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This report covcrs tht period hrn January I994 to December 1995 and describes work 
performed by the Numerical Analysis Group within the Computing and l[nfbfimation Systems 
Department at the Ruthe&ord Appleton Laboratory. 

The &tails of our activities ace documented in the following pages. These words of 
introduction are intended merely to provide an introduction and additional information on 
activities that ate not appropriate for the detailed reports. 

The support and development of the Harwell Subroutine Library (HSL) continues to be one 
of our major activities. This reporting period has seen new releases of both HSL (Release 12) 
and the NAG-marketed Harwell Sparse Matrix Library (Mark 2). The turbulent times at AEA 
Technology have led to some confusion in their support for the marketing and sales of HSL 
with three changes of management by them over the last year. For the moment, at least some 
stability reigns and we are developing a good working relationship with Scott Roberts and 
Richard Lee who took over from John Harding on the eve of Release 12. As in the previous 
Release, we benefited greatly from the consultancy of Mike Hopper who, in modem parlance, 
performed the quality control in the latter stages of code development. Our contacts with Ian 
Jones and his CFDS group at Harwell continue on a very informal basis, and we have 
continued our collaboration with Andrew Cliffe on the solution of finite-element equations by 
frontal methods. 

Most of our visitors have been fairly short-term although the interaction with them has been 
quite intense. We continue our interaction with Oxford in support of the Joint Computational 
Mathematics and Applications Seminar series and have hosted several talks at RAL through 
that programme. We were involved in the successful CCLRC bid to host an HPCI Centre at 
Daresbury, and we hosted a course on Numerical Calculations with Matrices at RAL in 
December 1995 with the support of this Centre. It was a very successful course in which all 
Group members participated and may well be the forerunner to subsequent similar courses in 
numerical computation. 

John has continued to combine his interests in Fortran and sparse matrices giving several 
talks on these topics during the last two years. He has been very involved through IS0 WG5 
in influencing-the development of Fortran 95 and has been their main architect of a proposal 
for the inclusion of exception handling in Fortran 2OOO. He attended several X3J3 meetings, 
primarily to promote and develop this proposal, and discusses this and other related Fortran 
activities in Section 6.2. John has given talks on automatic differentiation at Oxford; Fortran 
90 and Fortran 95 at RAL, NAG Users’ Association, RMCS Shrivenham, and JPL; and has 
given courses on Fortran 90 at RAL and Shrivenham, where he is a visiting Professor. He had 
a six-week visit to Australia, primarily-hosted by ANU Canberra, during which time he 
worked and gave talks on Fortran 90, sparse matrices, CotlStTaincd least squares, and 
automatic differentiation, the latter topic in which he supervises a CASE student, David 



Cowey. John gave some MSc lectures on iterative methods at Reading University and has 
given invited talks at meetings in Hamburg, RAL, St Girons, and Toulouse, and a contributed 
falk in Lhkiiphg. 

Nick’s collaboration with Conn and Toint continues to expand the theory and practice of 
large-scale optimization. Much of their work is,embodied in the LANCELOT package for 
which they were awarded the Beale-Orchard-Hays prize for excellence in computational 
mathematical programming in August 1994. He still has joint research activities with contacts 
made during his visit to CERFACS in 1993 and has had an Alliance grant from the British 
Council to support this activity. He was a CO-supervisor of Jean-Yves L’Excellent, who 
completed his thesis at ENSEEIHT-IRIT in Toulouse in November 1995. Another student of 
Nick’s, Marli Hernandez at the Unversity of Hertfordshire, completed her thesis successfully 
in 1995. Nick is a Visiting Fellow at RMCS Shrivenham. He was an invited speaker at 
confertnces at CORE in Belgium, Manchester, RAL, St Girons, and Stockholm, has given 
seminars at RAL and Durham and contributed talks at Dundee and Minneapolis. 

Jennifer has developed several international collaborative projects over the past year, 
primarily in the computation of sparse eigenvalues. Although she has continued her part-time 
working, now on a five-day per week basis, she remains so productive that it is easy to forget 
this fact. In addition to her work on eigensystems (in which she hosted a visit from Richard 
Lehoucq), she has continued with her work on frontal solvers and has developed a suite of 
iterative solvers and an approximate inverse preconditioning technique in collaboration with 
Nick. Jennifer continues to coordinate our joint seminar series with Oxford University. She 
gave an invited talk at Toulouse and posters and contributed talks at Utah, Dundee, and 
Manchester. 

Iain still leads a project at the European Centre for Research and Advanced Training in 
Scientific Computation (CERFACS) at Toulouse in France and has welcomed all Group 
members to Toulouse during the last year (see Section 6.1). Iain is a chief editor of the M A  
Journal of Numerical Analysis, editor of the IMANA Newsletter, chairman of the M A  
Programme Committee, an adjudicator for the Fox Prize, IMA representative on the CCIAM 
International Committee that overseas the triennial international conferences on applied 
mathematics, and a Visiting Professor at Strathclyde. In high perfomance computing, he has 
given tutorials at Supercomputing ’94 (Washington DC), Supercomputing’95 (San Diego), 
and HPCN Europe (Milan), is on the Scientific Council of the CRIWAN Centre in Rouen, and 
was on an international panel that reviewed proposals for Supercomputing in Sweden. Iain has 
batn on tht Rogrammc Committee for several international meetings and was on the 
otganil.jllp c o d e  for the Linear Algebra meeting in Manchester in July 1994. He has 
given seminars in Berkeky, Boulder, Copenhagen, NASA Ames, Oak Ridge, Tennessee, and 
h e &  a d  has given invited presentations at ASWM (Switzerland), BOM, Copenhagen, 
Cbnobk, Hpmbprg, LhWping, oxfard, San Francisco, St Girons, St Malo, Skalsky DMU 
(Czech Repubk), Toulouse, and Ydrohama 

2 



We have tried to subdivide our activities to fwilitatc the reading of this report. This is to 
some extent an arbitrary subdivision since much of our work spans these subdivisions. Our 
main research areas and intensts lie in sparse matrix research, nonlinear algebra and 
optimization, applied mathematics, and numerical linear algebra. Work pertaining to these 
amas is discussed in Sections 2 to 5,  respectively. We group some misctllaneous topics in 
Section 6. Much of our restarch and development resuits in high quality advanced 
mathematical software for the Harwell Subroutine Library. The organization, maintenance, 
documentation, and distribution of this Library is in itself a major task and we report on work 
in these areas in Section 7. Lists of seminars (in the joint series with Oxford), technical 
reports, and publications are given in Sections 8,9, and 10, respectively. Current information 
on the activities of the Group and on Group members can be found through page 
http://www .cis.rl.ac .uk/struct/ARCD/NUM. html of the World Wide Web. 

. 
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2.1 Tht direct Sduth of sparse I lnspmeMc linear sets of equations (Is Duff 
d J.K.RM) 

We have compkted a new code, MA48, for the direct solution of a sparse unsymmetric set of 
lia&arequations 

where A is usually square and nonsingular. The main features are: 

(i) a fast and robust solution to sparse unsymmetric sets of linear equations, 
(ii) a user-fiiendly input format (entries in any order in a real array and corresponding 

row and column indices in two parallel integer arrays, with duplicates allowed 
and summed), 

(iii) the code switches to full-matrix processing when the reduced matrix is 
sufficiently dense, using Basic Linear Algebra Subprograms (BLAS) at Levels 1, 
2, and 3, 

(iv) the pivot sequence is normally chosen automatically from anywhere in the 
matrix, but the choice may be limited to the diagonal or the pivot sequence may 
be specified, 

(v) in the event of insufficient storage allocation by the user, the package continues 
with the computation to obtain a good estimate of the amount required, 

(vi) the code computes and uses the block triangular form, 
(vii) entries smaller than a threshold are dropped from the factorization, 
(viii) singular or rectangular matrices are permitted, 
(ix) another matrix of the same pattern may be factorized with or without additional 

(x) there is an option of specifying that some columns have not changed when 

(xi) another problem with the same matrix or its transpose may be solved, 
(fi) iterative refinement of the solution is available to improve its accuracy or provide 

row interchanges for stability, 

factorizing another matrix, 

an error estimate. 

A most exciting development is the work of Gilbert and kierls [3] for economically 
generating the patterns of the columns of the factors when factorizing with a given column 
sequence but allowing for row interchanges. The overall complexity is O(n)+ O(f) where f is 
the number of floating-point operations. There rn overheads, associated with the 
racomputation of the sparsity patterns of the columns and the row interchanges may cause 
extra fill-ins, so in MA48 we p r o v i d e  two ‘factorizes’ which we callfirst andf ‘ i  The first 
factthe mufit be p v i d d  with a column sequcw’~. Thus, the analyse phase need only 
parovide 8 mxmmded pivot sequence; them is no need for this phase to provide the sparsity 
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pattern of the factr#izad matrix- We have t &mfa  designed the d y e  phpse to pmvidc the 
permutations without the actual fators. This saves storage since working s t o w  is then 
needed only for the active submatrix of the block on the diagonal of the block triangular form 
that is currently being processed. It may save time since the vectors that hold the active 
columns are shorter and data compressions are much less likely to be needed. 

Since the Harwell Subroutine Library code MA28 is a benchmark standard in thc solution of 
sparse unsymmetric equations, we have compared MA48 with MA28 on three computing 
environments, taking ratios of storage and execution times for the various phases in the 
solution of (1). The results are summarized in Table 2.1.1 which shows the median and 
quartiles for these ratios. MA28 always produces a factorization when it pexforms an analysis 
and its only form of factorization is without pivoting. The MA28 analyse time is therefore 
strictly comparable with the sum of the analyse and factorize times of MA48, and this 
comparison is shown in column “Analyse + Fact.”. However, analyse alone or factorize with 
pivoting may also be needed by the user, so we also use the MA28 analyse time to compare 
separately with the analyse (column “Analyse”) and first factorize (column “First Fact.”) 
times of MA48. 

In view of these satisfactory results, we regard MA28 as having been rendered obsolescent 
by MA48 and have thus flagged it for removal in a later Release of HSL. The design of MA4 8 is 
described in [ l ]  and in more detail in [2]. 

CRAY 

SUN 

RS/6000 

Array Analyse First AnalYSe 
size reqd Fact. + Fact. 

lower quartile 0.50 2.87 7.84 2.03 
median 0.69 4.47 12.10 3.26 
upper quartile 0.71 7.2 1 21.41 5.1 1 
lower quartile 0.50 2.20 3.88 1.38 
median 0.68 3.17 5.09 1.89 
upper quartile 0.74 6.39 9.7 1 3.52 
lower quartile 0.50 2.67 7.99 2.04 
d i m  0.68 3.58 1 1.69 2.64 
upper quartile 0.74 7.07 24.33 5.06 

Table 2.1.1. MA2 8 results divided by those with MA48. 

Fast 
Fact. 
1.92 
2.6 1 
3.4 1 
1.27 
1.79 
2.2 1 
2.03 
2.6 1 
4.17 

Solve 

1.79 
2.20 
2.35 
0.70 
0.83 
1.03 
1.03 
1.16 
1.36 

References 

[ 11 Duff, I.S. and Reid, J.K. (1995). The design of MA48, a code for direct solution of sparse 
unsymetric linear system of equations. Report RAGTR-95439, Rutherford Appleton 
Laboratory, Chilton, Didcot, Oxfordshire OX1 1 OQX. To appear in ACM Trms. Math. 
sofhu. 1 

[2] Duff, I.S. and Reid, J.K. (1993). MA48, a Fortran code for direct solution of sparse 
unsymmetric linear systems of equations. Report RAL-93472, Rutherford Appleton 
Laboratory, Chilton, Didcot, oxfordshire OX1 1 OQX. 

[3] Gilbert, J.R and kierls, T. (1988). Sparse partial pivoting in time proportional to 
d h ~ ~ ~ t i c  operations. S’AMJ. Ski. SW. Cornput. 9,862-874. 
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We have dtvebpcd software for permuting a sparse matrix so that the diagonal of the 
permuted matrix ?sas entries of large absolute value. We have modified and extended Harwell 
Submutine Library routine ~ ~ 2 1 ,  which finds a maximum transversal of any unsymmetric 
sparsc matrix. A maximum transversal is a set of entries of maximum cardinality where no 
two mmbcrs of the set 8fe in the same row or column. For a structurally nonsingular matrix, 
this cardinality will be equal to the matrix order. Our extension consists of taking into account 
the values of the matrix entries and finding, among all maximum transversals, one that 
maximiZes the minimum entry on the diagonal. We call such a transversal a bottleneck 
transversal. We have explored several ways of doing this and have designed one that is in 
practice similar in execution time to only a few calls to MC21 itself. 

There are many ways in which the permutation of a matrix to put the bottleneck transversal 
on the diagonal can be useful and we are investigating several of these. For example, many 
cunent algorithms for the solution of sparse sets of linear equations (for example MA37 and 
MA41) pcrf'orm an analysis phase that assumes that diagonal entries will be suitable as pivots 
during a subsequent numerical factorization phase. Now, while there is no guarantee that 
having a bottleneck transversal on the diagonal will ensure the pivots selected by the analysis 
are numerically satisfactory, we intuitively feel that this should be better than a more arbitrary 
set of entries on the diagonal. We are currently experimenting with this preordering using the 
MA41 code. Initial findings are encouraging. 

