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1 INTRODUCTION 1 

1 Introduction 

In this report, we discuss the design and use of a code for the solution of the linear 
systems of equations 

A X = B  (1.1) 

where the n x n  matrix A is large, sparse, and symmetric. B is an n x n r h s  (nrhs 2 1) 
matrix of right-hand sides and X is the n x nrhs solution matrix. It is assumed that 
the matrix A is an elemental matrix, that is, it is a sum of finite-element matrices 

where each element matrix A(') has nonzeros only in a few rows and columns and 
corresponds to the matrix from element 1. The frontal method was originally 
developed by Irons (1970) for the solution of symmetric positive-definite systems 
which come from finite-element discretizations in structural analysis. However, it 
was later realised that the method could be extended and modified to be applicable 
to a far wider class of problems, including those for which A is any general 
unsymmetric matrix (see, for example, Hood, 1976, Duff, 1981). A frontal code 
for unsymmetric systems, MA32, was developed for the Harwell Subroutine Library 
(1996) by Duff (1981, 1983, 1984). This code was very widely used before being 
substantially restructured and improved by Duff and Scott (1993, 1996). The 
upgraded code, MA42, which has superseded MA32 in the Harwell Subroutine Library 
(HSL), is efficient on a wide range of modern computers and has been used to solve 
problems from many different application areas. 

From the feedback we have received from users, it is apparent that MA42 is 
frequently used to solve finite-element problems for which the system matrix A 
is symmetric and positive definite. However, apart from offering an option of 
restricting pivoting to the diagonal, MA42 does not exploit symmetry or positive 
definiteness and, as a result, the code is more expensive in terms of both storage 
requirements and operation counts than it need be for this class of problems. MA42 is 
also complicated by an option allowing the input of the assembled matrix A by rows. 
Our goal is to design and develop an efficient frontal code specifically for symmetric 
positive-definite elemental matrices. Our new code, MA62, is now available and will 
be included in the next release of the Harwell Subroutine Library. Details of how to 
obtain the code are given in Section 6. 

The outline of this report is as follows. In Section 2, we briefly review frontal 
schemes for symmetric positive-definite elemental matrices. The design of MA62, 
including the user interface, the internal data structures, and the use of high level 
BLAS, is discussed in Section 3. In Section 4, we illustrate the performance of 
the new code, and compare it with our general frontal code MA42 and with other 
Harwell Subroutine Library codes for the solution of symmetric positive-definite 
systems. Concluding comments are made in Section 5.  Specification Sheets for 
MA62 are given in the Appendix. 



2 FRONTAL SCHEMES 

2 Frontal schemes 

The frontal method is a variant o Gaussian elimination ant 
system (1.1), involves the matrix factorization 

~ 

2 

for the symmetric 

A = (PL)D(PL)*, (2.1) 

where P is permutation matrix, D is a diagonal matrix, and L is a unit lower 
triangular matrix. If A is a positive-definite matrix, the entries of D are positive. 
The solution process is completed by performing the forward elimination 

(PL)Z = B, (2.2) 

then the diagonal solution 

DY = Z, (2.3) 

followed by the back substitution 

(PL)*X = Y. (2-4) 

The main feature of the method is that the contributions A(') from the finite- 
elements (see (1.2)) are assembled one at a time and the construction of the 
assembled coefficient matrix A is avoided by interleaving assembly and elimination 
operations. An assembly operation is of the form 

where a(') is the (i,j)th nonzero entry of the element matrix A('). A variable is fully 
summed if it is involved in no further sums of the form (2.5) and is partially summed 
if it has appeared in at least one of the elements assembled so far but is not yet fully 
summed. The Gaussian elimination operation 

'? 

may be performed as soon as all the terms in the triple product in (2.6) are fully 
summed. At any stage during the assembly and elimination processes, the fully and 
partially summed variables are held in a dense matrix, termed the frontal matrix. 
The power of frontal schemes comes from the following observations: 

e since the frontal matrix is held as a dense matrix, dense linear algebra 
kernels, in particular, the Level 3 Basic Linear Algebra Subprograms (BLAS) 
(Dongarra, DuCroz, Duff and Hammarling, 1990), can be used during the 
numerical factorization. 

0 the matrix factors need not be held in-core, which allows large problems to be 
solved using only modest amounts of high-speed memory, 

The number of floating-point operations and the storage requirements for the 
frontal method are dependent on the size of the frontal matrix at each stage of the 
computation. Since the size of the frontal matrix increases when a variable appears 
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for the first time and decreases whenever a variable is eliminated, the order in which 
the element matrices are input is critical for the efficiency of the method. There 
has been considerable attention paid to the problem of automatically choosing a 
good ordering. Many of the proposed algorithms are similar to those for bandwidth 
reduction of assembled matrices (see, for example, Duff, Reid and Scott, 1989, and 
the references therein). To give the user the greatest flexibility in deciding how to 
order the elements, we have chosen not to incorporate element ordering within the 
MA62 package. However, the Harwell Subroutine Library routine MC43 (Duff et al., 
1989) can be used to preorder the elements for MA62. 

3 The software package MA62 

In this section, we describe the user interface to MA62, its internal data structures, 
and its use of BLAS kernels. We highlight how it has been possible to take advantage 
of symmetry and positive definiteness when designing the code. 

3.1 The user interface 
An initial decision when designing MA62 was that it should have a user interface 
which was similar to that of the unsymmetric frontal solver MA42. This was not 
only because we felt the flexibility of the reverse communication interface used by 
MA42 remained appropriate for the symmetric positive-definite case, but because we 
wanted to make it straightforward for a user who was familiar with MA42 to use MA62. 
The MA62 package has six entries which may be called directly by the user. Each 
of the subroutines are named according to the naming convention of the Harwell 
Subroutine Library, with the single precision version having names commencing 
with MA62 plus one more letter, and double precision versions with the additional 
sixth letter D. For simplicity, we will use the single precision names throughout this 
report. The user-callable entries are: 

Initialization : MA621 initializes the parameters which control the execution of the 
package. A single call must be made to MA621 before any other routines in the 
MA62 package are called. 

Prepass: MA62A determines in which element each variable appears for the last time 
and thus when a variable is fully summed and can be eliminated. MA62A must 
be called once for each element. 

Symbolic factorization : MA62J uses the information from MA62A to determine 
the amount of real and integer storage required for the factorization. MA62J 
must be called once for each element, in the same order as in the calls to 
MA62A. 

Direct access files : MA62P sets up direct access files for holding the matrix 
factors. Use of MA62P i s  optional. If direct access files are used, a single 
call to MA62P must be made. 
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Numerical factorization : MA62B uses the information generated by MA62A and 
MA62J in the factorization of the matrix (1.2) and, if element right-hand sides 
B(') are specified, MA62B solves the equations (1.1) with right-hand side(s) 
B = Er!.l B('). MA62B must be called once for each element, in the same order 
as in the calls to MA62A and MA62J. 

Solve : MA62C uses the factors produced by MA62B to rapidly solve for further right- 
hand sides. Use of MA62C is optional. If used, a single call to MA62C will solve 
for the number of right-hand sides specified by the user. 

We briefly discuss each of these subroutines. Full details of their argument lists 
and their calling sequences are given in the Specification Sheets (see Appendix). 

3.1.1 Initialization 

The user must make a single call to MA621 prior to calling any of the other routines 
in the MA62 package. MA621 assigns default values'to the control parameters held in 
the arrays ICNTL and CNTL. These parameters control, the action of the subroutines 
within the MA62 package. They include parameters to control the level of diagnostic 
printing and parameters which specify the number of bytes for a real and an integer 
word. Full details of the control parameters and their default values are included in 
the Specification Sheets. Should the user want a control parameter to have a value 
other than its default, the appropriate parameter should be reset after the call to 
MA62I. MA621 also initializes the array ISAVE, which is used to hold variables that 
must be preserved between calls to routines in the MA62 package but are unlikely to 
be of interest to the user. The array ISAVE is also used both to check the data input 
by the user and to ensure that the user ha.s called the routines in the MA62 package 
in the correct sequence. 

3.1.2 Prepass 

MA62A must be called for each element to specify the variable indices associated 
with it. This subroutine records, in the array LAST of length ndf (where ndf is the 
largest integer used to index a variable), the call at which each variable appears for 
the last time (becomes fully summed). This information must be passed unchanged 
to the symbolic factorization and numerical factorization subroutines (MA62 J and 
MA62B, respectively). The elements must be presented to the symbolic and numerical 
factorization routines in exactly the same order as to MA62A. 

3.1.3 Symbolic factorization 

One of the difficulties facing the user of a frontal code is the need to specify file sizes 
for the factors and the maximum front sizes required before the computation begins. 
A symbolic factorization works only with the variable indices associated with the 
elements and, by assuming each variable may be eliminated as soon as it is fully 
summed, it determines the maximum order of the frontal matrix and the file sizes 
needed for the factors. For general unsymmetric matrices, the need to incorporate 
pivoting means the statistics returned by the symbolic factorization are only lower 
bounds on the front size and file sizes actually needed. But for positive-definite 
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matrices a variable can always be eliminated once it is fully summed and, since the 
symbolic factorization is inexpensive, we decided to require the user to perform a 
symbolic factorization before the numerical factorization commences. The symbolic 
factorization is performed by calling the subroutine MA62J for each element in the 
same order as they were presented to MA62A. An entry in ISAVE is flagged so that a 
check can be made at the start of the numerical factorization that MA62J has been 
called. The real and the integer storage required by the factorization are returned 
to the user after the last element has been input in the information array INFO. If 
the user provides the numerical factorization with less space than that determined 
by MA62J, it can be detected immediately and the computation terminated with an 
error message. 

MA62 allows the user to specify (using the control parameter ICNTL(5)) the 
minimum number of pivots that will be selected at any stage. Delaying performing 
eliminations until the number of fully summed variables is at least ICNTL(5) 
(ICNTL(5) 2 1) increases the Level 3 BLAS component of the factorization (see 
Section 3.3), albeit at the cost of more floating-point operations, increased storage 
for the reals in the factor, and, in general, an increase in the maximum front size 
and consequently in the in-core storage required. Since the symbolic factorization 
is cheap to perform, the user may want to look at the effect on the maximum front 
size and the file sizes of different values of ICNTL(5) before starting the numerical 
factorization. MA62 has been designed so that this can be done in a straightforward 
way. Provided the user has performed a complete sequence of calls to MA62J, the user 
may reset ICNTL(5) and then repeat the sequence of calls to MA62J without making 
any further changes to the input parameters. Having chosen the minimum pivot 
block size, the calls to the numerical factorization routine MA62B must immediately 
follow a sequence of calls to MA62J with the same value of ICNTL(5). A component 
of ISAVE is used to check this. 

3.1.4 Direct access files 

A key feature of MA62 (and of MA42 and the earlier code MA32) is that it offers the 
user the option of holding the matrix factors in direct access files. MA62 optionally 
uses two direct access files, one for the reals in the factors and one for the indices of 
the variables in the factors. A single call to the subroutine MA62P sets up the direct 
access files. The user must specify the stream numbers for the direct access files and 
may optionally name the files. 

Corresponding to each direct access file is an in-core buffer (or workspace). 
Eliminations are performed during the numerical factorization whenever the number 
of fully summed variables KR is at least ICNTL(5). The eliminations generate KR 
columns of the matrix factor (PL)D. The columns are written to the real in-core 
buffer and each time columns are written, the following integer data is written (in 
order) to the integer buffer: 

1. The number of integers being written. 

2. The number KR of eliminations (that is, the number of columns being written 
to the real buffer). 

3. The current front size FRNT. 
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4. A list of the indices of the FRNT variables in the current front. 

5.  The number of integers being written. 

The number of integers is held as the first and last entry to allow the real and 
integer data to be scanned both in the order in which it is written and in reverse 
order. Reverse order is needed when performing the back substitution (2.4). Once 
either a buffer is full or all the elimination operations are complete, the contents 
of the buffer are output to the associated direct access file. Use of direct access 
files is unnecessary if there is sufficient in-core space for the factors. Numerical 
results given in Sections 4.5 and 4.6 show that, on some machines, the overheads 
which result from using direct access files can be considerable, particularly during 
the solve phase. 

We remark that the unsymmetric frontal code MA42 uses three direct access files 
since it stores the L and U factors of A separately. Moreover, since the unsymmetric 
code uses off-diagonal pivoting to maintain stability, it is necessary to hold both row 
and column indices of the variables in the frontal matrix. Therefore, in addition to 
the saving in real storage, if the minimum pivot block size ICNTL(5) is set to 1, 
MA62 uses approximately half the integer storage of MA42, and if ICNTL(5) > 1, the 
savings are even greater. This is illustrated in Table 4.12 in Section 4.5. 

3.1.5 

The numerical factorization subroutine MA62B accepts the element matrices A(') 
and, optionally, the corresponding element right-hand sides B('), one at  a time. 
Only the upper triangular part of A(') needs to be specified by the user but, to 
facilitate the assembly process, MA62B copies the upper triangular part into the 
lower triangle. If any variables in the incoming element are internal to the element, 
they are eliminated within the element and the columns of the matrix factor which 
are generated are written to the buffers before contributions from the remaining 
variables are assembled into the frontal matrix. These internal variables are termed 
static condensation variables and the number of such variables is returned to the 
user in the information array INFO at the end of the numerical factorization. As the 
element is being assembled, the number KR of variables in the front which are now 
fully summed is counted. If this number is at least as large as the control parameter 
ICNTL(5), KR eliminations are performed (see Section 3.3). Otherwise, as long as 
elements remain to be assembled, control is returned to the user for the next element 
to be input. 

Since the space required by the numerical factorization can not exceed that 
determined by the symbolic factorization, on the assumption that the user supplies 
consistent data (and using the array ISAVE we have incorporated many checks for 
this in the program), the only way MA62 can terminate before the factorization is 
complete is if the matrix A is found not to be positive definite. In MA62, each 
pivot candidate (that is, each fully summed variable) is checked to see that it is of 
absolute value at least as large as the control parameter CNTL(1) (with default value 
zero). If a pivot is found to be too small, an error flag is set and control returned 
to the user. Note that although the factorization will not proceed, it need not be 
the case that the matrix is singular. If a pivot is found to be negative, the matrix 

Numerical factorization and  optional solve 
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BUFR 

is not positive definite, but provided it is of absolute value at  least CNTL(l), the 
computation continues and the number of negative pivots is returned to the user in 
the information array INFO at the end of the computation. 

