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RAL Summer School for Young Experimental High Energy Physicists 

Cosener's House, 01-13 September 1996 

Preface 

Fifty-four young experimental particle physicists attended the 1996 Summer School, held as  
normal, at Coseners House in Abingdon in September. This year twenty of the students 
were women, double the previous highest number. The weather was fine allowing tutorials 
and private study to take place in the relaxed atmosphere of the lovely gardens. 

The material was as usual, intellectually challenging, not least to the experimentalist tutors 
and the Director! The lectures reproduced here were given by David Dunbar (Quantum 
Field Theory), Steve King (Relativistic Quantum Mechanics), Tim Monis (The Standard 
Model) and Nigel Glover (Phenomenology). They were all of a very high standard and 
thoroughly enjoyable. 

Sarah Unger (RAC) gave an interesting seminar on the I S 0  Project and Ian Corbett (PPARC) 
delivered an upbeat after dinner speech. Mike Whalley (Durham) introduced the new 
generation of students to the Durham HEP database. 

\ 

The students each gave a ten minute seminar in the evening sessions. The quality of the talks 
was very impressive and the time keeping excellent. The broad range of activities covered 
from front-line physics results to preparations for the next generations of machines gave a 
clear indication of the breadth of particle physics activities in the UK. 

The tutors, Paul Dauncey (RAL), Jeff Forshaw (Manchester), Stephen Haywood (RAL), Ken 
Long (IC) and Julia Segebeer CIC) worked tremendously hard and their efforts were well 
appreciated by the students. 

, 

The organisation by Ann Roberts and Coseners staff was efficient and effective and I am 
personally indebted to them for leading me successfully through my first year as Director. I 
would also like to thank Dave Kelsey and Gareth Smith for providing me with computer 
support. I wish Steve King good luck for his year at CERN. I hope he will be able to return 
for the School in 1998. On behalf of myself and my predecessor, Ken Peach, I would like to 
thank Paul Dauncey for his support over the three years he has tutored at the School. 

The School was physically and intellectually demanding but very satisfying and I wish all 
the students who attended all the very best for the future. 

Steve Lloyd (Director) 
Department of Physics 
Queen Mary & Westfield College 
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Introduction t o  Quantum Field Theory  and Gauge Theories 

David C. Duiibar 

University of Wales Swansea 

Co nt e lit s 

0) Introduction 
1) Classical Formulations of Dynamics 
2) Quantum Formulatioiis: Pictures 
3) Free Boson Field Theory 
4) Interacting Boson: Canonical Quantisation and Feynman Diagrams 
5 )  Path Integral Methods 
6 )  Gauge Theories 1: Electroinagnetism 
7) Gauge Theories 2: Noii-.4belian Gauge Theories 
8 )  Critique of Perturbation Theory 
9) Some things to look out for. 
10) Problems 

Acknowledgments: 
In preparing these lectures I have extensively “borrowed” ideas from the equivalent 

courses given by previous speakers especially those of Ian Halliday and Ken Barnes. In 
places, this “borrowing” is close to complete. These notes are more extensive in places than 
what was actually discussed during the lecture course. In particular the issue of Gauge 
fixing was not mentioned during the lectures although I include it here for completeness. 
I have also taken into account the “consensus” which was reached on some of the signs. 

Finally, I would like t.0 thank Steve Lloyd for his huge efforts in running the school 
sucessfully, Ann Roberts for organising things impeccably again and the students for “hang- 
ing in” through the rather fast schedule and for still finding time for post-midnight aquatic 
excursions. 

Feb 5 t h  1997 
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Introduction 
The purpose of this course is twofold. 
Firstly, it is provide a simple introduction to quantum field theory starting from, 

roughly, your undergraduate cluantum mechanics course. Since you no doubt come from 
a very varied background this is not pmticularly easy and I guess the beginning material 
will be fairly familiar to ma.ny of you. TO ensure a level “playing field” I will assume only 
that you are all familiar with the distributed prerequisites. I hope you are! The intended 
endpoint will be to enable you to take a general field theory and write down the appropriate 
Feynman rules which are used to evaluate scattering amplitudes. There are two formalisms 
commonly used for this. The simplest for a simple theory is the “Canonical quantisation” 
whereas the more modern approach is to use the “Path Integral Formulation”. I will 
cover both during the course although the Path Integral Formulation will be done rather 
heuristically. 