We are also examining the use of bottleneck transversals in the context of a block iterative 
scheme like that developed in [l]. In such a scheme, a direct solution scheme is used on 
blocks of the matrix, and the overall .solution is obtained by iterating over the blocks. By 
placing large entries on to the diagonal, we can improve the robustness of our direct solver, in 
a similar fashion to the discussion in the previous paragraph, while at the same time helping 
the iterative part of the solver by reducing the influence of the overlapping part of the blocks. 

Finally, we are also examining the use of bottleneck transversals in techniques for obtaining 
preconditioning matrices for iterative solution. Clearly, it would appear that a diagonal 
preconditioner consisting of the bottleneck transversal might perform better than an arbitrary 
one and this effect might also influence more sophisticated preconditioners. 

A M e r  discussion of this work will shortly be available [2]. 

111 Arioh, M., Duff, I. S., Nodes, f., and Ruiz, D. (1992). A block projection method for 
sp8c~e eqUati0n~. SI'. J. Ski. Stat. C ~ M .  13,47-70. 

[Z] Duff, I. S. d Koster, J. (1996). Tht &sign and use of algorithms for permuting large 
entries to the dmgod of gpars;t matrices. To 45xa.r. 
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2.3 An approximate minimum degree ordering (P.R. Amestoy, IS. M, and 
TA. Davis) 

The minimum degree reordering scheme for symmetric matrices is one of the oldcst known 
reordering schemes for sparse matrices [3]. At each stage of the elimination, the next pivot is 
chosen as a diagonal entry in the reduced matrix with least number of other entries in its row. 
This very simple algorithm is a highly successful ordering scheme for reducing work and 
fill-in when performing Gaussian elimination. However, on larger problems, as commonly 
occur today, it can be quite slow. Most of the time is spent on the degree updak, that is 
updating the row counts after a pivoting step. This cost is even more noticeable because of the 
recent increase in the speed of the numerical factorization algorithms. 

The purpose of our work, which is described in more detail in [ 11, is to design an ordering 
scheme that closely approximates the minimum degree ordering, and so retains its good 
properties, while at the same time executes much more quickly than the best available 
implementation of minimum degree. 

We use the same quotient graph model as most current implementations of minimum 
degree to represent the symbolic factorization but replace the costly degree update by an 

approximate update, which in many cases will be exact. The resulting algorithm is typically 
much faster than previous minimum degree ordering algorithms and produces results that are 
comparable in quality with the best orderings from other minimum degree algorithms. 

We show a comparison in Table 2.3.1 of our new algorithm with m, the multiple 
minimum degree algorithm of Liu [2], and the minimum degree ordering from the Harwell 
Subroutine Library code m27. This clearly illustrates the power of our new algorithm. It has 
been incorporated in the Harwell Subroutine Library at Release 12 as subroutine MC47. 

Matrix 

RAEFSKY3 
BCSSTK3 1 
FINAN5 1 2 
BBMAT 
0-678 
PSMIGR1 

~ 

Order 

21200 
35588 
74752 
38744 
2529 
3140 

733784 
5729 14 
261 120 

12741 41 
85426 

410781 

~~ 

Number of entries in L 
(in thousands) 

MC4 7 

4709 
51 15 
4778 

19673 
147 

3020 

MMD 

4779 
523 1 
8180 

19876 
147, 

2974 

MA2 7 

5041 
6056 
8159 

21 139 
147 

2966 

~~ 

Time 

(seconds on SUN SPARC 10) 
MC47 

1.05 
4.55 

15.03 
27.80 
5.49 

10.6 1 

MMD 

2.79 
1 1 . 6 0  

895.23 
200.86 
124.99 
186.07 

Table 2.3.1. Comparison of MC47 with MMD and MA27 orderings. 

References 

MA2 7 

1.23 
7.92 

40.3 1 
134.58 
124.66 
229.5 1 

[ l ]  Amestoy, P. R., Davis, T. .A., and Duff, 1. S. (1995). An approximate minimum d e p  
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ordcring algorithm. Technical Report TR/PA/95/09, CEWACS, Toulouse. To appear in 
S I .  J. Matrix Anal. and Applics. 

[2] Liu, J. W. H. (1985). Modification of the minimum degree algorithm by multiple 
elimination. AC" Trans. Math. &@W. 11, 141-153. 

[3] Tinney, W. F. and Walker, J. W. (1967). Direct solutions of sparse network equations by 
optimally ordered triangular factorization. Proc. IEEE 55, 1801 - 1809. 

2.4 Developments in frontal solvers (I. S. Duff and J. A. Scott) 

We are concerned with the solution of n x n linear systems of equations 

where A is a large sparse matrix arising from finite-element analysis. The matrix A is a sum of 
elemental matrices 

m 

&=I 
A =CA(~). 

Each matrix A(k) has entries only in the principal submatrix corresponding to the variables in 
element k and represents contributions from this element. This principal submatrix is assumed 
to be dense. The matrix A may be unsymmetric but the form (2) implies that the sparsity 
pattern is symmetric with nonzero diagonal entries. One possible direct solution method for 
(l), and the one which is still frequently the method of choice in many structural engineering 
applications, is the frontal method. 

There are two major deficiencies with the frontal method. 

Far more arithmetic may be done than is required by the numerical factorization 

There is little scope for parallelism, other than that which can be obtained through the use of 
high level B U S .  

We have been concerned with looking at ways in which we can improve the performance of 
the frontal method and, in particular, the performance of our frontal code MA42 (Duff and 

scott HI, PI). 
One possible approach is to extend the basic frontal algorithm to use multiple fronts (Duff 

and Scott [3]). In a multiple fiont algorithm, the finite-element domain is partitioned into a 
number of subciomains and a hntal decomposition is performed on each subdomain 
separately. Since the factorizarions of the subproblems are independent, this can be done in 
parallel. Once the assembly and eliminations on the subdomains are complete, there remains 
an interface problem to be solved. In our experiments, we solved the interface problem using 
a frontal method. To implement the multiple front algorithm, we developed the package MA52. 
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This is a collection of subroutines, that can be used in conjunction with the MA42 package. 

We examined the performance of MA52 and ~ ~ 4 2  in two parallel environments: on an eight 
processor shared memory CRAY Y-MPSI and on a network of five DEC Alpha workstations 
using PVM. The results we obtained for a model finite-element problem are encouraging and 
indicate that, for sufficiently large problems, high performance and good s p d u p s  can be 
achieved. Full details are given in [3]. 

For high performance computers where data must be cache resident before arithmetic 
Qperations can be performed on it, we are looking at enhancing the performance of MA42 by 
increasing the proportion of arithmetic operations performed using Level 3 BLAS. This is 
done by only performing eliminations once a block of pivots of a predetermined size is 
available. This can increase the amount of arithmetic but enables better reuse of data in the 
cache. Preliminary experiments on the Silicon Graphics Power Challenge machine using 
different pivot block sizes suggest that significant improvements in performance can be 
achieved using this approach. 

References 

[l] Duff, I.S. and Scott, J.A. (1993). MA42 - a new frontal code for solving sparse 
unsymmetric systems. Report RAL-93-064, Rutherford Appleton Laboratory, Chilton, 
Didcot, Oxfordshire OX1 1 OQX. 

[2] Duff, I. S. and Scott, J. A. (1996). The design of a new frontal code for solving sparse 
unsymetric systems. ACM Trans. Math. So@., to appear. 

[3] Duff, I. S. and Scott, J. A. (1994). The use of multiple fronts in Gaussian elimination. 
Report RAL-94-040, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 
ox11 OQX. 

2.5 Fortran 90 version of Harwell frontal code MA42 (J.K. Reid and J.A. Scott) 

The code MA42 [ 11 performs frontal elimination for a finite-element problem, normally using 
direct-access files for holding the factors. There may be significant efficiency gains from 
splitting a large problem into subdomains, using MA42 on each subdomain to create a Schur 
complement matrix for the variables on the boundary of the subdomain, and finally using 
MA42 for the interface problem. This multiple front approach is hard to organize because of 
the long argument lists and the need for distinct workmays and direct-access files. We have 
therefore constructed a Fortran 90 version that collects everything pertaining to a problem in a 
single object. 

Using the Fortran 90 version, a typical run looks like this: 

USE HSLMA42 
TYPE(MA42DATA) DATA ! DATA holds everything about the problem. 
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CALL MA42-INITIALIZE (DATA) 
DO I = 1, NUMELT ! Read the integer data for the elements, one by one. 

READ* 0 

CALL M A ~ ~ J W U J Y S E  (LIST (1 : LEN) , DATA) 
ENDDO 
DO I = 1, NUMELT ! Read the r e a l  data for the elements, one by one. 

R E A D * *  e 

CALL MA82-FACTORIZE (LIST (1 : LEN) ', & 
REALS (1 : LEN, 1 : LEN) , DATA) 

mD0 
READ . . ! Read the data for the right-hand side. 
CALL MA42-SOLW (B,X,DATA) 

The module looks after everything in DATA, except a few control or informative variables. 
Options may be specified in extra calls such as 

CALL MA42-FILES (LENBUF , LENFILE I DATA) 
which provides information on the files, by use of optional arguments, such as 

CALL MA42-SOLVE(B,X,DATAITRANS) 
or setting components of the data structure, such as 

and extra information may be retrieved by accessing components, such as 
DATA%ALtPHA = 0.001 

FLOP-COUNT = DATA%FLOPS 

The Fortran 90 code does run a little slower that the Fortran 77 code, hardly surprising since 
we call the old code from within a Fortran 90 jacket. Depending on the compiler and 
computer, we have found that the overhead varies from about 5% to about 50%. 

References 

[ l ]  Duff, I.S. and Scott, J.A. (1993). MA42 - a new frontal code for solving sparse 
unsymetric systems. Report RAL-93-064, Rutherford Appleton Laboratory, Chilton, 
Didcot, Oxfordshire OX1 1 OQX. 

2.6 Element resequencing for use with a multiple front solver (J. A. Scott) 

The efficiency of a fiontal scheme, in terms of both storage and computation time, is 
dependent upon the ordering of the elements. This is because, in the frontal method, the 
system matrix A is never assembled explicitly but the assembly and Gaussian elimination 
processes are interleaved, with each variable being eliminated as soon as its row and column 
are fully summed. This allows all intermediate working to be performed in a full matrix, 
kxmed thejkontal matrix, whose rows and columns cornspond to variables that have not yet 
been eliminated but occur in at least one of the elements that have been assembled. Since the 
order of the frontai matrix increases when a variable appears for the first time and decreases 
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whenever a variable is eliminate& the oTdcr in which the elements is input is critical. In m t  
years, many algorithms for automatically ordering f~te elements have beta proposed in the 

literatwe. 

In a multiple h n t  algorithm (Duff and Scott [ l]), the finite-element domain is partitioned 
into a number of subdomains and a frontal decomposition is performed on each subdomain 
separately. For a given partitioning of the domain, the efficiency of the multiple front 
algorithm depends on the ordering of the elements within each subdomain. The aim of our 

study was to look at the limitations of existing element reordering algorithms when applied to 
a subdomain and to consider how these limitations may be overcome. 

The problem of ordering elements for use with a multiple front algorithm is more 
complicated than that of sequencing elements for a frontal solver on a single domain since it is 
necessary to distinguish between variables which can be eliminated once they are fully 
summed and interface variables that cannot be eliminated within the subdomain. We have 
considered two approaches which involve two different ways of locating a suitable starting 
element s for the reordering procedure. Once a starting element has been selected, both 

methods use a modification of the method of Sloan [2] to reorder the remaining elements. Our 
first method for choosing s is based on finding pseudo-peripheral nodes of the element 
communication graph. The second method introduces an artificial element, the guard element, 
and uses this extra element to find an element lying as far from the interface boundary as 

possible and uses this to start the reordering. We have tested both approaches on a range of 
problems and compared their performance with that of the Harwell Subroutine Library code 
MC43, which is designed for single domain problems. Both approaches give significant 
improvements over MC43,  and the second method was almost always the method of choice. 
On the basis of our findings, a code MC53 implementing this second method has been 
developed and is included in Release 12 of the Harwell Subroutine Library. 

References 

[ 13 Duff, I. S. and Scott, J. A. (1994). The use of multiple fronts in Gaussian elimination. 
Report RAL-94-040, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 
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2.7 E~pkuMhg zerr)(p on the d h g d  in the direct solution of indefinife sparse 
finear systems (IS. Duff and J.K. Reid) 

We consider the direct solution of sparse sets of n linear equations 

when the matrix A is symmetric and has a significant number of zero diagonal entries. An 
example of applications in which such linear systems arise is the equality-constrained 
least-squares problem 

subject to 

Cx=d. 

This is equivalent to solving the sparse symmetric linear system 

(I 0 I)(;) = (ff). 
BT CT 0 x 

(3) 

(4) 

O u r  earlier Harwell Subroutine Library code MA27 uses a multifrontal solution technique 
and is unusual in being able to handle indefinite matrices. It has a preliminary analysis phase 
that chooses a tentative pivot sequence from the sparsity pattern alone, assuming that the 
matfix is definite so that all the diagonal entries are nonzero and suitable as 1 x 1 pivots. For 
the indefinite case, this tentative pivot sequence is modified in the factorization phase to 
maintain stability by delaying the use of a pivot if it is too small or by replacing two pivots by 
a 2 x 2 block pivot. 

The assumption that all the diagonal entries are nonzero is clearly violated in the above 
example. For such problems, the fill-in during the factorization phase of MA27 can be 
significantly greater than predicted by the analysis phase. Duff, Gould, Reid, Scott, and 
Turner [ 11 found that the use of 2 x 2 pivots with zeros on the diagonal alleviated this problem 
and also assisted the preservation of sparsity during the analysis phase. Our new code, ~ ~ 4 7 ,  

is based upon this work and, like MA27, uses a multifrontal method. It will work for the 
definite case, but there are many opportunities for simplifications and efficiency 
improvements, so we plan to provide a separate code for this special case. 