FA FRHS 

3.1.6 Further solves 

IBUFR 

In common with many other sparse direct codes, MA62 offers the option of solving 
for further right-hand side matrices B, without recalling the numerical factorization 
routine. On each call to the solve routine MA62C, the number of right-hand sides 
(columns of B) must be specified in nrhs. In contrast to MA62A, MA62J, and MA62B, 
there is no input by elements to MA62C and the right-hand sides must be input in 
assembled form. This gives MA62C a straightforward interface. In MA62, the forward 
elimination and diagonal solution ((2.2) and (2.3)) are combined. For the forward 
elimination, the real and integer data for the factors is read in the order in which it 
was written and, for the back substitution, the data is read in reverse order. When 
nrhs > 1, both the forward elimination and back substitution steps use -GEMM, the 
Level 3 BLAS matrix-matrix multiplication kernel (see Section 3.3). When there 
is only one right-hand side (nrhs = l), Level 2 BLAS are used. It should be 
noted that B, is involved in this matrix-matrix product and that -GEMM becomes 
more efficient with an increased number of columns in B. This is illustrated in 
Section 4.5 (Tables 4.13 to 4.15). 

LHED LPIV LASTFT 

3.2 Internal data structures 
The internal data structures used by MA62 are simplified and modified versions of 
those used by MA42 and, earlier, by MA32 (see Duff, 1981, for a detailed description 
of the internal arrays used by MA32). The user must supply both a real workspace 
array and an integer workspace array, which are subdivided as follows: 

We first discuss the real workspace. 

BUFR is the in-core buffer for the reals in the factor (PL)D. The length of BUFR 
is chosen by the user. On exit from the symbolic factorization, the required 
length of the file for the reals in the factor is given by INFO(7). If the user 
calls the numerical factorization MA62B with nrhs right-hand sides, the total 
real storage for the factors and the right-hand sides is INFO(7) + nrhs x ndf 
(ndf is the largest integer used to index a variable). If direct access files are 
not being used, BUFR must be at least this length. Otherwise, for efficiency, 
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BUFR should be chosen so that INFO(7) +nrhs x ndf = kl x BUFR with kl 2 1 as 
small as available space permits. After the eliminations following an element 
assembly, the columns of (PL)D which have been generated are written to 
BUFR (see Subsection 3.1.4). 

FA holds the current frontal matrix. On exit from the symbolic factorization, the 
maximum front size is given by INFO(3). The frontal matrix is held as a 
square matrix of order INFO (3) but only the data in the upper triangular part 
is meaningful. Storage for both upper and lower triangular parts is needed to 
permit the use of Level 3 BLAS (see Section 3.3). 

FRHS holds the right-hand sides corresponding to the current frontal matrix. FRHS 
is a matrix of size INFO(3) by nrhs,  where nrhs is the number of right-hand 
sides to be solved for at  the same time as the factorization. FRHS is not needed 
if nrhs = 0. 

We now turn our attention to the integer workspace. 

IBUFR is the in-core buffer for the integer data for the factors. The length of IBUFR 
is chosen by the user. On exit from the symbolic factorization, the required 
length of the file for the integer data is given by INFO(8). If direct access 
files are not being used, IBUFR must be at least this length. Otherwise, for 
efficiency, IBUFR should be chosen so that INFO(8) = k2 x IBUFR with k2 2 1 as 
small as available space permits. After the eliminations following an element 
assembly, the indices of the columns of (PL)D which have been generated by 
the eliminations are written to IBUFR (see Subsection 3.1.4). 

The remaining integer arrays LHED, LPIV, and LASTFT are each of length INFO(3) 
(the maximum frontsize). To discuss these arrays we need some terminology. The 
global index of a variable is the integer given to it by the user in the calls to the 
subroutines in the package (if the variables are numbered contiguously then the 
global index of a variable is its index in the assembled matrix A). The local index 
of a fully or partially summed variable refers to its location in the current frontal 
matrix. During the factorization, the array LAST (which was set by the prepass 
MA62A to hold the call at which each variable becomes fully summed) is used as 
workspace and it, together with the internal arrays LHED, LPIV, and LASTFT, are 
used to provide an efficient mapping between global and local indices as follows: 

LHED holds the global indices of the variables in the current frontal matrix. 

LPIV holds the local indices of the fully summed variables in the current frontal 
matrix. 

LAST is used to hold the local indices of the variables in the current frontal matrix. 
If the variable with global index JVAR is partially summed, its local index 
is -LAST(JVAR). Otherwise, LAST(JVAR) is the assembly step at which JVAR 
becomes fully summed. 
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LASTFT is used to hold the assembly step at which variables in the front become 
fully summed (the information which was originally held in LAST). For each 
partially summed variable JVAR in the front, LASTFT(-LAST(JVAR)) holds the 
assembly step at  which JVAR is fully summed. 

To summarize the use of LHED, LAST and LASTFT, suppose on the first call to MA42B 
that LAST( JVAR) = KELL. If, at some stage before the assembly of the element KELL, 
JVAR is partially summed with local index L, then LHED(L) = JVAR, LASTFT(L) = 
KELL, and LAST(JVAR) = -L. The use of LASTFT to hold information which was 
originally held in LAST avoids the use of a second array of length ndf. 

3.3 The use of high level BLAS 

In this section, we describe the use of the BLAS in performing both the numerical 
factorization and the forward elimination and back substitution steps. We first 
consider the factorization. After the assembly of an element, the frontal matrix can 
be written in the form 

where the submatrices FT and Fc are fully summed. Since the pivots may be picked 
from the diagonal of FT in order, we can compute the factorization 

where 

FL = Fc(DTF;,)-' (3-4) 

and the Schur complement P is given by 

Level 3 BLAS kernels can be used in computing FL and P. From (3.4) it follows 
that 

FLDT = FCF~E. (3.6) 

The Level 3 kernel -TRSM can be used to form FLDT and FE follows by diagonal 
scaling. If the number of fully summed variables is KR, the Level 3 kernel -GEMM 
with internal dimension KR may then be used to compute (3.5). However, since only 
the upper triangular part of e is needed, forming the whole of involves many 
unnecessary operations. With a front size of FRNT, the computation (3.5) requires 
2 * KR * (FRNT - KR)2 floating-point operations. We could form only the upper 
triangle of by updating each column using the Level 2 kernel -GEMV. This would 
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reduce the number of floating-point operations to KR * (FRNT - KR) * (FRNT - KR + 1) 
but the efficiency gains of using Level 3 BLAS would be lost. To take advantage 
of Level 3 BLAS while at the same time restricting the number of unnecessary 
operations, the columns of may be computed in blocks. Assuming a block size of 
NB with FRNT - KR = rn*NB then, using Fortran 90 section notation, 

%(1 : K,K - NB + 1 : K) = Fu(1 : K,K - NB + 1 : K) - 
(FLDT)(I:K,~ :KR)*Fi(l:KR,K-NB+l:K) (3.7) 

where K = K1 * NB, K1 = 1,2, . . . , m. The update (3.7) can be performed using -GEMM 
with interior dimension KR (the Level 2 kernel -GEMV is used if KR = 1). 

By increasing the minimum number of pivots that are selected at each stage (that 
is, by increasing the value of the control parameter ICNTL(5)), KR is increased and 
greater efficiency can be gained from using -GEMM to perform (3.7). This is discussed 
further by Cliffe, Duff and Scott (1997) (see also Tables 4.8 to 4.11 in Section 4.4). 

In MA62, the size of the blocks used in (3.7) is controlled by the parameter 
ICNTL(7). In general, FRNT - KR = (rn - 1). * ICNTL(7) +- r and the final block will 
have r columns. As a result of numerical experiments, we have chosen 16 as the 
default value for both ICNTL(5) and ICNTL(7). The effects of using different values 
are illustrated in Section 4.4. 

The other main use of high level BLAS is in the solution phase. The columns of 
PL corresponding to the KR variables eliminated at the same stage are 

We use direct addressing in the solution phase to exploit this block structure. At 
each stage of the forward elimination all the active components of the partial solution 
vector Y (where (PL)DY = B) are put into an array W = (Wl, Wz)T, with W1 
of dimension KR by nrhs  and W2 of dimension FRNT-KR by nrhs.  The operations 

W1 t FTLWl (3.9) 

followed by 

W 2  t W2 - FLWI (3.10) 

and finally 

Wit DT'Wl (3.11) 

are performed before W is unloaded into Y .  Similarly, during the back substitution, 
all the active components of the partial solution vector Y are put into an array 21 
of leading dimension KR and the active variables of the solution vector X are put 
into an array 2 2  of leading dimension FRNT-KR. The operations 

Z1 c Z1 - FEZ2 (3.12) 

and then 

Z1 t FTEZ1 (3.13) 
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are carried out before Z1 is unloaded into X. 
In MA62, FL is written to the buffer by columns, and FTL is written to the buffer 

in packed form. Provided KR > 1, the forward elimination and back substitutions are 
performed using the Level 2 BLAS kernels -GEMV and -TPSV if there is only one right- 
hand side (nrhs = I), and the Level 3 routine ,GEMM and the Level 2 routine -TPSV 
if there are multiple right-hand sides. We observe that there is no Level 3 BLAS 
kernel for solving a triangular system of equations with the matrix held in packed 
form and multiple right-hand sides. We performed some numerical experiments in 
which we stored FTL as a full matrix with only the lower triangular part containing 
meaningful data and, in the forward elimination and back substitutions, we used 
the Level 2 kernel -TRSV if nrhs = 1 and the corresponding Level 3 kernel -TRSM 
otherwise. Our results showed that the savings in the real storage which result in 
storing only the packed lower triangular matrix FTL are small (generally less than 
10 per cent of the real storage requirement). This is illustrated in Table 4.12 in 
Section 4.5. The triangular solves (3.9) and (3.13) account for a relatively small 
part of the total solution time. Our experience is that there is little difference in 
the CPU times when -TRSM is used in place of -TPSV. As a result, we have chosen in 
MA62 to minimize storage requirements by using the packed triangular form. 

Although the factorization and solution stages described above are reasonably 
straightforward, their implementation within MA62 using Level 3 BLAS kernels is 
non-trivial. Elements are assembled into the frontal matrix FA until there are at least 
ICNTL(5) fully summed variables. The fully summed columns are then permuted 
to the last columns of FA and, if supplied, the corresponding rows of the right- 
hand side array FRHS are permuted to the end of the array. When an element is 
assembled into FA, only the upper triangular part of FA contains meaningful data, 
and symmetry must be exploited to perform the column interchanges. We remark 
that, by permuting the fully summed columns to the last columns of FA, once the 
eliminations have been performed and the resulting data written to the in-core 
buffers BUFR and IBUFR, the last columns of FA can be reset to zero and the next 
element assembled. If instead we were to permute the fully summed columns to the 
start of FA, further costly data movement would be required. 

After permuting the fully summed columns to the end, the pivots are generated 
in reverse order on the diagonal of the factors. We now discuss in detail what 
this means for the forward elimination operation (3.9). As already mentioned, the 
triangular parts of the factor matrix are held in packed form. We store the lower 
triangular matrix FTL by rows and store the negative of the pivot entries at the end 
of each row. Thus, if KR = 3 and the lower triangular part of the matrix FTL is 
given by 

it is stored as 
-piu3 a - piu2 b c - piu*. 
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In equation (3.9) we wish to compute 

( t  ; l ) - l w l ,  (3.14) 

but since we have the pivots in reverse order, we are computing 

PL-lPTPW,, 

where P is the reverse permutation {KR, KR - 1, ..., 1) and L is the matrix in (3.14). 
Our coefficient matrix is therefore of the form 

Thus, using the data held in the form above, in MA62 the packed triangular solve 
Level 2 BLAS routine -TPSV is called with its control parameters set to “Upper”, 
“Unit”, and ‘!No transpose)). 

3.4 Exploiting zeros in the front 
During the factorization, the frontal matrix may contain some zero entries. Treating 
the frontal matrix as a dense matrix results in unnecessary operations being 
performed with these zeros. As we have shown, high level BLAS are used, so that 
the cost of these operations may not be prohibitive. If, however, the frontal matrix 
contains a significant number of zeros, it can be advantageous to exploit these zeros. 
In particular, there are many zeros in the front if the elements are poorly ordered. 
To see how we can exploit the zeros, suppose the frontal matrix has been permuted 
to the form (3.1). By performing further row and column permutations, the frontal 
matrix can be expressed in the form 

(3.15) 

where the zero matrix is of order KR by K for some K with 0 5 K ‘ 5  FRNT - KR 
(FRNT is the current front size and KR is the number of fully summed variables). The 
factorization then becomes 

where 

(3.17) 
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and FTl is given by 

13 

Gl = F ~ ,  - F ~ ~ D ~ F ; ,  . (3.18) 

If KR > 1, the matrix FL1 may still contain some zeros. However, the experiments 
which we report in Table 4.3 (Section 4.3) show that, in general, the number of zeros 
remaining in the factors is small (less than 10 per cent of the total number of entries 
in the factors). Furthermore, F L ~  rather than FL (FL = (FZ,,O)=), is written to 
the buffer, resulting in savings in both the real and integer factor storage. 

In MA62, zeros in the front are exploited if the default value ICNTL(9) = 1 is 
used. With this setting, once an element has been assembled and the fully summed 
columns permuted to the last columns of the frontal matrix, row permutations are 
performed to collect the zeros in the fully summed columns into a block held in the 
first rows. We now explain how this is achieved in MA62. The number K of rows 
with zeros in all the pivotal columns is initially set to 0. Rows 1 to FRNT - KR + 1 
of the pivotal columns are scanned in reverse order. Let I be the index of the row 
currently being scanned. There are two possibilities: either there is a nonzero entry 
in at  least one of the pivotal columns or all the entries in the pivotal columns are 
zero. In the first case, no action is needed and, assuming I > 1, we now scan row 
1-1. In the second case, we increment K by one and, starting with row K, we search 
for a row with index at most 1-1 with a nonzero entry in at least one of the pivotal 
columns. If we find such a row, it is interchanged with row I and we then scan row 
1-1. Otherwise, there are no more rows to add to the zero block and we are ready 
to perform the elimination operations. 

In general, when zeros in the front are exploited, the real and integer storage used 
to hold the factors will be less than that predicted by the symbolic factorization, 
which assumes that the frontal matrices are dense. The information on the storage 
actually used is returned to the user in the information array INFO. Zeros in the 
front are not exploited if the control parameter ICNTL(S) is set by the user to 0. 
Results which demonstrate how beneficial it can be to exploit zeros in the front are 
given in Section 4.3. 

