uniprocessor
version of MA41 with MA37 on a range of our standard test problems from the Harwell-Boeing
Collection and some matrices collected by Tim Davis. These results indicate the
improvements we have made and illustrate the power of using vendor-supplied BLAS on the
HP 7 15/64.

Factorization time Solve time Matrix
MA3 7

28.41
0.96
0.34
0.3 1
1.81
5.09

ORANI678
BCSSTK15
LNS 3937
sHERMAN3
GOODWIN
WANG3

MA4 1 MA3 7

46.02 251.18
11.79 104.80
1.79 13.22
1.07 3.23
8.18 510.65

299.50 1591.21

Order

2529
3948
3937
5005
7320

26024

90158
117816
25407
20033

324784
177168

MA4 1

4.15
0.61
0.32
0.6 1
1 .w
8.63

I MA41

0.29
0.18
0.07
0.05
0.23
2.17

MA3 7

0.36
0.34
0.12
0.06
0.77
2.70 -

Table 2.1 1 . l . Comparison of ~ ~ 4 1 with ~ ~ 3 7 . Times in seconds on an HP 7 15/64 workstation.

References

[11 Amestoy, P. R. and Duff, I. S. (1989). Vectorization of a multiprocessor multifrontal code.
Int. J. Supercomputer Applics. 3 (3), 4 1-59.

[2] Amestoy P. R. and Duff I. S. (1993). Memory management issues in sparse multifrontal
methods on multiprocessors. Int. J. Supercomputer Applics. 7 , 64-82.

[3] Duff, I. S. (1989). Multiprocessing a sparse matrix code on the Alliant W8. J. Comput.
Appl. Math. 27, 229-239.

[4] Duff, I. S. (1986). Parallel implementation of multifrontal schemes. Parallel Computing 3,
193-204.

18

2.12 M-W QR factorization in a multiprocessor environmeat (P.R.
Amestoy, IS. M, and C O Rlgki)

We have designed and implemented an algorithm for the parallel QR decomposition of a
sparse matrix A. Our current version is designed for shared memory or virtual shared memory
parallel architectures and only uses the primitives taskstart and lmbnllmbff or their
equivalents. The algorithm is based on the multifrontal approach and makes use of
Householder transformations. The tasks are distributed among processors according to an
assembly tree which is built from the symbolic factorization of the matrix ATA. Our approach
is unusual inasmuch as we keep the orthogonal factors Q which may be required in some

applications (for example if an orthogonal basis for the column space of A is wanted) and may
be crucial in the solution of ill-conditioned or weighted least-squares problems. Another novel
aspect of this work is that we use relaxation of the sparsity structure of both the original
matrix and the frontal matrices to improve the perfomance by enabling more efficient use of
the Level 3 BLAS.

We discussed this work extensively in the previous Progress Report (articles 2.11,2.12, and
2.13 in [2]). Since then we have completed our main report on this work [l] and have
developed and tuned codes for using the factorization to solve a least-squares problem.

If the QR factorization is being used to solve the sparse least-squares problem min
Ilb-Axllz, and we have the factors Q and R then the solution is obtained by first multiplying b
by QT and then solving the triangular system Rx=b. Since Q and R were produced by the
multiprocessor multifrontal factorization, we must also use the underlying tree structure to
effect an efficient parallel algorithm for these two phases. For the first calculation (QTb) we
process the assembly tree from the leaf nodes to the root as in the factorization itself. The data
management is, however, much simpler than in the factorization and we can update
components of the product vector without synchronization worries. In the back substitution
phase (Rx=b), we process the assembly tree from the root node to the leaf nodes. If the entries
of Q are discarded and we want to solve the least-squares problem using the semi-normal
equations then we also require the forward substitution step R T y r so we have also

implemented this in parallel. We show, in Table 2.12.1 below, that these three phases in the
solution of least-squares problems all parallelize well. The runs for this table were performed
on an Alliant W80.

19

LARGE

MEDIUM2

LARGE2

MAC80

MAC100

(28254 x 6400)

(18794 x 12238)

Number

F*

1
8
1

(56508 x 34528)

(24W x 6400)

l 8
1
8
1

QTb

Time

2.59
0.62
2.84
0.77

10.98
3.53
1.80
0.34
2.98
0.70

4.18

3.69

3.1 1

5.29

4.26

Time

2.69
0.42
1.79
0.32
5.49
1.1 1
1.02
0.18
1.65
0.27

6.40

5.59

4.95

5.67

6.1 1

Time

2.44
0.43
1.66
0.37
3.10
1.19
0.97
0.18
1.54
0.3 1

Speedup

5.66

4.52

2.59

5.25

4.98

Table 2.12.1. Time in seconds and speedups for multifrontal QR solution phases on an Alliant
W80.

References

[l] Amestoy, P. R., Duff, I. S., and Puglisi, C. (1994). Multifrontal QR factorization in a
multiprocessor environment. Technical Report TR/PA/94/09, CERFACS, Toulouse. To
appear in Numerical Linear Algebra and Applics.

[2] Duff, I. S. (Editor). (1994). Numerical Analysis Group. Progress Report. January 1991 -
December 1993. Report RAL 94-062, Rutherford Appleton Laboratory, Chilton, Didcot,
.Oxfordshire ox1 1 OQX.

2.13 The solution of linear least=squares problems (J. Cardenal, I.S. Duff, and
J. Jimenez)

We have designed and developed a general method for the linear least-squares solution of
overdetermined and underdetennined systems. The method is particularly efficient when the
coefficient matrix is quasi-square, that is when the number of rows and number of columns is
almost the same. The numerical methods proposed in the literature for linear least-squares
problems and minimum-norm solutions do not generally take account of this special
characteristic. The proposed method is based on an LU factorization of the original
quasi-square matrix A, assuming that A has full rank.

We have developed a framework based on the augmented system
presenting our algorithm and give a unified approach to solving both least-squares problems
and minimum-norm problems.

In the overdetemined case, the LU factors are used to compute a basis for the null space of

A? The right-hand si& vector b is then projecttd unto this subspacc and the least-squarcs
solution is obtained from the solution of this reduced problem. In the case of underdtttrmintd
systems, the desired solution is again obtained through the solution of a reduced system. The
use of this method m y lead to important savings in computational time for both dense and
sparse matrices.

We have studied the performance of our algorithm on practical test problems arising in the
solution of problems from the computer simulation of the kinematic behaviour of multibody

Test 4
385
361

1661

1914.1
100.3
43.4

391.7
21.1

systems

Test 5
574
526

3365

5990.1
288.6
120.7

2124.2
67.7

Some results from this study are !

Rows
Columns
Entries

Normal equations

Augmented system
Proposed Method

Code

LAPACK
MA27
MA27
LAPACK
MA48

iown ir

Test 1
117
105
615

57.4
12.1
7.3

29.8
4.5

Table

Test 2
170
161

1069

203.3
32.3
15.6
47.7

7.3

,13.1.
-
Test 3

181
180

1 200

238.6
37 .o
13.1
56.4
4.1

Table 2.13.1. Solution of sparse least-squares problems. Times in seconds on Silicon Graphics
Onyx workstation (1 50 MHz).

The test cases all come from multibody simulation problems and, although small by current
sparse matrix standards, they are typical of realistic problems arising in this application.
Indeed the three smaller cases are more usual. It is thus quite surprising that the dense codes
from LAPACK do so badly relatively to the sparse codes. From these results, we see that our
proposed method does very well, especially if a good sparse code is used for the initial LU
factorization of A. A full report on this work is presented in [11.

References

[11 Jimenez, J. M., Cardenal, J., and Duff, I. S. (1996). A projection method for the solution of
linear least-squares problems. Report RAL-TR-96-0 13, Rutherford Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX 1 1 OQX.

21

2.14 ApproxhWe-invem precoaditiorrers (N.I.M. Gould and J.A. Smtt)

We are inkrested in using iterative techniques to solve large, sparse systems of linear
equations

Such methods invariably require one or more matrix-vector products per iteration;
convergence is normally accelerated using a preconditioner P, in which case the required
matrix-vector products involve AP or PA, not A.

The solution of such problems remains a considerable challenge, especially if we are
interested in robust methods for general problems. The difficulties are two-fold. Firstly, the
theory of iterative methods for (1) is, at best, incomplete. In particular, it is difficult to be
confident, when faced with a new problem, that a given algorithm will converge in a
reasonable time, if at all. Secondly, while it is recognized that preconditioning the system
often improves the convergence of a particular method, this is not always so. In particular, a
successful preconditioner for one class of problems may prove ineffective on another class.
Thus, it has long been recognized that the construction of successful general purpose
preconditioners is unlikely to be possible.

We are interested in constructing approximations, M, to the inverse of A for which
11 AM - I 11 is small (I is the n x n identity matrix). So long as matrix-vector products involving
M are inexpensive, the matrix M may then be a suitable preconditioner. There has been a lot
of recent interest in such preconditioners because they have considerable scope for
parallelization, and there is some evidence that they are perform well in practice. However, a
proper assessment of their effectiveness in comparison with other preconditioners and of the
correctness of the assumptions on which they are based has been laclung.

In this study, we investigate the use of sparse approximate-inverse preconditioners. We
propose a number of enhancements which are shown to significantly improve their
performance on some problems. We compare the use of sparse approximate-inverse
preconditioners with incomplete LU factorization (ILU) preconditioners. Using a range of
problems, we find that the sparse approximate-inverse methods are significantly more
expensive to use on a single processor machine. However, the sparse approximate-inverse
methods can be successfbl when ILU preconditioners fail, and preliminary studies suggest the
imbalance in the computation tirnes may be redressed when the methods are used in parallel.

