
Technical Report
RAL-TR-97-0 1 2

CLRC

MA62 - A Frontal Code for Sparse
Positive-Definite Symmetric Systems
from Finite-Element Applications

I S Duff and J A Scott

June 1997

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

0 Council for the Central Laboratory of the Research Councils 1997

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX1 1 OQX
Tel: 01 235 445384
E-mail I i braryQrl .ac. U k

Fax: 01 235 446403

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

RAL-TR- 9 7- 0 1 2

MA62 - A frontal code for sparse
positive-definite symmetric systems from

finite-element applications.*

Iain S. Duff and Jennifer A. Scott

Abstract

We describe the design, implementation, and performance of a frontal code for the
solution of large sparse symmetric systems of linear finite-element equations. The
code is intended primarily for positive-definite systems since numerical pivoting is
not performed. The resulting software package, MA62, will be included in Release 13
of the Harwell Subroutine Library (HSL). We illustrate the performance of our new
code on a range of problems arising from real engineering and industrial applications.
The performance of the code is compared with that of the HSL general frontal solver
MA42 and with other positive-definite codes from the Harwell Subroutine Library.

Keywords: sparse symmetric linear equations, symmetric frontal method, Gaus-
sian elimination, finite-element equations, Level 3 BLAS.

AMS(MSC 1991) subject classifications: 65F05, 65F50.

Running title: Symmetric frontal code

* Current reports available by anonymous ftp from matisa. cc . rl. ac .uk (internet 130.246.8.22)
in the directory pub/reports.

Department for Computation and Information,
Atlas Centre, Rutherford Appleton Laboratory,
Oxon OX11 OQX, England.
May 27, 1997.

CONTENTS 1

Contents
1 Introduction 1

2 Frontal schemes 2

3 The software package MA62 3
3.1 The user interface . 3

3.1.1 Initialization . 4
3.1.2 Prepass . 4
3.1.3 Symbolic factorization . 4
3.1.4 Direct access files . 5
3.1.5 Numerical factorization and optional solve 6
3.1.6 Further solves . 7

3.2 Internal data structures . 7
3.3 The use of high level BLAS . 9
3.4 Exploiting zeros in the front . 12

4 Numerical results 13
4.1 Test problems . 13
4.2 The effect of ordering . 14
4.3 The effect of exploiting zeros . 16
4.4 The effect of blocking parameters . 16
4.5 The performance of MA62 compared with MA42 24
4.6 A comparison of the frontal code MA62 with other HSL codes 28

5 Conclusions 32

6 Availability of the code 33

7 Acknowledgements 33

A Appendix: Specification Sheets 35

1 INTRODUCTION 1

1 Introduction

In this report, we discuss the design and use of a code for the solution of the linear
systems of equations

A X = B (1.1)

where the n x n matrix A is large, sparse, and symmetric. B is an n x n r h s (nrhs 2 1)
matrix of right-hand sides and X is the n x nrhs solution matrix. It is assumed that
the matrix A is an elemental matrix, that is, it is a sum of finite-element matrices

where each element matrix A(') has nonzeros only in a few rows and columns and
corresponds to the matrix from element 1. The frontal method was originally
developed by Irons (1970) for the solution of symmetric positive-definite systems
which come from finite-element discretizations in structural analysis. However, it
was later realised that the method could be extended and modified to be applicable
to a far wider class of problems, including those for which A is any general
unsymmetric matrix (see, for example, Hood, 1976, Duff, 1981). A frontal code
for unsymmetric systems, MA32, was developed for the Harwell Subroutine Library
(1996) by Duff (1981, 1983, 1984). This code was very widely used before being
substantially restructured and improved by Duff and Scott (1993, 1996). The
upgraded code, MA42, which has superseded MA32 in the Harwell Subroutine Library
(HSL), is efficient on a wide range of modern computers and has been used to solve
problems from many different application areas.

From the feedback we have received from users, it is apparent that MA42 is
frequently used to solve finite-element problems for which the system matrix A
is symmetric and positive definite. However, apart from offering an option of
restricting pivoting to the diagonal, MA42 does not exploit symmetry or positive
definiteness and, as a result, the code is more expensive in terms of both storage
requirements and operation counts than it need be for this class of problems. MA42 is
also complicated by an option allowing the input of the assembled matrix A by rows.
Our goal is to design and develop an efficient frontal code specifically for symmetric
positive-definite elemental matrices. Our new code, MA62, is now available and will
be included in the next release of the Harwell Subroutine Library. Details of how to
obtain the code are given in Section 6.

The outline of this report is as follows. In Section 2, we briefly review frontal
schemes for symmetric positive-definite elemental matrices. The design of MA62,
including the user interface, the internal data structures, and the use of high level
BLAS, is discussed in Section 3. In Section 4, we illustrate the performance of
the new code, and compare it with our general frontal code MA42 and with other
Harwell Subroutine Library codes for the solution of symmetric positive-definite
systems. Concluding comments are made in Section 5. Specification Sheets for
MA62 are given in the Appendix.

2 FRONTAL SCHEMES

2 Frontal schemes

The frontal method is a variant o Gaussian elimination ant
system (1.1), involves the matrix factorization

~

2

for the symmetric

A = (PL)D(PL)*, (2.1)

where P is permutation matrix, D is a diagonal matrix, and L is a unit lower
triangular matrix. If A is a positive-definite matrix, the entries of D are positive.
The solution process is completed by performing the forward elimination

(PL)Z = B, (2.2)

then the diagonal solution

DY = Z, (2.3)

followed by the back substitution

(PL)*X = Y. (2-4)

The main feature of the method is that the contributions A(') from the finite-
elements (see (1.2)) are assembled one at a time and the construction of the
assembled coefficient matrix A is avoided by interleaving assembly and elimination
operations. An assembly operation is of the form

where a(') is the (i,j)th nonzero entry of the element matrix A('). A variable is fully
summed if it is involved in no further sums of the form (2.5) and is partially summed
if it has appeared in at least one of the elements assembled so far but is not yet fully
summed. The Gaussian elimination operation

'?

may be performed as soon as all the terms in the triple product in (2.6) are fully
summed. At any stage during the assembly and elimination processes, the fully and
partially summed variables are held in a dense matrix, termed the frontal matrix.
The power of frontal schemes comes from the following observations:

e since the frontal matrix is held as a dense matrix, dense linear algebra
kernels, in particular, the Level 3 Basic Linear Algebra Subprograms (BLAS)
(Dongarra, DuCroz, Duff and Hammarling, 1990), can be used during the
numerical factorization.

0 the matrix factors need not be held in-core, which allows large problems to be
solved using only modest amounts of high-speed memory,

The number of floating-point operations and the storage requirements for the
frontal method are dependent on the size of the frontal matrix at each stage of the
computation. Since the size of the frontal matrix increases when a variable appears

3 THE SOFTWARE PACKAGE MA62 3

for the first time and decreases whenever a variable is eliminated, the order in which
the element matrices are input is critical for the efficiency of the method. There
has been considerable attention paid to the problem of automatically choosing a
good ordering. Many of the proposed algorithms are similar to those for bandwidth
reduction of assembled matrices (see, for example, Duff, Reid and Scott, 1989, and
the references therein). To give the user the greatest flexibility in deciding how to
order the elements, we have chosen not to incorporate element ordering within the
MA62 package. However, the Harwell Subroutine Library routine MC43 (Duff et al.,
1989) can be used to preorder the elements for MA62.

3 The software package MA62

In this section, we describe the user interface to MA62, its internal data structures,
and its use of BLAS kernels. We highlight how it has been possible to take advantage
of symmetry and positive definiteness when designing the code.

3.1 The user interface
An initial decision when designing MA62 was that it should have a user interface
which was similar to that of the unsymmetric frontal solver MA42. This was not
only because we felt the flexibility of the reverse communication interface used by
MA42 remained appropriate for the symmetric positive-definite case, but because we
wanted to make it straightforward for a user who was familiar with MA42 to use MA62.
The MA62 package has six entries which may be called directly by the user. Each
of the subroutines are named according to the naming convention of the Harwell
Subroutine Library, with the single precision version having names commencing
with MA62 plus one more letter, and double precision versions with the additional
sixth letter D. For simplicity, we will use the single precision names throughout this
report. The user-callable entries are:

Initialization : MA621 initializes the parameters which control the execution of the
package. A single call must be made to MA621 before any other routines in the
MA62 package are called.

Prepass: MA62A determines in which element each variable appears for the last time
and thus when a variable is fully summed and can be eliminated. MA62A must
be called once for each element.

Symbolic factorization : MA62J uses the information from MA62A to determine
the amount of real and integer storage required for the factorization. MA62J
must be called once for each element, in the same order as in the calls to
MA62A.

Direct access files : MA62P sets up direct access files for holding the matrix
factors. Use of MA62P i s optional. If direct access files are used, a single
call to MA62P must be made.

3 THE SOFTWARE PACKAGE MA62 4

Numerical factorization : MA62B uses the information generated by MA62A and
MA62J in the factorization of the matrix (1.2) and, if element right-hand sides
B(') are specified, MA62B solves the equations (1.1) with right-hand side(s)
B = Er!.l B('). MA62B must be called once for each element, in the same order
as in the calls to MA62A and MA62J.

Solve : MA62C uses the factors produced by MA62B to rapidly solve for further right-
hand sides. Use of MA62C is optional. If used, a single call to MA62C will solve
for the number of right-hand sides specified by the user.

We briefly discuss each of these subroutines. Full details of their argument lists
and their calling sequences are given in the Specification Sheets (see Appendix).

3.1.1 Initialization

The user must make a single call to MA621 prior to calling any of the other routines
in the MA62 package. MA621 assigns default values'to the control parameters held in
the arrays ICNTL and CNTL. These parameters control, the action of the subroutines
within the MA62 package. They include parameters to control the level of diagnostic
printing and parameters which specify the number of bytes for a real and an integer
word. Full details of the control parameters and their default values are included in
the Specification Sheets. Should the user want a control parameter to have a value
other than its default, the appropriate parameter should be reset after the call to
MA62I. MA621 also initializes the array ISAVE, which is used to hold variables that
must be preserved between calls to routines in the MA62 package but are unlikely to
be of interest to the user. The array ISAVE is also used both to check the data input
by the user and to ensure that the user ha.s called the routines in the MA62 package
in the correct sequence.

3.1.2 Prepass

MA62A must be called for each element to specify the variable indices associated
with it. This subroutine records, in the array LAST of length ndf (where ndf is the
largest integer used to index a variable), the call at which each variable appears for
the last time (becomes fully summed). This information must be passed unchanged
to the symbolic factorization and numerical factorization subroutines (MA62 J and
MA62B, respectively). The elements must be presented to the symbolic and numerical
factorization routines in exactly the same order as to MA62A.

3.1.3 Symbolic factorization

One of the difficulties facing the user of a frontal code is the need to specify file sizes
for the factors and the maximum front sizes required before the computation begins.
A symbolic factorization works only with the variable indices associated with the
elements and, by assuming each variable may be eliminated as soon as it is fully
summed, it determines the maximum order of the frontal matrix and the file sizes
needed for the factors. For general unsymmetric matrices, the need to incorporate
pivoting means the statistics returned by the symbolic factorization are only lower
bounds on the front size and file sizes actually needed. But for positive-definite

3 THE SOFTWARE PACKAGE MA62 5

matrices a variable can always be eliminated once it is fully summed and, since the
symbolic factorization is inexpensive, we decided to require the user to perform a
symbolic factorization before the numerical factorization commences. The symbolic
factorization is performed by calling the subroutine MA62J for each element in the
same order as they were presented to MA62A. An entry in ISAVE is flagged so that a
check can be made at the start of the numerical factorization that MA62J has been
called. The real and the integer storage required by the factorization are returned
to the user after the last element has been input in the information array INFO. If
the user provides the numerical factorization with less space than that determined
by MA62J, it can be detected immediately and the computation terminated with an
error message.

MA62 allows the user to specify (using the control parameter ICNTL(5)) the
minimum number of pivots that will be selected at any stage. Delaying performing
eliminations until the number of fully summed variables is at least ICNTL(5)
(ICNTL(5) 2 1) increases the Level 3 BLAS component of the factorization (see
Section 3.3), albeit at the cost of more floating-point operations, increased storage
for the reals in the factor, and, in general, an increase in the maximum front size
and consequently in the in-core storage required. Since the symbolic factorization
is cheap to perform, the user may want to look at the effect on the maximum front
size and the file sizes of different values of ICNTL(5) before starting the numerical
factorization. MA62 has been designed so that this can be done in a straightforward
way. Provided the user has performed a complete sequence of calls to MA62J, the user
may reset ICNTL(5) and then repeat the sequence of calls to MA62J without making
any further changes to the input parameters. Having chosen the minimum pivot
block size, the calls to the numerical factorization routine MA62B must immediately
follow a sequence of calls to MA62J with the same value of ICNTL(5). A component
of ISAVE is used to check this.

3.1.4 Direct access files

A key feature of MA62 (and of MA42 and the earlier code MA32) is that it offers the
user the option of holding the matrix factors in direct access files. MA62 optionally
uses two direct access files, one for the reals in the factors and one for the indices of
the variables in the factors. A single call to the subroutine MA62P sets up the direct
access files. The user must specify the stream numbers for the direct access files and
may optionally name the files.

Corresponding to each direct access file is an in-core buffer (or workspace).
Eliminations are performed during the numerical factorization whenever the number
of fully summed variables KR is at least ICNTL(5). The eliminations generate KR
columns of the matrix factor (PL)D. The columns are written to the real in-core
buffer and each time columns are written, the following integer data is written (in
order) to the integer buffer:

1. The number of integers being written.

2. The number KR of eliminations (that is, the number of columns being written
to the real buffer).

3. The current front size FRNT.

3 THE SOFTWARE PACKAGE MA62 6

4. A list of the indices of the FRNT variables in the current front.

5. The number of integers being written.

The number of integers is held as the first and last entry to allow the real and
integer data to be scanned both in the order in which it is written and in reverse
order. Reverse order is needed when performing the back substitution (2.4). Once
either a buffer is full or all the elimination operations are complete, the contents
of the buffer are output to the associated direct access file. Use of direct access
files is unnecessary if there is sufficient in-core space for the factors. Numerical
results given in Sections 4.5 and 4.6 show that, on some machines, the overheads
which result from using direct access files can be considerable, particularly during
the solve phase.

We remark that the unsymmetric frontal code MA42 uses three direct access files
since it stores the L and U factors of A separately. Moreover, since the unsymmetric
code uses off-diagonal pivoting to maintain stability, it is necessary to hold both row
and column indices of the variables in the frontal matrix. Therefore, in addition to
the saving in real storage, if the minimum pivot block size ICNTL(5) is set to 1,
MA62 uses approximately half the integer storage of MA42, and if ICNTL(5) > 1, the
savings are even greater. This is illustrated in Table 4.12 in Section 4.5.