- 

4 Numerical results 

4.1 Test problems 

In this section, we describe the problems that we use for testing the performance 
of MA62. In all cases, they arise in real engineering and industrial applications. 
The problems are all unassembled finite-element problems and a brief description 
of each is given in Table 4.1. The first seven problems are from the Harwell-Boeing 
Collection (Duff, Grimes and Lewis, 1992), the RAMAGEOl and RAMAGE02 
problems were provided by Alison Ramage of the University of Strathclyde (Ramage 
and Wathen, 1993), the problem AEAC5081 is from Andrew Cliffe of AEA 
Technology, and the remaining problems (TRDHEIM, CRPLAT2, OPT1, and 
TSYL201) were supplied by Christian Damhaug of Det Norske Veritas, Norway. 
For all the problems, values for the entries of the element matrices were generated 
using the Harwell Subroutine Library (HSL) random number generator FAO1 and 
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3222 

Identifier 

CEGB3306 
CEGB2919 
CEGB3024 
LOCK1074 
LOCK2232 
L O  CK349 1 
RAM AGE0 1 
AEAC5081 
TRDHEIM 
CRPLAT2 
OPT1 
TSYL201 
RAMAGE02 

79 1 
2859 
2996 
1038 
2208 
3416 
1476 
5081 

22098 
18010 
15449 
20685 
16830 

128 
551 
323 
944 
684 
128 
800 
813 

3152 
977 
960 

1400 

Table 4.1: The 1 

Descrip tion/discipline 

2.5D Framework problem 
3D cylinder with flange 
2D reactor core section 
Lockheed gyro problem 
Lockheed tower problem 
Lockheed cross-cone problem 
3D Navier-Stokes 
Double glazing problem 
Mesh of the Trondheim fjord 
Corrugated plate field 
Part of oil production platform 
Part of oil production platform 
3D Navier-Stokes 

st problems 

14 

each was made symmetric and diagonally dominant. In all the experiments, apart 
from those reported on in Sections 4.2 and 4.3, the elements were ordered using 
the direct element reordering algorithm offered by the HSL routine MC43 before the 
frontal solvers were called. 

All the HSL linear equation solvers used in our numerical experiments have 
control parameters with default values. Unless stated otherwise, we use these 
defaults in each case. 

T h e  experimental results given in this paper were obtained using 64-bit floating- 
point arithmetic on the following platforms: 

0 A single processor of a CRAY 5932 using the CRAY Fortran compiler cf77-7 
with compiler option -Zv for the Fortran 77 codes and f90 with default options 
for the Fortran 90 codes. 

0 An IBM RS/6000 3 B T  using the IBM Fortran compilers xlf and xlf90, with 
compiler option -0. 

0 A DEC 7000 3 B T  using the DEC Fortran compilers f77 and f90, with default 
compiler options. 

On each machine the vendor-supplied BLAS were used. All times are CPU times in 
seconds and include the i/o overhead for the codes which use direct access files. In 
all the tables in which the number of floating-point operations (‘‘ops)’) are quot,ed, 
we count all operations (+, -, *, /) equally. 

4.2 The effect of ordering 
As explained in Section 2,  the order in which the elements are presented to the frontal 
solver has a significant effect on its performance. If we denote by f i  the number 
of variables in the front before the Ith elimination, then an important measure, 
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I 
CEGB3306 
CEGB2919 
CEGB3024 
LOCK1074 
LOCK2232 
LOCK3491 
RAMAGEOl 
AEAC508 1 
TRDHEIM 
CRPLAT2 
OPT1 
TSYL201 
RAMAGE02 

particularly for computing the amount of in-core storage required, is the maximum 
front size 

maxfi. 

A prediction of the work involved in the frontal algorithm can be obtained from the 
root-mean squared front size (rms front size) defined by 

l=l,n 

in M 
Before 

366 
357 
162 
822 

1278 
846 
470 
163 
288 

1570 
2688 
1209 
1730 

In Table 4.2, we show the results of using the element ordering code MC43 with 

62 
After 

65.5 
191.0 
90.0 
84.1 
56.2 

138.7 
279.3 
98.1 

174.4 
378.6 
610.9 
511.6 

1295.0 

I Identifier 11 Max front size 
(*I 

Before 
3.1 
8.3 
2.7 
6.6 
5.1 

51.2 
18.3 
12.4 
51.8 

1918.9 
857.2 

1528.4 
3811.9 

7, 
After 

1.7 
10.2 
2.6 
0.9 
0.8 
5.3 

12.1 
7.7 

50.2 
262.4 
552.4 
554.2 

2852.3 

52 
After 

90 
306 
146 
138 
84 

23 1 
377 
170 
360 
550 
995 
549 

1457 

(sec 
Before 

0.6 
0.9 
0.5 
0.7 
1.1 
3.9 
1.4 
1.5 
5.9 

124.4 
57.2 
97.1 

231.5 

rms front size I Numbe of ops 1 Factorize time 
in I 

Before 
248.3 
216.5 
113.7 
519.2 
749.2 
582.6 
345.6 
125.7 
184.2 

1183.6 
2070.9 
862.7 

1498.1 

ids) 
After 
0.4 
1.0 
0.5 
0.2 
0.3 
0.8 
1.1 
1.1 
5.7 

20.3 
37.0 
38.8 

175.7 

Table 4.2: The results of using the MC43’ordering with MA62 (CRAY 5932). The 
root mean-squared front size is denoted by “rms front size”. 

our symmetric positive-definite frontal solver, MA62 (default settings are used for 
all control parameters). We note that the original order is the one provided by 
the application which, in most instances, the originator of the problem believed to 
be a “good” element ordering. For some problems, reordering with MC43 gives a 
significant reduction in the maximum and rms front sizes and this is reflected in 
the reduced factorize times and operation counts. Having generated a new ordering, 
MC43 compares the maximum front size of the new ordering with that of the original 
ordering, and then returns to the user the ordering with the smallest maximum 
front size. However, it is possible that by doing this MC43 rejects the ordering 
with the smallest rms front size (which is generally the ordering that gives the 
smallest operation count and factorize time when used with the frontal solver). In 
all our experiments we have therefore made a minor alteration to MC43 so that the 
ordering with the smallest rms front size is selected, even if the maximum front size 
i s  increased. We see the effect of this on test problems AEAC5081 and TRDHEIM. 
We note that the effect of using Level 3 BLAS means that the poorer orderings have 
a higher Megaflop rate so that the ratio of times, before and after ordering, is not as 
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high as the operation count ratio. For the problem CEGB2919, the maximum and 
rms front sizes are reduced by using MC43 but the operation count and the factorize 
time are smaller for the original element ordering. This is because for this problem 
more zeros are exploited in the front for the original ordering than for the MC43 
ordering. If zeros are not exploited (ICNTL(9) is set to 0), the element ordering 
generated by MC43 is more efficient than the original ordering (see Table 4.3 below). 

4.3 The effect of exploiting zeros 
We discussed, in Section 3.4, the option offered by MA62 of exploiting zeros within 
the front. Zeros are ignored if ICNTL(9) = 0 and are exploited if ICNTL(9) = 1. In 
Table 4.3, we show the effect of exploiting zeros. We have chosen some of the test 
problems which were initially not well ordered (see Table 4.2) and have run these 
problems with I C N T L ~ )  = 0 and 1, both with and without preordering using MC43. 
We see that, in general, if the elements are not well ordered, substantial savings 
are achieved in the factor storage, the number of operations, and the factorize time 
by exploiting zeros in the front. Once the elements have been ordered, the savings 
which result form exploiting zeros are much smaller. Indeed, if the savings in the 
factor storage and operation counts are very small, the overheads of searching for 
zeros and increased data movement to accumulate the zeros into blocks can increase 
the factorize time. On the DEC 7000, we found that for the problem TSYL201 
the factorize time without exploiting zeros was 95 seconds but this increased to 
101 seconds when zeros were exploited. However, in general, the factorize and solve 
times are reduced by taking advantage of zeros, so we have chosen the default setting 
to be ICNTL(S) = 1. 

4.4 The effect of blocking parameters 

In this section, we examine how the performance of the frontal code MA62 is affected 
by the parameters which control the minimum pivot block size and the size of the 
blocks used in updating the frontal matrix (ICNTL(5) and ICNTL(7), respectively). 
In Tables 4.4 to 4.7 results are given for a subset of our test problems for a range of 
values of ICNTL(7). In these tests we.use minimum pivot block sizes of 1 (so that 
variables are eliminated as soon as they become fully summed) and 16. Zeros in the 
front are exploited (ICNTL(9) = 1). The timings quoted confirm that it is generally 
advantageous to exploit Level 3 BLAS, albeit at the cost of an increased operation 
count. As a result of our numerical experiments, we have chosen the default value 
for ICNTL(7) in MA62 to be 16. 

In Tables 4.8 to 4.11 results are given for the test problems CEGB3306, 
AEAC5081, CRPLAT2, and OPT1 for a range of values of ICNTL(5) (ICNTL(7) = 
16). It is apparent that modest increases in the minimum pivot block size have little 
effect on the size of the largest pivot block and on the maximum front size, and that 
the real storage requirement and the operation count grow slowly with ICNTL(5). 
The factor times indicate that, in general, modest savings can be achieved by 
allowing ICNTL(5) to be greater than 1 but the precise choice of the minimum pivot 
block size parameter does not appear crucial. This is important from a practical 
point of view since i't is possible to get good performance without having to optimize 
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Integer 
Storage 

(Kwords) 
45 
14 
14 
14 
37 
17 
24 
20 
22 
10 
5 
5 

78 
13 
8 
8 

100 
59 
27 
23 

1125 
940 

37 
37 

1124 
355 
358 
341 
709 
70 1 
485 
483 

17 

Number 
of ops 
(*lO') 

21.5 
3.1 
1.7 
1.7 

12.5 
8.3 

10.2 
10.2 
29.5 
6.6 
0.9 
0.9 

127.3 
5.1 
0.9 
0.8 

118.4 
51.3 
7.3 
5.3 

2545.9 
1918.9 
267.4 
262.4 

6357.8 
857.2 
571.1 
552.4 

1546.3 
1528.4 
554.2 
554.2 

Identifier 

CEGB3306 

CEGB2919 

LOCK1074 

LOCK2232 

LOCK3491 

Ordered 

N 
N 
Y 
Y 
N 
N 
Y 
Y 
N 
N 
Y 
Y 
N 
N 
Y 
Y 
N 
N 
Y 
Y 

+ TSY L20 1 

ICNTL(S) 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

Real Storage 
(Kwords) 

765 (661) 
218 (113) 
207 (51) 
204 (47) 
582 (99) 
403 (5) 
467 (4) 
446 (4) 

86 (8) 
85 (6) 

122 (22) 

486 (324) 
219 (57) 

1418 (1282) 
206 (71) 

114 (13) 
1804 (808) 
1062 (69) 
456 (97) 
380 (22) 

20734 (3822) 
17053 (131) 
6556 (124) 
6490 (59) 

29331 (19865) 
9628 (207) 
8142 (214) 
7984 (90) 

16693 (248) 
16521 (88) 
10416 (48) 
10405 (48) 

Factorize 
time 

(seconds) 
1.8 
0.6 
0.4 
0.4 
1.1 
0.9 
1 .o 
1.0 
2.0 
0.7 
0.2 
0.2 
8.5 
1.1 
0.3 
0.3 
8.1 
3.9 
0.9 
0.8 

163.3 
124.4 
20.4 
20.3 

384.8 
57.2 
37.8 
37.0 
97.9 
97.1 
38.6 
38.8 

Table 4.3: The effect of exploiting zeros in the front (CRAY 5932). If ICNTL(9) = 
0 ,  zeros are not exploited; if ICNTL(9) = 1 ,  zeros are exploited. The figures in 
parentheses are the number of zeros (in thousands) which are held explicitly in the 
factors. 
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Identifier 

CEGB3306 
LOCK2232 
LOCK3491 
RAMAGEOl 
AEAC5801 
TRDHEIM 
CRPLAT2 

CEGB3306 
LOCK2232 
LOCK3491 
RAMAGEOl 
AEAC5801 
TRDHEIM 
CRPLAT2 

ICNTL (7) 

1 1  8 1  16 I 32 
11.0 12.3 13.8 17.0 
4.3 4.9 5.8 7.7 

40.4 42.9 46.1 53.7 
110.3 112.9 116.2 123.3 
60.9 64.7 69.5 80.4 

458.7 473.1 491.5 532.2 
2447.3 2492.2 2545.6 2658.0 

14.1 15.8 17.0 20.3 
6.4 7.1 8.0 10.3 

47.5 50.0 53.4 61.6 
115.1 117.8 121.0 128.8 
68.7 72.5 77.3 88.3 

46937 483.6 502.1 542.7 
2525.8 2570.7 2624.2 2736.6 

(ICNTL(S) = 1) 

(ICNTL(S) = 16) 

Table 4.4: The number of operations required to perform the numerical factorization 
for different values of the blocking parameter ICNTL(7). The operation counts are 
in millions of floating-point operations. 

Identifier 

CEGB3306 
LOCK2232 
LOCK3491 
RAMAGEOl 
AEAC5801 
TRDHEIM 
CRPLAT2 

CEGB3306 
LOCK2232 
LOCK3491 
RAMAGEOl 
AEAC5801 
TRDHEIM 
CRPLAT2 

ICNTL (7) 

1 1  8 1  16 I 32 
0.59 0.52 0.51 0.53 
0.43 0.39 0.37 0.40 
1.21 1.03 1.01 1.01 
1.39 1.21 1.19 1.21 
1.71 1.48 1.40 1.44 
6.32 5.72 5.72 5.83 

33.31 27.84 27.34 27.60 

0.49 0.48 0.45 0.48 
0.38 0.35 0.34 0.36 
0.93 0.85 0.84 0.88 
1.21 1.08 1.08 1.09 
1.30 1.17 1.20 1.23 
6.72 6.01 6.07 6.17 

24.01 21.12 20.91 21.14 

(ICNTL(S) = 1) 

(ICNTL(S) = 16) 

Table 4.5: The time in seconds for the numerical factorization for different values of 
the blocking parameter ICNTL(7) (CRAY J932). 
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CEGB3306 

I Identifier 11 ICNTL( 7) 1 
(ICNTL(5) = 1) 

1 1  8 1  16 I 32 
0.41 0.33 0.30 0.27 

. .  
1 1  8 1  16 I 32 

1 0.84 0.82 0.78 0.80 

LOCK2232 
LOCK3491 
RAMAGEOl 
AEAC5801 
TRDHEIM 
CRPLAT2 

0.20 0.16 0.16 0.13 
1.17 0.88 0.93 0.94 
1.78 1.82 1.79 1.79 
1.69 1.30 1.30 1.39 
7.12 7.35 6.82 7.02 

40.67 40.55 38.90 37.68 

Table 4.6: The time in seconds for the numerical factorization for different values of 
the blocking parameter ICNTL(7) (IBM RS/6000). 

Identifier 

CEGB3306 
LOCK2232 
LOCK3491 
RAMAGEOl 
AEAC5801 
TRDHEIM 
CRPLAT2 

ICNTL (7) 
(ICNTL(5) = 1) 

0.46 0.43 0.44 0.46 
1.89 1.79 1.77 1.80 
3.07 2.65 2.47 2.50 
2.78 2.59 2.51 2.60 

16.32 14.07 13.40 13.71 
77.19 64.83 60.32 62.13 

Table 4.7: The time in seconds for the numerical factorization for different values of 
the blocking parameter ICNTL(7) (DEC 7000). 
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Identifier 

AEAC5081 r 
r 

16 18 90 17 204 14 
32 36 108 22 236 8 
40 42 114 24 246 8 

1 10 156 69 530 90 
8 17 161 71 537 48 

16 25 170 77 562 33 
32 41 185 88 600 20 
40 49 195 95 626 18 

1 24 544 2546 6383 1050 
8 24 544 2583 6435 540 

16 24 550 2624 6491 370 
32 42 568 2751 6655 195 
40 50 574 2795 6708 170 

1 38 983 5470 7971 503 
8 38 983 5473 7974 490 

16 39 995 5524 8019 353 
32 67 1009 5657 8137 226 
40 67 1009 5729 8195 193 

Table 4.8: Storage statistics and operation counts for different values of the minimum 
pivot block size (ICNTL(5)). 