The design of the new code, M47, is described in [2] and in more detail in [3]. It was hoped 
that ~ ~ 4 7  would replace MA27 for the indefinite case, but our experience is that it is not always 
superior. A comparison summary is shown in Table 2.7.1 of runs on a CRAY Y-MP and a 
SUN SPARCstation 10 on a collection of test problems. The analyse phase of MA47 is more 
complicated and is inevitably more expensive, but we expect actual applications to amortize 
this over sevcd factorizations and many solves. For factorization and solution, in general, 
MA47 with its ckWt outperforms MA27 with its default, but it is clear that MA27 will continue 
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to be needed for some problems. We are keeping both codes in the HaweU Subroutine 
Library. 

CRAY 

SUN 

Total storage 
R e d i d  

lower quartile 0.96 
median 1.45 
upper quartile 1.86 
lower quartile 0.96 
median 1.45 
upper quartile 1.86 

Storage for factors 
Redicted Actual 
0.59 0.3 1 
1.15 0.57 
1.46 1.21 
0.59 0.3 1 
1.15 0.57 
1.46 1.12 

Time 
Analyse Factorize Solve 
1.69 0.53 1.44 
2.64 1.38 1.82 
5.41 2.04 2.18 
1.88 0.25 0.45 
3.32 0.96 0.75 
5.58 1.88 1.40 

Table 2.7.1. MA4 7 to MA27 ratios using default parameter settings. 
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[ 11 Duff, I.S., Gould, N.I.M., Reid, J.K., Scott, J.A. and Turner, K. (1990). Factorization of 
sparse symmetric indefinite matrices. M A  J. Numer. Anal. 11, 181-204. 

[Z] Duff, I.S. and Reid, J.K. (1995). Exploiting zeros on the diagonal in the direct solution of 
indefinite sparse symmetric linear systems. Report RAL-TR-95-040, Rutherford 
Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX. To appear in ACM 
Trans. Math. So@. 

[3] Duff, I.S. and Reid, J.K. (1995). MA47, a Fortran code for direct solution of indefinite 
sparse symmetric linear systems. Report RAL-95-00 1,  Rutherford Appleton Laboratory, 
Chilton, Didcot, Oxfordshire OX 1 1 OQX. 

2.8 A combined unifrontaUmultifront1 method (T.A. Dads and I.S. Duff) 

Frontal methods (see Section 2.4) are particularly powerful inasmuch as they make 
considerable use of the Level 3 BLAS kernels while keeping the amount of integer overhead 
and data movement low. However, they usually require a far greater number of floating-point 
operations than methods using an ordering based on Markowitz or minimum degree. 
Multifrontal methods attempt to capture the benefits of both the full arithmetic of frontal 
schemes and the orderings designed to reduce fill-in and arithmetic. They are quite successful 
at this but still involve more data movement and indirect addressing than a frontal method. 
The object of this work is to combine elements of a frontal solver into a multifrontal solver in 
order to obtain a factorization that is efficient in arithmetic, number of operations, and 
overhead operations. 

In the multifrontal method, several frontal matrices are used. Each is used for one or more 
pivot steps, and the resulting Schur complement is summed with other Schur complements to 

generate another fiontal matrix. Although this means that arbitrary sparsity patterns can be 
handled efficiently, extra work is required to add the Schur complements together and can be 
costly because indirect addressing is required. The (uni-)frontal method avoids this extra 
work by factorizing the matrix with a single frontal matrix. Rows and columns are added to 
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thc h t a i  matrix, and pivot rows and columns arc removed. Data movement is simpler, but 
hi* fill-in can result if the matrix cannot be permuted into a variable-band form with small 
profle. We consider a combined unifjronWmultifiontal algorithm to enable general fill-in 
reducing orderings to be applied without the data movement of previous multibntal 
approaches. 

Order 

Suppose we attempt to factorize a matrix with the frontal method, but we give it a smaller 
working array than it requires. The factorization proceeds until the point at which the fiont 
size would grow larger than the working array. At this point the frontal method halts, unable 
to proceed. However, the remaining terms in the current frontal matrix form a Schur 
complement (which we refer to as a contribution block). We store the contribution block and 
deallocate the working array. A new pivot is then selected based on a fill-in reducing heuristic 
on the whole reduced matrix, and a new fiontal matrix started with this starting pivot, in a 

newly allocated working array. The contribution block from the first frontal matrix is 
eventually assembled into a subsequent frontal matrix. This is the combined 
unihntal/multifrontal method, described in more detail in [ 11. 

Entries 

In Table 2.8.1, we compare an earlier version of our unsymmetric multifrontal code (old) 
with one incorporating this new device (new) and include a comparison of these codes with 
the frontal code, MA42. The test matrices, from the Harwell-Boeing Collection and some large 
examples collected by Tim Davis, show quite clearly the advantage of using our combined 
uni fron tdmul  t i frontal technique. 

MA42 

0.1 
2.2 
4.1 
0.7 
1.1 

Matrix 

Multifrontal 

(old) (new) 

0.3 0.2 
0.4 0.3 
1.1 1 .o 
1.5 0.8 
0.6 0.4 

GREl107 
GEMAT11 
ORANI678 
LHRo4 
HYDR1 

(old) 

0.30 
0.18 
2.07 
2.5 1 
1.05 

(new) 

0.30 
0.20 
1.36 
1.79 
1.10 

1107 
4929 
2529 
4101 
5308 

- 

5664 
33185 
90158 
82682 
23752 

~ ~ ~~ ~ 

Time 
(seconds on CRAY C-98) 

MA42 

0.2 1 
15.95 
9.62 
4.21 
8.01 

Table 2.8.1. Comparison of unsymmetric multifrontal codes with MA42. 

References 

[l] Davis, T.A. and Duff, I.S. (1995). A combined unifbntaUmdtifrontal method for 
unsymmetric sparse matrices. Technical Report TR-95-020, Computer and Informab;.oa 

Science Departmeat, University of Florida. 
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2.9 An u11sylllg3effjtric mul-nw d e  (TA. Davis and 15. Duil) 

secs) 
MA3 8 

We have used the work discussed in Section 2.8 to design and develop a new multihntal 
code for the solution of sets of sparse unsymmetric equations and have included this code in 
Release 12 of HSL as code MA38. Unlike MA37 and MA41, MA38 does not assume any 
symmetry in the matrix and its initial pivot selection copsiders also the values of the matrix 
entries and only selects a pivot if it satisfies the normal threshold test. In the current version of 
our code, we only offer a factorize which uses the same pivot sequence as in an earlier call to 
the analyse-factorize entry. 

(106 words) 

MA48 I MA38 

The underlying representation for this unsymmetric multifrontal method is a directed 
acyclic graph, rather than the elimination or assembly trees used by our other multifrontal 
codes. The frontal matrices are rectangular rather than square and the internal data 

organization during factorization is more complicated since frontal matrices are not usually 
absorbed at the parent node in the graph. In this respect, the approach is similar to that of the 
HSL code ~ ~ 4 7  (see 2.7). 

0.30 
1.36 

22.61 
1.78 . 
1.10 

In common with other multifrontal codes, high computational performance is obtained 
through the use of higher Level BLAS on the factorizations within the dense frontal matrices. 
This code will thus be most efficient when the matrix structure gives rise to large dense 
subblocks during the factorization. The algorithm also incorporates the use of unifrontal 
processing as discussed in Section 2.8. 

0.3 0.2 
0.8 1 .o 

20.9 25.2 
2.2 1.2 
0.4 0.4 

We show, in Table 2.9.1 below, a comparison of the performance of M A ~  8 with M A ~  8 on a 

range of our standard test problems from the Harwell-Boeing Collection and some matrices 
collected by Tim Davis. We see clearly that, on some matrices, this new code is very 
competitive with ~ ~ 4 8  and can significantly outperform it on some problems. We note, 
however, that the functionality of the codes is somewhat different which more than justifies 
keeping both in the Harwell Subroutine Library. 

Matrix 

GREl107 
ORANI678 
PSMIGR1 
LNS 3937 
HYDR1 

Order 

1107 
2529 
3140 
3937 
5308 

Entries 

5664 
90158 

543 162 
25407 
23752 

Factorization 1 Total storage 

time 
MA4 8 

0.38 
1.01 

28.86 
3.37 
0.8 1 

Number fl-pt ops 
(106) 

MA4 8 

8.1 
14.2 

10465.3 
280.4 
0.9 

MA3 8 

6.7 
7.2 

9489.8 
84.1 
2.7 

Table 2.9.1. Comparison of MA38 with MA48. Times in seconds on a CRAY C-98. 
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Lu factorization. Report RAL 93-036, Rutherford Appleton Laboratory, Chilton, 
Didcot, oxfordshire OX1 1 OQX. To appear in SZAM J. Matrix Anal. and Applics. 

[2] Davis, T.A. and Duff, I.S. (1995). A combined unifrontaVmultifrontal method for 
unsymmetric sparse matrices. Technical Report TR-95-020, Computer and Information 
Science Department, University of Florida. 

2.10 UnSymmetric multffrontal methods for finitelelemeat problems (A.C. 
Damhaug and J.K. Reid) 

We have constructed a new multifrontal code for unsymmetric finite-element sets of linear 
equations AX = B, which has been included in the Harwell Subroutine Library as M A ~  6. The 
matrix A must be input by elements and be of the form 

Where 
nodes 

A(') is nonzero only in those rows and columns that correspond to variables of the 
of the k-th element. Optionally, the user may pass an additional matrix A, of 

coefficients for the diagonal. A is then of the form 

The right-hand side B is expressed through the summation 

The analysis phase accepts the matrix pattern by element-node connectivity lists and 
chooses diagonal pivots for Gaussian elimination to preserve sparsity while disregarding 
numerical values. The ordering is done with the minimum-degree heuristic. The final 
assembly tree is reordered to reduce the size of the working stack. 

To support any kind of data base that might hold the element stiffness matrices, we use 
'reverse communication' for the matrix factorization. The routine must be called by the user 
NB times, where NB is the number of assembly steps (internal nodes of the assembly tree), 
determined by the analysis code. In each call, the user must pass a specified sequence of 
finite-element coefficient matrices. Pivoting with the usual relative pivot tolerance is 
included. 

For good performance on machines with cache storage, the user may provide the cache 
size. If nectss8fy, the actual elimination is performed in blocks of columns of a size that 
allows the active part of the matrix to reside in the cache. On the biggest problem that we ran 
in perf6- tests, this reduced the factorization time with pufe Fortran code fiom 1607 to 
1149 secs on a SUN Sparcmer 670 mp and from 342 to 229 secs on a DEC 3000-400. 
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We use Level 3 BLAS for the actual computation. Whexe optimizcd vendor veasiolrs we 
available, very good pedorinance can be obtained. Indeed, on the DEC our blocking for good 
cache usage did not help, presumably because the vendor-supplied B U S  itself uses blocking. 
For the big problem mentioned in the previous paragraph, the time was reduced to 197 secs by 
using vendor-supplied BLAS. 

The new code comfortably outperformed the code ~ ~ 3 7  in our tests. These are summarized 
in Table 2.10.1. 

DEC 3000-400 SUN Sparcserver 670 mp CRAY Y-MP 
Analyse Factorize Solve Analyse Factorize Solve Analyse Factorize Solve 

lower quartile 2.3 2.5 1.1 2.1 1.8 0.9 1.5 3.2 1 .o 
median 3.3 2.7 1.4 2.9 2.0 1.1 1.7 3.8 1.2 
upper quartile 13.7 3.7 1.6 11.5 2.2 1.2 7.0 4.0 1.4 

Table 2.10.1. ~ ~ 3 7  times divided by U 4 6  times. 

More detail is available in the report [ 11. 
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2.11 MUPS: a Multifrontal Parallel Solver for sparse unsymmetric sets of 
linear equations (P.R. Amestoy and I.S. Duff) 

We have developed our prototype MUPS package to produce a new HSL code, m41, for the 
solution of sets of sparse unsymmetric equations using a multifrontal method. MA41 is similar 
to ~ ~ 3 7  in the sense that the initial analysis is performed on a symmetrized pattern of the 
original matrix and assumes that pivots can be chosen from the diagonal in any order. It is thus 
best suited to systems which are structurally symmetric or nearly so and which are diagonally 
dominant. It differs from MA37 in several respects. 

We have reorganized the structure of the code along the lines described in [3] and [4] so 
that it is no longer assumed that the code is being executed on a single processor. This makes 
the internal data structures a little more complicated but the overhead for uniprocessor 
running is almost negligible. We also require a more complex data management policy so that 
garbage collections do not interfere with parallel efficiency, see [2]. Another main change 
from ~ ~ 3 7  is that we make extensive use of the higher Level BLAS which increases 
computational efficiency on all machines, particularly those with caches or vector chips [ 11. 
Other enhancements to ~ ~ 3 7  include options for scaling, permutation so that the diagonal is 
zero-free, error analysis, and iterative refinement. 

The uniprocessor version is included in the standard release of the Harwell Subroutine 
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Library (Release 12), but vcTGiolls for s h a d  memry parallel computers are also available on 
request. The code is design& so that it is relatively simple to develop a version for any shared 
memory machine sincc the only primitives used by the code involve task stating and locks. 
At present, we have fully tested versions for the CRAY YMP/c90 range of machines and for 
an Alliant W80 and are currently writing a version for multiprocessor Sun workstations. 
Versions of the code have also been designed and run on some virtual shared memory 
machines, for example on a BBN TC 2000 and a KSR-1. 