3.1.5

The numerical factorization subroutine MA62B accepts the element matrices A(')
and, optionally, the corresponding element right-hand sides B('), one at a time.
Only the upper triangular part of A(') needs to be specified by the user but, to
facilitate the assembly process, MA62B copies the upper triangular part into the
lower triangle. If any variables in the incoming element are internal to the element,
they are eliminated within the element and the columns of the matrix factor which
are generated are written to the buffers before contributions from the remaining
variables are assembled into the frontal matrix. These internal variables are termed
static condensation variables and the number of such variables is returned to the
user in the information array INFO at the end of the numerical factorization. As the
element is being assembled, the number KR of variables in the front which are now
fully summed is counted. If this number is at least as large as the control parameter
ICNTL(5), KR eliminations are performed (see Section 3.3). Otherwise, as long as
elements remain to be assembled, control is returned to the user for the next element
to be input.

Since the space required by the numerical factorization can not exceed that
determined by the symbolic factorization, on the assumption that the user supplies
consistent data (and using the array ISAVE we have incorporated many checks for
this in the program), the only way MA62 can terminate before the factorization is
complete is if the matrix A is found not to be positive definite. In MA62, each
pivot candidate (that is, each fully summed variable) is checked to see that it is of
absolute value at least as large as the control parameter CNTL(1) (with default value
zero). If a pivot is found to be too small, an error flag is set and control returned
to the user. Note that although the factorization will not proceed, it need not be
the case that the matrix is singular. If a pivot is found to be negative, the matrix

Numerical factorization and optional solve

3 THE SOFTWARE PACKAGE MA62 7

BUFR

is not positive definite, but provided it is of absolute value at least CNTL(l), the
computation continues and the number of negative pivots is returned to the user in
the information array INFO at the end of the computation.

FA FRHS

3.1.6 Further solves

IBUFR

In common with many other sparse direct codes, MA62 offers the option of solving
for further right-hand side matrices B, without recalling the numerical factorization
routine. On each call to the solve routine MA62C, the number of right-hand sides
(columns of B) must be specified in nrhs. In contrast to MA62A, MA62J, and MA62B,
there is no input by elements to MA62C and the right-hand sides must be input in
assembled form. This gives MA62C a straightforward interface. In MA62, the forward
elimination and diagonal solution ((2.2) and (2.3)) are combined. For the forward
elimination, the real and integer data for the factors is read in the order in which it
was written and, for the back substitution, the data is read in reverse order. When
nrhs > 1, both the forward elimination and back substitution steps use -GEMM, the
Level 3 BLAS matrix-matrix multiplication kernel (see Section 3.3). When there
is only one right-hand side (nrhs = l), Level 2 BLAS are used. It should be
noted that B, is involved in this matrix-matrix product and that -GEMM becomes
more efficient with an increased number of columns in B. This is illustrated in
Section 4.5 (Tables 4.13 to 4.15).

LHED LPIV LASTFT

3.2 Internal data structures
The internal data structures used by MA62 are simplified and modified versions of
those used by MA42 and, earlier, by MA32 (see Duff, 1981, for a detailed description
of the internal arrays used by MA32). The user must supply both a real workspace
array and an integer workspace array, which are subdivided as follows:

We first discuss the real workspace.

BUFR is the in-core buffer for the reals in the factor (PL)D. The length of BUFR
is chosen by the user. On exit from the symbolic factorization, the required
length of the file for the reals in the factor is given by INFO(7). If the user
calls the numerical factorization MA62B with nrhs right-hand sides, the total
real storage for the factors and the right-hand sides is INFO(7) + nrhs x ndf
(ndf is the largest integer used to index a variable). If direct access files are
not being used, BUFR must be at least this length. Otherwise, for efficiency,

3 THE SOFTWARE PACKAGE MA62 8

BUFR should be chosen so that INFO(7) +nrhs x ndf = kl x BUFR with kl 2 1 as
small as available space permits. After the eliminations following an element
assembly, the columns of (PL)D which have been generated are written to
BUFR (see Subsection 3.1.4).

FA holds the current frontal matrix. On exit from the symbolic factorization, the
maximum front size is given by INFO(3). The frontal matrix is held as a
square matrix of order INFO (3) but only the data in the upper triangular part
is meaningful. Storage for both upper and lower triangular parts is needed to
permit the use of Level 3 BLAS (see Section 3.3).

FRHS holds the right-hand sides corresponding to the current frontal matrix. FRHS
is a matrix of size INFO(3) by nrhs, where nrhs is the number of right-hand
sides to be solved for at the same time as the factorization. FRHS is not needed
if nrhs = 0.

We now turn our attention to the integer workspace.

IBUFR is the in-core buffer for the integer data for the factors. The length of IBUFR
is chosen by the user. On exit from the symbolic factorization, the required
length of the file for the integer data is given by INFO(8). If direct access
files are not being used, IBUFR must be at least this length. Otherwise, for
efficiency, IBUFR should be chosen so that INFO(8) = k2 x IBUFR with k2 2 1 as
small as available space permits. After the eliminations following an element
assembly, the indices of the columns of (PL)D which have been generated by
the eliminations are written to IBUFR (see Subsection 3.1.4).

The remaining integer arrays LHED, LPIV, and LASTFT are each of length INFO(3)
(the maximum frontsize). To discuss these arrays we need some terminology. The
global index of a variable is the integer given to it by the user in the calls to the
subroutines in the package (if the variables are numbered contiguously then the
global index of a variable is its index in the assembled matrix A). The local index
of a fully or partially summed variable refers to its location in the current frontal
matrix. During the factorization, the array LAST (which was set by the prepass
MA62A to hold the call at which each variable becomes fully summed) is used as
workspace and it, together with the internal arrays LHED, LPIV, and LASTFT, are
used to provide an efficient mapping between global and local indices as follows:

LHED holds the global indices of the variables in the current frontal matrix.

LPIV holds the local indices of the fully summed variables in the current frontal
matrix.

LAST is used to hold the local indices of the variables in the current frontal matrix.
If the variable with global index JVAR is partially summed, its local index
is -LAST(JVAR). Otherwise, LAST(JVAR) is the assembly step at which JVAR
becomes fully summed.

3 THE SOFTWARE PACKAGE MA62 9

LASTFT is used to hold the assembly step at which variables in the front become
fully summed (the information which was originally held in LAST). For each
partially summed variable JVAR in the front, LASTFT(-LAST(JVAR)) holds the
assembly step at which JVAR is fully summed.

To summarize the use of LHED, LAST and LASTFT, suppose on the first call to MA42B
that LAST(JVAR) = KELL. If, at some stage before the assembly of the element KELL,
JVAR is partially summed with local index L, then LHED(L) = JVAR, LASTFT(L) =
KELL, and LAST(JVAR) = -L. The use of LASTFT to hold information which was
originally held in LAST avoids the use of a second array of length ndf.

3.3 The use of high level BLAS

In this section, we describe the use of the BLAS in performing both the numerical
factorization and the forward elimination and back substitution steps. We first
consider the factorization. After the assembly of an element, the frontal matrix can
be written in the form

where the submatrices FT and Fc are fully summed. Since the pivots may be picked
from the diagonal of FT in order, we can compute the factorization

where

FL = Fc(DTF;,)-' (3-4)

and the Schur complement P is given by

Level 3 BLAS kernels can be used in computing FL and P. From (3.4) it follows
that

FLDT = FCF~E. (3.6)

The Level 3 kernel -TRSM can be used to form FLDT and FE follows by diagonal
scaling. If the number of fully summed variables is KR, the Level 3 kernel -GEMM
with internal dimension KR may then be used to compute (3.5). However, since only
the upper triangular part of e is needed, forming the whole of involves many
unnecessary operations. With a front size of FRNT, the computation (3.5) requires
2 * KR * (FRNT - KR)2 floating-point operations. We could form only the upper
triangle of by updating each column using the Level 2 kernel -GEMV. This would

3 THE SOFTWARE PACKAGE MA62 10

reduce the number of floating-point operations to KR * (FRNT - KR) * (FRNT - KR + 1)
but the efficiency gains of using Level 3 BLAS would be lost. To take advantage
of Level 3 BLAS while at the same time restricting the number of unnecessary
operations, the columns of may be computed in blocks. Assuming a block size of
NB with FRNT - KR = rn*NB then, using Fortran 90 section notation,

%(1 : K,K - NB + 1 : K) = Fu(1 : K,K - NB + 1 : K) -
(FLDT)(I:K,~ :KR)*Fi(l:KR,K-NB+l:K) (3.7)

where K = K1 * NB, K1 = 1,2, . . . , m. The update (3.7) can be performed using -GEMM
with interior dimension KR (the Level 2 kernel -GEMV is used if KR = 1).

By increasing the minimum number of pivots that are selected at each stage (that
is, by increasing the value of the control parameter ICNTL(5)), KR is increased and
greater efficiency can be gained from using -GEMM to perform (3.7). This is discussed
further by Cliffe, Duff and Scott (1997) (see also Tables 4.8 to 4.11 in Section 4.4).

In MA62, the size of the blocks used in (3.7) is controlled by the parameter
ICNTL(7). In general, FRNT - KR = (rn - 1). * ICNTL(7) +- r and the final block will
have r columns. As a result of numerical experiments, we have chosen 16 as the
default value for both ICNTL(5) and ICNTL(7). The effects of using different values
are illustrated in Section 4.4.

The other main use of high level BLAS is in the solution phase. The columns of
PL corresponding to the KR variables eliminated at the same stage are

We use direct addressing in the solution phase to exploit this block structure. At
each stage of the forward elimination all the active components of the partial solution
vector Y (where (PL)DY = B) are put into an array W = (Wl, Wz)T, with W1
of dimension KR by nrhs and W2 of dimension FRNT-KR by nrhs. The operations

W1 t FTLWl (3.9)

followed by

W 2 t W2 - FLWI (3.10)

and finally

Wit DT'Wl (3.11)

are performed before W is unloaded into Y . Similarly, during the back substitution,
all the active components of the partial solution vector Y are put into an array 21
of leading dimension KR and the active variables of the solution vector X are put
into an array 2 2 of leading dimension FRNT-KR. The operations

Z1 c Z1 - FEZ2 (3.12)

and then

Z1 t FTEZ1 (3.13)

3 THE SOFTWARE PACKAGE MA62 11

are carried out before Z1 is unloaded into X.
In MA62, FL is written to the buffer by columns, and FTL is written to the buffer

in packed form. Provided KR > 1, the forward elimination and back substitutions are
performed using the Level 2 BLAS kernels -GEMV and -TPSV if there is only one right-
hand side (nrhs = I), and the Level 3 routine ,GEMM and the Level 2 routine -TPSV
if there are multiple right-hand sides. We observe that there is no Level 3 BLAS
kernel for solving a triangular system of equations with the matrix held in packed
form and multiple right-hand sides. We performed some numerical experiments in
which we stored FTL as a full matrix with only the lower triangular part containing
meaningful data and, in the forward elimination and back substitutions, we used
the Level 2 kernel -TRSV if nrhs = 1 and the corresponding Level 3 kernel -TRSM
otherwise. Our results showed that the savings in the real storage which result in
storing only the packed lower triangular matrix FTL are small (generally less than
10 per cent of the real storage requirement). This is illustrated in Table 4.12 in
Section 4.5. The triangular solves (3.9) and (3.13) account for a relatively small
part of the total solution time. Our experience is that there is little difference in
the CPU times when -TRSM is used in place of -TPSV. As a result, we have chosen in
MA62 to minimize storage requirements by using the packed triangular form.

Although the factorization and solution stages described above are reasonably
straightforward, their implementation within MA62 using Level 3 BLAS kernels is
non-trivial. Elements are assembled into the frontal matrix FA until there are at least
ICNTL(5) fully summed variables. The fully summed columns are then permuted
to the last columns of FA and, if supplied, the corresponding rows of the right-
hand side array FRHS are permuted to the end of the array. When an element is
assembled into FA, only the upper triangular part of FA contains meaningful data,
and symmetry must be exploited to perform the column interchanges. We remark
that, by permuting the fully summed columns to the last columns of FA, once the
eliminations have been performed and the resulting data written to the in-core
buffers BUFR and IBUFR, the last columns of FA can be reset to zero and the next
element assembled. If instead we were to permute the fully summed columns to the
start of FA, further costly data movement would be required.

After permuting the fully summed columns to the end, the pivots are generated
in reverse order on the diagonal of the factors. We now discuss in detail what
this means for the forward elimination operation (3.9). As already mentioned, the
triangular parts of the factor matrix are held in packed form. We store the lower
triangular matrix FTL by rows and store the negative of the pivot entries at the end
of each row. Thus, if KR = 3 and the lower triangular part of the matrix FTL is
given by

it is stored as
-piu3 a - piu2 b c - piu*.

3 THE SOFTWARE PACKAGE MA62 12

In equation (3.9) we wish to compute

(t ; l) - l w l , (3.14)

but since we have the pivots in reverse order, we are computing

PL-lPTPW,,

where P is the reverse permutation {KR, KR - 1, ..., 1) and L is the matrix in (3.14).
Our coefficient matrix is therefore of the form

Thus, using the data held in the form above, in MA62 the packed triangular solve
Level 2 BLAS routine -TPSV is called with its control parameters set to “Upper”,
“Unit”, and ‘!No transpose)).

3.4 Exploiting zeros in the front
During the factorization, the frontal matrix may contain some zero entries. Treating
the frontal matrix as a dense matrix results in unnecessary operations being
performed with these zeros. As we have shown, high level BLAS are used, so that
the cost of these operations may not be prohibitive. If, however, the frontal matrix
contains a significant number of zeros, it can be advantageous to exploit these zeros.
In particular, there are many zeros in the front if the elements are poorly ordered.
To see how we can exploit the zeros, suppose the frontal matrix has been permuted
to the form (3.1). By performing further row and column permutations, the frontal
matrix can be expressed in the form

(3.15)

where the zero matrix is of order KR by K for some K with 0 5 K ‘ 5 FRNT - KR
(FRNT is the current front size and KR is the number of fully summed variables). The
factorization then becomes

where

(3.17)

4 NUMERICAL RESULTS

and FTl is given by

13

Gl = F ~ , - F ~ ~ D ~ F ; , . (3.18)

If KR > 1, the matrix FL1 may still contain some zeros. However, the experiments
which we report in Table 4.3 (Section 4.3) show that, in general, the number of zeros
remaining in the factors is small (less than 10 per cent of the total number of entries
in the factors). Furthermore, F L ~ rather than FL (FL = (FZ,,O)=), is written to
the buffer, resulting in savings in both the real and integer factor storage.