4 NUMERICAL RESULTS 

ICNTL(5) 

21 

Factor Time Solve Time (seconds) 
(seconds) nrhs=l I nrhs=2 I nrhs=lO 

the parameter from run to run. In general, the solve times are reduced by using 
ICNTL(5) > 1. This is because, by increasing ICNTL(5), the integer data written to 
and read from the buffers is reduced and, as a result, the amount of data which must 
be copied from the partial solution matrix into the arrays used for direct addressing 
is reduced. Since the amount of data copied is related to the number of right-hand 
sides, the time saved increases with the number nrhs of right-hand sides. On the 
basis of our numerical experiments on the different machines, in MA62 the default 
value for ICNTL(5) is 16. However, we note that if the user is going to perform a 
large number of solves, it may be beneficial to choose a value of ICNTL(5) larger 
than this default. However, since using ICNTL(5) > 1 reduces the repetition of the 
storage of the variable indices, increasing ICNTL(5) can give substantial savings in 
the integer storage used. 

Identifier 
CEGB3306 

AEAC508 1 

CRPLAT2 

OPT1 

1 0.5 0.07 0.10 0.28 
8 0.5 0.04 0.06 0.18 

16 0.4 0.03 0.05 0.14 
32 0.5 0.03 0.04 0.12 
40 0.6 0.03 0.04 0.12 

1 1.4 0.13 0.18 0.55 
8 1.1 0.09 0.12 0.37 

16 1.1 0.07 0.10 0.31 
32 1.3 0.06 0.08 0.27 
40 1.3 0.06 0.08 0.26 

1 27.3 1.06 1.39 4.66 
8 22.9 0.76 0.98 3.20 

16 20.5 0.62 0.84 2.60 
32 21.1 0.56 0.72 2.24 
40 20.3 0.55 0.71 2.18 

1 39.2 0.81 1.02 3.27 
8 38.9 0.79 1.02 3.25 

16 37.0 0.70 0.91 2.80 
32 36.5 0.66 0.85 2.58 
40 36.4 0.63 0.82 2.55 

Table 4.9: Factor and solve times for different minimum pivot block sizes on the 
CRAY 5932. nrhs denotes the number of right-hand sides. 
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Identifier 
CEGB3306 

AEAC5081 

22 

Factor Time Solve Time (seconds) 
ICNTL(6) (seconds) nrhs=l I nrhs=2 I nrhs=lO 

1 0.3 0.02 0.08 0.25 
8 0.3 0.01 0.06 0.16 

16 0.3 0.03 0.03 0.17 
32 0.4 0.03 0.03 0.18 
40 0.4 0.06 0.06 0.18 

1 1.3 0.10 0.13 0.49 
8 1.2 0.09 0.13 0.41 

16 1.2 0.08 0.11 0.33 
32 1.4 0.09 0.10 0.38 

CRPLAT2 
40 2.0 0.07 0.11 0.36 

1 38.9 1.13 1.54 7.94 

OPT1 

Table 4.10: Factor and solve times for different minimum pivot block sizes on the 
IBM RS/6000. nrhs denotes the number of right-hand sides. 

8 42.1 1.12 1.62 6.09 
16 32.2 0.95 1.46 4.60 
32 32.2 0.92 1.33 4.04 
40 32.2 0.87 1.44 3.82 

1 81.2 1.12 1.93 6.11 
8 81.4 1.17 1.80 5.89 

16 75.7 1.23 1.82 5.16 
32 75.6 0.94 1.74 4.65 
40 75.1 1.08 1.51 4.64 
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Identifier 
CEGB3306 

AEAC5081 

Factor Time Solve Time (seconds) 
ICNTL(5) (seconds) nrhs=l I nrhs=2 I nrhs=lO 

1 0.7 0.36 0.40 0.60 
8 0.7 0.31 0.34 0.49 

16 0.8 0.34 0.38 0.50 
32 0.9 0.38 0.40 0.52 
40 0.9 0.38 0.40 0.52 

1 2.5 1.01 1.14 1.64 

CRPLAT2 11 1 60.3 14.7 16.4 20.7 

OPT1 

8 51.5 13.6 14.9 17.5 
50.1 13.2 14.0 16.9 
50.0 12.8 14.9 16.6 

40 51.4 13.2 14.3 16.6 
1 97.6 16.4 18.6 21.5 
8 97.0 16.3 17.8 21.3 

16 94.6 15.9 17.7 20.7 
32 90.5 15.9 17.4 20.3 
40 90.2 16.4 17.4 20.1 

Table 4.11: Factor and solve times for different minimum pivot block sizes on the 
DEC 7000. nrhs denotes the number of right-hand sides. 
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' Identifier Code 

CEGB3306 MA42 
MA62 

CEGB2919 MA42 
MA62 

CEGB3024 ' MA42 
MA62 

LOCK1074 MA42 

4.5 The performance of MA62 compared with MA42 

Our aim in designing and developing MA62 was to produce a code that would be 
much more efficient than the general unsymmetric frontal solver MA42 when used to 
solve symmetric positive finite-element systems. To assess how successful we have 
been, in Table 4.12 we compare the storage requirements and the operation counts 

Factor Storage Factor ops 

Real Integer 
(Kwords) (*106) 

375 68 22.6 
204 (231) 14 17.2 

1012 72 181.1 

477 110 38.2 
236 (261) 15 26.3 
159 27 12.7 

445 (477) 20 101.9 

LOCK2232 
MA62 85 (94) 5 8.9 
MA42 219 40 10.8 

,LOCK3491 

RAMAGE01 

AEAC5801 

TRDHEIM 
11 MA62 I 2154, (2318) I 110 I 502.1 

CRPLAT2 I1 MA42 I 12915 I 2116 I 4980.1 

MA62 114 (133) 8 8.9 
MA42 882 151 119.5 
MA62 380 (411) 23 73.1 
MA42 759 68 219.6 

MA42 1065 183 120.4 

MA42 6663 533 866.5 

MA62 388 (406) 17 121.0 

MA62 562 (610) 32 77.3 

OPT1 

TSYL2Ol 
11 MA62 I 10405 (10630) I 483 I 5542.2 

RAMAGE02 11 MA42 I 41792 1 3495 I 55870.1 

MA62 6490 (6644) 370 2674.6 
MA42 16674 1194 11047.1 
MA62 7984 (8165) 341 5710.9 
MA42 20905 1020 10723.5 

11 MA62 I 20996 (21204) I 851 I 28523.2 

Table 4.12: A comparison of the operation count and storage requirements for MA42 
and MA62 on symmetric positive-definite unassembled finite-element systems. The 
numbers in parentheses are the real storage needed if packed form for FTL is not 
used. 

for the two codes. For MA62, we give the real storage requirements for storing the 
lower triangular matrix FTL in packed form and as a full matrix in which cnly 
the lower triangular entries are meaningful (see Section 3.3). In Tables 4.13, 4.14, 
and 4.15 we compare the timings for MA62 with those for MA42 on the CRAY J932, 
the IBM RS/6000, and the DEC 7000, respectively. The timings quoted for MA42 
were obtained using the option of restricting pivoting to the diagonal. Without 
this option, the code checks more entries when searching for pivots but in our 
experiments, it had no significant effect on the factorization time. MA62 was run 
with the default settings for all the control parameters. Throughout the remainder 
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of this paper, the ‘Analyse’ times quoted for both MA42 and MA62 include the time 
to order the elements using MC43, to perform the prepass of the integer data and to 
perform the symbolic factorization. The analyse times for both codes are essentially 
the same since both codes work only with the integer data. 

Identifier 

CEGB3306 

CEGB2919 

CEGB3024 

LOCK1074 

LOCK2232 

LOCK3491 

RAMAGEOl 

AEAC5801 

TRDH EIM 

CRPLAT2 

OPT1 

TSYL2Ol 

RAMAGE02 

MA62 0.6 5.7 0.33 1.42 
MA42 1.2 45.3 1.13 4.78 
MA62 1.2 20.3 0.62 2.60 
MA42 0.8 76.0 0.91 3.65 
MA62 0.8 37.0 0.70 2.80 
MA42 0.7 71.8 1.00 3.88 
MA62 0.7 38.8 0.90 3.60 
MA42 1.4 389.6 2.29 9.32 
MA62 1.4 175.7 1.66 6.58 

Table 4.13: 
unassembled finite-element systems (CRAY J932) 

A comparison of MA42 and MA62 on symmetric positive-definite 

For the factorization phase, we see from these tables that MA62 is always 
significantly faster than MA42 and, for the larger problems, MA62 can be more than 
twice as fast as MA42. The solve times for MA62 are almost always less than for MA42, 
particularly for a large number of right-hand sides. This reduction is a result of using 
a minimum pivot block size of 16 in MA62 (ICNTL(5) = 16) and also of exploiting 
zeros in the front. If we set ICNTL(5) = 1 and ICNTL(9) = 0 (zeros not exploited), 
the solve times for the two codes are similar. We remark that the HSL Release 12 
version of MA42 does not have an option for specifying the minimum pivot block 
size, although a version of MA42 used by AEA Technology in their code NAMMU 
for groundwater flow calculations (Hartley, Jackson and Watson, 1996) does include 
this option. The current version of MA42 does not take advantage of zeros in the 
front but recent experiments (Scott, 1997) have shown that the performance of MA42, 



4 NUMERICAL RESULTS 26 

particularly in terms of the factor storage and operation count, can be enhanced by 
exploiting zeros. For example, for the problem LOCK3491, by exploiting the zeros, 
the real factor storage is cut from 882 to 751 Kwords; the integer storage is reduced 
from 151 to 123 Kwords; and the operation count is cut from 120*106 to 79*106. 

Table 4.14: 
unassembled finite-element systems (IBM RS/6000) 

A comparison of MA42 and MA62 on symmetric positive-definite 

We also observe that the solution phase of the frontal solvers is much slower on 
the DEC 7000 than on the other machines. Further investigation shows that, on 
this machine, the overheads for out-of-core working are considerable and reading the 
factors from the direct access files accounts for most of the solve time. If direct access 
files are not used, the MA62 solve time for a single right-hand side for TRDHEIM is 
cut from 5.3 to 0.6 seconds. For TSYL201, the corresponding times are 22.5 and 2.4 
seconds, respectively. On the DEC, the use of direct access files also has a significant 
effect on the factor time. If we hold the factors in-core, then the MA62 factor time 
for TRDHEIM reduces from 13.4 to 9.0 seconds and for TSYL201 it is cut from 101 
to 70 seconds. Similarly, without the use of direct access files, the MA42 factorization 
time for TRDHEIM reduces from 26 to 14 seconds and for TSYL201 it is cut from 
173 to 116 seconds. 
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Table 4.15: 
unassembled finite-element systems (DEC 7000) 

A comparison of MA42 and MA62 on symmetric positive-definite 
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4.6 A comparison of the frontal code MA62 with other HSL 
codes 

In this section, we compare the performance of the frontal code MA62 with other 
codes in the Harwell Subroutine Library that are also designed for solving symmetric 
positive-definite systems, namely the multifrontal code MA27 and the code VBAN, 
which is a development version of a new HSL code MA55. 

The code MA27 uses the multifrontal algorithm of Duff and Reid (1982). In 
the analyse phase, pivots are selected from the diagonal using the minimum degree 
criterion. During the factorization, this pivot sequence may be modified to maintain 
numerical stability, and 2 x 2 diagonal block pivots can also be used. By this means, 
MA27 can stably factorize symmetric indefinite problems. However, if the matrix is 
known to be positive definite, the user can set a parameter in the calling sequence 
so that a logically simpler path in the code is followed. In all our tests using MA27, 
this option was used. 

Our colleague John Reid at the Rutherford Appleton Laboratory is currently 
developing a variable-band code for the solution of systems of equations whose 
matrix is symmetric and positive-definite. It does no interchanges and takes 
advantage of variation in bandwidth. The code optionally uses a direct access file 
to store the matrix factor. The intention is that the new code MA55 will replace an 
older HSL code MA36. At present, the development code is written in Fortran 90 
and it only uses Level 1 BLAS. A Fortran 77 version of MA55 will be made available 
in the future. It is intended that the MA55 code will use blocking and Level 3 BLAS. 
We have called the development code used in our experiments VBAN in the tables 
and in the following text. 

The codes are compared on the CRAY J932, the IBM RS/6000, and the 
DEC 7000 in Tables 4.16 to 4.18. We were unable to run VBAN and MA27 on 
the largest problems on the IBM RS/6000 because of insufficient memory. The 
elemental matrices are assembled before MA27 and VBAN are called. The cost of 
this preprocessing is not included. Since the efficiency of VBAN depends upon the 
equations being ordered for a small profile, the assembled matrix is ordered using 
the HSL profile reducing code MC40 prior to calling VBAN, and the time taken to do 
this is given as the “Analyse” time for VBAN. For MA27, the “Analyse” time is that 
taken to select the pivot sequence using the minimum degree criterion and prepare 
the data structures for the subsequent numerical factorization. It is interesting that 
this more complicated MA27 analyse is usually faster than the reordering for VBAN. 
This highlighted for us some deficiencies in the MC40 ordering code which we are now 
attempting to rectify. Similar deficiencies are also present in the MC43 code but are 
masked because the direct element reordering algorithm works with the connectivity 
pattern of elements rather than variables. 