Analyse time I Entries 

We show, in Table 2.1 1.1  below, a comparison of the performance of the uniprocessor 
version of MA41 with MA37 on a range of our standard test problems from the Harwell-Boeing 
Collection and some matrices collected by Tim Davis. These results indicate the 
improvements we have made and illustrate the power of using vendor-supplied BLAS on the 
HP 7 15/64. 

Factorization time Solve time Matrix 
MA3 7 

28.41 
0.96 
0.34 
0.3 1 
1.81 
5.09 

ORANI678 
BCSSTK15 
LNS 3937 
sHERMAN3 
GOODWIN 
WANG3 

MA4 1 MA3 7 

46.02 251.18 
11.79 104.80 
1.79 13.22 
1.07 3.23 
8.18 510.65 

299.50 1591.21 

Order 

2529 
3948 
3937 
5005 
7320 

26024 

90158 
117816 
25407 
20033 

324784 
177168 

MA4 1 

4.15 
0.61 
0.32 
0.6 1 
1 .w 
8.63 

I MA41 

0.29 
0.18 
0.07 
0.05 
0.23 
2.17 

MA3 7 

0.36 
0.34 
0.12 
0.06 
0.77 
2.70 - 

Table 2.1 1 . l .  Comparison of ~ ~ 4 1  with ~ ~ 3 7 .  Times in seconds on an HP 7 15/64 workstation. 
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2.12 M-W QR factorization in a multiprocessor environmeat (P.R. 
Amestoy, IS. M, and C O  Rlgki) 

We have designed and implemented an algorithm for the parallel QR decomposition of a 
sparse matrix A. Our current version is designed for shared memory or virtual shared memory 
parallel architectures and only uses the primitives taskstart and lmbnllmbff or their 
equivalents. The algorithm is based on the multifrontal approach and makes use of 
Householder transformations. The tasks are distributed among processors according to an 
assembly tree which is built from the symbolic factorization of the matrix ATA. Our approach 
is unusual inasmuch as we keep the orthogonal factors Q which may be required in some 

applications (for example if  an orthogonal basis for the column space of A is wanted) and may 
be crucial in the solution of ill-conditioned or weighted least-squares problems. Another novel 
aspect of this work is that we use relaxation of the sparsity structure of both the original 
matrix and the frontal matrices to improve the perfomance by enabling more efficient use of 
the Level 3 BLAS. 

We discussed this work extensively in the previous Progress Report (articles 2.11,2.12, and 
2.13 in [2]). Since then we have completed our main report on this work [ l ]  and have 
developed and tuned codes for using the factorization to solve a least-squares problem. 

If the QR factorization is being used to solve the sparse least-squares problem min 
Ilb-Axllz, and we have the factors Q and R then the solution is obtained by first multiplying b 
by QT and then solving the triangular system Rx=b. Since Q and R were produced by the 
multiprocessor multifrontal factorization, we must also use the underlying tree structure to 
effect an efficient parallel algorithm for these two phases. For the first calculation (QTb) we 
process the assembly tree from the leaf nodes to the root as in the factorization itself. The data 
management is, however, much simpler than in the factorization and we can update 
components of the product vector without synchronization worries. In the back substitution 
phase (Rx=b), we process the assembly tree from the root node to the leaf nodes. If the entries 
of Q are discarded and we want to solve the least-squares problem using the semi-normal 
equations then we also require the forward substitution step R T y r  so we have also 

implemented this in parallel. We show, in Table 2.12.1 below, that these three phases in the 
solution of least-squares problems all parallelize well. The runs for this table were performed 
on an Alliant W80. 
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LARGE 

MEDIUM2 

LARGE2 

MAC80 

MAC100 

(28254 x 6400) 

(18794 x 12238) 

Number 

F* 

1 
8 
1 

(56508 x 34528) 

(24W x 6400) 

l 8  
1 
8 
1 

QTb 

Time 

2.59 
0.62 
2.84 
0.77 

10.98 
3.53 
1.80 
0.34 
2.98 
0.70 

4.18 

3.69 

3.1 1 

5.29 

4.26 

Time 

2.69 
0.42 
1.79 
0.32 
5.49 
1.1 1 
1.02 
0.18 
1.65 
0.27 

6.40 

5.59 

4.95 

5.67 

6.1 1 

Time 

2.44 
0.43 
1.66 
0.37 
3.10 
1.19 
0.97 
0.18 
1.54 
0.3 1 

Speedup 

5.66 

4.52 

2.59 

5.25 

4.98 

Table 2.12.1. Time in seconds and speedups for multifrontal QR solution phases on an Alliant 
W80. 
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2.13 The solution of linear least=squares problems (J. Cardenal, I.S. Duff, and 
J. Jimenez) 

We have designed and developed a general method for the linear least-squares solution of 
overdetermined and underdetennined systems. The method is particularly efficient when the 
coefficient matrix is quasi-square, that is when the number of rows and number of columns is 
almost the same. The numerical methods proposed in the literature for linear least-squares 
problems and minimum-norm solutions do not generally take account of this special 
characteristic. The proposed method is based on an LU factorization of the original 
quasi-square matrix A, assuming that A has full rank. 

We have developed a framework based on the augmented system 
presenting our algorithm and give a unified approach to solving both least-squares problems 
and minimum-norm problems. 

In the overdetemined case, the LU factors are used to compute a basis for the null space of 



A? The right-hand si& vector b is then projecttd unto this subspacc and the least-squarcs 
solution is obtained from the solution of this reduced problem. In the case of underdtttrmintd 
systems, the desired solution is again obtained through the solution of a reduced system. The 
use of this method m y  lead to important savings in computational time for both dense and 
sparse matrices. 

We have studied the performance of our algorithm on practical test problems arising in the 
solution of problems from the computer simulation of the kinematic behaviour of multibody 

Test 4 
385 
361 

1661 

1914.1 
100.3 
43.4 

391.7 
21.1 

systems 

Test 5 
574 
526 

3365 

5990.1 
288.6 
120.7 

2124.2 
67.7 

Some results from this study are ! 

Rows 
Columns 
Entries 

Normal equations 

Augmented system 
Proposed Method 

Code 

LAPACK 
MA27 
MA27 
LAPACK 
MA48 

iown ir 

Test 1 
117 
105 
615 

57.4 
12.1 
7.3 

29.8 
4.5 

Table 

Test 2 
170 
161 

1069 

203.3 
32.3 
15.6 
47.7 

7.3 

,13.1. 
- 
Test 3 

181 
180 

1 200 

238.6 
37 .o 
13.1 
56.4 
4.1 

Table 2.13.1. Solution of sparse least-squares problems. Times in seconds on Silicon Graphics 
Onyx workstation ( 1  50 MHz). 

The test cases all come from multibody simulation problems and, although small by current 
sparse matrix standards, they are typical of realistic problems arising in this application. 
Indeed the three smaller cases are more usual. It is thus quite surprising that the dense codes 
from LAPACK do so badly relatively to the sparse codes. From these results, we see that our 
proposed method does very well, especially if a good sparse code is used for the initial LU 
factorization of A. A full report on this work is presented in [ 11. 
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2.14 ApproxhWe-invem precoaditiorrers (N.I.M. Gould and J.A. Smtt) 

We are inkrested in using iterative techniques to solve large, sparse systems of linear 
equations 

Such methods invariably require one or more matrix-vector products per iteration; 
convergence is normally accelerated using a preconditioner P, in which case the required 
matrix-vector products involve AP or PA, not A. 

The solution of such problems remains a considerable challenge, especially if we are 
interested in robust methods for general problems. The difficulties are two-fold. Firstly, the 
theory of iterative methods for (1) is, at best, incomplete. In particular, it is difficult to be 
confident, when faced with a new problem, that a given algorithm will converge in a 
reasonable time, if at all. Secondly, while it is recognized that preconditioning the system 
often improves the convergence of a particular method, this is not always so. In particular, a 
successful preconditioner for one class of problems may prove ineffective on another class. 
Thus, it has long been recognized that the construction of successful general purpose 
preconditioners is unlikely to be possible. 

We are interested in constructing approximations, M, to the inverse of A for which 
11 AM - I 11 is small (I is the n x n identity matrix). So long as matrix-vector products involving 
M are inexpensive, the matrix M may then be a suitable preconditioner. There has been a lot 
of recent interest in such preconditioners because they have considerable scope for 
parallelization, and there is some evidence that they are perform well in practice. However, a 
proper assessment of their effectiveness in comparison with other preconditioners and of the 
correctness of the assumptions on which they are based has been laclung. 

In this study, we investigate the use of sparse approximate-inverse preconditioners. We 
propose a number of enhancements which are shown to significantly improve their 
performance on some problems. We compare the use of sparse approximate-inverse 
preconditioners with incomplete LU factorization (ILU) preconditioners. Using a range of 
problems, we find that the sparse approximate-inverse methods are significantly more 
expensive to use on a single processor machine. However, the sparse approximate-inverse 
methods can be successfbl when ILU preconditioners fail, and preliminary studies suggest the 
imbalance in the computation tirnes may be redressed when the methods are used in parallel. 
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2.15 Linear algebra kerneb for paral€el domaim decomposition methods (I,. 
Cawalho, I. S. M, and L. Giraud) 

Memory requirement 
(in Mbytes) 

The modelling of many applications in physics and engineering gives rise to systems of 
nonlinear partial diffenmtial equations (PDEs). Approximate solutions to these PDEs are 
obtained by nonlinear iterative procedures that linearize and disc~tize the equations. Each 
step of the nonlinear procedure involves the solution of large sparse linear systems. These 
systems, for example those arising in 3D numerical simuhtions, can be very large and can 
seldom be solved using only direct methods as they may of’ten require too much memory. 
Equally, the use of standard iterative techniques, such as those based on Krylov sequences, is 
not practical due to the slow convergence. We thus combine iterative techniques with direct 
methods for solving subproblems to accelerate the convergence. Examples of this hybrid 
approach are block preconditioned Krylov methods and domain decomposition methods. 
These are additionally suitable for parallel computing on distributed memory machines. 

In this work, we study the parallel implementation of a domain decomposition method 
based on a Schur complement approach. In this approach, we divide the problem into 
subdomains and, within each subdomain, we partition the variables into internal and interface 
variables. We can then solve for the internal variables of each subdomain using a direct 
method. The resulting problem in the interface variables has the Schur complement matrix as 
coefficient matrix. We solve this using an iterative method. The main concern with this class 
of techniques is how to precondition the Schur complement problem. 

The preconditioning technique that we use is a block Jacobi preconditioning, where the 
blocks correspond to the contribution to the diagonal blocks of the Schur complement matrix 
from each subdomain. We approximate the inverse of each of these blocks by tridiagonal 
matrices using the probing technique of Chan [Z]. This approximation is then factorized and 
used as a preconditioner to accelerate the conjugate gradient iteration on the interface 
variables. We have found that the method is strongly influenced by the direct method used to 

solve the subproblems and show, in Table 2.15.1 below, the effect of using different direct 
solvers. The band solver used was DPBTRF/S from LAPACK. The PCG code used in solving 
the subproblems was an ICCG code developed by Notay et al. [3]. 

I Factorization Solve 

times (in sec) times (in sec) 
Solver 

Band 
Skyline 
MA27 
PCG 

2.12 
1.31 
0.70 
0.63 

0.875 
1.034 
0.409 
0.008 

0.103 
0.06 1 
0.027 
0.875 

Table 2.15.1. Comparison between the different linear solvers on a single 64x64 domain. Times 
on a single processor of a Meiko CS2-HA. 
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We thus choosc to solve the subprobienns with MA27 and have exprbented with this 
solution scheme on various parallel environments including a Meiko CS2-HA and a network 
of Sun SPARC-10 workstations. We have studied the effect of different partitioning strategies 
and have examined speedup and scaled speedup. More details of these results can be found in 
Ill. 

[ 11 Carvalho, L., Duff, I. S., and Giraud, L. (1995). Linear algebra kernels for parallel domain 
decomposition methods. Report TRPN95/26, CERFACS, Toulouse. 

[2] Chan, T. F. and Mathew, T. P. (1992). The interface probing technique in domain 
decomposition. SLAM J. Matrix Anal. and Applics. 13,2 12-238. 

[3] Notay, Y., Gheur, V., Ould Amar, Z., Petrova, S., and Saint-Gorges, P. (1995). ITSOL: 
an evolving routine for the iterative solution of symmetric positive definite systems. 
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2.16 Solution of large sparse unsymmetric linear systems with a block iterative 
method in a multiprocessor environment ( M a  Arioli, L. Am Drurmnond, I a  
S. Duff, and D. Ruiz) 

Block iterative methods for the solution of large sparse sets of linear equations are well suited 
for implementation on parallel computers since the solutions of the partial problems on each 
block can be performed independently. We were particularly interested in the Block Cimmino 
algorithm since there is no data communication between the subblocks and these subproblems 
can be solved simultaneously. We have already designed and experimented with the Block 
Cimmino algorithm, accelerated by conjugate gradients and block conjugate gradients, on 
shared memory parallel computers [3], [4]. This work was discussed in Section 2.15 of the 
previous Progress Report [6]. 

We have extended this work to enable the implementation on distributed memory 
computers and networks of workstations. This has involved the consideration of many issues 
not present in the shared memory version. The issues of scheduling and load balancing have 
resulted in the design of a scheduler for heterogeneous computing environments that is 
discussed in detail in the thesis of Tony Drummond [5] .  