The second theme will be to consider the quantisation of gauge theories. For various 
reasons this is not completely a trivial application of general quantum field theory methods. 
Hopefully this will connect up to the other courses at this school. 
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1. Classical Foriiiulatioiis o f  Dynainics 

will consider here, 

. 

There are three “equi\-aleiit” but different formulations of classical mechanics 

0 Newtonian 
0 Lagrangian 
0 Haqiltonian 

1 

I will illustrate these formulations with a specific example - the simple pendulum, which 
approsimates to a harmonic oscillator when the perturbations are small. The ideal pen- 
dulum which we consider here is an object of mass m described by its positions z and y 
connected to the point (0,O) by a rigid string. This is an example of a constrained system 
because 2 and y are forced to satisfy the constraint x2 + y2 = L2 where L is the length of 
the string. The object could equivalently be described by the angle 8 which is a function 
of x, y given by tan 8 = --z/y. 

0 Firstly consider Newt.onian Mechanics. Newtonian mechanics are only valid if we 
consider inertial coordinates. In this case good coordinates are g = (3, y) and not 8 whence 
we have Newton’s equations 

(1.1) 
J Z X  

dt2 - m; = F  

Newton’s equations reduce to a pair of second order coordinates. To these equations we 
have to explicitly insert the forces applied by the string. 

0 Nest we consider the Lagraiigian method. For Lagrange an important difference is 
that any coordinates will clo not merely inertial ones. Thus we are free to describe the 
pendulum using 8. In general a system will be described by coordinates qr. We construct 
the Lagrangian from the kiiietic (T) and potential (17) energy terms L = T-V. Lagrange’s 
equations in terms of L are 

For the siinple pendulum, if we use 8 as a coordinate Lagrange’s equation produces a single 
second order equation. The advantage over Newton’s method lies in the simplicity in the 
way which constraints may be applied. 

0 We now turn to the Haiiiiltonian method. The idea is to work with first order 
differential equatioiis rather t.liaii second order equations. Suppose we define 

then we can write Lagrange’s equations as 

For a system with Kinetic term 

5 



then pr is just the normal momentum. The Lagrangian is a function of qr and 41.. We 
wish to change variables from q,i to q,p. (This is a very close analogy to what happens 
in a thermodynamic system when changing variables from V, S to V, T. ) Examine the 
response of L to a small change in qr and Gr, 

by eqs.(l.3)and (1.4). We can, by adding and subtracting Cr drbpr, rewrite this as 

So that by shuflling terms we obtain 

So we have obtained a quantity whose responses are in terms of 6pr and 6qr. This is the 
Hamiltonian. It is given, in general, in terms of the Lagrangian by 

The Hamiltonian is to Be thought of as a function of qr and pr only. If T - (i2 and 
V = V ( q ) ,  as is the case in iuany situations, then H = T + V. However the above 
espression is the more genera.1. The Hamiltonian equations are then, from (1.8) 

(1.10) 

This is a very similar to the situation in thermodynamics i f  we change from the energy, 
E, satisfying d E  = TdS - PcW where E is thought of as a function of  S, V to the Free 
energy F which is thought of  as a function of T, V and dF = -SdT-PdV. Recall that the 
relationship between E and F is F = E - ST. In fact, the correct way of thinking about 
this is to regard thermodynamics as a dynamical system whence the change from E to F 
is precisely a change such as from L to H. The Hamiltonian system is particularly useful 
when we consider quantum mechanics because q and p become non-commuting operators 
- sometliing which makes sense if we use H(p,q) but which requires more thought if we 
use L(q,i ) .  For our simple peudulum, Hamiltonian dynamics will produce a pair of first 
order equations. 
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Before leaving Hamiltonian mechanics, let is define the Poisson Bracket of any two 
functions of p and q. Let f and g be any functions of p,q then 

The Poisson bracket of the variables qi and pj are then 

(1.11) 

(1.12) 

A Canonical change of coordinates is a change from p, q to coordinates Q(p, q )  and P(p, q )  
which maintain the above Poisson brackets. Hamiltonian dynamics is invariant under such 
canonical transformations. ( -4s an extremely nasty technical point, Quantum mechanics 
is not. Thus th&e are many quantisations of the same classical system , in principle.) 