Note that the “In-core” storage figures quoted in Table 4.16 are the minimum 
in-core storage requirements for performing the matrix factorization and solving the 
linear system Ax = b. This figure includes both real and integer storage. On the 
CRAY, both integers and reals are stored in 64-bit words, so the storage statistics 
given in Table 4.16 are just the sum of the number of real and the number of 
integer words needed. We remark that if this minimum in-core storage is used, the 
performance of the codes will often be considerably degraded since either a large 
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MA27 

29 

Analyse 
0.4 

Identifier 

CEGB3306 

CEGB2919 

CEGB3024 

LOCK1074 

LOCK2232 

LOCK3491 

RAMAGEOl 

AEAC5081 

TRDHEIM 

CRPLAT2 

OPT1 

TSYL201 

RAM AGE02 

29 
19 

133 
11 
7 

336 
322 
53 

549 
243 
142 
526 
95 
29 

2893 
798 
130 

4554 
2276 
302 

7741 
3315 
990 

8922 
2079 
301 

30569 
3692 
2123 

77 
90 
83 
99 

122 
254 
428 
403 
345 
401 
405 
430 
564 
594 

2002 
2958 
2262 
3815 
6406 
6527 
5975 
7215 
8325 
7069 

10231 
10888 
21297 
21787 
21847 

VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 

VBAN 

0.8 
0.2 
0.3 
0.4 
0.1 
0.4 
0.5 
0.3 
0.9 
1.3 
0.2 
1.3 
2.6 
0.1 
1.3 
1.5 
0.3 

10.8 
15.3 
0.6 
5.3 
9.4 
1.2 

11.9 
20.7 

VBAN 
MA62 
MA27 20.4 
VBAN 39.1 
MA62 1.4 

ne (seconds 

Factorize 
0.6 
1.2 
0.5 
3.6 
4.0 
1.0 
1.0 
1.3 
0.5 
0.5 
0.5 
0.2 
0.6 
0.6 
0.3 
2.0 
3.0 
0.8 
4.0 
3.3 
1.0 
3.1 
3.7 
1.1 

17.7 
19.6 
5.6 

40.2 
54.9 
20.3 
77.1 
74.2 
37.0 
90.0 
96.4 
38.8 

783.0 
338.3 
175.6 

Solve 
0.03 
0.05 
0.03 
0.04 
0.08 
0.05 
0.04 
0.05 
0.04 
0.01 
0.02 
0.01 
0.02 
0.03 
0.02 
0.04 
0.07 
0.05 
0.03 
0.05 
0.04 
0.08 
0.10 
0.07 
0.27 
0.46 
0.33 
0.30 
0.77 
0.62 
0.32 
0.86 
0.70 
0.40 
1.18 
0.90 
1.05 
2.16 
1.66 

Factor ops 
(*106) 

2.1 
11.6 
17.0 
57.3 

110.6 
101.9 

7.1 
17.7 
26.3 
4.9 
6.0 
8.7 
2.7 
4.6 
8.0 

20.2 
65.4 
53.3 
94.0 

122.7 
121.0 
44.4 
69.8 
77.3 

211.0 
459.0 
502.1 

1623.8 
2475.8 
2624.2 
3648.9 
4116.5 
5523.8 
4285.0 
5262.0 
5542.2 

44988.9 
29922.7 
28523.2 

Storage 
(Kwords) 

590 384 
402 526 

465 
175 146 
106 219 

Table 4.16: A comparison of MA27, VBAN and MA62 on symmetric positive-definite 
finite-element systems (CRAY J932). 
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I1 I I LOCK2232 11 MA27 0.08 I 0.18 0.02 I 
VBAN 0.11 0.73 0.58 
MA62 0.05 0.23 0.02 
MA27 0.16 0.82 0.04 
VBAN 0.30 4.32 2.50 
MA62 0.05 0.99 0.04 
MA27 ' 0.18 3.95 0.04 
VBAN 0.43 5.55 2.42 
MA62 0.02 1.68 0.04 
MA27 0.24 1.80 0.07 
VBAN 0.38 5.33 3.17 
MA62 0.06 1.35 0.08 
MA27 2.02 10.83 0.28 
MA62 0.12 7.41 0.32 
MA27 1.15 65.4 0.49 
MA62 0.24 33.0 1.06 
MA27 2.37 146.3 0.76 

30 

Factorize 
0.15 
1.60 
0.33 
2.54 
6.14 
1.56 
0.30 
1.80 
0.42 
0.16 
0.75 
0.12 

Identifier 

CEGB3306 
Solve 
0.01 
1.28 
0.06 
0.05 
2.97 
0.04 
0.02 
1.23 
0.01 
0.01 
0.54 
0.01 

CEGB2919 

TSYL201 

CEGB3024 

MA62 0.18 77.2 1.19 
MA27 2.27 169.3 0.89 

LOCK1074 

RAMAGE02 

LOCK3491 

MA62 0.16 68.5 1.63 
MA62 0.25 347.3 2.67 

RAMAGEOl 

AEAC508 1 

TRDHEIM 

CRPLAT2 

OPT1 

Code 

MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 

Ti 
Analyse 

0.09 
0.14 
0.04 
0.31 
0.49 
0.01 
0.11 
0.17 
0.03 
0.04 
0.07 
0.02 

.r 

Table 4.17: A comparison of M A 2 7 ,  VBAN and M A 6 2  on symmetric 
finite-element systems (IBM RS/SOOO). 

3 positive-defini te 
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VBAN 0.13 
MA62 0.04 
MA27 0.04 
VBAN 0.05 
MA62 0.02 
MA27 0.06 
VBAN 0.0s 

,, MA62 0.05 

Analyse 
CEGB3306 

VBAN 

ne (seconds) 
Factorize Solve 

0.14 0.01 
0.64 0.11 
0.78 0.35 
1.99 0.05 
4.05 0.31 
2.40 0.75 
0.30 0.02 
0.85 0.16 
0.98 0.40 
0.19 0.01 
0.29 0.06 
0.41 0.15 
0.16 0.01 
0.27 0.06 
0.48 0.19 

MA62 I 0.04 
CEGB2919 11 MA27 I 0.30 

LOCK3491 11 MA27 0.15 0.78 
VBAN 0.22 2.50 

11 VBAN I 0.36 

0.03 
0.26 

CEGB3024 

LOCK1074 

LOCK2232 

MA62 0.02 
MA27 0.09 

RAMAGEOl 

AEAC5081 

TRDHEIM 

CRPLAT2 

OPT1 

TSY L2 0 1 

RAMAGE02 

MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 
MA27 
VBAN 
MA62 

0.05 1.60 0.62 
0.18 3.11 0.05 
0.31 4.15 0.23 
0.02 2.41 0.65 
0.21 1.51 0.06 
0.27 2.81 0.34 
0.06 2.28 0.92 
1.98 9.3 0.43 
2.40 18.8 2.06 
0.11 13.4 5.31 
1.03 49.1 0.91 
2.12 129.1 4.56 
0.26 52.1 13.2 
2.15 140.0 1.49 
3.64 212.8 5.44 
0.15 93.7 15.9 
2.43 167.9 1.78 
4.62 212.7 7.24 
0.12 100.8 22.5 
3.56 2970.0 5.81 
8.58 2008.4 17.6 
0.28 435.7 46.1 

Table 4.18: A comparison of MA27, VBAN and MA62 on symmetric positive-definite 
finite-element systems (DEC 7000). 
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number of data compressions must be performed or a large number of records written 
to direct access files. The length (in real words) of the in-core files used by both 
M A 6 2  and VBAN was 25000. 

Our experiments show that, with the exception of some of the smaller problems 
on the DEC 7000, M A 6 2  requires less time for the factorization than VBAN although 
it needs more floating-point operations. In most cases, we see that the minimum 
degree ordering as expected performs a much better job of reducing the number of 
entries in the factors than our “band” orderings; sometimes the factor storage for 
M A 2 7  is about half that of the better of the other two codes. In general, the number 
of entries in the factors is slightly less for VBAN than for M A 6 2 .  Both VBAN and M A 6 2  
store their factors in direct access files and so, as expected, usually require much less 
“In-core” storage than M A 2 7 .  However, VBAN sometimes requires a lot more in-core 
storage than M A 6 2 .  This will happen if there is just a single row of high bandwidth 
towards the end of the reordered matrix. For the simple variable-band scheme used 
by VBAN, this would require that many previous rows needed to update this be held 
in memory. The frontal code does not suffer from this problem; the only effect is 
to add one to the front size for most of the computation. One possible remedy is 
to develop better orderings for the variable-band scheme and this is currently being 
studied. 

We again observe that on the DEC 7000 the overheads for out-of-core working 
are high. Since M A 2 7  does not have these overheads, on this machine if the factors 
are held in direct access files, for some of the test problems (particularly the 
smaller problems) M A 2 7  has the fastest factorize time and for all the problems it 
has the fastest solve time for a single right-hand side. We remark that M A 2 7  is 
designed for assembled problems; we are not aware of any software which implements 
a multifrontal algorithm for symmetric problems and which accepts matrices in 
elemental form. 

5 Conclusions 
We have designed and developed a frontal code for solving systems of symmetric 
positive-definite unassembled finite-element equations. The code optionally uses 
direct access files to hold the matrix factors and makes full use of Level 3 BLAS in 
its innermost loop and in the solution phase. We have shown that, as well as needing 
approximately half the real storage for the matrix factors as the general frontal code 
M A 4 2 ,  the code can be more than twice as fast as M A 4 2 .  Compared with other HSL 
codes, we have seen that the frontal method can provide a very powerful approach 
for the solution of large sparse systems. We notice that, although other approaches 
may result in much less fill-in, if the factors are held in direct access files, the frontal 
code generally requires far less main memory. The performance of the factorization 
and solution phases of the frontal codes is significantly affected by the efficiency of 
the i/o. If the i/o does not add a large overhead, the frontal scheme is generally 
faster than other the approaches considered, although this conclusion may have to 
be modified when multifrontal and variable band codes for positive definite systems 
that exploit the Level 3 BLAS become available. 
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6 Availability of the code 

MA62 is written in standard Fortran 77. The code will be included in Release 13 of the 
Harwell Subroutine Library. MA27 and MA42, as well as the ordering routines MC40 
and MC43, are available in Release 12 of the HSL. Anybody interested in using any 
of these codes should contact the HSL Manager: Scott Roberts, AEA Technology, 
Building 552 Harwell, Didcot, Oxfordshire OX11 ORA, England, tel. +44 (0) 1235 
434988, fax +44 (0) 1235 434136, email Scott.Roberts@aeat.co.uk, who will provide 
licencing information. 
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aAEA CLRC 

HSL MA62 
HARWELL SUBROUTINE LIBRARY SPECIFICATION Release 13 (1998) 

1 SUMMARY 

To solve one or more sets of sparse symmetric linear unassembled finite-element equations, AX = B, by the 
frontal method, optionally holding the matrix factor out-of-core in direct access files. The package is primarily 
designed for positive-definite matrices since numerical pivoting is not performed. Use is made of  high-level BLAS 
kernels. The coefficient matrix A must o f  the form 

m 

A = CA'", 
A=l 

with A'" nonzero only in those rows and columns that correspond to variables in the k-th element. 

The frontal method is a variant of  Gaussian elimination and involves the factorization 

A =PLD(PL)T, 

where P is a permutation matrix, D is a diagonal matrix, and L is a unit lower triangular matrix. MA62 stores the reals 
o f  the factors and their indices separately. A principal feature o f  MA62 is that, by holding the factors out-of-core, large 
problems can be solved using a predetermined and relatively small amount o f  in-core memory. At an intermediate 
stage o f  the solution, 1 say, the 'front' contains those variables associated with one or more o f  A''), k= 1,2, ..., 1, which 
are also present in one or more of  A'", k= 1+1, ..., m. For efficiency, the user should order the A") so that the number o f  
variables in  the front (the 'front size') is small. For example, a very rectangular grid should be ordered pagewise 
parallel to the short side o f  the rectangle. The elements may be preordered using the Harwell Subroutine Library 
routine MC43. 

ATTRIBUTES - Versions: MA62A, MA62AD. Calls: -AXPY, -GER, -GEN. -TPSV, -TRSV, -GEM, -TRSM. 
Language: Fortran 77. Date: April 1997. Origin: I.S. Duff and J.A. Scott, Rutherford Appleton Laboratory. 
Conditions on external use: (i), (ii), (iii) and (iv). 

2 HOW TO USE THE PACKAGE 

2.1 Argument lists and calling sequences 

There are six entries: 

(a) The subroutine MA62I/ID must be called to initialize the parameters that control the execution o f  the package. 
This subroutine must be called once prior to calling other routines in the package. 

(b) MA62A/AD must be called for each element to specify which variables are associated with it. This subroutine 

(c) MA62J/JD must be called for each element. This subroutine uses the information from MA62A/AD to determine 

determines in which element each variable appears for the last time. 

the amount o f  real and integer storage required for the factorization. 

(d) The use of  MA62P/PD is optional. If direct access files are to be used, MA62P/PD must be called once prior to 
calling MA62B/BD and MA62C/CD. 

(e) MA62B/BD must be called for each element to specify the nonzeros o f  A(k) and, optionally, the corresponding 
element right-hand side(s) B"). MA62B/BD uses the information generated by MA62A/AD and MA62J/JD in the 
factorization of  the matrix (1) and, if B'" are specified, MA62B/BD solves the equations AX=B with right-hand 

side(s) B = CB"'. 
m 

bl 

( f )  The use of  MA62C/CD is optional. MA62C/CD uses the factors produced by MA62B/BD to solve for further 
right-hand sides. 
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2.1.1 The initialization subroutine 

To initialize control parameters, the user must make a single call o f  the following form: 

The single precision version 

CALL MA62I(ICNTL,CNTL,ISAVE) 

The double precision version 

CALL MA62ID(ICNTL,CNTL,ISAVE) 

ICNTL is an INTEGER array of  length 15 that need not be set by the user. This array is used to hold control parameters. 
On exit, ICNTL contains default values. If the user wishes to use values other than the defaults, the 
corresponding entries in ICNTL should be reset after the call to MA62I/ID. Details of  the control parameters are 
given in Section 2.2.1. 

CNTL is a REAL (DOUBLE PRECISION in the D version) array of  length 5 that need not be set by the user. This array is 
used to hold control parameters. On exit, CNTL contains default values. If the user wishes to use values other 
than the defaults, the corresponding entries in CNTL should be reset after the call to MA62I/ID. Details o f  the 
control parameters are given in Section 2.2.1. 

ISAVE is an INTEGER array of  length 50 that need not be set by the user. This array is used to hold parameters that 
must be unchanged between calls to routines in the MA62 package. 

2.1.2 Specification of which variables belong in each element 

A call o f  the following form must be made for each element. 

The single precision version 

CALL MA62A(NVAR,IVAR,NDF,LAST,LENLST,ICNTL,ISAVE,INFO) 

The double precision version 

CALL MA62AD(NVAR, IVAR,NDF, LAST, LENLST, ICNTL, ISAVE, INFO) 

NVAR is an INTEGER variable that must be set by the user to the number of  variables in the element. This argument is 
not changed by the routine. Restriction: WAR2 1. 

IVAR is an INTEGER array of  length NVAR that must be set by the user to contain the indices o f  the variables 
associated with the element. These indices need not be in increasing order but must be distinct. This argument is 
not changed by the routine. Restrictions: 1 5 IVAR (I ) I LENLST and IVAR (I ) # IVAR (J) , I, J = 1,2, ..., WAR. 

NDF is an INTEGER variable that need not be set by the user. On each exit, it will be set to the largest integer so far 
used to index a variable. It must not be changed by the user between calls to MA62A/AD nor prior to subsequent 
calls to MA62J/JD and MA62B/BD. Note that, i f  the variables are not indexed contiguously. NDF will exceed the 
number o f  variables in the problem (see INFO ( 3  ) in Section 2.2.2). 