We made a detailed study of the block conjugate gradient algorithm using various strategies 
for distributing the computation. Each strategy has its advantages and disadvantages but we 
found that, on most platforms and on most problems, it was best to use a master-slave 
distributed implementation in which the master performs an initial scheduling and distributes 
the tasks to the slaves. Thereafter the master is only used for global operations like computing 
inner products and testing for termination. The alternatives that we compared this strategy 
with were only to distribute rnatrix-vector multiplies and one where there is no master process 
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but more redundant computation. We used the master-slave distributed implementation of the 
block conjugate gradient algorithm as the preconditioner for a distributed block Cimmino 
algorithm. 

We have found it very beneficial to allow the scheduler to group closely related tasks on the 
same processor and have also experimented with different strategies for the initial subdivision 
of the equations for the block Cimmino algorithm. Choosing the best strategies in each case, . 

we obtain impressive speedups, as is illustrated in Table 2.16.1 below. 

Further information on this work can be found in [l], [2] and [5]. 

1 

8.3 
- 
- 

Number of 
processors 

Time 

_I_ 

Speedup 
Efficiency 

2 4 8 10 

4.3 2.5 1.4 1.0 
1.9 3.3 5.9 8.3 

0.95 0.83 0.74 0.83 

Table 2.16.1. Time in seconds on an IBM SP2 for solution of problem SHERMAN4 from the 

Harwell-Boeing Collection. 
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Llt7 An e v a l d b  d dtware for sparse nollsymmetrjc matrices 
(R.B.Lem and J.A. Scott) 

The last few years has seen a si@icant increase in research into numerical methods for 
computing selected eigenvalues (and eigenvectors) of large sparse nonsymmetric matrices. 
This interest has led to a large number of papers and reports on possible numerical methods 
for solving this problem. It has also begun to lead to the development of high quality 
mathematical software. However, the published numerical results are extremely limited and, 
in general, the authors of the software have provided few results comparing the performance 
of their software with that of rival software. The aim of the our study is to evaluate this 
state-of-the-art software in terms of the following criteria: 

The user interface 

Storage requirements 

krformance 

Accuracy and stability 

Reliability and robustness. 

There are three methods which have received significant attention by the numerical 
analysis community. These are subspace, or simultaneous, iteration, Arnoldi’s method and the 
(nonsymmetric) Lanczos’ method. It is our intention to provide a comprehensive comparative 
study of these three methods together with the recent Jacobi-Davidson method. So far, we 
have considered subspace iteration and Arnoldi methods, for which several high quality codes 
have appeared. The scope of our study is restricted to software which is available either in the 
public domain or under licence. For the Lanczos method, there is currently only a very limited 
amount of such software. As far as the authors are aware, the only code which falls within the 
criteria for inclusion in this study is the code EIGLAL of Freund and Nachtigal. At present, 
there is no software implementing the Jacobi-Davidson method which meets our criteria. 

The results of our subspace iteration and Arnoldi experiments on a wide-range of practical 
problems show that the algorithms are very sensitive to implementation details. None of the 
codes is able to solve all the problems included in our test set. Difficulties were encountered in 
the case of multiple eigenvalues and highly non-normal matrices. We also conclude that an 
implicitly restarted Arnoldi iteration algorithm appears to provide a promising way forward, 
but there are many aspects of the practical algorithm that require further investigation before a 

robust code becomes available. 
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eigenvalues of sparse nonsymmetric matrices. Technical Report, Rutherford Appleton 
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2.18 Sparse BLAS (IS. Duff, M. Marrone, G. hdicati, and C. Vfttolf) 

The Basic Linear Algebra Subprograms (BLAS) have had a profound influence on the 
development of algorithms and software for the solution of systems of linear equations with 
full coefficient matrices. Although a set of sparse BLAS was developed [l], their use and 
manufacturer-supported availability are not very widespread. This is in part due to the fact 
that they are only Level 1 BLAS and suffer from the same shortcomings of inefficiency on 
modem computer architectures as in the full case. Another reason why they are not widely 
accepted is that, at least for direct sparse solution, it is more efficient to code the kernels using 
full linear algebra so that the full matrix BLAS can be used (see, for example, [2]). 

However, in the solution of sparse equations using iterative methods, there is an urgent 
need for a standard interface for a sparse matrix by matrix multiplication and a sparse 
triangular solution routine. We have therefore designed routines for these cases as Level 3 
BLAS so that the Level 2 equivalents are available as a particular case. In the sparse case, 
there is the problem of how the matrix is stored, and indeed storage schemes differ very 
widely and are usually applications dependent. We have therefore also designed routines for 
data conversion with a standard interface to include all the data structures we are familiar 
with. Finally, we also include two permutation routines to facilitate the efficient use of the 
kernels in iterative solvers. 

In response to comments on our earlier report [3], we have made many changes to that 
proposal and have developed a revised proposal to address these points including designing a 
harness in Fortran 90 [4]. A prototype code for the sparse BLAS is available from the 
anonymous ftp server at RAL in file spb1as.f in directory pub on seamus.cc.rl.ac.uk. 
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2.19 Sparse matrix test problems (I.S. DpiT) 

Release I of the Harwell-Boeing Collection of sparse matrices consists of sparse matrices in a 
standard format from a wide range of application areas. The format used is basically a 
column-pointer row-index format and is described in [l]. There are both symmetric and 
unsymmetriC systems, some rectangular matrices, and a few in unassembled element format. 
Sometimes only the pattern of the sparse matrix is given, and sometimes a right-hand side 
vector is supplied in addition to the reals. 

We have nearly completed the design of Release 11 of the Collection and will shortly 
circulate it for comment [2]. This redesign has proved to be a significant task since we wish to 
enhance the value and scope of the Collection while effectively maintaining upward 
compatibility with the present release. In particular, we have extended the format to include 
more information on matrices and on systems being solved. These include starting guesses, 
exact solutions, eigenvalues and vectors, singular values and vectors, permutations, partitions, 
and geometric data. We have also made it a requirement that the format of the matrices 
enables them to be read easily from C programs. Although we will include matrix generation 
programs in the Release I1 repository, we will not include generated matrices in the Collection 
unless they are explicitly submitted and accepted for the Collection. We propose this because 
we feel that one of the main strengths of the collection is its reproducibility and do not want to 
jeopardize this aspect. 

We have written complete Fortran subroutines both to read matrices in the Collection and to 
write a matrix in Harwell-Boeing format. These routines are included in the Harwell 
Subroutine Library as MC36 and MC37 and are discussed in more detail in Section 7.4 of this 
report. They are also distributed with the test Collection. 

Release I is available by anonymous f t p  from both RAL (seamus.cc.rl.ac.uk) and 

CERFACS (ftp.cerfacs.fr), in both cases in directory pubhamell-boeing. More recently, 
some researchers at MST in Washington DC and their collaborators have been developing an 
efficient World Wide Web interface to the Collection. 

[I] Duff, I. S., Grimes, R. G., and Lewis, J. G. (1992). Users’ Guide for the Harwell-Boeing 
Sparse Matrix Collection. Report RAL 92-086, Rutherford Appleton Laboratory, 
Chilton, Didcot, Oxfordshire OX1 1 OQX. 

[2] Duff, 1. S., Grimzs, R. G., and Lewis, J. G. (1996). The organization of Release II of the 

HarwelEBoeing Sparse Matrix Collection. To appear. 
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3 optimization 

3.1 LANCELOT (A.R. COM, N.I.M. Gould, and P h L  Toint) 

Since its release in 1992, the large-scale nonlinear optimization package LANCELOT 
(Release A) [ 11 has been installed at over 150 sites throughout the world. Over the past two 
years, research has commenced on its successor. In order to design an improved algorithm, it . 

has been necessary to test the existing algorithm on as large a class of representative problems 
as possible [2], and to compare the algorithm against existing state-of-the-art codes [3]. 

We have identified a number of areas in which the algorithm needs to be improved. 

(i) The algorithm does not handle linear constraints very effectively. Linear constraints are 
treated as if they were general nonlinear constraints. 

(ii) The algorithm is sensitive to degeneracy at the solution to the problem. Although the 
algorithm will converge to a degenerate solution, the rate of convergence may 
significantly degrade in the presence of degeneracy. 

(iii) Inequality constraints are handled inefficiently by means of slack variables. The 
resulting increase in problem dimension is sometimes severe. 

Current research is concentrating on interior-point methods for handling the model 
subproblem as it is felt that such an approach is capable of coping with all of the 
above-mentioned disadvantages of LANCELOT A. However, complications arise as the 
model problem may be non-convex, thus requiring a significant reappraisal of interior-point 
methods. 

In the interim, LANCELOT A has been translated into Fortran 90, using many of the 
advanced features of the new language to simplify the calling sequences and to remove 
restrictions on fixed-size workspace. The new code has one new feature, the opportunity to 
generate problem derivatives automatically. This is possible using the new Harwell 
Subroutine Library Fortran 90 package ADO1 (see Section 4.1). 
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nonhear optimization Technical Report in preparation, Rutherford Appleton 
Laboratory, Chilton, England. 

3.2 Iteratd-subspace minimhation methods (A. R. Conn, N. I. M. Godd, 
A.Sartenaer, and Ph. L. Toint) 

The problem of minimizing a function of a large number of variables is considered. We are 
intclesttd in the case where the value of the objective function and possibly its derivatives are 

cheap to compute. We consider a class of Iterated-Subspace Minimization (ISM) methods for 
solving these problems. 

At each major iteration of such a method, a low-dimensional manifold, the iterated 
subspace, is constructed and an approximate minimizer of the objective function in this 
manifold then determined. The iterated subspace is chosen to contain vectors which ensure 
global convergence of the overall scheme and may also contain vectors which encourage fast 
asymptotic convergence. 

The iterated subspace is determined by applying the conjugate gradient method to the 
Newton equations at the current major iteration. The conjugate gradient method generates a 

sequence of search directions as it attempts to minimize the current quadratic model. The 
most promising of these directions make up the iterated subspace. In particular, the subspace 
comprises 

(a) the steepest descent direction, which guarantees convergence; 

(b) the truncated-Newton direction, which guarantees rapid convergence; and 

(c) a collection of the remaining directions, chosen to give large decreases in the model, or 
because they give approximations to dominant eigenvalues. 

This approach is compared with truncated-Newton and limited-memory methods, as well as 

with LANCELOT. The ISM approach is seen to be competitive with, and in some cases 
superior to, these approaches. Extensions to bound-constrained and linearly constrained 
minimization methods are suggested. 
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33  Ekment-by-eliement preconditionem in optimization (MO J. Dayd6, J.-Y. 
L’Exdent, and N. L M. Gould) 

Most functionsf, of a large number of variables x, can be expressed as 

i=l 

where each of the element functionsfi(x) has a large invariant subspace. Such a function is 
said to be partially separable [5].  Normally, an element function will have a large invariant 
subspace because it only depends on a small number of variables, but this is not always the 
case [3]. However, any sufficiently differentiable function with a sparse Hessian matrix is 
partially separable so this decomposition is extremely general [5] .  Note that the 
decomposition is not unique. 

At the heart of any iterative algorithm for minimizing a partially separable function, an 
approximate solution to the Newton equations 

where gi = Vfi (x )  and Hi = VJi(x), is sought. The method of choice is now considered to be 
the preconditioned conjugate gradient method (see, for example, [4]). 

In [ 11, we consider preconditioners which aim to mimic the structure implicit in the Newton 
equations. These element-by-element methods ([6], [7 ] )  have proved most effective when 
applied to problems arising from the solution of partial differential equations. We consider a 
number of existing and new element-by-element preconditioners, and report that these 
preconditioners appear to be effective in the optimization context. However, their 
performance can be significantly improved if groups of elements are amalgamated - treated as 
a dense block - before the preconditioner is constructed. A variety of amalgamation 
techniques are examined, and the best of these is seen to generate very effective 
preconditioners. All of the proposed methods are highly parallelizable and are seen to be 
effective on parallel machines [2]. 
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3.4 Linearly constrained minimization (N. I. MO Gould) 

We consider solving the problem 

minimizeflx) 
XE ff 

subject to a set of rn independent linear equations 

(2) Ax=b, 

wherefis twice continuously differentiable. We assume that VJ(x) is available and that we 
wish to exploit this curvature information; contrary to popular belief, this assumption holds 
for a wide variety of applications. 

Our interest here lies in algorithms which require the solution of problems of the form 
(1)-(2) as subproblem. It is likely that the next version of LANCELOT [ 11 will be based, in 
part, upon such subproblems. We are particularly concerned with the case where n and 
possibly m are large, and the matrices A and V d x )  are sparse. 

In [2], we discuss general issues of convergence for schemes for solving (1)-(2) and lay the 
foundations for the linear algebraic processes we later employ. In particular, if Axe = b, we 
exploit the structure of the Newton equations 

(3) 

for a correction p to x,. When fix) is not convex, these Newton equations may not be 
appropriate and we discuss suitable replacements for V a x )  in (3). Our aim is to enswe that 
the replacement is positive definite in the null-space of the constraints, while not adversely 
affecting the convergtnce of Newton’s method nor incurring a significant computational 
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overhead. 

We consider methods which form a sparse factorization of the coefficient matrix in (3). The 
matrix is reodered to ensure a stable factorization, and the factorization is continued so long 
as it determined that V a x )  need not be altered. Once it is realized that V d x )  is insufficient, 
diagonal perturbations are made. Tbo different approaches are considered, an implicit method 
in which any potentially bad diagonal is modified, and subsequently unmodified if the 
modification turns out to be unnecessary, and an explicit method in which perturbations are 
only made if they can be shown to be necessary. 