In MA62, zeros in the front are exploited if the default value ICNTL(9) = 1 is
used. With this setting, once an element has been assembled and the fully summed
columns permuted to the last columns of the frontal matrix, row permutations are
performed to collect the zeros in the fully summed columns into a block held in the
first rows. We now explain how this is achieved in MA62. The number K of rows
with zeros in all the pivotal columns is initially set to 0. Rows 1 to FRNT - KR + 1
of the pivotal columns are scanned in reverse order. Let I be the index of the row
currently being scanned. There are two possibilities: either there is a nonzero entry
in at least one of the pivotal columns or all the entries in the pivotal columns are
zero. In the first case, no action is needed and, assuming I > 1, we now scan row
1-1. In the second case, we increment K by one and, starting with row K, we search
for a row with index at most 1-1 with a nonzero entry in at least one of the pivotal
columns. If we find such a row, it is interchanged with row I and we then scan row
1-1. Otherwise, there are no more rows to add to the zero block and we are ready
to perform the elimination operations.

In general, when zeros in the front are exploited, the real and integer storage used
to hold the factors will be less than that predicted by the symbolic factorization,
which assumes that the frontal matrices are dense. The information on the storage
actually used is returned to the user in the information array INFO. Zeros in the
front are not exploited if the control parameter ICNTL(S) is set by the user to 0.
Results which demonstrate how beneficial it can be to exploit zeros in the front are
given in Section 4.3.

-

4 Numerical results

4.1 Test problems

In this section, we describe the problems that we use for testing the performance
of MA62. In all cases, they arise in real engineering and industrial applications.
The problems are all unassembled finite-element problems and a brief description
of each is given in Table 4.1. The first seven problems are from the Harwell-Boeing
Collection (Duff, Grimes and Lewis, 1992), the RAMAGEOl and RAMAGE02
problems were provided by Alison Ramage of the University of Strathclyde (Ramage
and Wathen, 1993), the problem AEAC5081 is from Andrew Cliffe of AEA
Technology, and the remaining problems (TRDHEIM, CRPLAT2, OPT1, and
TSYL201) were supplied by Christian Damhaug of Det Norske Veritas, Norway.
For all the problems, values for the entries of the element matrices were generated
using the Harwell Subroutine Library (HSL) random number generator FAO1 and

4 NUMERICAL RESULTS

3222

Identifier

CEGB3306
CEGB2919
CEGB3024
LOCK1074
LOCK2232
L O CK349 1
RAM AGE0 1
AEAC5081
TRDHEIM
CRPLAT2
OPT1
TSYL201
RAMAGE02

79 1
2859
2996
1038
2208
3416
1476
5081

22098
18010
15449
20685
16830

128
551
323
944
684
128
800
813

3152
977
960

1400

Table 4.1: The 1

Descrip tion/discipline

2.5D Framework problem
3D cylinder with flange
2D reactor core section
Lockheed gyro problem
Lockheed tower problem
Lockheed cross-cone problem
3D Navier-Stokes
Double glazing problem
Mesh of the Trondheim fjord
Corrugated plate field
Part of oil production platform
Part of oil production platform
3D Navier-Stokes

st problems

14

each was made symmetric and diagonally dominant. In all the experiments, apart
from those reported on in Sections 4.2 and 4.3, the elements were ordered using
the direct element reordering algorithm offered by the HSL routine MC43 before the
frontal solvers were called.

All the HSL linear equation solvers used in our numerical experiments have
control parameters with default values. Unless stated otherwise, we use these
defaults in each case.

T h e experimental results given in this paper were obtained using 64-bit floating-
point arithmetic on the following platforms:

0 A single processor of a CRAY 5932 using the CRAY Fortran compiler cf77-7
with compiler option -Zv for the Fortran 77 codes and f90 with default options
for the Fortran 90 codes.

0 An IBM RS/6000 3 B T using the IBM Fortran compilers xlf and xlf90, with
compiler option -0.

0 A DEC 7000 3 B T using the DEC Fortran compilers f77 and f90, with default
compiler options.

On each machine the vendor-supplied BLAS were used. All times are CPU times in
seconds and include the i/o overhead for the codes which use direct access files. In
all the tables in which the number of floating-point operations (‘‘ops)’) are quot,ed,
we count all operations (+, -, *, /) equally.

4.2 The effect of ordering
As explained in Section 2, the order in which the elements are presented to the frontal
solver has a significant effect on its performance. If we denote by f i the number
of variables in the front before the Ith elimination, then an important measure,

4 NUMERICAL RESULTS 15

I
CEGB3306
CEGB2919
CEGB3024
LOCK1074
LOCK2232
LOCK3491
RAMAGEOl
AEAC508 1
TRDHEIM
CRPLAT2
OPT1
TSYL201
RAMAGE02

particularly for computing the amount of in-core storage required, is the maximum
front size

maxfi.

A prediction of the work involved in the frontal algorithm can be obtained from the
root-mean squared front size (rms front size) defined by

l=l,n

in M
Before

366
357
162
822

1278
846
470
163
288

1570
2688
1209
1730

In Table 4.2, we show the results of using the element ordering code MC43 with

62
After

65.5
191.0
90.0
84.1
56.2

138.7
279.3
98.1

174.4
378.6
610.9
511.6

1295.0

I Identifier 11 Max front size
(*I

Before
3.1
8.3
2.7
6.6
5.1

51.2
18.3
12.4
51.8

1918.9
857.2

1528.4
3811.9

7,
After

1.7
10.2
2.6
0.9
0.8
5.3

12.1
7.7

50.2
262.4
552.4
554.2

2852.3

52
After

90
306
146
138
84

23 1
377
170
360
550
995
549

1457

(sec
Before

0.6
0.9
0.5
0.7
1.1
3.9
1.4
1.5
5.9

124.4
57.2
97.1

231.5

rms front size I Numbe of ops 1 Factorize time
in I

Before
248.3
216.5
113.7
519.2
749.2
582.6
345.6
125.7
184.2

1183.6
2070.9
862.7

1498.1

ids)
After
0.4
1.0
0.5
0.2
0.3
0.8
1.1
1.1
5.7

20.3
37.0
38.8

175.7

Table 4.2: The results of using the MC43’ordering with MA62 (CRAY 5932). The
root mean-squared front size is denoted by “rms front size”.

our symmetric positive-definite frontal solver, MA62 (default settings are used for
all control parameters). We note that the original order is the one provided by
the application which, in most instances, the originator of the problem believed to
be a “good” element ordering. For some problems, reordering with MC43 gives a
significant reduction in the maximum and rms front sizes and this is reflected in
the reduced factorize times and operation counts. Having generated a new ordering,
MC43 compares the maximum front size of the new ordering with that of the original
ordering, and then returns to the user the ordering with the smallest maximum
front size. However, it is possible that by doing this MC43 rejects the ordering
with the smallest rms front size (which is generally the ordering that gives the
smallest operation count and factorize time when used with the frontal solver). In
all our experiments we have therefore made a minor alteration to MC43 so that the
ordering with the smallest rms front size is selected, even if the maximum front size
i s increased. We see the effect of this on test problems AEAC5081 and TRDHEIM.
We note that the effect of using Level 3 BLAS means that the poorer orderings have
a higher Megaflop rate so that the ratio of times, before and after ordering, is not as

4 NUMERICAL RESULTS 16

high as the operation count ratio. For the problem CEGB2919, the maximum and
rms front sizes are reduced by using MC43 but the operation count and the factorize
time are smaller for the original element ordering. This is because for this problem
more zeros are exploited in the front for the original ordering than for the MC43
ordering. If zeros are not exploited (ICNTL(9) is set to 0), the element ordering
generated by MC43 is more efficient than the original ordering (see Table 4.3 below).

4.3 The effect of exploiting zeros
We discussed, in Section 3.4, the option offered by MA62 of exploiting zeros within
the front. Zeros are ignored if ICNTL(9) = 0 and are exploited if ICNTL(9) = 1. In
Table 4.3, we show the effect of exploiting zeros. We have chosen some of the test
problems which were initially not well ordered (see Table 4.2) and have run these
problems with I C N T L ~) = 0 and 1, both with and without preordering using MC43.
We see that, in general, if the elements are not well ordered, substantial savings
are achieved in the factor storage, the number of operations, and the factorize time
by exploiting zeros in the front. Once the elements have been ordered, the savings
which result form exploiting zeros are much smaller. Indeed, if the savings in the
factor storage and operation counts are very small, the overheads of searching for
zeros and increased data movement to accumulate the zeros into blocks can increase
the factorize time. On the DEC 7000, we found that for the problem TSYL201
the factorize time without exploiting zeros was 95 seconds but this increased to
101 seconds when zeros were exploited. However, in general, the factorize and solve
times are reduced by taking advantage of zeros, so we have chosen the default setting
to be ICNTL(S) = 1.

4.4 The effect of blocking parameters

In this section, we examine how the performance of the frontal code MA62 is affected
by the parameters which control the minimum pivot block size and the size of the
blocks used in updating the frontal matrix (ICNTL(5) and ICNTL(7), respectively).
In Tables 4.4 to 4.7 results are given for a subset of our test problems for a range of
values of ICNTL(7). In these tests we.use minimum pivot block sizes of 1 (so that
variables are eliminated as soon as they become fully summed) and 16. Zeros in the
front are exploited (ICNTL(9) = 1). The timings quoted confirm that it is generally
advantageous to exploit Level 3 BLAS, albeit at the cost of an increased operation
count. As a result of our numerical experiments, we have chosen the default value
for ICNTL(7) in MA62 to be 16.

In Tables 4.8 to 4.11 results are given for the test problems CEGB3306,
AEAC5081, CRPLAT2, and OPT1 for a range of values of ICNTL(5) (ICNTL(7) =
16). It is apparent that modest increases in the minimum pivot block size have little
effect on the size of the largest pivot block and on the maximum front size, and that
the real storage requirement and the operation count grow slowly with ICNTL(5).
The factor times indicate that, in general, modest savings can be achieved by
allowing ICNTL(5) to be greater than 1 but the precise choice of the minimum pivot
block size parameter does not appear crucial. This is important from a practical
point of view since i't is possible to get good performance without having to optimize

4 NUMERICAL RESULTS

Integer
Storage

(Kwords)
45
14
14
14
37
17
24
20
22
10
5
5

78
13
8
8

100
59
27
23

1125
940

37
37

1124
355
358
341
709
70 1
485
483

17

Number
of ops
(*lO')

21.5
3.1
1.7
1.7

12.5
8.3

10.2
10.2
29.5
6.6
0.9
0.9

127.3
5.1
0.9
0.8

118.4
51.3
7.3
5.3

2545.9
1918.9
267.4
262.4

6357.8
857.2
571.1
552.4

1546.3
1528.4
554.2
554.2

Identifier

CEGB3306

CEGB2919

LOCK1074

LOCK2232

LOCK3491

Ordered

N
N
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
Y
Y

+ TSY L20 1

ICNTL(S)

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Real Storage
(Kwords)

765 (661)
218 (113)
207 (51)
204 (47)
582 (99)
403 (5)
467 (4)
446 (4)

86 (8)
85 (6)

122 (22)

486 (324)
219 (57)

1418 (1282)
206 (71)

114 (13)
1804 (808)
1062 (69)
456 (97)
380 (22)

20734 (3822)
17053 (131)
6556 (124)
6490 (59)

29331 (19865)
9628 (207)
8142 (214)
7984 (90)

16693 (248)
16521 (88)
10416 (48)
10405 (48)

Factorize
time

(seconds)
1.8
0.6
0.4
0.4
1.1
0.9
1 .o
1.0
2.0
0.7
0.2
0.2
8.5
1.1
0.3
0.3
8.1
3.9
0.9
0.8

163.3
124.4
20.4
20.3

384.8
57.2
37.8
37.0
97.9
97.1
38.6
38.8

Table 4.3: The effect of exploiting zeros in the front (CRAY 5932). If ICNTL(9) =
0 , zeros are not exploited; if ICNTL(9) = 1 , zeros are exploited. The figures in
parentheses are the number of zeros (in thousands) which are held explicitly in the
factors.

4 NUMERICAL RESULTS 18

Identifier

CEGB3306
LOCK2232
LOCK3491
RAMAGEOl
AEAC5801
TRDHEIM
CRPLAT2

CEGB3306
LOCK2232
LOCK3491
RAMAGEOl
AEAC5801
TRDHEIM
CRPLAT2

ICNTL (7)

1 1 8 1 16 I 32
11.0 12.3 13.8 17.0
4.3 4.9 5.8 7.7

40.4 42.9 46.1 53.7
110.3 112.9 116.2 123.3
60.9 64.7 69.5 80.4

458.7 473.1 491.5 532.2
2447.3 2492.2 2545.6 2658.0

14.1 15.8 17.0 20.3
6.4 7.1 8.0 10.3

47.5 50.0 53.4 61.6
115.1 117.8 121.0 128.8
68.7 72.5 77.3 88.3

46937 483.6 502.1 542.7
2525.8 2570.7 2624.2 2736.6

(ICNTL(S) = 1)

(ICNTL(S) = 16)

Table 4.4: The number of operations required to perform the numerical factorization
for different values of the blocking parameter ICNTL(7). The operation counts are
in millions of floating-point operations.

Identifier

CEGB3306
LOCK2232
LOCK3491
RAMAGEOl
AEAC5801
TRDHEIM
CRPLAT2

CEGB3306
LOCK2232
LOCK3491
RAMAGEOl
AEAC5801
TRDHEIM
CRPLAT2

ICNTL (7)

1 1 8 1 16 I 32
0.59 0.52 0.51 0.53
0.43 0.39 0.37 0.40
1.21 1.03 1.01 1.01
1.39 1.21 1.19 1.21
1.71 1.48 1.40 1.44
6.32 5.72 5.72 5.83

33.31 27.84 27.34 27.60

0.49 0.48 0.45 0.48
0.38 0.35 0.34 0.36
0.93 0.85 0.84 0.88
1.21 1.08 1.08 1.09
1.30 1.17 1.20 1.23
6.72 6.01 6.07 6.17

24.01 21.12 20.91 21.14

(ICNTL(S) = 1)

(ICNTL(S) = 16)

Table 4.5: The time in seconds for the numerical factorization for different values of
the blocking parameter ICNTL(7) (CRAY J932).

4 NUMERICAL RESULTS 19

CEGB3306

I Identifier 11 ICNTL(7) 1
(ICNTL(5) = 1)

1 1 8 1 16 I 32
0.41 0.33 0.30 0.27

. .
1 1 8 1 16 I 32

1 0.84 0.82 0.78 0.80

LOCK2232
LOCK3491
RAMAGEOl
AEAC5801
TRDHEIM
CRPLAT2

0.20 0.16 0.16 0.13
1.17 0.88 0.93 0.94
1.78 1.82 1.79 1.79
1.69 1.30 1.30 1.39
7.12 7.35 6.82 7.02

40.67 40.55 38.90 37.68

Table 4.6: The time in seconds for the numerical factorization for different values of
the blocking parameter ICNTL(7) (IBM RS/6000).

Identifier

CEGB3306
LOCK2232
LOCK3491
RAMAGEOl
AEAC5801
TRDHEIM
CRPLAT2

ICNTL (7)
(ICNTL(5) = 1)

0.46 0.43 0.44 0.46
1.89 1.79 1.77 1.80
3.07 2.65 2.47 2.50
2.78 2.59 2.51 2.60

16.32 14.07 13.40 13.71
77.19 64.83 60.32 62.13

Table 4.7: The time in seconds for the numerical factorization for different values of
the blocking parameter ICNTL(7) (DEC 7000).