LAST is an INTEGER array of  length LENLST that need not be set by the user. On each exit from MA62A/AD, LAST (I) 
indicates the element in which the variable with index I last appeared or, if it has not appeared, LAST (I 1 is 
zero. On exit from the final call, i f  I has been used to index a variable, LAST(1) is the element at which 
variable I is fully summed and is zero otherwise. The first NDF entries o f  this array must not be changed 
between calk to MA62A/AD nor prior to subsequent calls to MA62J/JD and MA62B/BD. 

LENLST is an INTEGER variable that must be set by the user to the dimension o f  array LAST. LENLST must be at least 
as large as the largest integer used to index a variable and must not be changed between calls to MA62A/AD. This 
argument is not changed by the routine. Restriction: LENLST2 1. 

ICNTL is an INTEGER array of  length 15 that must be set by the user to hold control parameters. Default values are set 
by the call to MA62I/ID. Details of  the control parameters are given in Section 2.2.1. ICNTL (I), I = 1, 2, and 
8, are accessed by the routine. This argument is not changed by the routine. 

ISAVE is an INTEGER array of  length 50 that is used to hold parameters that must be unchanged between calls to 
routines in the MA62 package. This argument is changed by the routine. 

INFO is an INTEGER array of  length 3 0 that need not be set by the user. On each successful exit, INFO ( 1 ) is Set to 0. 
Negative values o f  INFO ( 1  ) indicate a fatal error has been detected (see Section 2.3). If an error is detected, 
INFO (2 ) holds additional information concerning the error. INFO ( I), I 2  3, are not accessed by the routine. 
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2.1.3 Symbolic factorization of A 

To determine the amount o f  real and integer storage required by the factorization, a call o f  the following form must 
be made for each element. The elements must have the same index lists and be in exactly the same order as when 
MA62A/AD was called. All the calls to MA62A/AD must be completed before MA62J/JD is called. Note that the storage 
is dependent on the control parameter ICNTL ( 5 ) .  If the user wishes to compute the storage required by different 
values o f  ICNTL ( 5 )  , it is not necessary to recall MA62A/AD before repeating the sequence o f  calls to ~ ~ 6 2  J/ JD. 

The single precision version 

CALL MA62J(WAR, IVAR,NDF, LAST, ICNTL, ISAVE, INFO) 

The double precision version 

CALL MA62JD(NVAR,IVAR,NDF,LAST,ICNTL,ISAVE,INFO) 

WAR, IVAR are as in the corresponding calls to MA62A/AD but MA62J/JD does not check IVAR for duplicate indices. 
W A R  and W A R  are not changed by the routine. 

NDF is an INTEGER variable which must be unchanged since the final call to MA62A/AD. This argument is not 
changed by the routine. 

LAST is an INTEGER array of  length NDF which must be unchanged since the final call to MA62A/AD. This argument is 
not changed by the routine. 

ICNTL is an INTEGER array o f  length 1 5  that must be set by the user to hold control parameters. Default values are set 
by the call to MA62I/ID. Details of  the control parameters are given in Section 2.2.1. ICNTL (I), I = 1,2, 5, and 
8, are accessed by the routine. This argument is not changed by the routine. 

ISAVE is an INTEGER array of  length 50  that is used to hold parameters that must be unchanged between calls to 
routines in the MA62 package. This argument is changed by the routine. 

INFO is an INTEGER array o f  length 30 that need not be set by the user. On successful exit, INFO(1) is set to 0. 
Negative values o f  INFO (1 ) indicate a fatal error has been detected (see Section 2.3). If an error is detected, 
INFO (2) holds additional information concerning the error. On exit from the final call, INFO (I), I = 3, 4, ..., 8 ,  
contain information about the factorization. Details are given in Section 2.2.2. INFO (I), 1 2  9, are not accessed 
by the routine. 

2.1.4 To set up direct access files 

of  the following form must be made. 

The single precision version 

If the user wishes to keep in-core memory requirements low by using direct access files for the factors, a single call 

CALL MA62P (ISTRM, FILNAM, LENBUF, ICNTL, ISAVE, INFO) 

The double precision version 

CALL MA62PD(ISTRM,FILNAM,LENBUF,ICNTL,ISAVE,INFO) 

ISTRM is an INTEGER array o f  length 2. ISTRM (1 1 and ISTRM ( 2 ) must be set by the user to specify the unit numbers 
of  the direct access files for the reals in the factors and the indices o f  the variables in the factors, respectively. 
This argument is not changed by the routine. Restrictions: ISTRM(1) must lie in the range [l, 991, 
ISTRM(1) f6, ICNTL(1). or ICNTL(2) (I =1,2), and ISTRM(1) #ISTRM(2). 

FILNAM is a CHARACTER*60 array of  length 2. If ICNTL ( 6 )  is set to a value other than its default value 0, the user 
must set FILNAM (1 ) and FILNAM (2 ) to filenames for the direct access files for the reals in the factors and the 
indices o f  the variables in the factors, respectively. If ICNTL ( 6 )  = 0, FILNAM is not accessed by the routine. 
This argument is not changed by the routine. 

LENBUF is an INTEGER array o f  length 2. LENBUF(1) must be set by the user to the length, in REAL (DOUBLE 
PRECISION in the D version) words,. o f  the in-core buffer (workspace) associated with the direct access file for 
the reals in  the factors (including the corresponding right-hand sides) and LENBUF (2 ) must be set by the user to 
the length, in INTEGER words, of  the buffer associated with the direct access file for the indices o f  the variables 
in  the factors. LENBUF (I) (I =1, 2) have a crucial effect on the in-core memory requirements o f  MA62B/BD and 
MA62C/CD (see arguments LW and LIW in Sections 2.1.5 and 2.1.6). If nrhs is the number o f  right-hand sides to 
be input to MA62B/BD, LENBUF should be chosen so that INFO(7) +nrhs*NDF=k,*LENBUF( 1 )  and 
INFO ( 8 ) = k,*LENBUF (2 ) with k ,  , k, 2 1 as small as available space permits (INFO (7 and INFO ( 8 ) as output 
from the final call MA62J/JD). LENBUF is not changed by the routine. Restrictions: LENBUF (I) > 0, I =1, 2. 
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ICNTL is an INTEGER array o f  length 15 that must be set by the user to hold control parameters. Default values are set 
by the call to MA62I/ID. Details of  the control parameters are given in Section 2.2.1. ICNTL (I), I = 1, 2, 3, 4, 
6, and 8, are accessed by the routine. This argument is not changed by the routine. Restrictions: ICNTL ( 3  ) > 0 
and ICNTL (4 ) > 0. 

ISAVE is an INTEGER array o f  length 50  that is used to hold parameters that must be unchanged between calls to 
routines in the MA62 package. This argument is changed by the routine. 

INFO is an INTEGER array o f  length 3 0 that need not be set by the user. On successful exit, INFO (1) is set to 0. 
Negative values o f  INFO ( 1) indicate a fatal error has been detected (see Section 2.3). If an error is detected, 
INFO (2 ) holds additional information concerning the error. INFO (I), I 2  3. are not accessed by the routine. 

2.1.5 To factorize A and optionally solve AX = B 

exactly the same order as when MA62A/AD and MA62J/JD were called. 
A call o f  the following form must be made for each element. The elements must have the same index lists and be in 

Note that all the calls to MA62J/JD for a particular problem must be completed before calling MA62B/BD. 

The single precision version 

CALL MA62B(WAR, IVAR,NDF, LAST, LAVAR,AVAR,NRHS, RHS, LX,X, 
* LENBUF,LW,W,LIW, IW, ICNTL,CNTL, ISAVE,INFO,RINFO) 

The double precision version 

CALL MA62BD(WAR,IVAR,NDF,LAST,LAVAR,AVAR,NRHS,RHS,LX,X, 
* . LENBUF, LW, W, LIW, IW, ICNTL, CNTL, ISAVE, INFO, RINFO) 

WAR, IVAR, NDF, LAST are as in the corresponding calls to MA62J/JD. NVAR and NDF are not changed by the routine. 
On exit, the data in IVAR may have been permuted. Between calls to MA62B/BD, LAST is used as workspace and 
will be changed but on exit from the final call (or on an error return). LAST will have been restored to its original 
value. 

LAVAR is an INTEGER variable that must be set by the user to the first dimension o f  the arrays AVAR and RHS. LAVAR 
must be unchanged between calls to MA62B/BD. This argument is not changed by the routine. Restriction: 

AVAR is a REAL (DOUBLE PRECISION in the D version) array of  dimensions LAVAR by WAR. On entry, AVAR (I, J) 
must contain the contribution to entry (IVAR (I), IVAR (J) ) in the matrix A from the current element (1, J = 1, 
2, ..., NVAR, J2I). Contributions to the same entry from different elements are summed. This argument is 
changed by the routine. 

NRHS is an INTEGER variable that must be set by the user to the number o f  right-hand sides and must not be changed 
between calls to MA62B/BD. If the user does not wish to solve for any right-hand sides, NRHS should be set to 0. 
This argument is not changed by the routine. Restriction: NRHS 2 0. 

RHS is a REAL (DOUBLE PRECISION in the D version) array with leading dimension LAVAR. If NRHS= 0, this array is 
not accessed. Otherwise on entry, the first NRHS columns of  RHS must be set by the user so that RHS (I, J) 
contains the contribution to component IVAR ( I )  of  the J-th right-hand side from the current element (I = 1, 
2, ..., NVAR, J = 1, 2, ..., NRHS). Contributions to the same component from different elements are summed. This 
argument is changed by the routine. 

is an INTEGER variable that must be set by the user to the first dimension o f  the array X. This argument is not 
changed by the routine. Restriction: If NRHS 11, LX~NDF. 

is a REAL (DOUBLE PRECISION in the D version) array with leading dimension LX that need not be set by the 
user. If NRHS = 0, this array is not accessed. Otherwise, the second dimension of  X must be at least NRHS and, on 
successful exit from the final call to MA62B/BD, if I has been used to index a variable, X(1, J) holds the 
solution for variable I to system J and is set to zero otherwise (1=1,2, ..., NDF, J=1,2, ..., NRHS). 

LENBUF is an INTEGER array o f  length 2. If the user is using direct access files, LENBUF must be unchanged since the 
call to MA62P/PD. Otherwise, LENBUF (1) must be set by the user to the length, in REAL (DOUBLE PRECISION in 
the D version) words, o f  the file for the reals in the factors (including the corresponding right-hand sides) and 
LENBUF (2 must be set by the user to the length, in INTEGER words, o f  the file for the indices of the variables 
in the factors. This array must not be changed between calls to MA62B/BD. This argument is not changed by the 
routine. Restriction: If direct access files are not being used, LENBUF(1) 2INFO(7) +NDF*NRHS, 
LENBUF (2 ) 2 INFO (8 ) (INFO (7 ) and INFO (8) as output from the last call to MA62 J/JD). 

LAVAR 2 NVAR. 

LX 

X 
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LW is an INTEGER variable that must be set by the user to the dimension'of array W. It must be unchanged between 
calls to MA62B/BD. This argument is not changed by the routine. Restriction: LW2 LENBUF(1) + 
INFO( 6) * (NRHS + INFO( 6)) + 3 (INFO (6) as output from the last call to MA62J/JD). 

is a REAL (DOUBLE PRECISION in the D version) array of  length LW that is used as workspace by MA62B/BD. 
This array must be unchanged between calls to MA62B/BD. If direct access files are not being used (MA62P/PD 
not called), the first LENBUF ( 1) + 3 entries of  W must be unchanged between the last call to MA62B/BD and any 
subsequent calls to MA62C/CD. 

LIW is an INTEGER variable that must be set by the user to the dimension of array IW. It must not be changed 
between calls to MA62B/BD. This argument is not changed by the routine. Restriction: LIW2 LENBUF (2 ) 
+ 3 * 1 ~ ~ 0 ( 6 )  (INFO(6) as output from the last call to MA62J/JD). 

is an INTEGER array of length LIW that is used as workspace by MA62B/BD. This array must be unchanged 
between calls to MA62B/BD. If direct access files are not being used (MA62P/PD not called), the first LENBUF (2 ) 
entries of  IW must be unchanged between the final call to MA62B/BD and any subsequent calls to MA62C/CD. 

IcNTL is an INTEGER array of length 15 that must be set by the user to hold control parameters. Default values are set 
by the call to MA62I/ID. Details o f  the control parameters are given in Section 2.2.1. ICNTL(5) must be 
unchanged since calling MA62J/JD. ICNTL(1). I = 1, 2, 5 ,  7, 8, and 9 are accessed by the routine. This 
argument is not changed by the routine. 

CNTL is a REAL (DOUBLE PRECISION in the D version) array of  length 5 that must be set by the user to hold control 
parameters. Default values are set by the call to MA621/ID. Details of the control parameters are given in 
Section 2.2.1. Only CNTL (1) is accessed by the routine. This argument is not changed by the routine. 

ISAVE is an INTEGER array of  length 50 that is used to hold parameters that must be unchanged between calls to 
routines in the MA62 package. This argument is changed by the routine. 

INFO is an INTEGER array of  length 20 that need not be set by the user. On successful exit, INFO (1)  is set to 0. 
Negative values indicate a fatal error. For nonzero values of  INFO ( 1 )  , see Section 2.3. For details of  the 
information contained in the other components of INFO, see Section 2.2.2. 

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 10 that need not be set by the user. For details 
of  the information contained in RINFO, see Section 2.2.2. 

w 

IW 

2.1.6 To solve further systems AX = B 

The single precision version 

CALL MA62C(NRHS,LX,B,X,LW,W,LIW,IW,ICNTL,ISAVE,INFO) 

The double precision version 

CALL MA62CD (NRHS, LX, B, X, LW, W, LIW, IW, ICNTL, ISAVE, INFO) 

NRHS is an INTEGER variable that must be set by the user to the number of  systems which are to be solved. This 

LX 

B 

X 

LW 

W 

LIW 

argument is not changed by the routine. Restriction: NRHS 2 1. 

is an INTEGER variable that must be set by the user to the first dimension of the arrays B and X. This argument 
is not changed by the routine. Restriction: LX 2NDF (NDF as output from the final call to MA62A/AD). 

is a REAL (DOUBLE PRECISION in the D version) array of  dimensions LX by NRHS that must be set by the user so 
that if I has been used to index a variable, B (I, J). is the corresponding component of  the right-hand side for the 
J-th system (J=1,2, ..., NRHS). This argument is changed by the routine. 

is a REAL (DOUBLE PRECISION in the D version) &ay of  dimension LX by NRHS that need not be set by the user. 
On exit, if I has been used to index a variable, X ( I, J) holds the solution for variable I to system J and is set to 
zero otherwise (J=1,2 ,..., NRHS). 
is an INTEGER variable that must be set by the user to the dimension of the array W. A sufficient value for LW is 
Ll+L2, where L1 = LENBUF (1) +NRHS*INF0(6). If direct access files are not being used (MA62P/PD was not 
called), L2 = 3 ,  otherwise, L2 = INFO (6) *INFO (6). This argument is not changed by the routine. Restriction: 
LW2 L1+ L2. 

is a REAL (DOUBLE PRECISION in the D version) array of  length Lw. If direct access files are not being used 
(MA62P/PD was not called), the first LENBUF(1) + 3 entries of  w must be unchanged since the last call to 
MA62B/BD and these entries are unchanged by MA62C/CD. Otherwise, w is used by MA62C/CD as workspace. 

is an INTEGER variable that must be set by the user to the dimension of  the array IW. If direct access files are not 
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being used (MA62P/PD was not called), LIW must be at least ~1 = LENBUF (2). Otherwise, LIW must be at least 
L1 = LENBUF (2 1 + INFO ( 6 + 4. This argument is not changed by the routine. Restriction: LIW2 L1. 

is an INTEGER array of  length LIW. If direct access files are not being used (MA62P/PD was not called), the first 
LENBUF (2 ) entries of IW must be unchanged since the last call to MA62B/BD and these entries are unchanged by 
MA62C/CD. Otherwise, IW is used by MA62C/CD as workspace. 