Numerical experiments [2] show that the technique can be effective, in that modified 
factorizations are possible at little additional cost over an unmodified (but, in this application, 
unusable) factorization. However, it is unclear which of the two proposed modifications is the 
more successful, each having good and bad instances. A software package incorporating 
many of these ideas is currently under development. 

References 

[ 1 1  Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (1992). LANCELOT : a Fortran package 
for large-scale nonlinear optimization (Release A). Number 17 in Springer Series in 
Computational Mathematics. Springer Verlag, Heidelberg, Berlin, New York. 

[2] Gould, N. I. M. (1995). Constructing appropriate models for large-scale, linearly- 
constrained, nonconvex, nonlinear, optimization algorithms. Report RAL-TR-95-037, 
Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX 1 1 OQX. 

33 



4.1 Automatic dMken&@n in Fortran 90 @. Cowey, J.D. Rye, and J.K. 
R W  

We have developed a Fortran 90 package for automatic differentiation and placed it in the 
Harwell Subroutine Library. It contains modules for both the forward and the backward 
method. 

In the forward method, for each independent variable and each dependent variable, the 
module holds a representation of the values of the variable and all its derivatives of up to a 
requested order. For each elementary operation, the desired derivatives of the result are 

calculated from those of the primaries by the chain rule. For example, if 

a = b*c, 

we have 
aa ab ac 
at at at 
- = - c + b -  

All the derivatives are calculated at the same time as the values. 

In the backward method, a graph is constructed to represent the whole computation, with a 
node i for each independent variable, i =  1,2, ..., m, and a node i for the result of each 
elementary operation, i=m+1,2, ..., n, with links to nodes for the primaries of the operation. 
The nodes are in execution-order sequence, so the links are always to nodes with lesser 
indices. Only the values are constructed initially in the forward pass that constructs the tree. 
Let us use the notation xi for the value at node i and suppose that derivatives of f=x ,  are 

24 
required. As well as x i ,  is held at node i ,  i = 1,2, ..., n. The derivatives are calculated by 

3x1 

ADO1 subroutines. Initially, all the variables are regarded as independent so that all the 
derivatives are zero except at node n where the derivative value is 1. One by one, from n 
backwards to m+l, the variables are changed to be dependent and the derivatives updated by 
the chain rule. For example, if 

when a is changed to dependent, we have 

af"" af""3g 
da ab* - ?f- = -  + -  

ab ab 
The forward method is likely to be best if the number of independent variables is small, 

since then the extra work and storage to compute and hold all the derivatives as the 
computation p d  is modest, though we store only the non-zero derivatives if that is 
advantageous. If some variables are depndent on a large number of independent variables, 
the forward XIEM becomes impractical, but the work of the backward method is bounded by 
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a d fixed multiple of the work needtd for the values themselves. The disadvantage of the 
backward mefhod is that the whole computational tree has to be stored, which is not practical 
for very long computations. 

The user must make changes in every program unit that contains a variable whose 
derivatives are required or is invoked in the course of calculating the value of such a variable. 
The changes are 

1. 

2. 

3. 

4. 

5.  

Add a USE statement for the module. 

Change the type of all independent variables and variables whose values vary with the 
independent variables to TYPE(ADO1-REAL) and give them the special initial value 
ADOlUNDEFINED. 

Initialize the module with a call to ADO1-INITIALIZE. 

Execute the modified code 

Obtain the required derivatives with calls to ADO1 subroutines. 

First and second derivatives may be obtained with the backward method and derivatives of 
any order with the forward method. 

There are facilities for storing and restoring the module data, which permits the calculation 
to be suspended while a subsidiary calculation takes place. 
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5.1 Computation4 kernels on vector and parallel machines and on RISC 
architechres (M J. Dayd; and IS. Duff) 

The Basic Linear Algebra Subprograms (BLAS), particularly the Level 3 BLAS, are one of 
the main platforms for the efficient implementation of a wide range of algorithms on modern 
high performance computers. The rapid development of new machines means that it is 
impitant to maintain a watching brief over new architectures and to develop and tune the 
BLAS in cases when the manufacturer fails to do so. 

It is an impossible task to so redesign all of the BLAS (even just the Level 3 BLAS) for 
each machine so we have developed BLAS based on the GEMM, or matrix-matrix multiply, 
kernel so that only this one routine need be tuned for the machine. The GEMM kernel is 
usually the first to be optimized by the vendor and it is relatively easy to tune code for this 
operation. This work is described in detail in [2] and [3]. 

Our recent work, which will shortly appear in the report [Z], shows that, even using a 
standard version for GEMM, our Level 3 BLAS can outperform some of the vendor-supplied 
BLAS on most machines including the Silicon Graphics Power Challenge and the DEC 8400 
5 / 3 0  Turbo laser. Furthermore, if our kernels use the vendor-supplied version of GEMM, 
they can be made to run even faster. 

We make extensive use of these new building blocks in linear algebra software and 
demonstrate that the high speed of these kernel operations can be reflected in the speed of the 
linear equation solvers [ 11. 
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5.2 lnfinite weights in the hwell-Reid method for linear least squares 
problems (J.K. Reid) 

Powell and Reid [ 11 considered the application of Golub’s method to the linear least squares 
problem 

I 

in the case that the norms of the rows of A vary widely. They showed that Householder 
transformations could be applied to produce a QR factorization ! 

AP=QR (2) 
of a column permutation of A in a backwards stable manner provided both row and column 
interchanges were included. They had in mind the case of weighted least squares problems 
with widely varying weights where the square roots of the weights were applied explicitly. 
That is, to find 

min (c - B X ) ~ W ~  (c - BX) (3) 
they solved the unweighted problem (1) with 

A=WB, b=Wc. (4) 

We have shown [2] that the algorithm and its error analysis extends very simply to the case of 
infinite weights, that is, to the constrained and weighted least squares problem. 
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6.1 CEWACS(LS.Dnff) 

lain has continued to lead a project at CERFACS on Parallel Algorithms and several of the 
contributions to this report reflect interactions with that team. One of the main activities of the 
“Algo” team over the past year has been the hosting of an International Linear Algebra Year. 
This Year was preceded by a Workshop in the Pyrenean town of St Girons in July 1994. 
Attendance was by invitation and around forty international researchers in sparse matrices 
participated, including all members of the Group at RAL. The Linear Algebra Year is being 
held from September 1995 until September 1996 and includes four workshops and a visitor’s 
programme. Iain is co-chairing the international scientific committee with Gene Golub from 
Stanford and is participating in all the workshops. John spoke at the fmt Workshop on “Direct 
Methods” and Jennifer at the second on “Eigenvalues and beyond”. Nick is helping to 
organize the optimization workshop that will take place in Albi in April 1996. 

The main areas of research in the Parallel Algorithms Group are the development and 
tuning of kernels for numerical linear algebra, the solution of sparse systems using direct 
methods or iterative methods or a combination of the two, heterogeneous computing including 
the use of PVM and MPI and the design of schedulers, large eigensystem calculations, 
optimization, and the reliability of computations. Other activities of the Group include 
advanced training by both courses and research and the porting of industrial codes [4]. 

During the reporting period, two students completed their PhDs at CERFACS. Thierry 
Braconnier completed his thesis in May 1994 [l] ,  and Tony Drummond who finished in 
December 1995 was co-supervised by Iain [5 ] .  Jean-Yves L’Excellent, whom Nick 
co-supervised, was a regular visitor to CERFACS and both Nick and Iain were on his jury in 
November 1995 [6]. 

Nick continued to visit both CERFACS and ENSEEIHT-IRIT with the support of a British 
Council grant to enable him to develop and extend some of the work commenced when he 
spent a year at CERFACS in 1994. 

The main projects at CERFACS still include Parallel Algorithms and Computational Fluid 
Dynamics although recent emphasis on environmental modelling has led to a significant 
increase in the size of the Climate Modelling Group. There are smaller groups in 
electromagnetics, signal processing, shape optimization, and computational chemistry, the 
latter currently a subgroup of the Parallel Algorithms Group. At the beginning of 1995, 
Jean-Claude An& fiom the French meteorological service succeeded Roland Glowinski as 
the Director of CERFACS. A brief summary of activities at CERFACS, especially in the 
Parallel Algorithms Project, can be found in [3] and a fuller account of recent activities of all 
groups can be found in [2]. Current information on the Parallel Algorithms Group can be 
f d  on page http:/lwww.cerf&cs.fi/algor/ of the World Wide Web. 
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6.2 Fortran 90 (J.K. Reid) 

Although no longer a member of X3J3, the ANSI Fortran Standardization Committee, John 
Reid attended several meetings during the reporting period in the hope of getting exception 
handling into the language. 

There were two attempts to provide such a feature during the development of Fortran 90. 
The first included tasking and was abandoned as too ambitious. The second involved a new 
construct, ENABLE, and was simpler, but was relegated to a 'Journal of Development' with the 
pressure to keep Fortran 90 small and with the need to devote resources to the development of 
the rest of the language. 

John Reid played a leading role in developing a simplified ENABLE proposal during 1994 at 
the February and May meetings of X3J3 and the August meetings of WG5 and X3J3 in 
Edinburgh. He represented IFIP WG 2.5 (Numerical Software), which is strongly in favour of 
the provision of such facilities, at all these meetings. The final version was the subject of an 
X3J3 letter ballot. Unfortunately, following this ballot, X3J3 decided that to continue to work 
on it would put the whole schedule for Fortran 95 in jeopardy and therefore stopped. 

This decision was endorsed by WG5, the IS0 Fortran Standardization Committee, but at its 
April 1995 meeting in Tokyo it decided that handling floating-point exceptions was too 
important to leave until Fortran 2000. It therefore decided to establish a development body to 
cxeate a 'Vpe 2 Technical Report'. The intention is to finalize this sootl (to be ready for 
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h d  ballot@ by April 1996). It will permit vendors to implement the fature as an 
extauion of Fortran 95, confident that it will be part of Fortran 2000, unless experience in 
their implementation and use demand changes. It is a kind of beta-test facility for a new 
language feature. John Reid agreed to act as project editor. 

'RE development body was requested to consider both the ENABLE approach and the use of 
a set of intrinsic procedures to provide more basic support for exceptions. The ENABLE 

approach is summatrzed in [l] but the other approach is simpler to understand and provides 
some support for other features of the IEEE floating-point standard. In November 1995, X3J3 
decided to take the latter route, again with John Reid playing a leading role. 

John Reid and Mike Metcalf kept their book Fortran 90 explained up to date with 
interpretations by revisions in two reprintings over the period. 

Good optimizing compilers are now available on all platforms, and we have access to 
compilers from Nag (site licence), EPC (SUN and IBM workstations), Cray Y-MP, IBM 
(RS/6000), Digital (Alpha), and Fujitsu (SUN). 

The technical content of the next revision of Fortran, informally known as Fortran 95 was 
finalized in November 1995. It is a minor revision that incorporates items in the corrigenda 
and editorial improvements, and these new features: 

e 
e 

e 

e 

e 

e 

e 

e 

e 

e 

FORALL 
Nested -RE 
Pure procedures 
Elemental procedures 
Pointer initialization 
Automatic component initialization 
Allocation status always defined 
User procedures in specifications 
CPU-TIME 
The following new obsolescent features: computed GO TO, statement functions, 
DATA among executables, assumed-length character functions, fixed source 
form, and character * declarations. 
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7 Computing a d  Harw4 Submutine Library 

7.1 The computing environment within the Group (N.LM. Gould) 

Our policy of upgrading the group’s workstations has continued over the past two years. The 
main change has been that Nick’s old IBM RISC Systems/6ooo 320H has been put out to 
grass at home and replaced by a newer model RISC Systerns/6ooo 3BT, a machine which is. 
theoretically capable of up to 300 Megaflops. The rest of the group continues to favour SUN 
equipment, and an order was placed at the end of 1994 for a SUN Ultra Sparc 1 to replace 
Iain’s aging Sparc 10130. We continue to maintain three Sparc 1s for use by our short and 
medium-term visitors, one of which has now been upgraded to run the Solaris operating 
system. A further order was recently placed for an IBM Thinkpad 701 portable computer 
which is intended for use by group members on their frequent travels. 

Our system has been generally stable over the past two years. We continue to rely on the 
CISD Unix system support team for major system administration, although group members 
have found it more convenient to get their hands dirty for simple tasks. The group has 
developed a series of WWW pages describing its activities. This has resulted in much wider 
publicity for the group, and made it easier for external users to access our technical reports 
and publicly-available software. In addition, we maintain pages of links to other relevant 
numerical analysis information. 

We continue to benefit from other public CISD machines, in particular the DEC Alpha 
3000 and HP-9000 farms, the CRAY Y-MP8I and the new DEC 8400 six processor system. 
Regular system backups are taken via the CISD IBM virtual tape reader. We now have access 
to six Fortran 90 compilers, some on our own machines and some on other CISD machines. 
This has enabled our gradual transformation from Fortran 77 to 90 to proceed, and in some 
cases we have found these compilers uncovered previously hidden errors in our existing 77 
codes. 

7.2 Harweli Subroutine Library 

The Group continues to act as cons1 ltant for the Hmel l  Subroutine Library. Our 
collaboration with Harwell was marred by three changes of principal contact person over the 
period, but nevertheless Release 2 of the Harwell Sparse Matrix Library was completed in 
June 1995 and Release 12 of the main Library was made in December 1995. 