4 NUMERICAL RESULTS 20

Identifier

AEAC5081 r
r

16 18 90 17 204 14
32 36 108 22 236 8
40 42 114 24 246 8

1 10 156 69 530 90
8 17 161 71 537 48

16 25 170 77 562 33
32 41 185 88 600 20
40 49 195 95 626 18

1 24 544 2546 6383 1050
8 24 544 2583 6435 540

16 24 550 2624 6491 370
32 42 568 2751 6655 195
40 50 574 2795 6708 170

1 38 983 5470 7971 503
8 38 983 5473 7974 490

16 39 995 5524 8019 353
32 67 1009 5657 8137 226
40 67 1009 5729 8195 193

Table 4.8: Storage statistics and operation counts for different values of the minimum
pivot block size (ICNTL(5)).

4 NUMERICAL RESULTS

ICNTL(5)

21

Factor Time Solve Time (seconds)
(seconds) nrhs=l I nrhs=2 I nrhs=lO

the parameter from run to run. In general, the solve times are reduced by using
ICNTL(5) > 1. This is because, by increasing ICNTL(5), the integer data written to
and read from the buffers is reduced and, as a result, the amount of data which must
be copied from the partial solution matrix into the arrays used for direct addressing
is reduced. Since the amount of data copied is related to the number of right-hand
sides, the time saved increases with the number nrhs of right-hand sides. On the
basis of our numerical experiments on the different machines, in MA62 the default
value for ICNTL(5) is 16. However, we note that if the user is going to perform a
large number of solves, it may be beneficial to choose a value of ICNTL(5) larger
than this default. However, since using ICNTL(5) > 1 reduces the repetition of the
storage of the variable indices, increasing ICNTL(5) can give substantial savings in
the integer storage used.

Identifier
CEGB3306

AEAC508 1

CRPLAT2

OPT1

1 0.5 0.07 0.10 0.28
8 0.5 0.04 0.06 0.18

16 0.4 0.03 0.05 0.14
32 0.5 0.03 0.04 0.12
40 0.6 0.03 0.04 0.12

1 1.4 0.13 0.18 0.55
8 1.1 0.09 0.12 0.37

16 1.1 0.07 0.10 0.31
32 1.3 0.06 0.08 0.27
40 1.3 0.06 0.08 0.26

1 27.3 1.06 1.39 4.66
8 22.9 0.76 0.98 3.20

16 20.5 0.62 0.84 2.60
32 21.1 0.56 0.72 2.24
40 20.3 0.55 0.71 2.18

1 39.2 0.81 1.02 3.27
8 38.9 0.79 1.02 3.25

16 37.0 0.70 0.91 2.80
32 36.5 0.66 0.85 2.58
40 36.4 0.63 0.82 2.55

Table 4.9: Factor and solve times for different minimum pivot block sizes on the
CRAY 5932. nrhs denotes the number of right-hand sides.

4 NUMERICAL RESULTS

Identifier
CEGB3306

AEAC5081

22

Factor Time Solve Time (seconds)
ICNTL(6) (seconds) nrhs=l I nrhs=2 I nrhs=lO

1 0.3 0.02 0.08 0.25
8 0.3 0.01 0.06 0.16

16 0.3 0.03 0.03 0.17
32 0.4 0.03 0.03 0.18
40 0.4 0.06 0.06 0.18

1 1.3 0.10 0.13 0.49
8 1.2 0.09 0.13 0.41

16 1.2 0.08 0.11 0.33
32 1.4 0.09 0.10 0.38

CRPLAT2
40 2.0 0.07 0.11 0.36

1 38.9 1.13 1.54 7.94

OPT1

Table 4.10: Factor and solve times for different minimum pivot block sizes on the
IBM RS/6000. nrhs denotes the number of right-hand sides.

8 42.1 1.12 1.62 6.09
16 32.2 0.95 1.46 4.60
32 32.2 0.92 1.33 4.04
40 32.2 0.87 1.44 3.82

1 81.2 1.12 1.93 6.11
8 81.4 1.17 1.80 5.89

16 75.7 1.23 1.82 5.16
32 75.6 0.94 1.74 4.65
40 75.1 1.08 1.51 4.64

4 NUMERICAL RESULTS

Identifier
CEGB3306

AEAC5081

Factor Time Solve Time (seconds)
ICNTL(5) (seconds) nrhs=l I nrhs=2 I nrhs=lO

1 0.7 0.36 0.40 0.60
8 0.7 0.31 0.34 0.49

16 0.8 0.34 0.38 0.50
32 0.9 0.38 0.40 0.52
40 0.9 0.38 0.40 0.52

1 2.5 1.01 1.14 1.64

CRPLAT2 11 1 60.3 14.7 16.4 20.7

OPT1

8 51.5 13.6 14.9 17.5
50.1 13.2 14.0 16.9
50.0 12.8 14.9 16.6

40 51.4 13.2 14.3 16.6
1 97.6 16.4 18.6 21.5
8 97.0 16.3 17.8 21.3

16 94.6 15.9 17.7 20.7
32 90.5 15.9 17.4 20.3
40 90.2 16.4 17.4 20.1

Table 4.11: Factor and solve times for different minimum pivot block sizes on the
DEC 7000. nrhs denotes the number of right-hand sides.

4 NUMERICAL RESULTS 24

' Identifier Code

CEGB3306 MA42
MA62

CEGB2919 MA42
MA62

CEGB3024 ' MA42
MA62

LOCK1074 MA42

4.5 The performance of MA62 compared with MA42

Our aim in designing and developing MA62 was to produce a code that would be
much more efficient than the general unsymmetric frontal solver MA42 when used to
solve symmetric positive finite-element systems. To assess how successful we have
been, in Table 4.12 we compare the storage requirements and the operation counts

Factor Storage Factor ops

Real Integer
(Kwords) (*106)

375 68 22.6
204 (231) 14 17.2

1012 72 181.1

477 110 38.2
236 (261) 15 26.3
159 27 12.7

445 (477) 20 101.9

LOCK2232
MA62 85 (94) 5 8.9
MA42 219 40 10.8

,LOCK3491

RAMAGE01

AEAC5801

TRDHEIM
11 MA62 I 2154, (2318) I 110 I 502.1

CRPLAT2 I1 MA42 I 12915 I 2116 I 4980.1

MA62 114 (133) 8 8.9
MA42 882 151 119.5
MA62 380 (411) 23 73.1
MA42 759 68 219.6

MA42 1065 183 120.4

MA42 6663 533 866.5

MA62 388 (406) 17 121.0

MA62 562 (610) 32 77.3

OPT1

TSYL2Ol
11 MA62 I 10405 (10630) I 483 I 5542.2

RAMAGE02 11 MA42 I 41792 1 3495 I 55870.1

MA62 6490 (6644) 370 2674.6
MA42 16674 1194 11047.1
MA62 7984 (8165) 341 5710.9
MA42 20905 1020 10723.5

11 MA62 I 20996 (21204) I 851 I 28523.2

Table 4.12: A comparison of the operation count and storage requirements for MA42
and MA62 on symmetric positive-definite unassembled finite-element systems. The
numbers in parentheses are the real storage needed if packed form for FTL is not
used.

for the two codes. For MA62, we give the real storage requirements for storing the
lower triangular matrix FTL in packed form and as a full matrix in which cnly
the lower triangular entries are meaningful (see Section 3.3). In Tables 4.13, 4.14,
and 4.15 we compare the timings for MA62 with those for MA42 on the CRAY J932,
the IBM RS/6000, and the DEC 7000, respectively. The timings quoted for MA42
were obtained using the option of restricting pivoting to the diagonal. Without
this option, the code checks more entries when searching for pivots but in our
experiments, it had no significant effect on the factorization time. MA62 was run
with the default settings for all the control parameters. Throughout the remainder

4 NUMERICAL RESULTS 25

of this paper, the ‘Analyse’ times quoted for both MA42 and MA62 include the time
to order the elements using MC43, to perform the prepass of the integer data and to
perform the symbolic factorization. The analyse times for both codes are essentially
the same since both codes work only with the integer data.

Identifier

CEGB3306

CEGB2919

CEGB3024

LOCK1074

LOCK2232

LOCK3491

RAMAGEOl

AEAC5801

TRDH EIM

CRPLAT2

OPT1

TSYL2Ol

RAMAGE02

MA62 0.6 5.7 0.33 1.42
MA42 1.2 45.3 1.13 4.78
MA62 1.2 20.3 0.62 2.60
MA42 0.8 76.0 0.91 3.65
MA62 0.8 37.0 0.70 2.80
MA42 0.7 71.8 1.00 3.88
MA62 0.7 38.8 0.90 3.60
MA42 1.4 389.6 2.29 9.32
MA62 1.4 175.7 1.66 6.58

Table 4.13:
unassembled finite-element systems (CRAY J932)

A comparison of MA42 and MA62 on symmetric positive-definite

For the factorization phase, we see from these tables that MA62 is always
significantly faster than MA42 and, for the larger problems, MA62 can be more than
twice as fast as MA42. The solve times for MA62 are almost always less than for MA42,
particularly for a large number of right-hand sides. This reduction is a result of using
a minimum pivot block size of 16 in MA62 (ICNTL(5) = 16) and also of exploiting
zeros in the front. If we set ICNTL(5) = 1 and ICNTL(9) = 0 (zeros not exploited),
the solve times for the two codes are similar. We remark that the HSL Release 12
version of MA42 does not have an option for specifying the minimum pivot block
size, although a version of MA42 used by AEA Technology in their code NAMMU
for groundwater flow calculations (Hartley, Jackson and Watson, 1996) does include
this option. The current version of MA42 does not take advantage of zeros in the
front but recent experiments (Scott, 1997) have shown that the performance of MA42,

4 NUMERICAL RESULTS 26

particularly in terms of the factor storage and operation count, can be enhanced by
exploiting zeros. For example, for the problem LOCK3491, by exploiting the zeros,
the real factor storage is cut from 882 to 751 Kwords; the integer storage is reduced
from 151 to 123 Kwords; and the operation count is cut from 120*106 to 79*106.

Table 4.14:
unassembled finite-element systems (IBM RS/6000)

A comparison of MA42 and MA62 on symmetric positive-definite

We also observe that the solution phase of the frontal solvers is much slower on
the DEC 7000 than on the other machines. Further investigation shows that, on
this machine, the overheads for out-of-core working are considerable and reading the
factors from the direct access files accounts for most of the solve time. If direct access
files are not used, the MA62 solve time for a single right-hand side for TRDHEIM is
cut from 5.3 to 0.6 seconds. For TSYL201, the corresponding times are 22.5 and 2.4
seconds, respectively. On the DEC, the use of direct access files also has a significant
effect on the factor time. If we hold the factors in-core, then the MA62 factor time
for TRDHEIM reduces from 13.4 to 9.0 seconds and for TSYL201 it is cut from 101
to 70 seconds. Similarly, without the use of direct access files, the MA42 factorization
time for TRDHEIM reduces from 26 to 14 seconds and for TSYL201 it is cut from
173 to 116 seconds.

4 NUMERICAL RESULTS 27

Table 4.15:
unassembled finite-element systems (DEC 7000)

A comparison of MA42 and MA62 on symmetric positive-definite

4 NUMERICAL RESULTS 28

4.6 A comparison of the frontal code MA62 with other HSL
codes

In this section, we compare the performance of the frontal code MA62 with other
codes in the Harwell Subroutine Library that are also designed for solving symmetric
positive-definite systems, namely the multifrontal code MA27 and the code VBAN,
which is a development version of a new HSL code MA55.

The code MA27 uses the multifrontal algorithm of Duff and Reid (1982). In
the analyse phase, pivots are selected from the diagonal using the minimum degree
criterion. During the factorization, this pivot sequence may be modified to maintain
numerical stability, and 2 x 2 diagonal block pivots can also be used. By this means,
MA27 can stably factorize symmetric indefinite problems. However, if the matrix is
known to be positive definite, the user can set a parameter in the calling sequence
so that a logically simpler path in the code is followed. In all our tests using MA27,
this option was used.

Our colleague John Reid at the Rutherford Appleton Laboratory is currently
developing a variable-band code for the solution of systems of equations whose
matrix is symmetric and positive-definite. It does no interchanges and takes
advantage of variation in bandwidth. The code optionally uses a direct access file
to store the matrix factor. The intention is that the new code MA55 will replace an
older HSL code MA36. At present, the development code is written in Fortran 90
and it only uses Level 1 BLAS. A Fortran 77 version of MA55 will be made available
in the future. It is intended that the MA55 code will use blocking and Level 3 BLAS.
We have called the development code used in our experiments VBAN in the tables
and in the following text.

The codes are compared on the CRAY J932, the IBM RS/6000, and the
DEC 7000 in Tables 4.16 to 4.18. We were unable to run VBAN and MA27 on
the largest problems on the IBM RS/6000 because of insufficient memory. The
elemental matrices are assembled before MA27 and VBAN are called. The cost of
this preprocessing is not included. Since the efficiency of VBAN depends upon the
equations being ordered for a small profile, the assembled matrix is ordered using
the HSL profile reducing code MC40 prior to calling VBAN, and the time taken to do
this is given as the “Analyse” time for VBAN. For MA27, the “Analyse” time is that
taken to select the pivot sequence using the minimum degree criterion and prepare
the data structures for the subsequent numerical factorization. It is interesting that
this more complicated MA27 analyse is usually faster than the reordering for VBAN.
This highlighted for us some deficiencies in the MC40 ordering code which we are now
attempting to rectify. Similar deficiencies are also present in the MC43 code but are
masked because the direct element reordering algorithm works with the connectivity
pattern of elements rather than variables.