ICNTL is an INTEGER array of length 15 that must be set by the user to hold control parameters. Default values are set 
by the call to MA62I/ID. Details of the control parameters are given in Section 2.2.1. ICNTL (I), I = 1, 2, and 
8, are accessed by the routine. This argument is not changed by the routine. 

ISAVE is an INTEGER array of length 50 that is used to hold parameters that must be unchanged between calls to 
routines in the MA62 package. This argument is changed by the routine. 

INFO is an INTEGER array of  length 3 0  that need not be set by the user. On successful exit, INFO(1) is set to 0. 
Negative values of  INFO ( 1) indicate a fatal error has been detected (see Section 2.3). If an error is detected, 
INFO (2 ) holds additional information concerning the error. INFO (I), I 2  3, are not accessed by the routine. 

IW 

2.2 Arrays for control and information 

2.2.1 Control parameters 

The elements of the arrays ICNTL and CNTL control the action of  MA62A/AD, MA62J/JD, MA62P/PD, MA62B/BD, and 
MA62C/CD. Default values are set by MA62I/ID. 

ICNTL(1) is the stream number for error messages and has the default value 6. Printing o f  error messages is 

ICNTL (2 ) is the stream number for warning messages and diagnostic printing. It has the default value 6. Printing of 

ICNTL ( 3  ) is the number of bytes for a real word. ICNTL ( 3  ) has the default value 4 (8 for the D version). 

ICNTL (4) is the number of  bytes for an integer word. ICNTL (4) has the default value 4. 

ICNTL (5) has the default value 16. I C m L  (5 ) controls the minimum number o f  variables which are eliminated at 
any one stage (except the last stage, when fewer than ICNTL ( 5 ) variables may remain). ICNTL ( 5 1 is only 
accessed on the first call to MA62J/JD and the first call to MA62B/BD. The value of  ICNTL (5) on the first call to 
MA62B/BD should be the same as on the first call to MA62J/JD. Increasing ICNTL(5) in general increases the 
number of floating-point operations and real storage requirements but allows greater advantage to be taken of  
Level 3 BLAS. 

ICNTL ( 6 ) has the default value 0. If it is set to a value other than 0, the user must supply names for the direct access 
data sets in  the parameter FILNAM when calling MA62P/PD. 

ICNTL (7) is the block size for the numerical factorization of the frontal matrix. It controls the trade-off between 
Level 2 and Level 3 BLAS. If ICNTL(7) = 1, Level 2 BLAS is used to form the Schur complement. If 
ICNTL(7) 21, the Level 3 BLAS routine -GEMM is used with internal dimension ICNTL(7). Increasing 
ICNTL (7 ) increases the number of  flops since symmetry is not exploited as well. The optimal value for 
ICNTL (7 ) depends on the computer being used. A value of  ICNTL (7 ) less than one is treated as one and, if at 
some stage of  the factorization, ICNTL (7 ) has a value which is larger than the current front size, ICNTL (7 is 
treated as the front size. Typical range: 16 to 64. Default value: 16. 

Possible values are: 

suppressed if ICNTL (1 ) < 0. 

such messages is suppressed if ICNTL (2 ) < 0. 

ICNTL (8) is used to control the printing of  error, warning, and diagnostic messages in MA62. It has default value 2. 

0 No messages are output. 

1 Only error messages are output. 

2 Error and warning messages output. 

3 As for 2, plus scalar parameters, arrays of  length 2, and the control parameters on the first entry to 

4 As for 3 ,  plus INFO(1, (I = 1, 2, ..., 8) on exit from final call to MA62J/JD, and the arrays INFO and 

ICNTL (9) controls whether or not zeros within the frontal matrix are exploited. If ICNTL (9) = 0. the frontal matrix 
is treated as a dense matrix and zeros within the front are ignored. If ICNTL ( 9 ) = 1, the code will look for zeros 

M?i62A/AD, MA62J/JD, MA62P/PD, and MA62B/BD. and scalar parameters on entry to MA62C/CD. 

RINFO on on exit from final call to MA62B/BD. 
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occurring within the frontal matrix and will try to avoid unnecessary operations using zeros. This option can 
increase the amount o f  data movement but can also give worthwhile savings in the computation and in the 
number o f  entries in the factors i f  some variables are involved in only a few elements and these elements are 
well separated in the element order. The default value is 1. 

ICNTL (10) to ICNTL ( 1 5 )  are currently not used but may be used in a later release of the code. 

CNTL (1) has the default value zero. If, during the factorization, the absolute value o f  any pivot is less than or equal to 
CNTL (1). the computation terminates and the matrix is declared to be not positive definite (see INFO ( 1 )  = 
-12). 

CNTL (2 ) to CNTL ( 5) are currently not used but may be used in a later release o f  the code. 

2.2.2 Information arrays 

The entries o f  the arrays INFO and RINFO provide information on the action o f  MA62A/AD, MA62J/JD, MA62P/PD, 
MA62B/BD, and MA62C/CD. 

INFO ( 1 )  is used as an error flag. If a call to a routine in the MA62 package is SuccessfuI, on exit INFO (1) has value 0. 
A negative value o f  INFO ( 1 )  indicates an error has been detected and a value greater than zero indicates a 
warning has been issued (see Section 2.3). If an error is detected during a call to MA62J/JD, the information 
contained in INFO (I), 3 I I I 8  will be incomplete. Likewise, if an error is detected during a call to MA62B/BD, 
the information contained in INFO (I)., I 2  9 and in RINFO will be incomplete. 

INFO (2 ) holds additional information concerning the error (see Section 2.3). 

INFO (3) holds, on successful exit from the final call to MA62J/JD, the total number o f  variables in the problem. 

INFO ( 4 )  holds, on successful exit from the final call to MA62J/JD, the number o f  static condensation variables (a 

INFO (5) holds, on successful exit from the final call to MA62J/JD, the largest number o f  variables eliminated at a 

INFO (6) holds, on successful exit from the final call to MA62J/JD, the maximum front size. 

INFO (7 ) holds, on successful exit from the final call to MA62 J/ JD, the length in REAL (DOUBLE PRECISION in the D 
version) words of  the file required by the numerical factorization for the reals in the factors (no allowance is 
made for right-hand sides). 

INFO ( 8 ) holds, on successful exit from the final call to MA62 J/ JD, the length in INTEGER words o f  the file required 
by the numerical factorization for the indices o f  the variables in the factors. 

INFO ( 9 )  holds, on successful exit from the final call to MA62B/BD, the number o f  negative pivots. 

INFO (10) holds, on successful exit from the final call to MA62B/BD, the number of  buffers used for the reals in the 
factors. 

INFO (11) holds, on successful exit from the final call to MA62B/BD, the number o f  buffers used for the indices o f  the 
variables in the factors. 

INFO (12 ) holds, on successful exit from the final call to MA62B/BD, the maximum number o f  buffers required to 
hold the reals in a block of  pivot, rows, 

INFO (13 holds, on successful exit from the final call to MA62B/BD. the maximum number o f  buffers required to 
hold the indices o f  the variables in a block of  pivot rows. 

INFO ( 14 holds, on successful exit from the final call to MA62B/BD, the length in REAL (DOUBLE PRECISION in the D 
version) words of  the file actually used during the factorization for the reals in the factors and the corresponding 
right-hand sides. If NRHS = 0 and ICNTL ( 9 )  = 0, INFO ( 1 4 )  = INFO (7). 

INFO(15) holds, on successful exit from the final call to MA62B/BD, the number o f  entries in the factors that have 
value zero. If there a large number o f  zeros in the factors and zeros in the front have not been exploited 
(ICNTL ( 9 ) = 0), the user should either set ICNTL ( 9 ) = 1 or reorder the elements. 

INFO ( 16 holds, on successful exit from the final call to MA62B/BD, the number o f  entries (including zero entries) 
stored in the factors. If zeros in the front are not exploited (ICNTL ( 9 ) = 0), INFO ( 16 ) = INFO (7 ) . 

INFO (17 holds, on successful exit from the final call to MA62B/BD, the number o f  integers actually used during the 
factorization to store the factors. If zeros in the front are not exploited (ICNTL ( 9  1 = 0), INFO ( 1 7  ) = INFO (8). 

INFO ( 18 ) to INFO ( 3 0 ) are currently not used but may be used in a later release of  the code. 

static condensation variable is one which appears in only one element). 

single stage (that is, the maximum order o f  a pivot block). 
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RINFO (1) holds, on successful exit from the final call to MA62B/BD, the natural logarithm of  the modulus of the 

RINFO (2) holds, on successful exit from the final call to MA62B/BD, the number o f  floating-point operations to 

RINFO ( 3  ) holds, on successful exit from the final call to MA62B/BD. the root-mean-squared front size. 

RINFO (4) to RINFO (10) are currently not used but may be used in a later release o f  the code. 

2.3 Error diagnostics 

On successful completion, the subroutines in the MA62 package will exit with the parameter INFO ( 1) set to 0. Other 
values for INFO ( 1 ) and the reasons for them are given below. 

A negative value for INFO(1) is associated with a fatal error. If ICNTL(8) > O  and ICNTL(1) >0,  a 
self-explanatory message is, in each case, output on unit ICrnL(1) (see Section 2.2.1). The negative values for 
INFO ( 1) are: 

determinant o f  the matrix A. 

perform the factorization. This count includes operations performed during static condensation. 

-1 LENLST~ 0 on entry to MA62A/AD. (MA62A/AD first entry only). 

-2 NVARIO in the current element. (MA62A/AD, MA62J/JD, and MA62B/BD entries). This error is also returned if 
W A R  is greater than LAVAR (MA62B/BD entries only). 

-3 A index of  a variable in the current element is out o f  range. INFO(~) holds the index which is out o f  range. 
(MA62A/AD, MA62J/JD. and MA62B/BD entries). 

4 Duplicate occurrences o f  the same variable index found in the current element. INFO (2 ) holds the duplicated 
index. (MA62A/AD entries only). 

-5 NRHS 2 1 and the defined first dimension LX of  the array x (and the array B) is less than NDF as output from the 
final call to MA62A/AD. INFO (2 ) holds the value o f  NDF output from MA62A/AD. (MA62B/BD first entry only and 
MA62C/CD entry). 

-6 Defined length LW of the real workspace array w violates the restrictions on LW. LW must be increased to at least 
INFO (2). (MA62B/BD first entry only and MA62C/CD entry). 

-7 Defined length LIW of  the integer workspace array IW violates the restrictions on LIW. LIW must be increased to 
at least INFO (2 1. (MA62B/BD first entry only and MA62C/CD entry). 

-8 MA62J/JD has been called without MA62A/AD having been called. (MA62J/JD first entry only). 

-9 The number of  right-hand sides NRHS is out of  range. Either NRHS c 0 (MA62B/BD first entry only) or NRHS < 1 
(MA62C/CD entry). This error is also returned if the user has changed the number o f  right-hand sides between 
calls to MA62B/BD. If this error is returned by MA62B/BD, INFO (2) holds the value of  NRHS on the first call to 
MA6 2B / BD. 

-10 The order o f  the elements or one or more o f  the elements themselves has been changed since the calls to 
MA62J/JD. (MA62B/BD entries only). 

-1 1 A variable appears again after it has been fully summed (this happens i f  an index list for an element has been 
changed since MA62A/AD was called, or the order o f  the elements has been changed, or more elements have 
been entered than were entered to MA62A/AD). INFo(2) holds the index o f  the fully summed variable. 
(MA62J/JD and MA62B/BD entries). 

-12 Attempt to use pivot of absolute value less than or equal to c~JTL (1 ) . INFO (2 ) holds the call on which this error 
was encountered. (MA62B/BD entries only). 

-13 The value o f  NDF has been changed since the final call to MA62A/AD. INFO (2 ) holds the value o f  NDF output 
from MA62A/AD. (MA62J/JD and MA62B/BD first entries only). 

-14 The number of calls made to MA62J/JD was different from the number o f  calls made to MA62A/AD. This error is 
also returned if MA62B/BD is called without MA62J/JD being called. INFO (2) holds the number o f  calls made to 
MA62J/JD. (MA62B/BD first entry only). 

-15 LENBUF ( 1) or LENBUF (2 ) violates the restrictions on it. 
LENBUF(1) 10 ,1=10r2 . (MA62P/PDentryonly) ,or  
LENBUF (1) < INFO (7) + NDF*NRHS, or LENBUF (2) < INFO (8). (MA62B/BD first entry Only, direct 

LENBUF(I), I = 1 or 2, has been changed between the call to MA62P/PD and the first call to 
access files not in use), or 

MA6 2B / BD. 

8 MA62 HSL Release 13 (1 998) 



HSL Release 13 (1998) 

-16 ISTRM(l)=ISTRM(2) or ISTRM(I), I = 1 or 2, lies out o f  range, or is equal to 6, ICNTL(1). or ICNTL(2). 
(MA62P/PD entry only). 

-17 Error encountered in Fortran OPEN statement. INFO (2 ) holds the IOSTAT parameter (the IOSTAT parameter is a 
parameter which, after an inpudoutput operation is completed, is set to zero i f  no error was detected and to a 
positive integer otherwise). (MA62P/PD entry only). 

-18 ICNTL ( I) 5 0 for I = 3 or 4. (MA62P/PD entry only). 

-19 Error detected when reading a direct access file. INFO(2) holds the IOSTAT parameter. (MA62B/BD and 

-20 Error detected when writing to a direct access file. INFO (2 ) holds the IOSTAT parameter (MA62B/BD entries 

Warning messages are associated with a positive value for INFO (1 ) . If ICNTL (8 ) > 1 and ICNTL (2 ) > 0, a 

+1 On entry to MA62J/JD, ICNTL ( 5 )  is less than or equal to zero. The default value 16 is used. (MA62J/JD first 
entry only). 

+2 On entry to MA62B/BD, ICNTL ( 5 )  is not equal to the value used by MA62J/JD. The value used by MA62J/JD is 
used. (MA62B/BD first entry only). 