References

[11 N. I. M. Gould and J. A. Scott (1995). On approximate-inverse preconditioners. Report
RAL-95-026, Rutherford Appleton Laboratory, Chilton, Didcut, Oxfordshire OX1 1

W X -

22

2.15 Linear algebra kerneb for paral€el domaim decomposition methods (I,.
Cawalho, I. S. M, and L. Giraud)

Memory requirement
(in Mbytes)

The modelling of many applications in physics and engineering gives rise to systems of
nonlinear partial diffenmtial equations (PDEs). Approximate solutions to these PDEs are
obtained by nonlinear iterative procedures that linearize and disc~tize the equations. Each
step of the nonlinear procedure involves the solution of large sparse linear systems. These
systems, for example those arising in 3D numerical simuhtions, can be very large and can
seldom be solved using only direct methods as they may of’ten require too much memory.
Equally, the use of standard iterative techniques, such as those based on Krylov sequences, is
not practical due to the slow convergence. We thus combine iterative techniques with direct
methods for solving subproblems to accelerate the convergence. Examples of this hybrid
approach are block preconditioned Krylov methods and domain decomposition methods.
These are additionally suitable for parallel computing on distributed memory machines.

In this work, we study the parallel implementation of a domain decomposition method
based on a Schur complement approach. In this approach, we divide the problem into
subdomains and, within each subdomain, we partition the variables into internal and interface
variables. We can then solve for the internal variables of each subdomain using a direct
method. The resulting problem in the interface variables has the Schur complement matrix as
coefficient matrix. We solve this using an iterative method. The main concern with this class
of techniques is how to precondition the Schur complement problem.

The preconditioning technique that we use is a block Jacobi preconditioning, where the
blocks correspond to the contribution to the diagonal blocks of the Schur complement matrix
from each subdomain. We approximate the inverse of each of these blocks by tridiagonal
matrices using the probing technique of Chan [Z]. This approximation is then factorized and
used as a preconditioner to accelerate the conjugate gradient iteration on the interface
variables. We have found that the method is strongly influenced by the direct method used to

solve the subproblems and show, in Table 2.15.1 below, the effect of using different direct
solvers. The band solver used was DPBTRF/S from LAPACK. The PCG code used in solving
the subproblems was an ICCG code developed by Notay et al. [3].

I Factorization Solve

times (in sec) times (in sec)
Solver

Band
Skyline
MA27
PCG

2.12
1.31
0.70
0.63

0.875
1.034
0.409
0.008

0.103
0.06 1
0.027
0.875

Table 2.15.1. Comparison between the different linear solvers on a single 64x64 domain. Times
on a single processor of a Meiko CS2-HA.

23

We thus choosc to solve the subprobienns with MA27 and have exprbented with this
solution scheme on various parallel environments including a Meiko CS2-HA and a network
of Sun SPARC-10 workstations. We have studied the effect of different partitioning strategies
and have examined speedup and scaled speedup. More details of these results can be found in
Ill.

[11 Carvalho, L., Duff, I. S., and Giraud, L. (1995). Linear algebra kernels for parallel domain
decomposition methods. Report TRPN95/26, CERFACS, Toulouse.

[2] Chan, T. F. and Mathew, T. P. (1992). The interface probing technique in domain
decomposition. SLAM J. Matrix Anal. and Applics. 13,2 12-238.

[3] Notay, Y., Gheur, V., Ould Amar, Z., Petrova, S., and Saint-Gorges, P. (1995). ITSOL:
an evolving routine for the iterative solution of symmetric positive definite systems.
Report GANMN 9502, Universitk Libre de Bruxelles.

2.16 Solution of large sparse unsymmetric linear systems with a block iterative
method in a multiprocessor environment (M a Arioli, L. Am Drurmnond, I a
S. Duff, and D. Ruiz)

Block iterative methods for the solution of large sparse sets of linear equations are well suited
for implementation on parallel computers since the solutions of the partial problems on each
block can be performed independently. We were particularly interested in the Block Cimmino
algorithm since there is no data communication between the subblocks and these subproblems
can be solved simultaneously. We have already designed and experimented with the Block
Cimmino algorithm, accelerated by conjugate gradients and block conjugate gradients, on
shared memory parallel computers [3], [4]. This work was discussed in Section 2.15 of the
previous Progress Report [6].

We have extended this work to enable the implementation on distributed memory
computers and networks of workstations. This has involved the consideration of many issues
not present in the shared memory version. The issues of scheduling and load balancing have
resulted in the design of a scheduler for heterogeneous computing environments that is
discussed in detail in the thesis of Tony Drummond [5] .

We made a detailed study of the block conjugate gradient algorithm using various strategies
for distributing the computation. Each strategy has its advantages and disadvantages but we
found that, on most platforms and on most problems, it was best to use a master-slave
distributed implementation in which the master performs an initial scheduling and distributes
the tasks to the slaves. Thereafter the master is only used for global operations like computing
inner products and testing for termination. The alternatives that we compared this strategy
with were only to distribute rnatrix-vector multiplies and one where there is no master process

24

but more redundant computation. We used the master-slave distributed implementation of the
block conjugate gradient algorithm as the preconditioner for a distributed block Cimmino
algorithm.

We have found it very beneficial to allow the scheduler to group closely related tasks on the
same processor and have also experimented with different strategies for the initial subdivision
of the equations for the block Cimmino algorithm. Choosing the best strategies in each case, .

we obtain impressive speedups, as is illustrated in Table 2.16.1 below.

Further information on this work can be found in [l], [2] and [5].

1

8.3
-
-

Number of
processors

Time

I

Speedup
Efficiency

2 4 8 10

4.3 2.5 1.4 1.0
1.9 3.3 5.9 8.3

0.95 0.83 0.74 0.83

Table 2.16.1. Time in seconds on an IBM SP2 for solution of problem SHERMAN4 from the

Harwell-Boeing Collection.

References

[11 Arioli, M., Drummond, A., Duff, I. S., and Ruiz, D. (1995). A parallel scheduler for block
iterative solvers in heterogeneous computing environments. In Proceedings of the
Seventh SIAM Conference on Parallel Processing for Scientific Computing. Edited by
David H Bailey et al. SIAM, Philadelphia., 460-465.

[2] Arioli, M., Drummond, A., Duff, I. S., and Ruiz, D. (1995). Parallel block iterative solvers
for heterogeneous computing environments. In Algorithms and Parallel VLSI
Architectures III Edited by M. Moonen and F. Catthoor. Elsevier, Amsterdam, 97-108.

[3] Arioli, M., Duff, I. S., Noailles, J., and Rub, D. (1992). A block projection method for
sparse equations. SIAM J. Ski. Stat. Comput. 13,47-70.

[4] Arioli, M., Duff, I. S,, Ruiz, D., and Sadkane, M. (1992). Block Lanczos techniques for
accelerating the Block Cimmino method. SIAM J. Ski. Comput. 16, 1478-15 1 1.

[s] Drummond, L.A. (1995). Solution of general linear systems of equations using block
Krylov based iterative methods on distributed computing environments. PhI) Thesis.
Report TH/PN95/40, CERFACS, Toulouse.

[6] Duff, I. S. (Editor). (1994). NumeriCaJ Analysis Group. Progress Report. January 1991 -
December 1993. Report RAL 94-062, Rutherford Appleton Laboratory, Chilton, Didcot,
o x f o r d s ~ ox11 OQX.

Llt7 An e v a l d b d dtware for sparse nollsymmetrjc matrices
(R.B.Lem and J.A. Scott)

The last few years has seen a si@icant increase in research into numerical methods for
computing selected eigenvalues (and eigenvectors) of large sparse nonsymmetric matrices.
This interest has led to a large number of papers and reports on possible numerical methods
for solving this problem. It has also begun to lead to the development of high quality
mathematical software. However, the published numerical results are extremely limited and,
in general, the authors of the software have provided few results comparing the performance
of their software with that of rival software. The aim of the our study is to evaluate this
state-of-the-art software in terms of the following criteria:

The user interface

Storage requirements

krformance

Accuracy and stability

Reliability and robustness.

There are three methods which have received significant attention by the numerical
analysis community. These are subspace, or simultaneous, iteration, Arnoldi’s method and the
(nonsymmetric) Lanczos’ method. It is our intention to provide a comprehensive comparative
study of these three methods together with the recent Jacobi-Davidson method. So far, we
have considered subspace iteration and Arnoldi methods, for which several high quality codes
have appeared. The scope of our study is restricted to software which is available either in the
public domain or under licence. For the Lanczos method, there is currently only a very limited
amount of such software. As far as the authors are aware, the only code which falls within the
criteria for inclusion in this study is the code EIGLAL of Freund and Nachtigal. At present,
there is no software implementing the Jacobi-Davidson method which meets our criteria.

The results of our subspace iteration and Arnoldi experiments on a wide-range of practical
problems show that the algorithms are very sensitive to implementation details. None of the
codes is able to solve all the problems included in our test set. Difficulties were encountered in
the case of multiple eigenvalues and highly non-normal matrices. We also conclude that an
implicitly restarted Arnoldi iteration algorithm appears to provide a promising way forward,
but there are many aspects of the practical algorithm that require further investigation before a

robust code becomes available.

References

[11 Lehouq, R. B. and Scott, J. A. (1996). An evaluation of subspace iteration software for
sparse nonsymmetric matrices. Technical Report, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxfordshire OX1 1 OQX. To appear.

121 bhoucq, R. B. and Scott, J. A. (1996). An evaluation of Amoldi software for compputhg
eigenvalues of sparse nonsymmetric matrices. Technical Report, Rutherford Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX1 1 OQX. To appear.