Note that the “In-core” storage figures quoted in Table 4.16 are the minimum
in-core storage requirements for performing the matrix factorization and solving the
linear system Ax = b. This figure includes both real and integer storage. On the
CRAY, both integers and reals are stored in 64-bit words, so the storage statistics
given in Table 4.16 are just the sum of the number of real and the number of
integer words needed. We remark that if this minimum in-core storage is used, the
performance of the codes will often be considerably degraded since either a large

4 NUMERICAL RESULTS

MA27

29

Analyse
0.4

Identifier

CEGB3306

CEGB2919

CEGB3024

LOCK1074

LOCK2232

LOCK3491

RAMAGEOl

AEAC5081

TRDHEIM

CRPLAT2

OPT1

TSYL201

RAM AGE02

29
19

133
11
7

336
322
53

549
243
142
526
95
29

2893
798
130

4554
2276
302

7741
3315
990

8922
2079
301

30569
3692
2123

77
90
83
99

122
254
428
403
345
401
405
430
564
594

2002
2958
2262
3815
6406
6527
5975
7215
8325
7069

10231
10888
21297
21787
21847

VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN

VBAN

0.8
0.2
0.3
0.4
0.1
0.4
0.5
0.3
0.9
1.3
0.2
1.3
2.6
0.1
1.3
1.5
0.3

10.8
15.3
0.6
5.3
9.4
1.2

11.9
20.7

VBAN
MA62
MA27 20.4
VBAN 39.1
MA62 1.4

ne (seconds

Factorize
0.6
1.2
0.5
3.6
4.0
1.0
1.0
1.3
0.5
0.5
0.5
0.2
0.6
0.6
0.3
2.0
3.0
0.8
4.0
3.3
1.0
3.1
3.7
1.1

17.7
19.6
5.6

40.2
54.9
20.3
77.1
74.2
37.0
90.0
96.4
38.8

783.0
338.3
175.6

Solve
0.03
0.05
0.03
0.04
0.08
0.05
0.04
0.05
0.04
0.01
0.02
0.01
0.02
0.03
0.02
0.04
0.07
0.05
0.03
0.05
0.04
0.08
0.10
0.07
0.27
0.46
0.33
0.30
0.77
0.62
0.32
0.86
0.70
0.40
1.18
0.90
1.05
2.16
1.66

Factor ops
(*106)

2.1
11.6
17.0
57.3

110.6
101.9

7.1
17.7
26.3
4.9
6.0
8.7
2.7
4.6
8.0

20.2
65.4
53.3
94.0

122.7
121.0
44.4
69.8
77.3

211.0
459.0
502.1

1623.8
2475.8
2624.2
3648.9
4116.5
5523.8
4285.0
5262.0
5542.2

44988.9
29922.7
28523.2

Storage
(Kwords)

590 384
402 526

465
175 146
106 219

Table 4.16: A comparison of MA27, VBAN and MA62 on symmetric positive-definite
finite-element systems (CRAY J932).

4 NUMERICAL RESULTS

I1 I I LOCK2232 11 MA27 0.08 I 0.18 0.02 I
VBAN 0.11 0.73 0.58
MA62 0.05 0.23 0.02
MA27 0.16 0.82 0.04
VBAN 0.30 4.32 2.50
MA62 0.05 0.99 0.04
MA27 ' 0.18 3.95 0.04
VBAN 0.43 5.55 2.42
MA62 0.02 1.68 0.04
MA27 0.24 1.80 0.07
VBAN 0.38 5.33 3.17
MA62 0.06 1.35 0.08
MA27 2.02 10.83 0.28
MA62 0.12 7.41 0.32
MA27 1.15 65.4 0.49
MA62 0.24 33.0 1.06
MA27 2.37 146.3 0.76

30

Factorize
0.15
1.60
0.33
2.54
6.14
1.56
0.30
1.80
0.42
0.16
0.75
0.12

Identifier

CEGB3306
Solve
0.01
1.28
0.06
0.05
2.97
0.04
0.02
1.23
0.01
0.01
0.54
0.01

CEGB2919

TSYL201

CEGB3024

MA62 0.18 77.2 1.19
MA27 2.27 169.3 0.89

LOCK1074

RAMAGE02

LOCK3491

MA62 0.16 68.5 1.63
MA62 0.25 347.3 2.67

RAMAGEOl

AEAC508 1

TRDHEIM

CRPLAT2

OPT1

Code

MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62

Ti
Analyse

0.09
0.14
0.04
0.31
0.49
0.01
0.11
0.17
0.03
0.04
0.07
0.02

.r

Table 4.17: A comparison of M A 2 7 , VBAN and M A 6 2 on symmetric
finite-element systems (IBM RS/SOOO).

3 positive-defini te

4 NUMERICAL RESULTS 31

VBAN 0.13
MA62 0.04
MA27 0.04
VBAN 0.05
MA62 0.02
MA27 0.06
VBAN 0.0s

,, MA62 0.05

Analyse
CEGB3306

VBAN

ne (seconds)
Factorize Solve

0.14 0.01
0.64 0.11
0.78 0.35
1.99 0.05
4.05 0.31
2.40 0.75
0.30 0.02
0.85 0.16
0.98 0.40
0.19 0.01
0.29 0.06
0.41 0.15
0.16 0.01
0.27 0.06
0.48 0.19

MA62 I 0.04
CEGB2919 11 MA27 I 0.30

LOCK3491 11 MA27 0.15 0.78
VBAN 0.22 2.50

11 VBAN I 0.36

0.03
0.26

CEGB3024

LOCK1074

LOCK2232

MA62 0.02
MA27 0.09

RAMAGEOl

AEAC5081

TRDHEIM

CRPLAT2

OPT1

TSY L2 0 1

RAMAGE02

MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62
MA27
VBAN
MA62

0.05 1.60 0.62
0.18 3.11 0.05
0.31 4.15 0.23
0.02 2.41 0.65
0.21 1.51 0.06
0.27 2.81 0.34
0.06 2.28 0.92
1.98 9.3 0.43
2.40 18.8 2.06
0.11 13.4 5.31
1.03 49.1 0.91
2.12 129.1 4.56
0.26 52.1 13.2
2.15 140.0 1.49
3.64 212.8 5.44
0.15 93.7 15.9
2.43 167.9 1.78
4.62 212.7 7.24
0.12 100.8 22.5
3.56 2970.0 5.81
8.58 2008.4 17.6
0.28 435.7 46.1

Table 4.18: A comparison of MA27, VBAN and MA62 on symmetric positive-definite
finite-element systems (DEC 7000).

5 CONCLUSIONS 32

number of data compressions must be performed or a large number of records written
to direct access files. The length (in real words) of the in-core files used by both
M A 6 2 and VBAN was 25000.

Our experiments show that, with the exception of some of the smaller problems
on the DEC 7000, M A 6 2 requires less time for the factorization than VBAN although
it needs more floating-point operations. In most cases, we see that the minimum
degree ordering as expected performs a much better job of reducing the number of
entries in the factors than our “band” orderings; sometimes the factor storage for
M A 2 7 is about half that of the better of the other two codes. In general, the number
of entries in the factors is slightly less for VBAN than for M A 6 2 . Both VBAN and M A 6 2
store their factors in direct access files and so, as expected, usually require much less
“In-core” storage than M A 2 7 . However, VBAN sometimes requires a lot more in-core
storage than M A 6 2 . This will happen if there is just a single row of high bandwidth
towards the end of the reordered matrix. For the simple variable-band scheme used
by VBAN, this would require that many previous rows needed to update this be held
in memory. The frontal code does not suffer from this problem; the only effect is
to add one to the front size for most of the computation. One possible remedy is
to develop better orderings for the variable-band scheme and this is currently being
studied.

We again observe that on the DEC 7000 the overheads for out-of-core working
are high. Since M A 2 7 does not have these overheads, on this machine if the factors
are held in direct access files, for some of the test problems (particularly the
smaller problems) M A 2 7 has the fastest factorize time and for all the problems it
has the fastest solve time for a single right-hand side. We remark that M A 2 7 is
designed for assembled problems; we are not aware of any software which implements
a multifrontal algorithm for symmetric problems and which accepts matrices in
elemental form.

5 Conclusions
We have designed and developed a frontal code for solving systems of symmetric
positive-definite unassembled finite-element equations. The code optionally uses
direct access files to hold the matrix factors and makes full use of Level 3 BLAS in
its innermost loop and in the solution phase. We have shown that, as well as needing
approximately half the real storage for the matrix factors as the general frontal code
M A 4 2 , the code can be more than twice as fast as M A 4 2 . Compared with other HSL
codes, we have seen that the frontal method can provide a very powerful approach
for the solution of large sparse systems. We notice that, although other approaches
may result in much less fill-in, if the factors are held in direct access files, the frontal
code generally requires far less main memory. The performance of the factorization
and solution phases of the frontal codes is significantly affected by the efficiency of
the i/o. If the i/o does not add a large overhead, the frontal scheme is generally
faster than other the approaches considered, although this conclusion may have to
be modified when multifrontal and variable band codes for positive definite systems
that exploit the Level 3 BLAS become available.

6 AVAILABILITY OF THE CODE 33

6 Availability of the code

MA62 is written in standard Fortran 77. The code will be included in Release 13 of the
Harwell Subroutine Library. MA27 and MA42, as well as the ordering routines MC40
and MC43, are available in Release 12 of the HSL. Anybody interested in using any
of these codes should contact the HSL Manager: Scott Roberts, AEA Technology,
Building 552 Harwell, Didcot, Oxfordshire OX11 ORA, England, tel. +44 (0) 1235
434988, fax +44 (0) 1235 434136, email Scott.Roberts@aeat.co.uk, who will provide
licencing information.

7 Acknowledgements

We are grateful to Andrew Cliffe, Christian Damhaug, and Alison Ramage for test
problems, and to our colleague John Reid for allowing us to use the code VBAN.

References

K. A. Cliffe, I. S. Duff, and J. A. Scott. Performance issues for frontal schemes on
a cache-based high performance computer. Technical Report RAL-TR-97-001 ,
Rut herford Apple t on Lab or at ory, 199 7.

J. J. Dongarra, J. DuCroz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. Mathematical Software, 16(l), 1-17,
1990.

I. S. Duff. MA32 - a package for solving sparse unsymmetric systems using the frontal
method. Report AERE R10079, Her Majesty’s Stationery Office, London, 1981.

I. S. Duff. Enhancements to the MA32 package for solving sparse unsymmetric
equations. Report AERE R11009, Her Majesty’s Stationery Office, London,
1983.

I. S. Duff. Design features of a frontal code for solving sparse unsymmetric linear
systems out-of-core. SIAM J. Scientific and Statistical Computing, 5 , 270-280,
1984.

I. S. Duff and J. K. Reid. MA27 - A set of Fortran subroutines for solving sparse
Report AERE R10533, Her Majesty’s symmetric sets of linear equations.

Stationery Office, London, 1982.

I. S. Duff and J. A. Scott. MA42 - a new frontal code for solving sparse unsymmetric
systems. Technical Report RAL-TR-93-064, Rutherford Appleton Laboratory,
1993.

I. S. Duff and J. A. Scott. The design of a new frontal code for solving sparse
unsymmetric systems. ACM Trans. Mathematical Software, 22(1), 30-45,1996.

REFERENCES 34

I. S. Duff, R. G. Grimes, and 3. G. Lewis. Users’ guide for the Harwell-Boeing sparse
matrix collection (Release I). Technical Report RAL-TR-92-086, Rutherford
Appleton Laboratory, 1992.

I. S. Duff, J. K. Reid, and J. A. Scott. The use of profile reduction algorithms with
a frontal code. Inter. Journal on Numerical Methods in Engineering, 28, 2555-
2568, 1989.

L.J. Hartley, C.P. Jackson, and S.P. Watson. NAMMU (Release 6.3) User Guide.
Technical Report AEA-ES-0138, AEA Technology, 1996.

Harwell Subroutine Library. A Catalogue of Subroutines (Release 12). Advanced
Computing Department, AEA Technology, Harwell Laboratory, Oxfordshire,
England, 1996.

P. Hood. Frontal solution program for unsymmetric matrices. Inter. Journal on
Numerical Methods in Engineering, 10, 379-400, 1976.

B. M. Irons. A frontal solution program for finite-element analysis. Inter. Journal
on Numerical Methods in Engineering, 2 , 5-32, 1970.

A. Ramage and A. J. Wathen. Iterative solution techniques for the Navier-Stokes
equations. Technical Report AM-93-01, School of Mathematics, University of
Bristol, 1993.

J. A. Scott. Exploiting zeros in frontal solvers. Technical Report to appear,
Rutherford Appleton Laboratory, 1997.

A APPENDIX: SPECIFICATION SHEETS

A Appendix: Specification Sheets

35

aAEA CLRC

HSL MA62
HARWELL SUBROUTINE LIBRARY SPECIFICATION Release 13 (1998)

1 SUMMARY

To solve one or more sets of sparse symmetric linear unassembled finite-element equations, AX = B, by the
frontal method, optionally holding the matrix factor out-of-core in direct access files. The package is primarily
designed for positive-definite matrices since numerical pivoting is not performed. Use is made of high-level BLAS
kernels. The coefficient matrix A must o f the form

m

A = CA'",
A=l

with A'" nonzero only in those rows and columns that correspond to variables in the k-th element.

The frontal method is a variant of Gaussian elimination and involves the factorization

A =PLD(PL)T,

where P is a permutation matrix, D is a diagonal matrix, and L is a unit lower triangular matrix. MA62 stores the reals
o f the factors and their indices separately. A principal feature o f MA62 is that, by holding the factors out-of-core, large
problems can be solved using a predetermined and relatively small amount o f in-core memory. At an intermediate
stage o f the solution, 1 say, the 'front' contains those variables associated with one or more o f A''), k= 1,2, ..., 1, which
are also present in one or more of A'", k= 1+1, ..., m. For efficiency, the user should order the A") so that the number o f
variables in the front (the 'front size') is small. For example, a very rectangular grid should be ordered pagewise
parallel to the short side o f the rectangle. The elements may be preordered using the Harwell Subroutine Library
routine MC43.

ATTRIBUTES - Versions: MA62A, MA62AD. Calls: -AXPY, -GER, -GEN. -TPSV, -TRSV, -GEM, -TRSM.
Language: Fortran 77. Date: April 1997. Origin: I.S. Duff and J.A. Scott, Rutherford Appleton Laboratory.
Conditions on external use: (i), (ii), (iii) and (iv).

2 HOW TO USE THE PACKAGE

2.1 Argument lists and calling sequences

There are six entries:

(a) The subroutine MA62I/ID must be called to initialize the parameters that control the execution o f the package.
This subroutine must be called once prior to calling other routines in the package.

(b) MA62A/AD must be called for each element to specify which variables are associated with it. This subroutine

(c) MA62J/JD must be called for each element. This subroutine uses the information from MA62A/AD to determine

determines in which element each variable appears for the last time.

the amount o f real and integer storage required for the factorization.

(d) The use of MA62P/PD is optional. If direct access files are to be used, MA62P/PD must be called once prior to
calling MA62B/BD and MA62C/CD.

(e) MA62B/BD must be called for each element to specify the nonzeros o f A(k) and, optionally, the corresponding
element right-hand side(s) B"). MA62B/BD uses the information generated by MA62A/AD and MA62J/JD in the
factorization of the matrix (1) and, if B'" are specified, MA62B/BD solves the equations AX=B with right-hand

side(s) B = CB"'.
m

bl

(f) The use of MA62C/CD is optional. MA62C/CD uses the factors produced by MA62B/BD to solve for further
right-hand sides.

HSL Release 13 (1998) MA62 1

MA62 HSL Release 13 (1998)

2.1.1 The initialization subroutine

To initialize control parameters, the user must make a single call o f the following form:

The single precision version

CALL MA62I(ICNTL,CNTL,ISAVE)

The double precision version

CALL MA62ID(ICNTL,CNTL,ISAVE)

ICNTL is an INTEGER array of length 15 that need not be set by the user. This array is used to hold control parameters.
On exit, ICNTL contains default values. If the user wishes to use values other than the defaults, the
corresponding entries in ICNTL should be reset after the call to MA62I/ID. Details of the control parameters are
given in Section 2.2.1.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that need not be set by the user. This array is
used to hold control parameters. On exit, CNTL contains default values. If the user wishes to use values other
than the defaults, the corresponding entries in CNTL should be reset after the call to MA62I/ID. Details o f the
control parameters are given in Section 2.2.1.