The second release of the Harwell Sparse Matrix Library now contains 45 packages, 
including many that were new in Release 11 of the main Library. It is over twice the size of 
the first release (1988). 

We employed Mike Hopper as a consultant to help with the preparation of Reiease 2 of the 
HarweU Sparse Matrix Library and we greatly appxiated his assistance in designing a 
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suitable Unix file system for this h i ,  applying extra checks to tbe codes and sorting out 
the problems that he found. We also employed him to apply his Unix tools to the new routines 
of the Release 12 of the main Library, and ht provided us with a new release of the computer 
typesetting system TSSD. 

7 3  Release 12 of the HarweIl Subroutine Library 

Release 12 of the Library was made in December 1995. It contains a few Fortran 90 modules, 
with a very similar style for the documentation as presently used for Fortran 77 packages. The 
names take the form HSL-lldd where 1 stands for a letter and d stands for a digit. The library 
contains the following significant new routines: 

HSL-ADO1 This Fortran 90 package provides automatic differentiation facilities for variables 
specified by Fortran code. 

KO5 Solves a system of ordinary differential equations or algebraic differential equations of 
index no higher than one. 

DC06 Solves the initial value problem for a system of ordinary differential equations or 

differential algebraic equations of index no higher than one. 

E 0 7  Front end to DC06. 

EB13 Given a mal unsymmetric matrix A={aii}, this routine uses Arnoldi based methods to 
calculate the r eigenvalues Aj,  i = 1,2, ..., r, that are of largest absolute value, or are 

right-most, or are of largest imaginary parts. 

HSL-FAO4 Fortran 90 version of the random-number generator FAO4. 

MA3 8 Solves a sparse unsymmetric system of linear equations using an unsymmetric multifrontal 
variant of Gaussian elimination. 

MA41 To solve a sparse unsymmetric system of linear equations on a shared-memory 
multiprocessor, using a parallel direct method based on a sparse multifrontal variant of 
Gaussian elimination. 

HSL-MA42 Solves one or more sets of sparse hear equations by the frontal method, optionally 
using k t  access files for the matrix factors. It is a Fortran 90 module based on MA42 

and offers a much more friendly interface. 

MA46 Solves one or more set of sparse unsymmetric linear equations AX = B from fmite-element 
applications, using a multifrontal elimination scheme. The matrix A is input by elements. 

MA51 For use in conjunction with the MA48 and MA50 packages for solving sparse unsymmeaic 
sets of linear equations. It identifies which equations are ignored when solving Ax = b 
and which solution components are always set to zero. 

MA52 This collection of subroutines, when used in conjunction with the MA42 package, solves 
hite-cknmt equations using a multiple front algorithm. 

MC36 To read a sparse matrix, coded in a Hamell-Boeing fonnat with possible right-hand sides. 
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! 

ThC subroutine reach assembkd as well as unassembled matrices, and returns tham in a 
column oriented compressed sparse fonnat. 

~ ~ 3 7  Given a sparse symmetric matrix A, this subroutine computes a set of elcnrent matrictS 
that, if assembled, would yield the same matrix. Note that this set of elements is not 
unique. 

MC38 Given a sparse matrix held in a compressed column oriented format, this subroutine 
generates the transpose of the matrix, holding it in compressed column format. 

MC44 Given the structure of an unassembled finite-element matrix, this subroutine groups the 
variables into supervariables and optionally generates either the element connectivity 
graph or the supervariable connectivity graph. 

MC47 Given a representation of the nonzero pattern of a symmetric matrix, this subroutine 
performs an approximate minimum degree ordering. 

MC52 To write a sparse matrix in Harwell-Boeing format with possible right-hand sides. 

MC53 This subroutine generates an ordering for finite-element matrices within a subdomain that 
is efficient when subsequently used with a multiple front algorithm. 

m36 To read a complex sparse matrix, coded in a Harwell-Boeing format with possible 
right-hand sides. The subroutine reads assembled as well as unassembled matrices, and 
returns them in a column oriented compressed sparse format. 

M I O ~  Uses the Conjugate Gradient method to solve a symmetric positive-definite linear system 
Ax = b, optionally using preconditioning. 

NI03 Uses the CGS (Conjugate Gradient Squared) method to solve an unsymmetric linear 
system Ax = b, optionally using preconditioning. 

~ 1 0 4  This routine uses the Generalized Minimal Residual method with restarts every M 

iterations, GMRES(m), to solve an unsymmetric linear system Ax = b, optionally using 
preconditioning. 

MI 0 5 This routine uses the BiCG (BiConjugate Gradient) method to solve an unsymmetric linear 
system Ax = b, optionally using preconditioning. 

M106 This routine uses the BiCGStab (BiConjugate Gradient Stabilized) method to solve an 
unsymmetric linear system Ax = b, optionally using preconditioning. 

MIU This routine forms an incomplete LU factorization of a sparse unsymmetric matrix A. 

MI12 This routine finds an approximate inverse M of a sparse unsymmetric matrix A by 
attempting to minimize the difference between AM and the identity matrix in the 
Frobenius norm. 

HSL-WO1 This package uses the genetic algorithm to find the smallest value of an objective 
function of n binary (zerwne). variables. 

HSL-ZA03 This package provides kind values for 1- and 2-byte Fortran 90 LOGICAL variables. If 
a particular kind is not supported, a kid offering at least as much storage is substituted. 
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The following routines were added to the Library during this period. Although we now 
issue welldefW ReitaseS to the Library, we continue to develop it internally on an 
incremental basis and may offer single routines commercially before they are included in a 
specific Release. The following routines are all included in Release 12 of HSL. 

HSLJDO1 (J. K. Reid and D. Cowey) 

This Fortran 90 package provides automatic differentiation facilities for variables specified 
by Fortran code. Each independent variable and each variable whose value depends on the 
value of any independent variable must be declared to be of type ADOl-REAL instead of 
default REAL. Note that Fortran variables of type default REAL and default INTEGER may enter 
the computation provided their values do not vary with the values of the independent 
variables. Both the backward and the forward method are available. 

First and second derivatives are-available with both the forward and backward methods. 
Derivatives of any order are available with the forward method. They are stored in a 

hyper-triangular format so that only one copy of identical derivatives is held. 

It is possible to store the current state of the module data, perform a subsidiary calculation, 
and then return to the main calculation. For example, this mode may be used to compute the 
local derivatives of a unary function of the main calculation. 

A record is kept of the number of occurrences of errors. By default, execution continues 
after an error in a motoring mode where each operation is executed as an immediate return. 
Alternatively, an immediate stop may be requested. 

KO5 (A. H. Harker) 

This is a package for solving a system of ordinary differential equations or differential 
algebraic equations 

yi = f i  0) 1 yz , e * * ,  yn 9 X )  i= 1,2,. . . ,n. 

The solution starts from given initial values y,! at x=xo. It is numerically similar to DC03; but 
it presents a different user interface, possibly less convenient for ordinary use, intended for 
special-purpose packages. Function evaluation and linear algebra is done in the calling 
program by using ‘reverse communication’. Also, it can solve a wider range of problems, 
including implicit differential equations. The method is especially efficient on stiff problems. 

DC06 (A. H. Harker) 

This solves a system of ordinary differential equations or differential algebraic equations of 



index less than or qual to one. There is a system of n variables, yi whcm i= 1 ,..., n, which 
satis@ the equations 

Y:  =fib1 , Y ~ , * * * , Y , , x ) ,  i=1,2, ...a, 

where y: =dy,/& is the x derivative of variable yi. E 0 6  solves the initial value problem for 
these equations; that is given the initial values of the variables, yi(xo),  at some point, xo, it 
advances the solution forward in x. The user must supply a subroutine to evaluate the . 

derivative functionf, and may supply subroutines to evaluate the Jacobian and K-Jacobian 
required during the solution. 

DC07 (A. H. Harker) 

This solves the initial value problem for a full system of explicit ordinary differcntial 
equations or a system of differential algebraic equations of index less than or equal to one. 
That is, equations of the form 

=fib1 , Y Z , - * * , Y n , X )  i=1,2 ,..., n. 

where y: =dyi/dx is the x derivative of variable y i .  The Jacobian of the right hand side is 
assumed to be full. 

DC07 solves the initial value problem; that is given the initial values of the variables, yi(xo), 

at some point, xo ,  it advances the solution to equations forward in x. 

HSL-FA04 (N. I. M. Gould and J. K. Reid) 

This package generates uniformly distributed pseudo-random numbers. Random reals are 

generated in the range 0 < (< 1 or the range -1 < q < 1 and random integers in the range 
1 ,< k 5 N where N is specified by the user. 

A multiplicative congruent method is used where a 31 bit generator word g is maintained. 
On each call to a procedure of the package, g,,, is updated to 75g,mod(231- 1); the initial 
value of g is 216- 1 .  Depending upon the type of random number required the following are 

computed { = g , + ~ ( 2 ~ l -  1); q=2{- 1 or k=int.part{UV)+I. 

The package also provides the facility for saving the current value of the generator word 
and for restarting with any specified value. 

MA38 (T. A. Davis and I. S. Duff) 

This package solves a sparse unsymmetric system of n linear equations in n unknowns 
using an unsymnetric multifrontal variant of Gaussian elimination. There are facilities for 
choosing a good pivot order, factorizing another matfix with a nonzero pattern identical to 

that of a previously factorized matrix, and solving a system of equations using the factorized 
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matrix. An option exists for solving triangular systems using the factors fiom the Gaussian 
C W Q n .  

MA41 (P, A. Amtstoy and I. S. Duff) 

To solve a sparse unsymmetric system of linear equations on a shared-memory 
multiprocessor. Given an unsymmetric square sparse matrix A of order n and an n-vector b, 
this subroutine solves the system Ax=b or ATx=b. 

The method used is a parallel direct method based on a sparse multifrontal variant of 
Gaussian elimination. An initial ordering for the pivotal sequence is chosen using the pattern 
of the matrix A + AT and is later modified for reasons of numerical stability. Thus this code 
performs best on matrices whose pattern is symmetric, or nearly so. For symmetric sparse 
matrices or for very unsymmetric and very sparse matrices, other software might be more 
appropriate (for example, MA47 or MA48). 

There is a version of the code for uniprocessors which is in Fortran 77. The parallel 
versions are machine dependent but only require simple features like starting parallel tasks 
and locks. In principle, a code can be supplied for any shared memory parallel machine but 
the only two platforms on which this has been tested extensively are the CRAY Y-MP and the 
ALLIANT W80. 

HSL-MA42 (J. A. Scott) 

The module HSLMA42 r~ a Fortran 90 interface to the MA42 package that shields the user 
fiom most of the complexities in the calling sequences to that package. 

MA46 (A.C. Damhaug and J.K. Reid) 

This solves one or more set of sparse unsymmetric linear equations AX=B from 
finite-element applications, using a multifrontal elimination scheme. The matrix A must be 
input by elements and be of the form 

where A(k) is nomro only in those rows and columns that correspond to variables of the 
nodes of the k-th element. Optionally, the user may pass an additional matrix A, of 
coefficients for the diagonal. A is then of the form 
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before calling the solution routine. 

MA51 (J.K. Reid) 

This is for use in conjunction with the MA48 and MA50 packages for solving sparse 
unsymmetric sets of linear equations. It identifies which equations axe ignored when soivirrg 
Ax=b and which solution components are always set to zero. The roles are reversed for 
ATx = b. There are such equations and/or components in the singular or rectangular case. Note 
that, if  Ax= b or ATx = b is not consistent, there may be large residuals for the equations that 
are ignored. 

MA52 (J.A. Scott) 

This collection of subroutines, when used in conjunction with the MA42 package, solves 
finite-element equations using a multiple front algorithm. It is assumed that the underlying 
finite-element mesh has been partitioned into (non-overlapping) subdomains. In the multiple 
front algorithm, a frontal method is applied to each subdomain separately. This can be done in 
parallel. Using multiple fronts can also reduce the amount of work required. 

At the end of the assembly and elimination processes for the subdomains, for each 
subdomain i there remains a frontal matrix Fi and a corresponding right-hand side vector ci 
satisfying 

Fjyi =c j .  (1) 

These equations may be assembled to give a system of the form 

Fy = C. 

By treating each of the subdomain frontal matrices Fi as an elemental matrix, (2) may be 
solved by a frontal method. Once (2) has been solved, back-substitution on the subdomains 
completes the solution. 

MA52 provides routines for generating lists of variables lying on the subdomain interfaces, for 
preserving the partial factorization of a matrix when the sequence of calls to MA42B/BD is 

incomplete, and for performing forward or back-substitution on a subdomain. 

MA52 uses reverse communication. 

The use of Harweil Subroutine Library routine MC53 to obtain an efficient element ordering in 
each subdomain is recommended before MA52 is used. 

For further detaiis of multiple fronts, see Duff, I. S. and Scott, J. A. (1994), I;he use of d t i p k  
fronts in Gaussian elimination. Rutherford Appleton Laboratory Report R A L - W .  
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To read a sparse matrix, coded in a Hawell-Boeing format with possible right-hand sides. 
Thc subroutine reads assembled as well as unasembled matrices, and returns them in a 
column oriented compressed sparse format. MF36 must be used if the matrix is complex. 

Given a sparse symmetric matrix A, this subroutine computes a set of element matrices 
that, if assembled, would yield the same matrix. Note that this set of elements is not unique. 
The matrix cm be input by the user either in compressed column format (column pointerhow 
index scheme) or by row and column index pairs in any order. 