2.18 Sparse BLAS (IS. Duff, M. Marrone, G. hdicati, and C. Vfttolf)

The Basic Linear Algebra Subprograms (BLAS) have had a profound influence on the
development of algorithms and software for the solution of systems of linear equations with
full coefficient matrices. Although a set of sparse BLAS was developed [l], their use and
manufacturer-supported availability are not very widespread. This is in part due to the fact
that they are only Level 1 BLAS and suffer from the same shortcomings of inefficiency on
modem computer architectures as in the full case. Another reason why they are not widely
accepted is that, at least for direct sparse solution, it is more efficient to code the kernels using
full linear algebra so that the full matrix BLAS can be used (see, for example, [2]).

However, in the solution of sparse equations using iterative methods, there is an urgent
need for a standard interface for a sparse matrix by matrix multiplication and a sparse
triangular solution routine. We have therefore designed routines for these cases as Level 3
BLAS so that the Level 2 equivalents are available as a particular case. In the sparse case,
there is the problem of how the matrix is stored, and indeed storage schemes differ very
widely and are usually applications dependent. We have therefore also designed routines for
data conversion with a standard interface to include all the data structures we are familiar
with. Finally, we also include two permutation routines to facilitate the efficient use of the
kernels in iterative solvers.

In response to comments on our earlier report [3], we have made many changes to that
proposal and have developed a revised proposal to address these points including designing a
harness in Fortran 90 [4]. A prototype code for the sparse BLAS is available from the
anonymous ftp server at RAL in file spb1as.f in directory pub on seamus.cc.rl.ac.uk.

References

[11 Dodson, D. S., Grimes, R. G., Lewis, J. G. (1991). Sparse extensions to the Fortran Basic
Linear Algebra Subprograms. ACM Trans. Math. SoftW. 17,253-263.

[2] Duff, I. S. (1981). Full matrix techniques in sparse Gaussian elimination. In Numerical
Analysis Proceedings, Dundee 1981. Lecture Notes in Mathematics 912. G.A. Watson
(editor). Springer-Verlag, Berlin, 7 1-84.

[3] Duff, I. S., Marrone, M., and Radicati, G. (1992). A proposal for user level sparse BLAS.
SPARKER Working Note #1. Report RAL 92-087, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxfordshire OX1 1 OQX.

i

[4] Duff, 1. S., Marrone, M., Radicati, G:; and Vittoli, C. (1995). A set of Level 3 Basic Linear
Algebra Subprograms for sparse matrices. Report RAGTR-95-049, Rutherford
Appleton Laboratory, Chilton, Didcot, Oxfordshire OX1 1 OQX,

2.19 Sparse matrix test problems (I.S. DpiT)

Release I of the Harwell-Boeing Collection of sparse matrices consists of sparse matrices in a
standard format from a wide range of application areas. The format used is basically a
column-pointer row-index format and is described in [l]. There are both symmetric and
unsymmetriC systems, some rectangular matrices, and a few in unassembled element format.
Sometimes only the pattern of the sparse matrix is given, and sometimes a right-hand side
vector is supplied in addition to the reals.

We have nearly completed the design of Release 11 of the Collection and will shortly
circulate it for comment [2]. This redesign has proved to be a significant task since we wish to
enhance the value and scope of the Collection while effectively maintaining upward
compatibility with the present release. In particular, we have extended the format to include
more information on matrices and on systems being solved. These include starting guesses,
exact solutions, eigenvalues and vectors, singular values and vectors, permutations, partitions,
and geometric data. We have also made it a requirement that the format of the matrices
enables them to be read easily from C programs. Although we will include matrix generation
programs in the Release I1 repository, we will not include generated matrices in the Collection
unless they are explicitly submitted and accepted for the Collection. We propose this because
we feel that one of the main strengths of the collection is its reproducibility and do not want to
jeopardize this aspect.

We have written complete Fortran subroutines both to read matrices in the Collection and to
write a matrix in Harwell-Boeing format. These routines are included in the Harwell
Subroutine Library as MC36 and MC37 and are discussed in more detail in Section 7.4 of this
report. They are also distributed with the test Collection.

Release I is available by anonymous f t p from both RAL (seamus.cc.rl.ac.uk) and

CERFACS (ftp.cerfacs.fr), in both cases in directory pubhamell-boeing. More recently,
some researchers at MST in Washington DC and their collaborators have been developing an
efficient World Wide Web interface to the Collection.

[I] Duff, I. S., Grimes, R. G., and Lewis, J. G. (1992). Users’ Guide for the Harwell-Boeing
Sparse Matrix Collection. Report RAL 92-086, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxfordshire OX1 1 OQX.

[2] Duff, 1. S., Grimzs, R. G., and Lewis, J. G. (1996). The organization of Release II of the

HarwelEBoeing Sparse Matrix Collection. To appear.

28

3 optimization

3.1 LANCELOT (A.R. COM, N.I.M. Gould, and P h L Toint)

Since its release in 1992, the large-scale nonlinear optimization package LANCELOT
(Release A) [11 has been installed at over 150 sites throughout the world. Over the past two
years, research has commenced on its successor. In order to design an improved algorithm, it .

has been necessary to test the existing algorithm on as large a class of representative problems
as possible [2], and to compare the algorithm against existing state-of-the-art codes [3].

We have identified a number of areas in which the algorithm needs to be improved.

(i) The algorithm does not handle linear constraints very effectively. Linear constraints are
treated as if they were general nonlinear constraints.

(ii) The algorithm is sensitive to degeneracy at the solution to the problem. Although the
algorithm will converge to a degenerate solution, the rate of convergence may
significantly degrade in the presence of degeneracy.

(iii) Inequality constraints are handled inefficiently by means of slack variables. The
resulting increase in problem dimension is sometimes severe.

Current research is concentrating on interior-point methods for handling the model
subproblem as it is felt that such an approach is capable of coping with all of the
above-mentioned disadvantages of LANCELOT A. However, complications arise as the
model problem may be non-convex, thus requiring a significant reappraisal of interior-point
methods.

In the interim, LANCELOT A has been translated into Fortran 90, using many of the
advanced features of the new language to simplify the calling sequences and to remove
restrictions on fixed-size workspace. The new code has one new feature, the opportunity to
generate problem derivatives automatically. This is possible using the new Harwell
Subroutine Library Fortran 90 package ADO1 (see Section 4.1).

References

[1 J Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (1992). LANCELOT : a Fortran package
for large-scale nonlinear optimization (Release A). Number 17 in Springer Series in
Computational Mathematics. Springer Verlag, Heidelberg, Berlin, New York.

[2] Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (1992). Numerical experiments with the
LANCELOT package (Release A) for large-scale nonlinear optimization. Technical
Report 92-075, Rutherford Appleton Laboratory, Chilton, England, to appear
Mathematical Programming.

[3] Bongartz, I., COM, A. R., Gould, N. I. M., Saunders, M. A., and Toint, Ph. L. (1996). A
numerical comparison between the LANCELOT and MINOS packages for large-scale

29

nonhear optimization Technical Report in preparation, Rutherford Appleton
Laboratory, Chilton, England.

3.2 Iteratd-subspace minimhation methods (A. R. Conn, N. I. M. Godd,
A.Sartenaer, and Ph. L. Toint)

The problem of minimizing a function of a large number of variables is considered. We are
intclesttd in the case where the value of the objective function and possibly its derivatives are

cheap to compute. We consider a class of Iterated-Subspace Minimization (ISM) methods for
solving these problems.

At each major iteration of such a method, a low-dimensional manifold, the iterated
subspace, is constructed and an approximate minimizer of the objective function in this
manifold then determined. The iterated subspace is chosen to contain vectors which ensure
global convergence of the overall scheme and may also contain vectors which encourage fast
asymptotic convergence.

The iterated subspace is determined by applying the conjugate gradient method to the
Newton equations at the current major iteration. The conjugate gradient method generates a

sequence of search directions as it attempts to minimize the current quadratic model. The
most promising of these directions make up the iterated subspace. In particular, the subspace
comprises

(a) the steepest descent direction, which guarantees convergence;

(b) the truncated-Newton direction, which guarantees rapid convergence; and

(c) a collection of the remaining directions, chosen to give large decreases in the model, or
because they give approximations to dominant eigenvalues.

This approach is compared with truncated-Newton and limited-memory methods, as well as

with LANCELOT. The ISM approach is seen to be competitive with, and in some cases
superior to, these approaches. Extensions to bound-constrained and linearly constrained
minimization methods are suggested.

References

[11 COM, A. R., Gould, N. I. M., Sartenaer, A., and Toint, Ph. L. (1994). On iterated-subspace
minhkation methods for nonlinear optimization. Technical Report 94-069, Rutherford
Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX. Revised December
1995.

33 Ekment-by-eliement preconditionem in optimization (MO J. Dayd6, J.-Y.
L’Exdent, and N. L M. Gould)

Most functionsf, of a large number of variables x, can be expressed as

i=l

where each of the element functionsfi(x) has a large invariant subspace. Such a function is
said to be partially separable [5]. Normally, an element function will have a large invariant
subspace because it only depends on a small number of variables, but this is not always the
case [3]. However, any sufficiently differentiable function with a sparse Hessian matrix is
partially separable so this decomposition is extremely general [5] . Note that the
decomposition is not unique.

At the heart of any iterative algorithm for minimizing a partially separable function, an
approximate solution to the Newton equations

where gi = Vfi (x) and Hi = VJi(x), is sought. The method of choice is now considered to be
the preconditioned conjugate gradient method (see, for example, [4]).

In [11, we consider preconditioners which aim to mimic the structure implicit in the Newton
equations. These element-by-element methods ([6], [7]) have proved most effective when
applied to problems arising from the solution of partial differential equations. We consider a
number of existing and new element-by-element preconditioners, and report that these
preconditioners appear to be effective in the optimization context. However, their
performance can be significantly improved if groups of elements are amalgamated - treated as
a dense block - before the preconditioner is constructed. A variety of amalgamation
techniques are examined, and the best of these is seen to generate very effective
preconditioners. All of the proposed methods are highly parallelizable and are seen to be
effective on parallel machines [2].