ISAVE is an INTEGER array of length 50 that need not be set by the user. This array is used to hold parameters that
must be unchanged between calls to routines in the MA62 package.

2.1.2 Specification of which variables belong in each element

A call o f the following form must be made for each element.

The single precision version

CALL MA62A(NVAR,IVAR,NDF,LAST,LENLST,ICNTL,ISAVE,INFO)

The double precision version

CALL MA62AD(NVAR, IVAR,NDF, LAST, LENLST, ICNTL, ISAVE, INFO)

NVAR is an INTEGER variable that must be set by the user to the number of variables in the element. This argument is
not changed by the routine. Restriction: WAR2 1.

IVAR is an INTEGER array of length NVAR that must be set by the user to contain the indices o f the variables
associated with the element. These indices need not be in increasing order but must be distinct. This argument is
not changed by the routine. Restrictions: 1 5 IVAR (I) I LENLST and IVAR (I) # IVAR (J) , I, J = 1,2, ..., WAR.

NDF is an INTEGER variable that need not be set by the user. On each exit, it will be set to the largest integer so far
used to index a variable. It must not be changed by the user between calls to MA62A/AD nor prior to subsequent
calls to MA62J/JD and MA62B/BD. Note that, i f the variables are not indexed contiguously. NDF will exceed the
number o f variables in the problem (see INFO (3) in Section 2.2.2).

LAST is an INTEGER array of length LENLST that need not be set by the user. On each exit from MA62A/AD, LAST (I)
indicates the element in which the variable with index I last appeared or, if it has not appeared, LAST (I 1 is
zero. On exit from the final call, i f I has been used to index a variable, LAST(1) is the element at which
variable I is fully summed and is zero otherwise. The first NDF entries o f this array must not be changed
between calk to MA62A/AD nor prior to subsequent calls to MA62J/JD and MA62B/BD.

LENLST is an INTEGER variable that must be set by the user to the dimension o f array LAST. LENLST must be at least
as large as the largest integer used to index a variable and must not be changed between calls to MA62A/AD. This
argument is not changed by the routine. Restriction: LENLST2 1.

ICNTL is an INTEGER array of length 15 that must be set by the user to hold control parameters. Default values are set
by the call to MA62I/ID. Details of the control parameters are given in Section 2.2.1. ICNTL (I), I = 1, 2, and
8, are accessed by the routine. This argument is not changed by the routine.

ISAVE is an INTEGER array of length 50 that is used to hold parameters that must be unchanged between calls to
routines in the MA62 package. This argument is changed by the routine.

INFO is an INTEGER array of length 3 0 that need not be set by the user. On each successful exit, INFO (1) is Set to 0.
Negative values o f INFO (1) indicate a fatal error has been detected (see Section 2.3). If an error is detected,
INFO (2) holds additional information concerning the error. INFO (I), I 2 3, are not accessed by the routine.

2 MA62 HSL Release 13 (1998)

HSL Release 13 (1998) MA62

2.1.3 Symbolic factorization of A

To determine the amount o f real and integer storage required by the factorization, a call o f the following form must
be made for each element. The elements must have the same index lists and be in exactly the same order as when
MA62A/AD was called. All the calls to MA62A/AD must be completed before MA62J/JD is called. Note that the storage
is dependent on the control parameter ICNTL (5) . If the user wishes to compute the storage required by different
values o f ICNTL (5) , it is not necessary to recall MA62A/AD before repeating the sequence o f calls to ~ ~ 6 2 J/ JD.

The single precision version

CALL MA62J(WAR, IVAR,NDF, LAST, ICNTL, ISAVE, INFO)

The double precision version

CALL MA62JD(NVAR,IVAR,NDF,LAST,ICNTL,ISAVE,INFO)

WAR, IVAR are as in the corresponding calls to MA62A/AD but MA62J/JD does not check IVAR for duplicate indices.
W A R and W A R are not changed by the routine.

NDF is an INTEGER variable which must be unchanged since the final call to MA62A/AD. This argument is not
changed by the routine.

LAST is an INTEGER array of length NDF which must be unchanged since the final call to MA62A/AD. This argument is
not changed by the routine.

ICNTL is an INTEGER array o f length 1 5 that must be set by the user to hold control parameters. Default values are set
by the call to MA62I/ID. Details of the control parameters are given in Section 2.2.1. ICNTL (I), I = 1,2, 5, and
8, are accessed by the routine. This argument is not changed by the routine.

ISAVE is an INTEGER array of length 50 that is used to hold parameters that must be unchanged between calls to
routines in the MA62 package. This argument is changed by the routine.

INFO is an INTEGER array o f length 30 that need not be set by the user. On successful exit, INFO(1) is set to 0.
Negative values o f INFO (1) indicate a fatal error has been detected (see Section 2.3). If an error is detected,
INFO (2) holds additional information concerning the error. On exit from the final call, INFO (I), I = 3, 4, ..., 8 ,
contain information about the factorization. Details are given in Section 2.2.2. INFO (I), 1 2 9, are not accessed
by the routine.

2.1.4 To set up direct access files

of the following form must be made.

The single precision version

If the user wishes to keep in-core memory requirements low by using direct access files for the factors, a single call

CALL MA62P (ISTRM, FILNAM, LENBUF, ICNTL, ISAVE, INFO)

The double precision version

CALL MA62PD(ISTRM,FILNAM,LENBUF,ICNTL,ISAVE,INFO)

ISTRM is an INTEGER array o f length 2. ISTRM (1 1 and ISTRM (2) must be set by the user to specify the unit numbers
of the direct access files for the reals in the factors and the indices o f the variables in the factors, respectively.
This argument is not changed by the routine. Restrictions: ISTRM(1) must lie in the range [l, 991,
ISTRM(1) f6, ICNTL(1). or ICNTL(2) (I =1,2), and ISTRM(1) #ISTRM(2).

FILNAM is a CHARACTER*60 array of length 2. If ICNTL (6) is set to a value other than its default value 0, the user
must set FILNAM (1) and FILNAM (2) to filenames for the direct access files for the reals in the factors and the
indices o f the variables in the factors, respectively. If ICNTL (6) = 0, FILNAM is not accessed by the routine.
This argument is not changed by the routine.

LENBUF is an INTEGER array o f length 2. LENBUF(1) must be set by the user to the length, in REAL (DOUBLE
PRECISION in the D version) words,. o f the in-core buffer (workspace) associated with the direct access file for
the reals in the factors (including the corresponding right-hand sides) and LENBUF (2) must be set by the user to
the length, in INTEGER words, of the buffer associated with the direct access file for the indices o f the variables
in the factors. LENBUF (I) (I =1, 2) have a crucial effect on the in-core memory requirements o f MA62B/BD and
MA62C/CD (see arguments LW and LIW in Sections 2.1.5 and 2.1.6). If nrhs is the number o f right-hand sides to
be input to MA62B/BD, LENBUF should be chosen so that INFO(7) +nrhs*NDF=k,*LENBUF(1) and
INFO (8) = k,*LENBUF (2) with k , , k, 2 1 as small as available space permits (INFO (7 and INFO (8) as output
from the final call MA62J/JD). LENBUF is not changed by the routine. Restrictions: LENBUF (I) > 0, I =1, 2.

HSL Release 13 (1998) MA62 3

MA62 HSL Release 13 (1998)

ICNTL is an INTEGER array o f length 15 that must be set by the user to hold control parameters. Default values are set
by the call to MA62I/ID. Details of the control parameters are given in Section 2.2.1. ICNTL (I), I = 1, 2, 3, 4,
6, and 8, are accessed by the routine. This argument is not changed by the routine. Restrictions: ICNTL (3) > 0
and ICNTL (4) > 0.

ISAVE is an INTEGER array o f length 50 that is used to hold parameters that must be unchanged between calls to
routines in the MA62 package. This argument is changed by the routine.

INFO is an INTEGER array o f length 3 0 that need not be set by the user. On successful exit, INFO (1) is set to 0.
Negative values o f INFO (1) indicate a fatal error has been detected (see Section 2.3). If an error is detected,
INFO (2) holds additional information concerning the error. INFO (I), I 2 3. are not accessed by the routine.

2.1.5 To factorize A and optionally solve AX = B

exactly the same order as when MA62A/AD and MA62J/JD were called.
A call o f the following form must be made for each element. The elements must have the same index lists and be in

Note that all the calls to MA62J/JD for a particular problem must be completed before calling MA62B/BD.

The single precision version

CALL MA62B(WAR, IVAR,NDF, LAST, LAVAR,AVAR,NRHS, RHS, LX,X,
* LENBUF,LW,W,LIW, IW, ICNTL,CNTL, ISAVE,INFO,RINFO)

The double precision version

CALL MA62BD(WAR,IVAR,NDF,LAST,LAVAR,AVAR,NRHS,RHS,LX,X,
* . LENBUF, LW, W, LIW, IW, ICNTL, CNTL, ISAVE, INFO, RINFO)

WAR, IVAR, NDF, LAST are as in the corresponding calls to MA62J/JD. NVAR and NDF are not changed by the routine.
On exit, the data in IVAR may have been permuted. Between calls to MA62B/BD, LAST is used as workspace and
will be changed but on exit from the final call (or on an error return). LAST will have been restored to its original
value.

LAVAR is an INTEGER variable that must be set by the user to the first dimension o f the arrays AVAR and RHS. LAVAR
must be unchanged between calls to MA62B/BD. This argument is not changed by the routine. Restriction:

AVAR is a REAL (DOUBLE PRECISION in the D version) array of dimensions LAVAR by WAR. On entry, AVAR (I, J)
must contain the contribution to entry (IVAR (I), IVAR (J)) in the matrix A from the current element (1, J = 1,
2, ..., NVAR, J2I). Contributions to the same entry from different elements are summed. This argument is
changed by the routine.

NRHS is an INTEGER variable that must be set by the user to the number o f right-hand sides and must not be changed
between calls to MA62B/BD. If the user does not wish to solve for any right-hand sides, NRHS should be set to 0.
This argument is not changed by the routine. Restriction: NRHS 2 0.

RHS is a REAL (DOUBLE PRECISION in the D version) array with leading dimension LAVAR. If NRHS= 0, this array is
not accessed. Otherwise on entry, the first NRHS columns of RHS must be set by the user so that RHS (I, J)
contains the contribution to component IVAR (I) of the J-th right-hand side from the current element (I = 1,
2, ..., NVAR, J = 1, 2, ..., NRHS). Contributions to the same component from different elements are summed. This
argument is changed by the routine.

is an INTEGER variable that must be set by the user to the first dimension o f the array X. This argument is not
changed by the routine. Restriction: If NRHS 11, LX~NDF.

is a REAL (DOUBLE PRECISION in the D version) array with leading dimension LX that need not be set by the
user. If NRHS = 0, this array is not accessed. Otherwise, the second dimension of X must be at least NRHS and, on
successful exit from the final call to MA62B/BD, if I has been used to index a variable, X(1, J) holds the
solution for variable I to system J and is set to zero otherwise (1=1,2, ..., NDF, J=1,2, ..., NRHS).

LENBUF is an INTEGER array o f length 2. If the user is using direct access files, LENBUF must be unchanged since the
call to MA62P/PD. Otherwise, LENBUF (1) must be set by the user to the length, in REAL (DOUBLE PRECISION in
the D version) words, o f the file for the reals in the factors (including the corresponding right-hand sides) and
LENBUF (2 must be set by the user to the length, in INTEGER words, o f the file for the indices of the variables
in the factors. This array must not be changed between calls to MA62B/BD. This argument is not changed by the
routine. Restriction: If direct access files are not being used, LENBUF(1) 2INFO(7) +NDF*NRHS,
LENBUF (2) 2 INFO (8) (INFO (7) and INFO (8) as output from the last call to MA62 J/JD).

LAVAR 2 NVAR.

LX

X

4 MA62 HSL Release 13 (1998)

HSL Release 13 (1998) MA62

LW is an INTEGER variable that must be set by the user to the dimension'of array W. It must be unchanged between
calls to MA62B/BD. This argument is not changed by the routine. Restriction: LW2 LENBUF(1) +
INFO(6) * (NRHS + INFO(6)) + 3 (INFO (6) as output from the last call to MA62J/JD).

is a REAL (DOUBLE PRECISION in the D version) array of length LW that is used as workspace by MA62B/BD.
This array must be unchanged between calls to MA62B/BD. If direct access files are not being used (MA62P/PD
not called), the first LENBUF (1) + 3 entries of W must be unchanged between the last call to MA62B/BD and any
subsequent calls to MA62C/CD.

LIW is an INTEGER variable that must be set by the user to the dimension of array IW. It must not be changed
between calls to MA62B/BD. This argument is not changed by the routine. Restriction: LIW2 LENBUF (2)
+ 3 * 1 ~ ~ 0 (6) (INFO(6) as output from the last call to MA62J/JD).

is an INTEGER array of length LIW that is used as workspace by MA62B/BD. This array must be unchanged
between calls to MA62B/BD. If direct access files are not being used (MA62P/PD not called), the first LENBUF (2)
entries of IW must be unchanged between the final call to MA62B/BD and any subsequent calls to MA62C/CD.

IcNTL is an INTEGER array of length 15 that must be set by the user to hold control parameters. Default values are set
by the call to MA62I/ID. Details o f the control parameters are given in Section 2.2.1. ICNTL(5) must be
unchanged since calling MA62J/JD. ICNTL(1). I = 1, 2, 5 , 7, 8, and 9 are accessed by the routine. This
argument is not changed by the routine.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 5 that must be set by the user to hold control
parameters. Default values are set by the call to MA621/ID. Details of the control parameters are given in
Section 2.2.1. Only CNTL (1) is accessed by the routine. This argument is not changed by the routine.

ISAVE is an INTEGER array of length 50 that is used to hold parameters that must be unchanged between calls to
routines in the MA62 package. This argument is changed by the routine.

INFO is an INTEGER array of length 20 that need not be set by the user. On successful exit, INFO (1) is set to 0.
Negative values indicate a fatal error. For nonzero values of INFO (1) , see Section 2.3. For details of the
information contained in the other components of INFO, see Section 2.2.2.