MC38 (I. S. Duff) 

Given a sparse matrix held in a compressed column oriented format, this subroutine 
generates the transpose of the matrix, holding it in compressed column format. It can also be 
viewed as a conversion between a column oriented scheme and a row oriented one. This 
subroutine differs from MC46 inasmuch as it preserves the input data and should be faster, 
particularly on vector machines. However, it does require storage for both the matrix and its 
transpose. 

MC44 (J. K. Reid and J. A. Scott) 

Given the structure of an unassembled finite-element matrix, this subroutine groups the 
variables into supervariables and optionally generates either the element connectivity graph or 
the supervariable connectivity graph. 

A supervariable is a collection of one or more variables, such that each variable belongs to 
the same set of finite elements. In the supervariable connectivity graph, the nodes are the 
supervariables and the edges are constructed by making the supervariables of each finite 
element pairwise adjacent. The supervariable connectivity graph, together with the number of 
variables in each supervariable, provide a compact representation of the variable connectivity 
graph. In the element connectivity graph, the nodes are the elements and the edges are 
constructed by defining two elements to be adjacent whenever they have one or more 
variables in common. 

MC47 (P. R. Amestoy, T. A. Davis, and I. S. Duff) 

Given a repsentation of the nollzero pattern of a symmetric matrix, A, this subroutine 
pc&xms an approximate minimum degree ordering to compute a pivot order so that the 
number uf mnzcms m the choftsky fadors of A is kept low. At each step, the pivot selected 
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is the one that minimizeS an easily-computcd upper-bound on the (external) degrrx. A 
permutation corresponding to this ordering is returned, together with information to assist the 
subsequent numerical factorization of the matrix. 

The code is typically faster than other minimum degree algorithms and produces 
comparable results to other minimum external degree algorithms in tcnns of fill-in and the 
number of floating-point operations needed to compute the factors. 

The version of the code described here is based on work done by Amestoy, Davis and Duff 
(An approximate minimum degree ordering algorithm, Report TR-94-039, Computer QItd 
1nfomtion Sciences Department, University ofFZorida), and is a symmetric analogue of the 
ordering used in the code of Davis and Duff (An unsymmetric-pattern multifrontal method for 
sparse LU factorization. Report RAL 93-036, Rutherford Appleton Laboratory.) 

MC52 (I.S. Duff) 

To write a sparse matrix in Harwell-Boeing format with possible right-hand sides. The 
matrix can be input as an assembled matrix in either column-oriented or coordinate form, or as 
an unassembled finite-element matrix. The right-hand sides must be in full format. 

MC53 (J. A. Scott) 

This subroutine generates an ordering for finite-element matrices within a subdomain that 
is efficient when subsequently used with a multiple front algorithm. In a multiple front 
algorithm, the finite-element domain is partitioned into a number of subdomains and a frontal 
decomposition is performed on each subdomain separately. The storage required by a multiple 
front algorithm and the time taken to run it are dependent upon the order in which the 
elements in each subdomain are input; the variation in the performance of different element 
orderings can be significant. The ordering obtained by MC53 is designed to reduce the 
maximum and root mean-squared frontsizes and to reduce the floating-point operation count 
for the frontal solver on the subdomain. If nelt is the number of elements in the subdomain and 
fsizej is the number of variables in the front after the assembly of the ith element, the 
maximum frontsize- in the subdomain is defined to be 

Jinax= max usizei} 
15i*ft 

and the root mean-squared frontsizef- in the subdomain is defined to be 

I 1 nelt 

The user is required to use reverse communication to supply a list of the variables belonging 
to each element in the subdomain one at a time fofiowed by a list of the variables lying on the 
subdomain interface. 
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To read in a complex sparse matrix, coded in a Harwell-Boeing format with possible 
rightohand sides. The subroutine Teads assembled as well as massembled matrices, and 
returns them in a mlum oriented compressed sparse format. If the matrix being read is real 
MC36A/AD should be used. 

MI01 (N. I. M. Gould and J. A. Scott) 

This routine uses the Conjugate Gradient method to solve the nxn  symmetric positive 
definite linear system Ax= b, optionally using preconditioning. If PPT is the preconditioning 
matrix, the routine actually solves the preconditioned system 

with 
for preconditioning operations and matrix-vector products of the form Az. 

= PAPT and 6 = Pb and recovers the solution x = PTX. Reverse communication is used 

M103 (N. I. M. Gould and J. A. Scott) 

This routine uses the CGS (Conjugate Gradient Squared) method to solve the n x n  
unsymmetric linear system Ax=b, optionally using preconditioning. If P,, P, are the 
preconditioning matrices, the routine actually solves the preconditioned system 

with x=P,AP, and 6=P,b and recovers the solution x=P,x. If P, =I, preconditioning is 
said to be from the right, if P, =I, it is said to be fiom the left, and otherwise it is from both 
sides. Reverse communication is used for preconditioning operations and matrix-vector 
products of the form Az. 

MI04 (N. I. M. Gould and J. A. Scott) 

This routine uses the Generalized Minimal Residual method with restarts every m 
iterations, GMRES(m), to solve the n x n unsymmetric linear system Ax = b, optionally using 
preconditioning. If P,, P, are left and right preconditioning matrices, the routine actually 
wives the preconditioned system 

with A=PLAPR and 6=P,b. The solution may be recovered as x=P& If P,=I, 
preconditioning is said to be from the right, if PR=I, it is said to be from the left, and 
otherwise it is from both sides. Reverse communication is used for preconditioning operations 
and snmix-vedor products of the fofim Az. 



~ 1 0 5  (N. I. M. Gould and J. A. Scott) 

This routine uses the BEG (BiConjugate Gradient) method to solve the n x n unsymmctric 
linear system Ax=b, optionally using preconditioning. If P,, PR am the preqmditioning 
matrices, the routine actually solves the preconditioned system 

Z=%, 
with x= PLAP, and 6 = PL b and recovers the solution x = P,:. If P, = I, preconditioning is 
said to be from the right, if P, =I, it is said to be from the left, and otherwise it is from both 
sides. Reverse communication is used for preconditioning operations PZ and PTz, where 
P=P,P,, and for matrix-vector products of the form Az and ATz. 

M106 (N. I. M. Gould and J. A. Scott) 

This routine uses the BiCGStab (BiConjugate Gradient Stabilized) method to sdve the 
n x n unsymmetric linear system Ax = b, optionally using preconditioning. If P,, P, are the 
preconditioning matrices, the routine actually solves the preconditioned system 

- 
AX = I;, 

with K =  PLAP, and b= PL b and recovers the solution x = PRi. If P, =I, preconditianing is 
said to be from the right, if  PR =I, it is said to be from the left, and otherwise it is from both 
sides. Reverse communication is used for preconditioning operations and matrix-vector 
products of the form Az. 

MIll (N. I. M. Gould and J. A. Scott) 

This routine forms an incomplete LU factorization of an n x n  sparse unsymmetric matrix 
A. No fill-in is allowed. The entries of A are stored by rows. If A has zeros on the diagonal, 
the routine first finds a row permutation Q which makes the matrix have nonzeros on the 
diagonal. The incomplete LU factorization of the permuted matrix QA is then formed. L is 
lower triangular and U is unit upper triangular. The incomplete factorization may be used as a 
preconditioner when solving the linear system Ax=b. A second entry performs the 
preconditioning operations 

where P-'Q is the preconditioner. 

MI12 (N. I. M. Gould and J. A. Scott) 

This routine finds an approximate inverse M of an n x n  sparse unsymmetric matrix A by 
attempting to minimize the difference between AM and the identity matrix in the Frobenius 
norm. The process may be i m p v e d  by fust performing a block triangularization of A and 



thtn finding amproximate inverses to the resulting diagonal blocks. 

A second entry allows the user to form the matrix-vector products 

The principal use of such an approximate inverse is likely to be in preconditioning iterative 
methods for solving the linear system Ax= b. 

HSL-WO1 (N. 1. M. Gould) 

This package uses the genetic algorithm to search for a small value of an objective function 
of n binary (zero-one) variables. Each string of binary variables is stored in a logical array. A 
population of p such strings is maintained along with their associated objective function 
values. The population evolves in a sequence of iterations. The best features of the population 
at iteration k are passed to the population at iteration k+1 by means of mutation and crossover. 

The package obtains function values by reverse communication. The user is periodically 
required to check for termination. 

HSL-ZA03 (N. I. M. Gould) 

This package provides kind values for 1- and 2-byte Fortran 90 LOGICAL variables. If a 

particular kind is not supported, a kind offering at least as much storage is substituted. 
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8 Seminars 

27 January 1994 

3 February 1994 

1 1  May 1994 
I 

I 

I 

9 June 1994 

26 August 1994 

3 November 1994 

24 November 1994 

2 February 1995 

9 February 1995 

2 March 1995 

4 May 1995 

12May 1995 

23 November 1995 

7 December 1995 

N. I. M. Gould (Rutherford) 
Optimization research in the parallel algorithmfi team at CERFACS 

P. Graves-Moms (Bradford) 
Is SOR being revived? 

R. da Cunha (Kent) 
Designing a portable package for parallel architectures 

C-H. Lai (Greenwich) 
Large-scale computing and domain decomposition methods 

J. Bunch (California) 
Bounding the subspaces obtained by rank revealing two-sided 
orthogonal decompositions 

2. Jia (Bielefeld) 
A refined strategy in orthogonal projection methods for the 
unsymmetric eigenproblem 

A. Ramage (Strathclyde) 
Preconditioned conjugate gradients for irregular finite element grids 

E. Hinton (Swansea) 
Structural optimisation - numerical issues 

A. Erisman (Boeing Computer Services) 
Technology change and what we do with it 

A. Wathen (Bristol) 
The iterative solution of discrete saddle-point problems 

J. Du Croz (NAG Ltd) 
The design of the NAG Fortran 90 Library 

J. Mason (Huddersfield) 
Parallel and structured data approximations 

D. Higham (Dundee) 
Time-stepping analysis using concepts from numerical linear 
algebra 

P. Sweby (Reading) 
Dynamics of discretisation 

53 



We give a full listing of Ruthefiord Reports during the period of this Regress Report. The 
other report listings, from organi7ations with which we coUaborate, only include reports not 
already included as RAL Rcports. 

Rutherford Reports 

RAL 94-018 

RAJd 94-040 

RAL 94-062 

RAL 94-069 

RAL 95-001 

RAL 95-009 

RAL 95-010 

hrting industrial codes and developing sparse linear solvers on parallel 
computers. M.J. Day& and I.S. Duff. 

The use of multiple fronts in Gaussian elimination. I.S. Duff and J.A. Scott. 

Numerical Analysis Group - Progress Report. January 1991 - December 
1993. I.S. Duff (Editor). 

On iterated-subspace minimization methods for nonlinear optimization. 
A.R. COM, N.I.M. Gould and Ph.L. Toint. 

MA47, A Fortran code for direct solution of indefinite sparse symmetric 
linear systems. I.S. Duff and J.K. Reid. 

Convergence properties of an augmented Lagrangian algorithm for 
optimization with a combination of general equality and linear constraints. 
A.R. Conn, N.I.M. Gould, A. Sartenaer, and Ph.L. Toint. 

On the use of element-by element preconditioners to solve large-scale 
partially separable optimization problems. M.J. Daydk, J.Y. l’Excellent, 
and N.I.M. Gould. 

RAL-TR-95-026 On approximate-inverse preconditioners. N.I.M. Gould and J.A. Scott. 

RAL-TR-95-029 Element resequencing for use with a multiple front algorithm. J.A. Scott. 

RAL-TR-95-037 Constructing appropriate models for large-scale, linearly-constrained, 
nonconvex, nonlinear, optimization algorithms. N.I.M. Gould. 

RAL-TR-95-039 The design of MA48, a code for the direct solution of sparse unsymmetric 
linear systems of equations. I.S. Duff and J.K. Reid. 

RAL-TR-95-040 Exploiting zeros on the diagonal in the direct solution of indefraite sparse 
symmetric linear systems. I.S. Duff and J.K. Reid. 

RAL-TR-95-049 A set of Level 3 Basic Linear Algebra Subprograms for sparse matrices. IS. 
Duff, M. Mamne, G. Radicati, and C. Vittoli. 



AEA Techndogy Reports 1 

HARWELL SUBROUTINE LIBRARY. A Catalogue of Subroutines (Release 12). &tuber 
1995. 

HARWELL SUBROUTINE LIBRARY. Release 12. Specifications. Volume 1 and Volume 2. 
December 1995. 

CERFACS Reports 
I 

I TR/PA/94/10 The CERFACS Experience. M.J. Dayd6 and I.S. Duff. 

TR/PN94/15 A parallel scheduler for block iterative solvers in heterogeneous computing 
environments. M. Arioli, A. Drummond, I.S. Duff, and D. Ruiz. 

TR/PA/95/09 An approximate minimum degree ordering algorithm. P. Amestoy, T.A. Davis, 
t 

I and I.S. Duff. 
1 

TR/PA/95/26 Linear algebra kernels for parallel domain decomposition methods. L. 
Carvalho, I. Duff and L. Giraud. 

ENSEEIHT-IRIT Reports 

RT/AP0/95/1 Solution of structured systems of linear equations using element-by-element 
preconditioners. M. J. Dayd6, J.Y. I’Excellent, and N.I.M. Gould. 

University of Florida Reports 

TR-95-020 A combined unifrontal/multifrontal method for unsymmetric sparse matrices. 
T.A. Davis and I.S. Duff. 
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