References

[l] Dayd6, M. J., L’Excellent, J.-Y., and Gould, N. I. M. (1995). On the use of
element-by-element preconditioners to solve large-scale partially separable optimization
problems. Report RAL-TR-95-010, Rutherford Appleton Laboratory, Chilton, Didcot,
Oxfordshire OX1 1 OQX.

[2] Daydi, M. J., L’Excellent, J.-Y., and Gould, N. I. M. (1995). Solution of structured
systems of linear equations using element-by -element preconditioners. ENSEEIHT-IRTT
technical report RT/Apo/95/1, Toulouse, France.

[3] Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (1990). An introduction to the structure of

31

fatge scale nonlinear optimization problems and the LANCELOT project. In R.
Glo~in~ki and A. Lichnewsky, editors, Computing Methods in Applied Sciences and

Engineering, pages 42-54, SIAM, Philadelphia, USA.

[4] Gdub, G. H., and Van Loan, C . F. (1989). Matrix Computations. Second Edition. Johns
Hopkins University Press, Baltimore.

[SI Oriewank, A., and Toint, Ph. L. (1982). On the unconstrained optimization of partially
separable hctions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages
301-312, Academic Press, London and New York.

[6] Hughes, T. J. R., Levit, I., and Windget, J. (1983). An element-by-element solution
algorithm for problems of structural and solid mechanics. Computational Methods in
Applied Mechanics and Engineering, 36,24 1-254.

[7] Wathen, A. J. (1989). An analysis of some element-by-element techniques. Computational
Methods in Applied Mechanics and Engineering, 74, 27 1-287.

3.4 Linearly constrained minimization (N. I. MO Gould)

We consider solving the problem

minimizeflx)
XE ff

subject to a set of rn independent linear equations

(2) Ax=b,

wherefis twice continuously differentiable. We assume that VJ(x) is available and that we
wish to exploit this curvature information; contrary to popular belief, this assumption holds
for a wide variety of applications.

Our interest here lies in algorithms which require the solution of problems of the form
(1)-(2) as subproblem. It is likely that the next version of LANCELOT [11 will be based, in
part, upon such subproblems. We are particularly concerned with the case where n and
possibly m are large, and the matrices A and V d x) are sparse.

In [2], we discuss general issues of convergence for schemes for solving (1)-(2) and lay the
foundations for the linear algebraic processes we later employ. In particular, if Axe = b, we
exploit the structure of the Newton equations

(3)

for a correction p to x,. When fix) is not convex, these Newton equations may not be
appropriate and we discuss suitable replacements for V a x) in (3). Our aim is to enswe that
the replacement is positive definite in the null-space of the constraints, while not adversely
affecting the convergtnce of Newton’s method nor incurring a significant computational

32

overhead.

We consider methods which form a sparse factorization of the coefficient matrix in (3). The
matrix is reodered to ensure a stable factorization, and the factorization is continued so long
as it determined that V a x) need not be altered. Once it is realized that V d x) is insufficient,
diagonal perturbations are made. Tbo different approaches are considered, an implicit method
in which any potentially bad diagonal is modified, and subsequently unmodified if the
modification turns out to be unnecessary, and an explicit method in which perturbations are
only made if they can be shown to be necessary.

Numerical experiments [2] show that the technique can be effective, in that modified
factorizations are possible at little additional cost over an unmodified (but, in this application,
unusable) factorization. However, it is unclear which of the two proposed modifications is the
more successful, each having good and bad instances. A software package incorporating
many of these ideas is currently under development.

References

[1 1 Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (1992). LANCELOT : a Fortran package
for large-scale nonlinear optimization (Release A). Number 17 in Springer Series in
Computational Mathematics. Springer Verlag, Heidelberg, Berlin, New York.

[2] Gould, N. I. M. (1995). Constructing appropriate models for large-scale, linearly-
constrained, nonconvex, nonlinear, optimization algorithms. Report RAL-TR-95-037,
Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX 1 1 OQX.

33

4.1 Automatic dMken&@n in Fortran 90 @. Cowey, J.D. Rye, and J.K.
R W

We have developed a Fortran 90 package for automatic differentiation and placed it in the
Harwell Subroutine Library. It contains modules for both the forward and the backward
method.

In the forward method, for each independent variable and each dependent variable, the
module holds a representation of the values of the variable and all its derivatives of up to a
requested order. For each elementary operation, the desired derivatives of the result are

calculated from those of the primaries by the chain rule. For example, if

a = b*c,

we have
aa ab ac
at at at
- = - c + b -

All the derivatives are calculated at the same time as the values.

In the backward method, a graph is constructed to represent the whole computation, with a
node i for each independent variable, i = 1,2, ..., m, and a node i for the result of each
elementary operation, i=m+1,2, ..., n, with links to nodes for the primaries of the operation.
The nodes are in execution-order sequence, so the links are always to nodes with lesser
indices. Only the values are constructed initially in the forward pass that constructs the tree.
Let us use the notation xi for the value at node i and suppose that derivatives of f=x , are

24
required. As well as x i , is held at node i , i = 1,2, ..., n. The derivatives are calculated by

3x1

ADO1 subroutines. Initially, all the variables are regarded as independent so that all the
derivatives are zero except at node n where the derivative value is 1. One by one, from n
backwards to m+l, the variables are changed to be dependent and the derivatives updated by
the chain rule. For example, if

when a is changed to dependent, we have

af"" af""3g
da ab* - ?f- = - + -

ab ab
The forward method is likely to be best if the number of independent variables is small,

since then the extra work and storage to compute and hold all the derivatives as the
computation p d is modest, though we store only the non-zero derivatives if that is
advantageous. If some variables are depndent on a large number of independent variables,
the forward XIEM becomes impractical, but the work of the backward method is bounded by

34

a d fixed multiple of the work needtd for the values themselves. The disadvantage of the
backward mefhod is that the whole computational tree has to be stored, which is not practical
for very long computations.

The user must make changes in every program unit that contains a variable whose
derivatives are required or is invoked in the course of calculating the value of such a variable.
The changes are

1.

2.

3.

4.

5.

Add a USE statement for the module.

Change the type of all independent variables and variables whose values vary with the
independent variables to TYPE(ADO1-REAL) and give them the special initial value
ADOlUNDEFINED.

Initialize the module with a call to ADO1-INITIALIZE.

Execute the modified code

Obtain the required derivatives with calls to ADO1 subroutines.

First and second derivatives may be obtained with the backward method and derivatives of
any order with the forward method.

There are facilities for storing and restoring the module data, which permits the calculation
to be suspended while a subsidiary calculation takes place.

35

5.1 Computation4 kernels on vector and parallel machines and on RISC
architechres (M J. Dayd; and IS. Duff)

The Basic Linear Algebra Subprograms (BLAS), particularly the Level 3 BLAS, are one of
the main platforms for the efficient implementation of a wide range of algorithms on modern
high performance computers. The rapid development of new machines means that it is
impitant to maintain a watching brief over new architectures and to develop and tune the
BLAS in cases when the manufacturer fails to do so.

It is an impossible task to so redesign all of the BLAS (even just the Level 3 BLAS) for
each machine so we have developed BLAS based on the GEMM, or matrix-matrix multiply,
kernel so that only this one routine need be tuned for the machine. The GEMM kernel is
usually the first to be optimized by the vendor and it is relatively easy to tune code for this
operation. This work is described in detail in [2] and [3].

Our recent work, which will shortly appear in the report [Z], shows that, even using a
standard version for GEMM, our Level 3 BLAS can outperform some of the vendor-supplied
BLAS on most machines including the Silicon Graphics Power Challenge and the DEC 8400
5 / 3 0 Turbo laser. Furthermore, if our kernels use the vendor-supplied version of GEMM,
they can be made to run even faster.

We make extensive use of these new building blocks in linear algebra software and
demonstrate that the high speed of these kernel operations can be reflected in the speed of the
linear equation solvers [11.

References

[11 Amestoy P. R., Dayd6 M. J., Duff I. S., and MorGre P. (1995). Linear algebra calculations
on a virtual shared memory computer. Int. J. High Speed Computing 7,Zl-43.

[2] Daydi M. J. and Duff I. S. (1996). A blocked implementation of Level 3 BLAS for RISC
processors. Report RAL-TR-96-0 14, Rutherford Appleton Laboratory, Chilton, Didcot,
Oxfordshire ox1 1 OQX.

[3] Dayd6 M. J., Duff I. S., and ktitet A. (1994). A parallel block implementation of Level 3
BLAS kernels for MIMD vector processors. ACM Tram. Math. So*. 20, 178-193.

36

5.2 lnfinite weights in the hwell-Reid method for linear least squares
problems (J.K. Reid)

Powell and Reid [11 considered the application of Golub’s method to the linear least squares
problem

I

in the case that the norms of the rows of A vary widely. They showed that Householder
transformations could be applied to produce a QR factorization !

AP=QR (2)
of a column permutation of A in a backwards stable manner provided both row and column
interchanges were included. They had in mind the case of weighted least squares problems
with widely varying weights where the square roots of the weights were applied explicitly.
That is, to find

min (c - B X) ~ W ~ (c - BX) (3)
they solved the unweighted problem (1) with

A=WB, b=Wc. (4)

We have shown [2] that the algorithm and its error analysis extends very simply to the case of
infinite weights, that is, to the constrained and weighted least squares problem.

References

1. Powell, M.J.D. and Reid, J.K. (1969). On applying Householder transformations to linear
least squares problems. In Information Processing 68, Ed. Morrell, A.J.H., North-
Holland, 122- 126.