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 10 that need not be set by the user. For details
of the information contained in RINFO, see Section 2.2.2.

w

IW

2.1.6 To solve further systems AX = B

The single precision version

CALL MA62C(NRHS,LX,B,X,LW,W,LIW,IW,ICNTL,ISAVE,INFO)

The double precision version

CALL MA62CD (NRHS, LX, B, X, LW, W, LIW, IW, ICNTL, ISAVE, INFO)

NRHS is an INTEGER variable that must be set by the user to the number of systems which are to be solved. This

LX

B

X

LW

W

LIW

argument is not changed by the routine. Restriction: NRHS 2 1.

is an INTEGER variable that must be set by the user to the first dimension of the arrays B and X. This argument
is not changed by the routine. Restriction: LX 2NDF (NDF as output from the final call to MA62A/AD).

is a REAL (DOUBLE PRECISION in the D version) array of dimensions LX by NRHS that must be set by the user so
that if I has been used to index a variable, B (I, J). is the corresponding component of the right-hand side for the
J-th system (J=1,2, ..., NRHS). This argument is changed by the routine.

is a REAL (DOUBLE PRECISION in the D version) &ay of dimension LX by NRHS that need not be set by the user.
On exit, if I has been used to index a variable, X (I, J) holds the solution for variable I to system J and is set to
zero otherwise (J=1,2 ,..., NRHS).
is an INTEGER variable that must be set by the user to the dimension of the array W. A sufficient value for LW is
Ll+L2, where L1 = LENBUF (1) +NRHS*INF0(6). If direct access files are not being used (MA62P/PD was not
called), L2 = 3 , otherwise, L2 = INFO (6) *INFO (6). This argument is not changed by the routine. Restriction:
LW2 L1+ L2.

is a REAL (DOUBLE PRECISION in the D version) array of length Lw. If direct access files are not being used
(MA62P/PD was not called), the first LENBUF(1) + 3 entries of w must be unchanged since the last call to
MA62B/BD and these entries are unchanged by MA62C/CD. Otherwise, w is used by MA62C/CD as workspace.

is an INTEGER variable that must be set by the user to the dimension of the array IW. If direct access files are not

HSL Release 13 (1998) MA62 ?

MA62 HSL Release 13 (1998)

being used (MA62P/PD was not called), LIW must be at least ~1 = LENBUF (2). Otherwise, LIW must be at least
L1 = LENBUF (2 1 + INFO (6 + 4. This argument is not changed by the routine. Restriction: LIW2 L1.

is an INTEGER array of length LIW. If direct access files are not being used (MA62P/PD was not called), the first
LENBUF (2) entries of IW must be unchanged since the last call to MA62B/BD and these entries are unchanged by
MA62C/CD. Otherwise, IW is used by MA62C/CD as workspace.

ICNTL is an INTEGER array of length 15 that must be set by the user to hold control parameters. Default values are set
by the call to MA62I/ID. Details of the control parameters are given in Section 2.2.1. ICNTL (I), I = 1, 2, and
8, are accessed by the routine. This argument is not changed by the routine.

ISAVE is an INTEGER array of length 50 that is used to hold parameters that must be unchanged between calls to
routines in the MA62 package. This argument is changed by the routine.

INFO is an INTEGER array of length 3 0 that need not be set by the user. On successful exit, INFO(1) is set to 0.
Negative values of INFO (1) indicate a fatal error has been detected (see Section 2.3). If an error is detected,
INFO (2) holds additional information concerning the error. INFO (I), I 2 3, are not accessed by the routine.

IW

2.2 Arrays for control and information

2.2.1 Control parameters

The elements of the arrays ICNTL and CNTL control the action of MA62A/AD, MA62J/JD, MA62P/PD, MA62B/BD, and
MA62C/CD. Default values are set by MA62I/ID.

ICNTL(1) is the stream number for error messages and has the default value 6. Printing o f error messages is

ICNTL (2) is the stream number for warning messages and diagnostic printing. It has the default value 6. Printing of

ICNTL (3) is the number of bytes for a real word. ICNTL (3) has the default value 4 (8 for the D version).

ICNTL (4) is the number of bytes for an integer word. ICNTL (4) has the default value 4.

ICNTL (5) has the default value 16. I C m L (5) controls the minimum number o f variables which are eliminated at
any one stage (except the last stage, when fewer than ICNTL (5) variables may remain). ICNTL (5 1 is only
accessed on the first call to MA62J/JD and the first call to MA62B/BD. The value of ICNTL (5) on the first call to
MA62B/BD should be the same as on the first call to MA62J/JD. Increasing ICNTL(5) in general increases the
number of floating-point operations and real storage requirements but allows greater advantage to be taken of
Level 3 BLAS.

ICNTL (6) has the default value 0. If it is set to a value other than 0, the user must supply names for the direct access
data sets in the parameter FILNAM when calling MA62P/PD.

ICNTL (7) is the block size for the numerical factorization of the frontal matrix. It controls the trade-off between
Level 2 and Level 3 BLAS. If ICNTL(7) = 1, Level 2 BLAS is used to form the Schur complement. If
ICNTL(7) 21, the Level 3 BLAS routine -GEMM is used with internal dimension ICNTL(7). Increasing
ICNTL (7) increases the number of flops since symmetry is not exploited as well. The optimal value for
ICNTL (7) depends on the computer being used. A value of ICNTL (7) less than one is treated as one and, if at
some stage of the factorization, ICNTL (7) has a value which is larger than the current front size, ICNTL (7 is
treated as the front size. Typical range: 16 to 64. Default value: 16.

Possible values are:

suppressed if ICNTL (1) < 0.

such messages is suppressed if ICNTL (2) < 0.

ICNTL (8) is used to control the printing of error, warning, and diagnostic messages in MA62. It has default value 2.

0 No messages are output.

1 Only error messages are output.

2 Error and warning messages output.

3 As for 2, plus scalar parameters, arrays of length 2, and the control parameters on the first entry to

4 As for 3 , plus INFO(1, (I = 1, 2, ..., 8) on exit from final call to MA62J/JD, and the arrays INFO and

ICNTL (9) controls whether or not zeros within the frontal matrix are exploited. If ICNTL (9) = 0. the frontal matrix
is treated as a dense matrix and zeros within the front are ignored. If ICNTL (9) = 1, the code will look for zeros

M?i62A/AD, MA62J/JD, MA62P/PD, and MA62B/BD. and scalar parameters on entry to MA62C/CD.

RINFO on on exit from final call to MA62B/BD.

6 MA62 HSL Release 13 (1998)

occurring within the frontal matrix and will try to avoid unnecessary operations using zeros. This option can
increase the amount o f data movement but can also give worthwhile savings in the computation and in the
number o f entries in the factors i f some variables are involved in only a few elements and these elements are
well separated in the element order. The default value is 1.

ICNTL (10) to ICNTL (1 5) are currently not used but may be used in a later release of the code.

CNTL (1) has the default value zero. If, during the factorization, the absolute value o f any pivot is less than or equal to
CNTL (1). the computation terminates and the matrix is declared to be not positive definite (see INFO (1) =
-12).

CNTL (2) to CNTL (5) are currently not used but may be used in a later release o f the code.

2.2.2 Information arrays

The entries o f the arrays INFO and RINFO provide information on the action o f MA62A/AD, MA62J/JD, MA62P/PD,
MA62B/BD, and MA62C/CD.

INFO (1) is used as an error flag. If a call to a routine in the MA62 package is SuccessfuI, on exit INFO (1) has value 0.
A negative value o f INFO (1) indicates an error has been detected and a value greater than zero indicates a
warning has been issued (see Section 2.3). If an error is detected during a call to MA62J/JD, the information
contained in INFO (I), 3 I I I 8 will be incomplete. Likewise, if an error is detected during a call to MA62B/BD,
the information contained in INFO (I)., I 2 9 and in RINFO will be incomplete.

INFO (2) holds additional information concerning the error (see Section 2.3).

INFO (3) holds, on successful exit from the final call to MA62J/JD, the total number o f variables in the problem.

INFO (4) holds, on successful exit from the final call to MA62J/JD, the number o f static condensation variables (a

INFO (5) holds, on successful exit from the final call to MA62J/JD, the largest number o f variables eliminated at a

INFO (6) holds, on successful exit from the final call to MA62J/JD, the maximum front size.

INFO (7) holds, on successful exit from the final call to MA62 J/ JD, the length in REAL (DOUBLE PRECISION in the D
version) words of the file required by the numerical factorization for the reals in the factors (no allowance is
made for right-hand sides).

INFO (8) holds, on successful exit from the final call to MA62 J/ JD, the length in INTEGER words o f the file required
by the numerical factorization for the indices o f the variables in the factors.

INFO (9) holds, on successful exit from the final call to MA62B/BD, the number o f negative pivots.

INFO (10) holds, on successful exit from the final call to MA62B/BD, the number of buffers used for the reals in the
factors.

INFO (11) holds, on successful exit from the final call to MA62B/BD, the number o f buffers used for the indices o f the
variables in the factors.

INFO (12) holds, on successful exit from the final call to MA62B/BD, the maximum number o f buffers required to
hold the reals in a block of pivot, rows,

INFO (13 holds, on successful exit from the final call to MA62B/BD. the maximum number o f buffers required to
hold the indices o f the variables in a block of pivot rows.

INFO (14 holds, on successful exit from the final call to MA62B/BD, the length in REAL (DOUBLE PRECISION in the D
version) words of the file actually used during the factorization for the reals in the factors and the corresponding
right-hand sides. If NRHS = 0 and ICNTL (9) = 0, INFO (1 4) = INFO (7).

INFO(15) holds, on successful exit from the final call to MA62B/BD, the number o f entries in the factors that have
value zero. If there a large number o f zeros in the factors and zeros in the front have not been exploited
(ICNTL (9) = 0), the user should either set ICNTL (9) = 1 or reorder the elements.

INFO (16 holds, on successful exit from the final call to MA62B/BD, the number o f entries (including zero entries)
stored in the factors. If zeros in the front are not exploited (ICNTL (9) = 0), INFO (16) = INFO (7) .

INFO (17 holds, on successful exit from the final call to MA62B/BD, the number o f integers actually used during the
factorization to store the factors. If zeros in the front are not exploited (ICNTL (9 1 = 0), INFO (1 7) = INFO (8).

INFO (18) to INFO (3 0) are currently not used but may be used in a later release of the code.

static condensation variable is one which appears in only one element).

single stage (that is, the maximum order o f a pivot block).

HSL Release 13 (1998) MA62 7

MA62 HSL Release 13 (1998)

RINFO (1) holds, on successful exit from the final call to MA62B/BD, the natural logarithm of the modulus of the

RINFO (2) holds, on successful exit from the final call to MA62B/BD, the number o f floating-point operations to

RINFO (3) holds, on successful exit from the final call to MA62B/BD. the root-mean-squared front size.

RINFO (4) to RINFO (10) are currently not used but may be used in a later release o f the code.

2.3 Error diagnostics

On successful completion, the subroutines in the MA62 package will exit with the parameter INFO (1) set to 0. Other
values for INFO (1) and the reasons for them are given below.

A negative value for INFO(1) is associated with a fatal error. If ICNTL(8) > O and ICNTL(1) >0, a
self-explanatory message is, in each case, output on unit ICrnL(1) (see Section 2.2.1). The negative values for
INFO (1) are:

determinant o f the matrix A.

perform the factorization. This count includes operations performed during static condensation.

-1 LENLST~ 0 on entry to MA62A/AD. (MA62A/AD first entry only).

-2 NVARIO in the current element. (MA62A/AD, MA62J/JD, and MA62B/BD entries). This error is also returned if
W A R is greater than LAVAR (MA62B/BD entries only).

-3 A index of a variable in the current element is out o f range. INFO(~) holds the index which is out o f range.
(MA62A/AD, MA62J/JD. and MA62B/BD entries).

4 Duplicate occurrences o f the same variable index found in the current element. INFO (2) holds the duplicated
index. (MA62A/AD entries only).

-5 NRHS 2 1 and the defined first dimension LX of the array x (and the array B) is less than NDF as output from the
final call to MA62A/AD. INFO (2) holds the value o f NDF output from MA62A/AD. (MA62B/BD first entry only and
MA62C/CD entry).

-6 Defined length LW of the real workspace array w violates the restrictions on LW. LW must be increased to at least
INFO (2). (MA62B/BD first entry only and MA62C/CD entry).

-7 Defined length LIW of the integer workspace array IW violates the restrictions on LIW. LIW must be increased to
at least INFO (2 1. (MA62B/BD first entry only and MA62C/CD entry).

-8 MA62J/JD has been called without MA62A/AD having been called. (MA62J/JD first entry only).

-9 The number of right-hand sides NRHS is out of range. Either NRHS c 0 (MA62B/BD first entry only) or NRHS < 1
(MA62C/CD entry). This error is also returned if the user has changed the number o f right-hand sides between
calls to MA62B/BD. If this error is returned by MA62B/BD, INFO (2) holds the value of NRHS on the first call to
MA6 2B / BD.

-10 The order o f the elements or one or more o f the elements themselves has been changed since the calls to
MA62J/JD. (MA62B/BD entries only).

-1 1 A variable appears again after it has been fully summed (this happens i f an index list for an element has been
changed since MA62A/AD was called, or the order o f the elements has been changed, or more elements have
been entered than were entered to MA62A/AD). INFo(2) holds the index o f the fully summed variable.
(MA62J/JD and MA62B/BD entries).

-12 Attempt to use pivot of absolute value less than or equal to c~JTL (1) . INFO (2) holds the call on which this error
was encountered. (MA62B/BD entries only).

-13 The value o f NDF has been changed since the final call to MA62A/AD. INFO (2) holds the value o f NDF output
from MA62A/AD. (MA62J/JD and MA62B/BD first entries only).

-14 The number of calls made to MA62J/JD was different from the number o f calls made to MA62A/AD. This error is
also returned if MA62B/BD is called without MA62J/JD being called. INFO (2) holds the number o f calls made to
MA62J/JD. (MA62B/BD first entry only).

-15 LENBUF (1) or LENBUF (2) violates the restrictions on it.
LENBUF(1) 10 ,1=10r2 . (MA62P/PDentryonly) ,or
LENBUF (1) < INFO (7) + NDF*NRHS, or LENBUF (2) < INFO (8). (MA62B/BD first entry Only, direct

LENBUF(I), I = 1 or 2, has been changed between the call to MA62P/PD and the first call to
access files not in use), or

MA6 2B / BD.

8 MA62 HSL Release 13 (1 998)

HSL Release 13 (1998)

-16 ISTRM(l)=ISTRM(2) or ISTRM(I), I = 1 or 2, lies out o f range, or is equal to 6, ICNTL(1). or ICNTL(2).
(MA62P/PD entry only).

-17 Error encountered in Fortran OPEN statement. INFO (2) holds the IOSTAT parameter (the IOSTAT parameter is a
parameter which, after an inpudoutput operation is completed, is set to zero i f no error was detected and to a
positive integer otherwise). (MA62P/PD entry only).

-18 ICNTL (I) 5 0 for I = 3 or 4. (MA62P/PD entry only).

-19 Error detected when reading a direct access file. INFO(2) holds the IOSTAT parameter. (MA62B/BD and

-20 Error detected when writing to a direct access file. INFO (2) holds the IOSTAT parameter (MA62B/BD entries

Warning messages are associated with a positive value for INFO (1) . If ICNTL (8) > 1 and ICNTL (2) > 0, a

+1 On entry to MA62J/JD, ICNTL (5) is less than or equal to zero. The default value 16 is used. (MA62J/JD first
entry only).