+3 On entry to MA62B/BD or MA62C/CD, ICNTL (1) (or ICNTL (2 ) ) has a value equal to ISTRM (1) or ISTRM (2 ) . 
The default value 6 is used. (MA62B/BD first entry only and MA62C/CD entry). This warning can only be issued 
if MA62P/PD has been called. 

MA6 2c /CD entries). 

only). 

self-explanatory message is, in each case, output on unit ICNTL (2 ) (see Section 2.2.1). The warnings are: 

3 GENERAL INFORMATION 
Use of common: None. 

Other routines called directly: The BLAS routines SAXPY/DAXPY, SGER/M;ER, SGEMV/DGEMV, 
STPSV/DTPSV, STRSV/DTRSV, SGEMM/DGEMM, STRSM/DTRSM. Subroutines internal to the package are 
MA62D/DD, MA62E/ED, MA62F/FD, MA62G/GD, MA62H/HD, MA62L/LD, MA62M/MD, MA62N/ND, 
MA620/OD. 

Workspace: Workspace is provided by the arrays: 
W(LW) (MA62B/BD and MA62C/CD). 
IW (LIW) (MA62B/BD, and MA62C/CD). 
LAST (NDF) is used locally as workspace (MA62B/BD only). 
ISAVE (50) is a work array that must be unchanged between calls to routines in the MA62 package. 

In the event o f  errors, diagnostic messages are printed. The output streams for these messages 
are controlled by the variables ICNTL (1 ) and ICNTL (2 1, and the level o f  printing is controlled by 
ICNTL ( 8 ) (see Section 2.2.1). Stream ICNTL ( 1) is used for error messages (INFO ( 1 ) < 0) and stream 
ICNTL (2 ) for warnings (INFO ( 1) > 0) and diagnostic printing. 

InpuVoutput: 

Restrictions: 

MA6 2AIAD: 

NVAR21. 

LENLST 2 1. 

lIIVAR(1) SLENLSTandIVAR(1) #IVAR(J), I, J,=l, 2, ..., NVAR. 
MA62J/ JD: 

NVAR21. 

lSIVAR(1) SNDF, I = 1, 2, ..., NVAR. 
MA62 P/ PD: 

ISTRM ( 1) and ISTRM (2 ) lie in the range [l, 991 and do not equal 6, ICNTL ( 1 1, or ICNTL (2 ) . 
ISTRM ( 1 ) # ISTRM ( 2 ) . 
ICNTL(1) >O, I = 3, 4. 

LENBUF (I) > 0, I = 1, 2. 
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MA62 B/ BD: 

NVAR21. 

lIIVAR(1) INDF, I = 1.2, ..., NVAR. 

LAVAR 2 NVAR. 

NRHs20. 

IfNRHS2l.LX2NDF. 

If MA62P/PD is not called, LENBUF(1) 2INF0(7)+NDF*NRHS, LENBUF(2) 2INFO(8). 

LW2 LENBUF(1) + INFO(6) (INFO( 6) + NRHS) + 3 
LIW2 LENBUF(2) + 3*INF0(6). 

MA62C/CD: 

NRHS11. 

LX 2 NDF. 

If MA62P/PD is not called, 
LW1 LENBUF(1) +INFO(6)*NRHS+3 
LIW1 LENBUF(2) + INFO(6) + 4 

LW1 LENBUF (1) + INFO( 6) *(INFO( 6) + NRHS). 
LIW2LENBUF(2). 

otherwise, 

4 METHOD 
The method used is a modification of the unsymmetric frontal code of Duff and Scott (1993, 1996). 

The elements are assembled into an in-core frontal matrix one at a time. A variable which has appeared for the last 
time (i.e. does not occur in future elements) is fully summed and is used as a pivot in Gaussian elimination, provided 
it is of absolute value at least CNTL (1) and there are at least ICNTL (5)  fully summed variables. Once all possible 
eliminations for the current element have been performed, the pivot columns are written to in-core buffers and later, if 
requested, to direct access files. To prevent the amount of in-core memory required becoming too large, the user 
should order the elements so that the same variable does not occur in elements that are widely apart in the ordering. 
Thus, for example, in a problem with a narrow pipe geometry, the elements should be ordered across the cross-section 
of the pipe rather than along its length. An efficient element ordering can be obtained using the Hanvell Subroutine 
Library routine MC43. 

References. 

Duff, I.S. and Scott, J.A. (1993). MA42 - A new frontal code for solving sparse unsymmetric systems. Report 
RAL-93-064, Rutherford Appleton Laboratory. 

Duff, I.S. and Scott, J.A. (1996). The design of a new frontal code for solving sparse unsymmetric systems. ACM 
Trans. Math. So*., 22, 30-45. 

Duff, I.S. and Scott, J.A. (1997). MA62 - A frontal code for sparse positive-definite symmetric systems. Technical 
Report RAL-TR-97-012, Rutherford Appleton Laboratory. 

5 EXAMPLE OF USE 

We give an example of the code required to solve a set of symmetric finite-element equations using the MA62 
package. The example illustrates the full calling sequence for the MA62 package. In this example, we wish to solve 
AX=B. We supply one right-hand side with the elements and then use MA62C/CD to solve for a further two right-hand 
sides. Direct access files are used to hold the factors. 

We wish to solve the following simple finite-element problem in which the finite-element mesh comprises four 
4-noded quadrilateral elements with one degree of freedom at each node i, 1 I i I 6  (the nodes 7,8, and 9 are assumed 
constrained). 
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The four element matrices A"' ( 1  I k 14) are 

5 4( 2. 1. 7. l *  1 5 ( 3 *  6 2. 8. 

4 4. 3. 2. 3. 
5 3. 1. 3. 2. 
1 2. 3. 6. 1. 
2 0 3. 2. 1. 5. 

5 2. 1. 8. 3. 
6 1. 3. 2. 2. 
2 8. 2. 2. 5. ' 
3 0 3. 2. 5.  4. 

where the variable indices are indicated by the integers before each matrix (columns are identified symmetrically to 
rows). The corresponding element vectors b(') (1 5 k 5 4) are 

(i :)  ( fo.) (K:) 11. 

The following program is used to solve this problem. In this program, we read the element data into arrays ELTPTR 
(location o f  first entry o f  element), ELTVAR (variable indices), VALUE (numerical values), and RHSVAL (right-hand 
sides). This method of  storing the element data is used here for illustrative purposes; the user may prefer, for example, 
to read in the element data from a direct access file. 

C Example to illustrate the use of MA62. 
C 
C . .  Parameters . .  

INTEGER MAXE,LIWMAX,LRHS,NZMAX,MELT,LENLST,LWMAX,MAXVL,MAXRVL, 

PARAMETER (MAXE=4,LIWMAX=12O,LRHS=2,NZMAX=3O,MELT=4,LENLST=6, 
+ NFMAX , NDFMAX 

+ LWMAX=12 0, MAxvL=3 0 I MAXRVL=15 , NFMAX=6, NDFMAX=9 ) 
C . .  
C . .  Local Scalars . .  

INTEGER I,IELT,J,JSTRT,K,KSTRT,LIW,LW,LX,NDF,NELT,NFRONT,LAVAR, 
t NRHS , WAR, NZ , RHSCRD, VALCRD 

C . .  
C . .  Local Arrays . .  

DOUBLE PRECISION AVAR(MAXE,MAXE),B(NDFMAX,LRHS),CNTL(S), 
+ RHS ( W E ,  LRHS) , RHSVAL (MAXRVL) , RINFO ( 10) , 
+ 

+ INFO(20) ,ISAVE(50),ISTRM(2),IVAR(MAXE),IW(LIWMAX), 
+ LAST(LENLST),LENBUF(2) 

VALUE (MAXVL) , W (LWMAX) , X (NDFMAX, LRHS) 
INTEGER ELTPTR(MELT+l),ELTVAR(NZMAX),ICNTL(15), 

CHARACTER FILNAM (2 ) * 6 0 
C . .  
C . .  External Subroutines . .  

EXTERNAL MA62AD, MA62BD, MA62CD, MA62 ID, MA62 JD, MA62 PD 
C . .  
C 
C*** Call to MA62ID 

CALL MA62ID(ICNTL,CNTL,ISAVE) 

C Read in the element data. 
C NELT is number of elements. 
C ELTVAR contains lists of the variables belonging to the finite 
C elements, with those for element 1 preceding those for element 
C 2, and so on. ELTPTR points to the position in ELTVAR 
C of the first variable in element I. NZ is the total number 
C of entries in the element lists. 

READ (5,FMT=*) NELT 
READ (5, FMT=* ) 

READ (5,FMT=*) (ELTVAR(1) ,I=l,NZ) 

(ELTPTR (I) , 1=1 , NELT+l ) 
NZ = ELTPTR(NELT+l) - 1 
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C Calls to MA62AD to establish when each variable is fully assembled 
DO 20 IELT = 1,NELT 

NVAR = ELTPTR(IELT+l) - ELTPTR(1ELT) 
JSTRT = ELTPTR(1ELT) 
DO 10 J = 1,NVAR 

IVAR(J) = ELTVAR(JSTRT+J-1) 
10 CONTINUE 

C*** Call to MA62AD 
CALL MA62AD(NVAR,IVAR,NDF,LAST,LENLST,ICNTL,ISAVE,INFO) 
IF (INFO(l).LT.O) GO TO 100 

20 CONTINUE 

C Calls to MA62JD to determine file sizes 
DO 40 IELT = 1,NELT 

WAR = ELTPTR(IELT+l) - ELTPTR(1ELT) 
JSTRT = ELTPTR(1ELT) 
DO 30 J = 1,NVAR 

IVAR(J) = ELTVAR(JSTRT+J-1) 
30 CONTINUE 

C*** Call to MA62JD 
CALL MA62JD(NVAR,IVAR,NDF,LAST,ICNTL,ISAVE,INFO) 
IF (INFO(l).LT.O) GO TO 100 

40 CONTINUE 

C Call to MA62PD to open direct access data sets. 
C Choose stream numbers and file sizes. 

ISTRM(1) = 8 
ISTRM(2) = 9 
LENBUF(1) = 30 
LENBUF(2) = 30 

CALL MA62PD(ISTRM,FILNAM,LENBUF,ICNTL,ISAVE,INFO) 
IF (INFO(l).LT.O) GO TO 100 

C*** Call to MA62PD 

C VALCRD is the number of numerical values to be input. 
C VALUE contains lists of the numerical values in the element 
C matrices, with element 1 preceding element 2, and so on. 
C Since the element matrices are symmetric only the upper 
C triangular part is stored. 

READ (5,FMT=*) VALCRD 
READ (5,FMT=*) (VALUE(1) ,I=l,VALCRD) 

C 
C RHSCRD is the number of right-hand side numerical values to 
C be input. 
C RHSVAL contains lists of the right-hand side numerical values 
C corresponding to each of the elements in order. 
C 

READ (5,FMT=*) RHSCRD 
READ (5, FMT=* ) (RHSVAL ( I) , 1=1 , RHSCRD) 

C 
C Prepare to call MA62BD. 

LAVAR = MAXE 
NRHS = 1 
LX = NDFMAX 
NFRONT = INFO (6) 
LW = 3 + LENBUF(1) + NFRONT* (NFRONT+NRHS) 
LIW = LENBUF(2) + 3*NFRONT 
IF (LW.GT.LWMAX .OR. LIW.GT.LIWMAX) GO TO 110 

KSTRT = 1 
DO 7 0  IELT = 1,NELT 

C 

NVAR = ELTPTR(IELT+l) - ELTPTR(1ELT) 
JSTRT = ELTPTR (IELT) 
DO 60 J = 1,NVAR 

IVAR(J) = ELTVAR(JSTRT+J-1) 
DO 50 K = J,NVAR 

AVAR (J, K) = VALUE (KSTRT) 
KSTRT = KSTRT + 1 

50 CONTINUE 
RHS (J, 1) = RHSVAL (JSTRT+J-1) 
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60 CONTINUE 
c*** Call to MA62BD 

CALL MA62BD(NVAR,IVAR,NDF,LAST,LAVAR,AVAR,NRHS,RHS,LX,X, 
+ LENBUF,LW,W,LIW,IW,ICNTL,CNTL,ISAVE,INFO,RINFO) 

IF (INFO(l).LT.O) GO TO 100 
70 CONTINUE 

C 
C Solution is in first NDF locations of X 

C Now 
C 

80 

WRITE ( 6, FMT=9000 ) 
WRITE (6,FMT=9010) (X(1,l) ,I=l,NDF) 
WRITE (6,FMT=9040) (INFO(1) ,1=1,14) 

read in further right-hand sides 

NRHS = 2 
DO 80 J = 1,2 

READ (S,FMT=*) (B(1,J) ,I=l,NDF) 
CONTINUE 
LW = LENBUF(1) + NFRONT* (NFRONT+NRHS) 
LIW = LENBUF(2) + NFRONT + 4 
IF (LW.GT.LWMAX .OR. LIW.GT.LIWMAX) GO TO 100 

C*** Call to MA62CD 
CALL MA62CD(NRHS,NDFMAX,B,X,LW,W,LIW,IW,ICNTL,ISAVE,INFO) 
IF (INFO(l).LT.O) GO TO 100 

C 
C Solution for J-th right-hand side is in X(.,J), J=l,NRHS 

DO 90 J =I 1,NRHS 
WRITE (6, FMT=9060) J 
WRITE (6,FMT=9010) (X(1,J) ,I=l,NDF) 

90 CONTINUE 
GO TO 110 

C Print appropriate fatal error diagnostic 
100 WRITE (6,FMT=9020) 

110 STOP 
WRITE (6,FMT=9030) INFO(1) 

C 
9000 FORMAT (/3X,'The MA62BD solution is:') 
9010 FORMAT (/6G12.4) 
9020 FORMAT (/3X,'Error return') 
9030 FORMAT (3X, 'INFO(1) = ' ,I3) 
9040 FORMAT ( / '  INFO = ',/1415) 
9060 FORMAT (/3X,'The solution for rhs number',I2,' is:') 

END 

The input data used for this problem is: 

4 
1 3  5 9 1 3  
4 5 5 6 4 5 1 2 5 6 2 3  

2 . 1 . 7 . 3 . 2 . 8 . 4 . 3 . 2 . 3 . 1 . 3 .  
2 . 6 . 1 . 5 . 2 . 1 . 8 . 3 . 3 . 2 . 2 . 2 .  
5. 4. 

3. 8. 5 .  10. 12. 9. 12. 11. 14. 8. 17. 14. 

26 

12 

-6. -4. 0. 3. -2. 8. 
31. 104. 49. 52. 131. 91. 
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This produces the following output: 
The MA62BD solution is: 

1.000 1.000 1.000 

INFO = 
0 0 6 2 3 5 1 9  

The solution for rhs number 1 is: 

-1.000 1.000 -1.000 

The solution for rhs number 2 is: 

1.000 2.000 3.000 

1.000 1.000 

33 25 1 2 

1.000 -1.000 

4.000 5.000 

1.000 

1 2 1  

1.000 

6.000 

14 MA62 HSL Release 13 (1998) 