2. Reid, J.K. (1996). Infinite weights in the Powell-Reid method for linear least squares
problems. To appear.

37

6.1 CEWACS(LS.Dnff)

lain has continued to lead a project at CERFACS on Parallel Algorithms and several of the
contributions to this report reflect interactions with that team. One of the main activities of the
“Algo” team over the past year has been the hosting of an International Linear Algebra Year.
This Year was preceded by a Workshop in the Pyrenean town of St Girons in July 1994.
Attendance was by invitation and around forty international researchers in sparse matrices
participated, including all members of the Group at RAL. The Linear Algebra Year is being
held from September 1995 until September 1996 and includes four workshops and a visitor’s
programme. Iain is co-chairing the international scientific committee with Gene Golub from
Stanford and is participating in all the workshops. John spoke at the fmt Workshop on “Direct
Methods” and Jennifer at the second on “Eigenvalues and beyond”. Nick is helping to
organize the optimization workshop that will take place in Albi in April 1996.

The main areas of research in the Parallel Algorithms Group are the development and
tuning of kernels for numerical linear algebra, the solution of sparse systems using direct
methods or iterative methods or a combination of the two, heterogeneous computing including
the use of PVM and MPI and the design of schedulers, large eigensystem calculations,
optimization, and the reliability of computations. Other activities of the Group include
advanced training by both courses and research and the porting of industrial codes [4].

During the reporting period, two students completed their PhDs at CERFACS. Thierry
Braconnier completed his thesis in May 1994 [l] , and Tony Drummond who finished in
December 1995 was co-supervised by Iain [5] . Jean-Yves L’Excellent, whom Nick
co-supervised, was a regular visitor to CERFACS and both Nick and Iain were on his jury in
November 1995 [6].

Nick continued to visit both CERFACS and ENSEEIHT-IRIT with the support of a British
Council grant to enable him to develop and extend some of the work commenced when he
spent a year at CERFACS in 1994.

The main projects at CERFACS still include Parallel Algorithms and Computational Fluid
Dynamics although recent emphasis on environmental modelling has led to a significant
increase in the size of the Climate Modelling Group. There are smaller groups in
electromagnetics, signal processing, shape optimization, and computational chemistry, the
latter currently a subgroup of the Parallel Algorithms Group. At the beginning of 1995,
Jean-Claude An& fiom the French meteorological service succeeded Roland Glowinski as
the Director of CERFACS. A brief summary of activities at CERFACS, especially in the
Parallel Algorithms Project, can be found in [3] and a fuller account of recent activities of all
groups can be found in [2]. Current information on the Parallel Algorithms Group can be
f d on page http:/lwww.cerf&cs.fi/algor/ of the World Wide Web.

38

[l] Braconnier, T. (1995). Sur le &cui de valeurs pmpres en prkision f ~ e . PhD Thcsis.
Report " 9 4 / 2 4 , CERFACS, Toulouse.

[2] CERFACS Scientific Report 1994. CERFACS, Toulouse. June 1995.

[3] Daydi, M. and Duff, I.S. (1994). The CERFACS Experience. In Purullel Scientific
Computing. Proceedings First International Workshop, PARQ '94, Lyngby, &nnuzrk,
June 20-23, 1994. Lecture Notes in Computer Science 879, Springer-Verlag, Berlin,
169- 176.

[4] Day& M. J. and Duff I. S. (1995). Porting industrial codes and developing sparse linear
solvers on parallel computers. Computing Systems in Engineering, 6,295-305.

[SI Drummond, L. A. (1995). Solution of general linear systems of equations using block
Krylov based iterative methods on distributed computing environments. PhD Thesis.
Report "PA/95/40, CERFACS, Toulouse.

161 L'Excellent, J-Y. (1995). Utilisation de Pkonditionneurs Eliment-par-Eliment pour la
Rbsolution de Roblimes d'Optimisation de Grande Taille. Ph D Thesis, ENSEEIHT-
IRIT.

6.2 Fortran 90 (J.K. Reid)

Although no longer a member of X3J3, the ANSI Fortran Standardization Committee, John
Reid attended several meetings during the reporting period in the hope of getting exception
handling into the language.

There were two attempts to provide such a feature during the development of Fortran 90.
The first included tasking and was abandoned as too ambitious. The second involved a new
construct, ENABLE, and was simpler, but was relegated to a 'Journal of Development' with the
pressure to keep Fortran 90 small and with the need to devote resources to the development of
the rest of the language.

John Reid played a leading role in developing a simplified ENABLE proposal during 1994 at
the February and May meetings of X3J3 and the August meetings of WG5 and X3J3 in
Edinburgh. He represented IFIP WG 2.5 (Numerical Software), which is strongly in favour of
the provision of such facilities, at all these meetings. The final version was the subject of an
X3J3 letter ballot. Unfortunately, following this ballot, X3J3 decided that to continue to work
on it would put the whole schedule for Fortran 95 in jeopardy and therefore stopped.

This decision was endorsed by WG5, the IS0 Fortran Standardization Committee, but at its
April 1995 meeting in Tokyo it decided that handling floating-point exceptions was too
important to leave until Fortran 2000. It therefore decided to establish a development body to
cxeate a 'Vpe 2 Technical Report'. The intention is to finalize this sootl (to be ready for

39

h d ballot@ by April 1996). It will permit vendors to implement the fature as an
extauion of Fortran 95, confident that it will be part of Fortran 2000, unless experience in
their implementation and use demand changes. It is a kind of beta-test facility for a new
language feature. John Reid agreed to act as project editor.

'RE development body was requested to consider both the ENABLE approach and the use of
a set of intrinsic procedures to provide more basic support for exceptions. The ENABLE

approach is summatrzed in [l] but the other approach is simpler to understand and provides
some support for other features of the IEEE floating-point standard. In November 1995, X3J3
decided to take the latter route, again with John Reid playing a leading role.

John Reid and Mike Metcalf kept their book Fortran 90 explained up to date with
interpretations by revisions in two reprintings over the period.

Good optimizing compilers are now available on all platforms, and we have access to
compilers from Nag (site licence), EPC (SUN and IBM workstations), Cray Y-MP, IBM
(RS/6000), Digital (Alpha), and Fujitsu (SUN).

The technical content of the next revision of Fortran, informally known as Fortran 95 was
finalized in November 1995. It is a minor revision that incorporates items in the corrigenda
and editorial improvements, and these new features:

e
e

e

e

e

e

e

e

e

e

FORALL
Nested -RE
Pure procedures
Elemental procedures
Pointer initialization
Automatic component initialization
Allocation status always defined
User procedures in specifications
CPU-TIME
The following new obsolescent features: computed GO TO, statement functions,
DATA among executables, assumed-length character functions, fixed source
form, and character * declarations.

References

1. Reid, J.K. (1995). Exception handling in Fortran. ACM Fortran Forum, 14,9-14.

7 Computing a d Harw4 Submutine Library

7.1 The computing environment within the Group (N.LM. Gould)

Our policy of upgrading the group’s workstations has continued over the past two years. The
main change has been that Nick’s old IBM RISC Systems/6ooo 320H has been put out to
grass at home and replaced by a newer model RISC Systerns/6ooo 3BT, a machine which is.
theoretically capable of up to 300 Megaflops. The rest of the group continues to favour SUN
equipment, and an order was placed at the end of 1994 for a SUN Ultra Sparc 1 to replace
Iain’s aging Sparc 10130. We continue to maintain three Sparc 1s for use by our short and
medium-term visitors, one of which has now been upgraded to run the Solaris operating
system. A further order was recently placed for an IBM Thinkpad 701 portable computer
which is intended for use by group members on their frequent travels.

Our system has been generally stable over the past two years. We continue to rely on the
CISD Unix system support team for major system administration, although group members
have found it more convenient to get their hands dirty for simple tasks. The group has
developed a series of WWW pages describing its activities. This has resulted in much wider
publicity for the group, and made it easier for external users to access our technical reports
and publicly-available software. In addition, we maintain pages of links to other relevant
numerical analysis information.

We continue to benefit from other public CISD machines, in particular the DEC Alpha
3000 and HP-9000 farms, the CRAY Y-MP8I and the new DEC 8400 six processor system.
Regular system backups are taken via the CISD IBM virtual tape reader. We now have access
to six Fortran 90 compilers, some on our own machines and some on other CISD machines.
This has enabled our gradual transformation from Fortran 77 to 90 to proceed, and in some
cases we have found these compilers uncovered previously hidden errors in our existing 77
codes.

7.2 Harweli Subroutine Library

The Group continues to act as cons1 ltant for the Hmel l Subroutine Library. Our
collaboration with Harwell was marred by three changes of principal contact person over the
period, but nevertheless Release 2 of the Harwell Sparse Matrix Library was completed in
June 1995 and Release 12 of the main Library was made in December 1995.

The second release of the Harwell Sparse Matrix Library now contains 45 packages,
including many that were new in Release 11 of the main Library. It is over twice the size of
the first release (1988).

We employed Mike Hopper as a consultant to help with the preparation of Reiease 2 of the
HarweU Sparse Matrix Library and we greatly appxiated his assistance in designing a

41

suitable Unix file system for this h i , applying extra checks to tbe codes and sorting out
the problems that he found. We also employed him to apply his Unix tools to the new routines
of the Release 12 of the main Library, and ht provided us with a new release of the computer
typesetting system TSSD.

7 3 Release 12 of the HarweIl Subroutine Library

Release 12 of the Library was made in December 1995. It contains a few Fortran 90 modules,
with a very similar style for the documentation as presently used for Fortran 77 packages. The
names take the form HSL-lldd where 1 stands for a letter and d stands for a digit. The library
contains the following significant new routines:

HSL-ADO1 This Fortran 90 package provides automatic differentiation facilities for variables
specified by Fortran code.

KO5 Solves a system of ordinary differential equations or algebraic differential equations of
index no higher than one.

DC06 Solves the initial value problem for a system of ordinary differential equations or

differential algebraic equations of index no higher than one.

E 0 7 Front end to DC06.