+2 On entry to MA62B/BD, ICNTL (5) is not equal to the value used by MA62J/JD. The value used by MA62J/JD is
used. (MA62B/BD first entry only).

+3 On entry to MA62B/BD or MA62C/CD, ICNTL (1) (or ICNTL (2)) has a value equal to ISTRM (1) or ISTRM (2) .
The default value 6 is used. (MA62B/BD first entry only and MA62C/CD entry). This warning can only be issued
if MA62P/PD has been called.

MA6 2c /CD entries).

only).

self-explanatory message is, in each case, output on unit ICNTL (2) (see Section 2.2.1). The warnings are:

3 GENERAL INFORMATION
Use of common: None.

Other routines called directly: The BLAS routines SAXPY/DAXPY, SGER/M;ER, SGEMV/DGEMV,
STPSV/DTPSV, STRSV/DTRSV, SGEMM/DGEMM, STRSM/DTRSM. Subroutines internal to the package are
MA62D/DD, MA62E/ED, MA62F/FD, MA62G/GD, MA62H/HD, MA62L/LD, MA62M/MD, MA62N/ND,
MA620/OD.

Workspace: Workspace is provided by the arrays:
W(LW) (MA62B/BD and MA62C/CD).
IW (LIW) (MA62B/BD, and MA62C/CD).
LAST (NDF) is used locally as workspace (MA62B/BD only).
ISAVE (50) is a work array that must be unchanged between calls to routines in the MA62 package.

In the event o f errors, diagnostic messages are printed. The output streams for these messages
are controlled by the variables ICNTL (1) and ICNTL (2 1, and the level o f printing is controlled by
ICNTL (8) (see Section 2.2.1). Stream ICNTL (1) is used for error messages (INFO (1) < 0) and stream
ICNTL (2) for warnings (INFO (1) > 0) and diagnostic printing.

InpuVoutput:

Restrictions:

MA6 2AIAD:

NVAR21.

LENLST 2 1.

lIIVAR(1) SLENLSTandIVAR(1) #IVAR(J), I, J,=l, 2, ..., NVAR.
MA62J/ JD:

NVAR21.

lSIVAR(1) SNDF, I = 1, 2, ..., NVAR.
MA62 P/ PD:

ISTRM (1) and ISTRM (2) lie in the range [l, 991 and do not equal 6, ICNTL (1 1, or ICNTL (2) .
ISTRM (1) # ISTRM (2) .
ICNTL(1) >O, I = 3, 4.

LENBUF (I) > 0, I = 1, 2.

HSL Release 13 (1998) MA62 9

MA62 HSL Release 13 (1998)

MA62 B/ BD:

NVAR21.

lIIVAR(1) INDF, I = 1.2, ..., NVAR.

LAVAR 2 NVAR.

NRHs20.

IfNRHS2l.LX2NDF.

If MA62P/PD is not called, LENBUF(1) 2INF0(7)+NDF*NRHS, LENBUF(2) 2INFO(8).

LW2 LENBUF(1) + INFO(6) (INFO(6) + NRHS) + 3
LIW2 LENBUF(2) + 3*INF0(6).

MA62C/CD:

NRHS11.

LX 2 NDF.

If MA62P/PD is not called,
LW1 LENBUF(1) +INFO(6)*NRHS+3
LIW1 LENBUF(2) + INFO(6) + 4

LW1 LENBUF (1) + INFO(6) *(INFO(6) + NRHS).
LIW2LENBUF(2).

otherwise,

4 METHOD
The method used is a modification of the unsymmetric frontal code of Duff and Scott (1993, 1996).

The elements are assembled into an in-core frontal matrix one at a time. A variable which has appeared for the last
time (i.e. does not occur in future elements) is fully summed and is used as a pivot in Gaussian elimination, provided
it is of absolute value at least CNTL (1) and there are at least ICNTL (5) fully summed variables. Once all possible
eliminations for the current element have been performed, the pivot columns are written to in-core buffers and later, if
requested, to direct access files. To prevent the amount of in-core memory required becoming too large, the user
should order the elements so that the same variable does not occur in elements that are widely apart in the ordering.
Thus, for example, in a problem with a narrow pipe geometry, the elements should be ordered across the cross-section
of the pipe rather than along its length. An efficient element ordering can be obtained using the Hanvell Subroutine
Library routine MC43.

References.

Duff, I.S. and Scott, J.A. (1993). MA42 - A new frontal code for solving sparse unsymmetric systems. Report
RAL-93-064, Rutherford Appleton Laboratory.

Duff, I.S. and Scott, J.A. (1996). The design of a new frontal code for solving sparse unsymmetric systems. ACM
Trans. Math. So*., 22, 30-45.

Duff, I.S. and Scott, J.A. (1997). MA62 - A frontal code for sparse positive-definite symmetric systems. Technical
Report RAL-TR-97-012, Rutherford Appleton Laboratory.

5 EXAMPLE OF USE

We give an example of the code required to solve a set of symmetric finite-element equations using the MA62
package. The example illustrates the full calling sequence for the MA62 package. In this example, we wish to solve
AX=B. We supply one right-hand side with the elements and then use MA62C/CD to solve for a further two right-hand
sides. Direct access files are used to hold the factors.

We wish to solve the following simple finite-element problem in which the finite-element mesh comprises four
4-noded quadrilateral elements with one degree of freedom at each node i, 1 I i I 6 (the nodes 7,8, and 9 are assumed
constrained).

10 MA62 HSL Release 13 (1998)

HSL Release 13 (1998) MA62

The four element matrices A"' (1 I k 14) are

5 4(2. 1. 7. l * 1 5 (3 * 6 2. 8.

4 4. 3. 2. 3.
5 3. 1. 3. 2.
1 2. 3. 6. 1.
2 0 3. 2. 1. 5.

5 2. 1. 8. 3.
6 1. 3. 2. 2.
2 8. 2. 2. 5. '
3 0 3. 2. 5. 4.

where the variable indices are indicated by the integers before each matrix (columns are identified symmetrically to
rows). The corresponding element vectors b(') (1 5 k 5 4) are

(i :) (fo.) (K:) 11.

The following program is used to solve this problem. In this program, we read the element data into arrays ELTPTR
(location o f first entry o f element), ELTVAR (variable indices), VALUE (numerical values), and RHSVAL (right-hand
sides). This method of storing the element data is used here for illustrative purposes; the user may prefer, for example,
to read in the element data from a direct access file.

C Example to illustrate the use of MA62.
C
C . . Parameters . .

INTEGER MAXE,LIWMAX,LRHS,NZMAX,MELT,LENLST,LWMAX,MAXVL,MAXRVL,

PARAMETER (MAXE=4,LIWMAX=12O,LRHS=2,NZMAX=3O,MELT=4,LENLST=6,
+ NFMAX , NDFMAX

+ LWMAX=12 0, MAxvL=3 0 I MAXRVL=15 , NFMAX=6, NDFMAX=9)
C . .
C . . Local Scalars . .

INTEGER I,IELT,J,JSTRT,K,KSTRT,LIW,LW,LX,NDF,NELT,NFRONT,LAVAR,
t NRHS , WAR, NZ , RHSCRD, VALCRD

C . .
C . . Local Arrays . .

DOUBLE PRECISION AVAR(MAXE,MAXE),B(NDFMAX,LRHS),CNTL(S),
+ RHS (W E , LRHS) , RHSVAL (MAXRVL) , RINFO (10) ,
+

+ INFO(20) ,ISAVE(50),ISTRM(2),IVAR(MAXE),IW(LIWMAX),
+ LAST(LENLST),LENBUF(2)

VALUE (MAXVL) , W (LWMAX) , X (NDFMAX, LRHS)
INTEGER ELTPTR(MELT+l),ELTVAR(NZMAX),ICNTL(15),

CHARACTER FILNAM (2) * 6 0
C . .
C . . External Subroutines . .

EXTERNAL MA62AD, MA62BD, MA62CD, MA62 ID, MA62 JD, MA62 PD
C . .
C
C*** Call to MA62ID

CALL MA62ID(ICNTL,CNTL,ISAVE)

C Read in the element data.
C NELT is number of elements.
C ELTVAR contains lists of the variables belonging to the finite
C elements, with those for element 1 preceding those for element
C 2, and so on. ELTPTR points to the position in ELTVAR
C of the first variable in element I. NZ is the total number
C of entries in the element lists.

READ (5,FMT=*) NELT
READ (5, FMT=*)

READ (5,FMT=*) (ELTVAR(1) ,I=l,NZ)

(ELTPTR (I) , 1=1 , NELT+l)
NZ = ELTPTR(NELT+l) - 1

HSL Release 13 (1998) MA62 11

MA62 HSL Release 13 (1998)

C Calls to MA62AD to establish when each variable is fully assembled
DO 20 IELT = 1,NELT

NVAR = ELTPTR(IELT+l) - ELTPTR(1ELT)
JSTRT = ELTPTR(1ELT)
DO 10 J = 1,NVAR

IVAR(J) = ELTVAR(JSTRT+J-1)
10 CONTINUE

C*** Call to MA62AD
CALL MA62AD(NVAR,IVAR,NDF,LAST,LENLST,ICNTL,ISAVE,INFO)
IF (INFO(l).LT.O) GO TO 100

20 CONTINUE

C Calls to MA62JD to determine file sizes
DO 40 IELT = 1,NELT

WAR = ELTPTR(IELT+l) - ELTPTR(1ELT)
JSTRT = ELTPTR(1ELT)
DO 30 J = 1,NVAR

IVAR(J) = ELTVAR(JSTRT+J-1)
30 CONTINUE

C*** Call to MA62JD
CALL MA62JD(NVAR,IVAR,NDF,LAST,ICNTL,ISAVE,INFO)
IF (INFO(l).LT.O) GO TO 100

40 CONTINUE

C Call to MA62PD to open direct access data sets.
C Choose stream numbers and file sizes.

ISTRM(1) = 8
ISTRM(2) = 9
LENBUF(1) = 30
LENBUF(2) = 30

CALL MA62PD(ISTRM,FILNAM,LENBUF,ICNTL,ISAVE,INFO)
IF (INFO(l).LT.O) GO TO 100

C*** Call to MA62PD

C VALCRD is the number of numerical values to be input.
C VALUE contains lists of the numerical values in the element
C matrices, with element 1 preceding element 2, and so on.
C Since the element matrices are symmetric only the upper
C triangular part is stored.

READ (5,FMT=*) VALCRD
READ (5,FMT=*) (VALUE(1) ,I=l,VALCRD)

C
C RHSCRD is the number of right-hand side numerical values to
C be input.
C RHSVAL contains lists of the right-hand side numerical values
C corresponding to each of the elements in order.
C

READ (5,FMT=*) RHSCRD
READ (5, FMT=*) (RHSVAL (I) , 1=1 , RHSCRD)

C
C Prepare to call MA62BD.

LAVAR = MAXE
NRHS = 1
LX = NDFMAX
NFRONT = INFO (6)
LW = 3 + LENBUF(1) + NFRONT* (NFRONT+NRHS)
LIW = LENBUF(2) + 3*NFRONT
IF (LW.GT.LWMAX .OR. LIW.GT.LIWMAX) GO TO 110

KSTRT = 1
DO 7 0 IELT = 1,NELT

C

NVAR = ELTPTR(IELT+l) - ELTPTR(1ELT)
JSTRT = ELTPTR (IELT)
DO 60 J = 1,NVAR

IVAR(J) = ELTVAR(JSTRT+J-1)
DO 50 K = J,NVAR

AVAR (J, K) = VALUE (KSTRT)
KSTRT = KSTRT + 1

50 CONTINUE
RHS (J, 1) = RHSVAL (JSTRT+J-1)

12 MA62 HSL Release 13 (1998)

HSL Release 13 (1998) MA62

60 CONTINUE
c*** Call to MA62BD

CALL MA62BD(NVAR,IVAR,NDF,LAST,LAVAR,AVAR,NRHS,RHS,LX,X,
+ LENBUF,LW,W,LIW,IW,ICNTL,CNTL,ISAVE,INFO,RINFO)

IF (INFO(l).LT.O) GO TO 100
70 CONTINUE

C
C Solution is in first NDF locations of X

C Now
C

80

WRITE (6, FMT=9000)
WRITE (6,FMT=9010) (X(1,l) ,I=l,NDF)
WRITE (6,FMT=9040) (INFO(1) ,1=1,14)

read in further right-hand sides

NRHS = 2
DO 80 J = 1,2

READ (S,FMT=*) (B(1,J) ,I=l,NDF)
CONTINUE
LW = LENBUF(1) + NFRONT* (NFRONT+NRHS)
LIW = LENBUF(2) + NFRONT + 4
IF (LW.GT.LWMAX .OR. LIW.GT.LIWMAX) GO TO 100

C*** Call to MA62CD
CALL MA62CD(NRHS,NDFMAX,B,X,LW,W,LIW,IW,ICNTL,ISAVE,INFO)
IF (INFO(l).LT.O) GO TO 100

C
C Solution for J-th right-hand side is in X(.,J), J=l,NRHS

DO 90 J =I 1,NRHS
WRITE (6, FMT=9060) J
WRITE (6,FMT=9010) (X(1,J) ,I=l,NDF)

90 CONTINUE
GO TO 110

C Print appropriate fatal error diagnostic
100 WRITE (6,FMT=9020)

110 STOP
WRITE (6,FMT=9030) INFO(1)

C
9000 FORMAT (/3X,'The MA62BD solution is:')
9010 FORMAT (/6G12.4)
9020 FORMAT (/3X,'Error return')
9030 FORMAT (3X, 'INFO(1) = ' ,I3)
9040 FORMAT (/ ' INFO = ',/1415)
9060 FORMAT (/3X,'The solution for rhs number',I2,' is:')

END

The input data used for this problem is:

4
1 3 5 9 1 3
4 5 5 6 4 5 1 2 5 6 2 3

2 . 1 . 7 . 3 . 2 . 8 . 4 . 3 . 2 . 3 . 1 . 3 .
2 . 6 . 1 . 5 . 2 . 1 . 8 . 3 . 3 . 2 . 2 . 2 .
5. 4.

3. 8. 5 . 10. 12. 9. 12. 11. 14. 8. 17. 14.

26

12

-6. -4. 0. 3. -2. 8.
31. 104. 49. 52. 131. 91.

HSL Release 13 (1998) MA62 13

MA62 HSL Release 13 (1998)

This produces the following output:
The MA62BD solution is:

1.000 1.000 1.000

INFO =
0 0 6 2 3 5 1 9

The solution for rhs number 1 is:

-1.000 1.000 -1.000

The solution for rhs number 2 is:

1.000 2.000 3.000

1.000 1.000

33 25 1 2

1.000 -1.000

4.000 5.000

1.000

1 2 1

1.000

6.000

14 MA62 HSL Release 13 (1998)