EB13 Given a mal unsymmetric matrix A={aii}, this routine uses Arnoldi based methods to
calculate the r eigenvalues Aj, i = 1,2, ..., r, that are of largest absolute value, or are

right-most, or are of largest imaginary parts.

HSL-FAO4 Fortran 90 version of the random-number generator FAO4.

MA3 8 Solves a sparse unsymmetric system of linear equations using an unsymmetric multifrontal
variant of Gaussian elimination.

MA41 To solve a sparse unsymmetric system of linear equations on a shared-memory
multiprocessor, using a parallel direct method based on a sparse multifrontal variant of
Gaussian elimination.

HSL-MA42 Solves one or more sets of sparse hear equations by the frontal method, optionally
using k t access files for the matrix factors. It is a Fortran 90 module based on MA42

and offers a much more friendly interface.

MA46 Solves one or more set of sparse unsymmetric linear equations AX = B from fmite-element
applications, using a multifrontal elimination scheme. The matrix A is input by elements.

MA51 For use in conjunction with the MA48 and MA50 packages for solving sparse unsymmeaic
sets of linear equations. It identifies which equations are ignored when solving Ax = b
and which solution components are always set to zero.

MA52 This collection of subroutines, when used in conjunction with the MA42 package, solves
hite-cknmt equations using a multiple front algorithm.

MC36 To read a sparse matrix, coded in a Hamell-Boeing fonnat with possible right-hand sides.

42

i

!

ThC subroutine reach assembkd as well as unassembled matrices, and returns tham in a
column oriented compressed sparse fonnat.

~ ~ 3 7 Given a sparse symmetric matrix A, this subroutine computes a set of elcnrent matrictS
that, if assembled, would yield the same matrix. Note that this set of elements is not
unique.

MC38 Given a sparse matrix held in a compressed column oriented format, this subroutine
generates the transpose of the matrix, holding it in compressed column format.

MC44 Given the structure of an unassembled finite-element matrix, this subroutine groups the
variables into supervariables and optionally generates either the element connectivity
graph or the supervariable connectivity graph.

MC47 Given a representation of the nonzero pattern of a symmetric matrix, this subroutine
performs an approximate minimum degree ordering.

MC52 To write a sparse matrix in Harwell-Boeing format with possible right-hand sides.

MC53 This subroutine generates an ordering for finite-element matrices within a subdomain that
is efficient when subsequently used with a multiple front algorithm.

m36 To read a complex sparse matrix, coded in a Harwell-Boeing format with possible
right-hand sides. The subroutine reads assembled as well as unassembled matrices, and
returns them in a column oriented compressed sparse format.

M I O ~ Uses the Conjugate Gradient method to solve a symmetric positive-definite linear system
Ax = b, optionally using preconditioning.

NI03 Uses the CGS (Conjugate Gradient Squared) method to solve an unsymmetric linear
system Ax = b, optionally using preconditioning.

~ 1 0 4 This routine uses the Generalized Minimal Residual method with restarts every M

iterations, GMRES(m), to solve an unsymmetric linear system Ax = b, optionally using
preconditioning.

MI 0 5 This routine uses the BiCG (BiConjugate Gradient) method to solve an unsymmetric linear
system Ax = b, optionally using preconditioning.

M106 This routine uses the BiCGStab (BiConjugate Gradient Stabilized) method to solve an
unsymmetric linear system Ax = b, optionally using preconditioning.

MIU This routine forms an incomplete LU factorization of a sparse unsymmetric matrix A.

MI12 This routine finds an approximate inverse M of a sparse unsymmetric matrix A by
attempting to minimize the difference between AM and the identity matrix in the
Frobenius norm.

HSL-WO1 This package uses the genetic algorithm to find the smallest value of an objective
function of n binary (zerwne). variables.

HSL-ZA03 This package provides kind values for 1- and 2-byte Fortran 90 LOGICAL variables. If
a particular kind is not supported, a kid offering at least as much storage is substituted.

43

The following routines were added to the Library during this period. Although we now
issue welldefW ReitaseS to the Library, we continue to develop it internally on an
incremental basis and may offer single routines commercially before they are included in a
specific Release. The following routines are all included in Release 12 of HSL.

HSLJDO1 (J. K. Reid and D. Cowey)

This Fortran 90 package provides automatic differentiation facilities for variables specified
by Fortran code. Each independent variable and each variable whose value depends on the
value of any independent variable must be declared to be of type ADOl-REAL instead of
default REAL. Note that Fortran variables of type default REAL and default INTEGER may enter
the computation provided their values do not vary with the values of the independent
variables. Both the backward and the forward method are available.

First and second derivatives are-available with both the forward and backward methods.
Derivatives of any order are available with the forward method. They are stored in a

hyper-triangular format so that only one copy of identical derivatives is held.

It is possible to store the current state of the module data, perform a subsidiary calculation,
and then return to the main calculation. For example, this mode may be used to compute the
local derivatives of a unary function of the main calculation.

A record is kept of the number of occurrences of errors. By default, execution continues
after an error in a motoring mode where each operation is executed as an immediate return.
Alternatively, an immediate stop may be requested.

KO5 (A. H. Harker)

This is a package for solving a system of ordinary differential equations or differential
algebraic equations

yi = f i 0) 1 yz , e * * , yn 9 X) i= 1,2,. . . ,n.

The solution starts from given initial values y,! at x=xo. It is numerically similar to DC03; but
it presents a different user interface, possibly less convenient for ordinary use, intended for
special-purpose packages. Function evaluation and linear algebra is done in the calling
program by using ‘reverse communication’. Also, it can solve a wider range of problems,
including implicit differential equations. The method is especially efficient on stiff problems.

DC06 (A. H. Harker)

This solves a system of ordinary differential equations or differential algebraic equations of

index less than or qual to one. There is a system of n variables, yi whcm i= 1 ,..., n, which
satis@ the equations

Y: =fib1 , Y ~ , * * * , Y , , x) , i=1,2, ...a,

where y: =dy,/& is the x derivative of variable yi. E 0 6 solves the initial value problem for
these equations; that is given the initial values of the variables, yi(xo), at some point, xo, it
advances the solution forward in x. The user must supply a subroutine to evaluate the .

derivative functionf, and may supply subroutines to evaluate the Jacobian and K-Jacobian
required during the solution.

DC07 (A. H. Harker)

This solves the initial value problem for a full system of explicit ordinary differcntial
equations or a system of differential algebraic equations of index less than or equal to one.
That is, equations of the form

=fib1 , Y Z , - * * , Y n , X) i=1,2 ,..., n.

where y: =dyi/dx is the x derivative of variable y i . The Jacobian of the right hand side is
assumed to be full.

DC07 solves the initial value problem; that is given the initial values of the variables, yi(xo),

at some point, xo , it advances the solution to equations forward in x.

HSL-FA04 (N. I. M. Gould and J. K. Reid)

This package generates uniformly distributed pseudo-random numbers. Random reals are

generated in the range 0 < (< 1 or the range -1 < q < 1 and random integers in the range
1 ,< k 5 N where N is specified by the user.

A multiplicative congruent method is used where a 31 bit generator word g is maintained.
On each call to a procedure of the package, g,,, is updated to 75g,mod(231- 1); the initial
value of g is 216- 1 . Depending upon the type of random number required the following are

computed { = g , + ~ (2 ~ l - 1); q=2{- 1 or k=int.part{UV)+I.

The package also provides the facility for saving the current value of the generator word
and for restarting with any specified value.

MA38 (T. A. Davis and I. S. Duff)

This package solves a sparse unsymmetric system of n linear equations in n unknowns
using an unsymnetric multifrontal variant of Gaussian elimination. There are facilities for
choosing a good pivot order, factorizing another matfix with a nonzero pattern identical to

that of a previously factorized matrix, and solving a system of equations using the factorized

45

matrix. An option exists for solving triangular systems using the factors fiom the Gaussian
C W Q n .

MA41 (P, A. Amtstoy and I. S. Duff)

To solve a sparse unsymmetric system of linear equations on a shared-memory
multiprocessor. Given an unsymmetric square sparse matrix A of order n and an n-vector b,
this subroutine solves the system Ax=b or ATx=b.

The method used is a parallel direct method based on a sparse multifrontal variant of
Gaussian elimination. An initial ordering for the pivotal sequence is chosen using the pattern
of the matrix A + AT and is later modified for reasons of numerical stability. Thus this code
performs best on matrices whose pattern is symmetric, or nearly so. For symmetric sparse
matrices or for very unsymmetric and very sparse matrices, other software might be more
appropriate (for example, MA47 or MA48).

There is a version of the code for uniprocessors which is in Fortran 77. The parallel
versions are machine dependent but only require simple features like starting parallel tasks
and locks. In principle, a code can be supplied for any shared memory parallel machine but
the only two platforms on which this has been tested extensively are the CRAY Y-MP and the
ALLIANT W80.

HSL-MA42 (J. A. Scott)

The module HSLMA42 r~ a Fortran 90 interface to the MA42 package that shields the user
fiom most of the complexities in the calling sequences to that package.

MA46 (A.C. Damhaug and J.K. Reid)

This solves one or more set of sparse unsymmetric linear equations AX=B from
finite-element applications, using a multifrontal elimination scheme. The matrix A must be
input by elements and be of the form

where A(k) is nomro only in those rows and columns that correspond to variables of the
nodes of the k-th element. Optionally, the user may pass an additional matrix A, of
coefficients for the diagonal. A is then of the form

46

before calling the solution routine.

MA51 (J.K. Reid)

This is for use in conjunction with the MA48 and MA50 packages for solving sparse
unsymmetric sets of linear equations. It identifies which equations axe ignored when soivirrg
Ax=b and which solution components are always set to zero. The roles are reversed for
ATx = b. There are such equations and/or components in the singular or rectangular case. Note
that, if Ax= b or ATx = b is not consistent, there may be large residuals for the equations that
are ignored.

MA52 (J.A. Scott)

This collection of subroutines, when used in conjunction with the MA42 package, solves
finite-element equations using a multiple front algorithm. It is assumed that the underlying
finite-element mesh has been partitioned into (non-overlapping) subdomains. In the multiple
front algorithm, a frontal method is applied to each subdomain separately. This can be done in
parallel. Using multiple fronts can also reduce the amount of work required.

At the end of the assembly and elimination processes for the subdomains, for each
subdomain i there remains a frontal matrix Fi and a corresponding right-hand side vector ci
satisfying

Fjyi =c j . (1)

These equations may be assembled to give a system of the form

Fy = C.

By treating each of the subdomain frontal matrices Fi as an elemental matrix, (2) may be
solved by a frontal method. Once (2) has been solved, back-substitution on the subdomains
completes the solution.

MA52 provides routines for generating lists of variables lying on the subdomain interfaces, for
preserving the partial factorization of a matrix when the sequence of calls to MA42B/BD is

incomplete, and for performing forward or back-substitution on a subdomain.

MA52 uses reverse communication.

The use of Harweil Subroutine Library routine MC53 to obtain an efficient element ordering in
each subdomain is recommended before MA52 is used.

For further detaiis of multiple fronts, see Duff, I. S. and Scott, J. A. (1994), I;he use of d t i p k
fronts in Gaussian elimination. Rutherford Appleton Laboratory Report R A L - W .

47

To read a sparse matrix, coded in a Hawell-Boeing format with possible right-hand sides.
Thc subroutine reads assembled as well as unasembled matrices, and returns them in a
column oriented compressed sparse format. MF36 must be used if the matrix is complex.

Given a sparse symmetric matrix A, this subroutine computes a set of element matrices
that, if assembled, would yield the same matrix. Note that this set of elements is not unique.
The matrix cm be input by the user either in compressed column format (column pointerhow
index scheme) or by row and column index pairs in any order.

MC38 (I. S. Duff)

Given a sparse matrix held in a compressed column oriented format, this subroutine
generates the transpose of the matrix, holding it in compressed column format. It can also be
viewed as a conversion between a column oriented scheme and a row oriented one. This
subroutine differs from MC46 inasmuch as it preserves the input data and should be faster,
particularly on vector machines. However, it does require storage for both the matrix and its
transpose.

MC44 (J. K. Reid and J. A. Scott)

Given the structure of an unassembled finite-element matrix, this subroutine groups the
variables into supervariables and optionally generates either the element connectivity graph or
the supervariable connectivity graph.

A supervariable is a collection of one or more variables, such that each variable belongs to
the same set of finite elements. In the supervariable connectivity graph, the nodes are the
supervariables and the edges are constructed by making the supervariables of each finite
element pairwise adjacent. The supervariable connectivity graph, together with the number of
variables in each supervariable, provide a compact representation of the variable connectivity
graph. In the element connectivity graph, the nodes are the elements and the edges are
constructed by defining two elements to be adjacent whenever they have one or more
variables in common.

MC47 (P. R. Amestoy, T. A. Davis, and I. S. Duff)

Given a repsentation of the nollzero pattern of a symmetric matrix, A, this subroutine
pc&xms an approximate minimum degree ordering to compute a pivot order so that the
number uf mnzcms m the choftsky fadors of A is kept low. At each step, the pivot selected

48

is the one that minimizeS an easily-computcd upper-bound on the (external) degrrx. A
permutation corresponding to this ordering is returned, together with information to assist the
subsequent numerical factorization of the matrix.

The code is typically faster than other minimum degree algorithms and produces
comparable results to other minimum external degree algorithms in tcnns of fill-in and the
number of floating-point operations needed to compute the factors.

The version of the code described here is based on work done by Amestoy, Davis and Duff
(An approximate minimum degree ordering algorithm, Report TR-94-039, Computer QItd
1nfomtion Sciences Department, University ofFZorida), and is a symmetric analogue of the
ordering used in the code of Davis and Duff (An unsymmetric-pattern multifrontal method for
sparse LU factorization. Report RAL 93-036, Rutherford Appleton Laboratory.)

MC52 (I.S. Duff)

To write a sparse matrix in Harwell-Boeing format with possible right-hand sides. The
matrix can be input as an assembled matrix in either column-oriented or coordinate form, or as
an unassembled finite-element matrix. The right-hand sides must be in full format.

MC53 (J. A. Scott)

This subroutine generates an ordering for finite-element matrices within a subdomain that
is efficient when subsequently used with a multiple front algorithm. In a multiple front
algorithm, the finite-element domain is partitioned into a number of subdomains and a frontal
decomposition is performed on each subdomain separately. The storage required by a multiple
front algorithm and the time taken to run it are dependent upon the order in which the
elements in each subdomain are input; the variation in the performance of different element
orderings can be significant. The ordering obtained by MC53 is designed to reduce the
maximum and root mean-squared frontsizes and to reduce the floating-point operation count
for the frontal solver on the subdomain. If nelt is the number of elements in the subdomain and
fsizej is the number of variables in the front after the assembly of the ith element, the
maximum frontsize- in the subdomain is defined to be

Jinax= max usizei}
15i*ft

and the root mean-squared frontsizef- in the subdomain is defined to be

I 1 nelt

The user is required to use reverse communication to supply a list of the variables belonging
to each element in the subdomain one at a time fofiowed by a list of the variables lying on the
subdomain interface.

49

To read in a complex sparse matrix, coded in a Harwell-Boeing format with possible
rightohand sides. The subroutine Teads assembled as well as massembled matrices, and
returns them in a mlum oriented compressed sparse format. If the matrix being read is real
MC36A/AD should be used.

MI01 (N. I. M. Gould and J. A. Scott)

This routine uses the Conjugate Gradient method to solve the nxn symmetric positive
definite linear system Ax= b, optionally using preconditioning. If PPT is the preconditioning
matrix, the routine actually solves the preconditioned system

with
for preconditioning operations and matrix-vector products of the form Az.

= PAPT and 6 = Pb and recovers the solution x = PTX. Reverse communication is used

M103 (N. I. M. Gould and J. A. Scott)

This routine uses the CGS (Conjugate Gradient Squared) method to solve the n x n
unsymmetric linear system Ax=b, optionally using preconditioning. If P,, P, are the
preconditioning matrices, the routine actually solves the preconditioned system

with x=P,AP, and 6=P,b and recovers the solution x=P,x. If P, =I, preconditioning is
said to be from the right, if P, =I, it is said to be fiom the left, and otherwise it is from both
sides. Reverse communication is used for preconditioning operations and matrix-vector
products of the form Az.

MI04 (N. I. M. Gould and J. A. Scott)

This routine uses the Generalized Minimal Residual method with restarts every m
iterations, GMRES(m), to solve the n x n unsymmetric linear system Ax = b, optionally using
preconditioning. If P,, P, are left and right preconditioning matrices, the routine actually
wives the preconditioned system

with A=PLAPR and 6=P,b. The solution may be recovered as x=P& If P,=I,
preconditioning is said to be from the right, if PR=I, it is said to be from the left, and
otherwise it is from both sides. Reverse communication is used for preconditioning operations
and snmix-vedor products of the fofim Az.

~ 1 0 5 (N. I. M. Gould and J. A. Scott)

This routine uses the BEG (BiConjugate Gradient) method to solve the n x n unsymmctric
linear system Ax=b, optionally using preconditioning. If P,, PR am the preqmditioning
matrices, the routine actually solves the preconditioned system

Z=%,
with x= PLAP, and 6 = PL b and recovers the solution x = P,:. If P, = I, preconditioning is
said to be from the right, if P, =I, it is said to be from the left, and otherwise it is from both
sides. Reverse communication is used for preconditioning operations PZ and PTz, where
P=P,P,, and for matrix-vector products of the form Az and ATz.

M106 (N. I. M. Gould and J. A. Scott)

This routine uses the BiCGStab (BiConjugate Gradient Stabilized) method to sdve the
n x n unsymmetric linear system Ax = b, optionally using preconditioning. If P,, P, are the
preconditioning matrices, the routine actually solves the preconditioned system

-
AX = I;,

with K = PLAP, and b= PL b and recovers the solution x = PRi. If P, =I, preconditianing is
said to be from the right, if PR =I, it is said to be from the left, and otherwise it is from both
sides. Reverse communication is used for preconditioning operations and matrix-vector
products of the form Az.

MIll (N. I. M. Gould and J. A. Scott)

This routine forms an incomplete LU factorization of an n x n sparse unsymmetric matrix
A. No fill-in is allowed. The entries of A are stored by rows. If A has zeros on the diagonal,
the routine first finds a row permutation Q which makes the matrix have nonzeros on the
diagonal. The incomplete LU factorization of the permuted matrix QA is then formed. L is
lower triangular and U is unit upper triangular. The incomplete factorization may be used as a
preconditioner when solving the linear system Ax=b. A second entry performs the
preconditioning operations

where P-'Q is the preconditioner.

MI12 (N. I. M. Gould and J. A. Scott)

This routine finds an approximate inverse M of an n x n sparse unsymmetric matrix A by
attempting to minimize the difference between AM and the identity matrix in the Frobenius
norm. The process may be i m p v e d by fust performing a block triangularization of A and

thtn finding amproximate inverses to the resulting diagonal blocks.

A second entry allows the user to form the matrix-vector products

The principal use of such an approximate inverse is likely to be in preconditioning iterative
methods for solving the linear system Ax= b.

HSL-WO1 (N. 1. M. Gould)

This package uses the genetic algorithm to search for a small value of an objective function
of n binary (zero-one) variables. Each string of binary variables is stored in a logical array. A
population of p such strings is maintained along with their associated objective function
values. The population evolves in a sequence of iterations. The best features of the population
at iteration k are passed to the population at iteration k+1 by means of mutation and crossover.

The package obtains function values by reverse communication. The user is periodically
required to check for termination.

HSL-ZA03 (N. I. M. Gould)

This package provides kind values for 1- and 2-byte Fortran 90 LOGICAL variables. If a

particular kind is not supported, a kind offering at least as much storage is substituted.

52

8 Seminars

27 January 1994

3 February 1994

1 1 May 1994
I

I

I

9 June 1994

26 August 1994

3 November 1994

24 November 1994

2 February 1995

9 February 1995

2 March 1995

4 May 1995

12May 1995

23 November 1995

7 December 1995

N. I. M. Gould (Rutherford)
Optimization research in the parallel algorithmfi team at CERFACS

P. Graves-Moms (Bradford)
Is SOR being revived?

R. da Cunha (Kent)
Designing a portable package for parallel architectures

C-H. Lai (Greenwich)
Large-scale computing and domain decomposition methods

J. Bunch (California)
Bounding the subspaces obtained by rank revealing two-sided
orthogonal decompositions

2. Jia (Bielefeld)
A refined strategy in orthogonal projection methods for the
unsymmetric eigenproblem

A. Ramage (Strathclyde)
Preconditioned conjugate gradients for irregular finite element grids

E. Hinton (Swansea)
Structural optimisation - numerical issues

A. Erisman (Boeing Computer Services)
Technology change and what we do with it

A. Wathen (Bristol)
The iterative solution of discrete saddle-point problems

J. Du Croz (NAG Ltd)
The design of the NAG Fortran 90 Library

J. Mason (Huddersfield)
Parallel and structured data approximations

D. Higham (Dundee)
Time-stepping analysis using concepts from numerical linear
algebra

P. Sweby (Reading)
Dynamics of discretisation

53

We give a full listing of Ruthefiord Reports during the period of this Regress Report. The
other report listings, from organi7ations with which we coUaborate, only include reports not
already included as RAL Rcports.

Rutherford Reports

RAL 94-018

RAJd 94-040

RAL 94-062

RAL 94-069

RAL 95-001

RAL 95-009

RAL 95-010

hrting industrial codes and developing sparse linear solvers on parallel
computers. M.J. Day& and I.S. Duff.

The use of multiple fronts in Gaussian elimination. I.S. Duff and J.A. Scott.

Numerical Analysis Group - Progress Report. January 1991 - December
1993. I.S. Duff (Editor).

On iterated-subspace minimization methods for nonlinear optimization.
A.R. COM, N.I.M. Gould and Ph.L. Toint.

MA47, A Fortran code for direct solution of indefinite sparse symmetric
linear systems. I.S. Duff and J.K. Reid.

Convergence properties of an augmented Lagrangian algorithm for
optimization with a combination of general equality and linear constraints.
A.R. Conn, N.I.M. Gould, A. Sartenaer, and Ph.L. Toint.

On the use of element-by element preconditioners to solve large-scale
partially separable optimization problems. M.J. Daydk, J.Y. l’Excellent,
and N.I.M. Gould.

RAL-TR-95-026 On approximate-inverse preconditioners. N.I.M. Gould and J.A. Scott.

RAL-TR-95-029 Element resequencing for use with a multiple front algorithm. J.A. Scott.

RAL-TR-95-037 Constructing appropriate models for large-scale, linearly-constrained,
nonconvex, nonlinear, optimization algorithms. N.I.M. Gould.

RAL-TR-95-039 The design of MA48, a code for the direct solution of sparse unsymmetric
linear systems of equations. I.S. Duff and J.K. Reid.

RAL-TR-95-040 Exploiting zeros on the diagonal in the direct solution of indefraite sparse
symmetric linear systems. I.S. Duff and J.K. Reid.

RAL-TR-95-049 A set of Level 3 Basic Linear Algebra Subprograms for sparse matrices. IS.
Duff, M. Mamne, G. Radicati, and C. Vittoli.

AEA Techndogy Reports 1

HARWELL SUBROUTINE LIBRARY. A Catalogue of Subroutines (Release 12). &tuber
1995.

HARWELL SUBROUTINE LIBRARY. Release 12. Specifications. Volume 1 and Volume 2.
December 1995.

CERFACS Reports
I

I TR/PA/94/10 The CERFACS Experience. M.J. Dayd6 and I.S. Duff.

TR/PN94/15 A parallel scheduler for block iterative solvers in heterogeneous computing
environments. M. Arioli, A. Drummond, I.S. Duff, and D. Ruiz.

TR/PA/95/09 An approximate minimum degree ordering algorithm. P. Amestoy, T.A. Davis,
t

I and I.S. Duff.
1

TR/PA/95/26 Linear algebra kernels for parallel domain decomposition methods. L.
Carvalho, I. Duff and L. Giraud.

ENSEEIHT-IRIT Reports

RT/AP0/95/1 Solution of structured systems of linear equations using element-by-element
preconditioners. M. J. Dayd6, J.Y. I’Excellent, and N.I.M. Gould.

University of Florida Reports

TR-95-020 A combined unifrontal/multifrontal method for unsymmetric sparse matrices.
T.A. Davis and I.S. Duff.

55

10 E W u d hmanS in 1994-1995

Ameitoy P. R., Day& M. J., Duff 1. S., and MO&= P. (195). Linear algebra calculations on a
virtual s W memory computer. Int. J. High Speed Computing 7,2143.

Arioli, M., Duff, I. S., Ruiz, D., and S-e, M. (1995). Block Lanczos techniques for
accelerating the Block Cimmino method. SMM J. Sci. Comput. 16, 1478-15 1 1.

Arioli, M., Drummond, A., Duff, I. S., and Ruiz, D. (1995). A parallel scheduler for block
iterative solvers in heterogeneous computing environments. In Proceedings of the
Seventh SI' Conference on Parallel Processing for Scientific Computing. Edited by
David H Bailey et al. SIAM, Philadelphia., 460-465.

Arioli, M., Drummond, A., Duff, I. S., and Ruiz, D. (1995). Parallel block iterative solvers for
heterogeneous computing environments. In Algorithms and Parallel VLSI Architectures
III Edited by M. Moonen and F. Catthmr. Elsevier, Amsterdam, 97-108.

Bongartz, I., Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (1995). CUTE: Constrained and
Unconstrained Testing Environment, ACM Trans. Math. So@. 21, 123-160.

COM, A. R., Gould, Lescrenier, M., N. I. M., and Toint, Ph. L. (1994). Performance of a
multifrontal scheme for partially separable optimization, in Advances in numerical
partial dtrerential equations and optimization, Proceedings of the sixth Mexico- United
States Workshop (S. Gomez and J.P. Hennart and R.A. Tapia, eds) Kluwer Academic
Publishers.

COM, A. R., Gould, N. I. M., and Toint, Ph. L. (1994). Improving the decomposition of
partially separable functions in the context of large-scale optimization: a first approach,
in Large Scale Optimization: State of the Art (W. W. Hager, D. W. Heam and P.M.
Pardalos, eds.) Kluwer Academic Publishers B.V., 82-94.

Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (1994). Large-scale nonlinear constrained
optimization: a current survey, in Algorithms for continuous optimization: the state of
the art (E. Swcato , editor). Kluwer Academic Publishers, Dordrecht, The Netherlands,
287-332.

Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (1994). A note on using alternative
second-ordcr models for the subproblems arising in barrier function methods for
m i m *on, Numerische Math. 68, 17-33. . .

COM, A. R., Godd, N. 1. M., and Toint, Ph. L. (1994). A note on exploiting structure when i

using slack variables, Math. Programming 67,89-98.

Day&, M. and Duff, I.S. (1994). The CERFACS Experience. In Parallel scientific
Computing. h e e d i n g s First International Workshop, PARA '94, Lyngby, Denmark,
Jicnc 20-23, 1994. kcture Notes in Computer Science 879, Springer-Verlag, Berlin,
169-176.

Day& M.J. and Duff I.S. (1995). hrting industrial codes and developing sparse lir#ar
solvers on @le1 computers. Computing System in Engineering. 6,295-305.

Dayd6 Me J., Duff I. S., and ktitet A. (1994). A parallel block implementation of Level 3
BLAS kernels for MIMD vector processors. ACM Trans. Muth, SofitW. 20, 178-193.

Duff, I. S. (1994). The solution of augmented systems. In Numerical Analysis 1993. D.F.
Griffiths and G.A. Watson (Editors). Pitman research Notes in Mathematical Series 303;
Longman, 40-55.

Duff, I. S. (1994). The solution of sparse equations on high performance computers. In Matrix

Analysis and Parallel Computing. M. Natori and T. Nodera (Editors). Advances in
Numerical Methods for Large Sparse Sets of Linear Equations 10. Keio University,
Japan, 1-13.

Duff, I. S. (1994). A review of frontal methods for solving linear systems. In Proceedings of
the Fiih SIAM Conference on Applied Linear Algebra. J.G. Lewis (editor). SIAM Press,
Philadelphia, 135- 139.

Duff, I. S. and Scott, J. A. (1994). The use of multiple fronts in Gaussian elimination. In
Proceedings of the Fifrh S I . Conference on Applied Linear Algebra. J.G. Lewis
(editor). SIAM Press, Philadelphia, 567-57 1.

Metcalf, M. and Reid, J.K. (1995). Fortran 90 explained (reprints with corrections). Oxford
University Press.

Reid, J.K. (1995). Fortran 90 shapes up to the future. Scientifk Computing 5, 16-22.

Reid, J.K. (1995). Exception handling in Fortran. ACM Fortran Forum, 14,9-15.

Scott, J. A. (1995). An Amoldi code for computing selected eigenvalues of sparse real
unsymetric matrices. ACM Trans. Math. Som., 21,423-475.

57