The test  known way of quaiitising a classical system uses the Hamiltonian formalisms, 
replaces qr and pr by operators and replacing the Poisson brackets by commutators 

{...} 4 [ . * . ] / i h  (1.13) 
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2. Quaiituni Pictures  
2.1 T h e  Dirac or Iiiteractioii Picture  

In the prerequisites, the are two equivalent pictures of Quantum mechanics: 1) the 
Schrcdinger picture where the wavefunction is time dependent and the operators not 
and 2) the Heisenberg picture where the wavefunction is time-independent and the time- 
dependence is carried by tlie operators. I will introduce a third picture which is called the 
Dirac picture or, frequently, the interaction picture. First we set the scene. Take a typical 
situation where the Hamiltonian of a system is described M a “solvable piece” Ho and a 
“small perturbation piece” HI. 

H = H o + H z  (2.1) 

Actually the interaction picture doesn’t care whether HI is small or not but is really only 
useful when it is. One of the depressing/hopeful features of physics is how few problems 
have been solved exactly in quantum mechanics. There are actually only two. The first is 
the simple harmonic oscillator, the second is the hydrogen atom. (a third should or should 
not be added to this according to taste - it is the two dimensional Ising model.) All other 
cases which have been solved esactly are equivalent to these two cases. Free Field theory 
(non-interacting particles) is, as we will see, solvable because it can be related to a sum of 
independent harnionic oscillators. It is also amazing how far we have taken physics with 
just these few examples! Perhaps someday someone will solve a further model and physics 
will advance enormously. 

Since there is so little w e  can solve exactly a great deal of effort has gone into developing 
approximate methods to calculate. The methods I will develop here are for calculating 
niatris elements and will be perturbative in the (assumed) small perturbation HI. These 
have proved enormously successful (but don’t answer all questions..) For a given operator 
6,  we can define the interaction picture operator 61 in terms of the Schrijdinger operator 
by or , e i k o t b s e - i t i o t  

- e i H o t e - i H t b H e i H t  - e - i A o t  

(We set li = 1 unless explicitly stated otherwise - it is always a useful exercise to reinsert 
li in equations.) The operator 

(2.3) 
i H o  t e - ik t O(t)  G e 

will be critical in what follows. In the case where HI = 0 the interaction ‘picture reduces 
to the Heisenberg picture and U(t) = 1. We must make a similar definition for the states 
in the Dirac picture 

(2.4) I[i.,t)z = e iko i lu , t )s  = O(t)lu)a 

Note that the Dirac picture states contain a time dependence. Since the operators are 
transformed as if in tlie Heiseiiberg picture for HO we have 

8 
i-br(t) at = [6I( t ) ,  Ho] 
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To calculate in the interaction picture we need to evaluate o(t). I t  is  this object which will 
be the focus of perturbation theory. IVe have 

where the confusing notation ( f i ~ ) ~  denotes that the operator HI has been transformed 
into the interaction picture. Clearly if HI is a function of operators, H ~ ( o j ) ,  then ( f i ~ ) ~  = 

We are now in a position to solve this equation perturbatively, always assuming that 
HI@;). 

HI forms a small perturbation. Espanding U ( t )  as a series, 

We can then substitute this into the equation for U ( t )  and solve order by order. We find 
for U1, a i-vl = f iI(t)  

at (2.8) 

which can be solved to give 

and for U2 

giving 
t 2  

= (-i)2 l d t 2  1 d t l f i r ( t z ) I ? ~ ( t ~ )  

From this we can guess the rest (or prove recursively) 

(2.10) 

(2.11) 

Notice that in the above t,, > t,,l > . . . t2 > tl .  This can all be massaged into a more 
standard form. We define the time ordered product of any two operators by 

(2.13) T(&tl ) ,&) )  =d(t1)8(tz) ;  t1 > t 2  

=&)A(t1); t2 > tl 
Note that within n time ordered product 
the espression for U2 may be written 

we can commute two operators as we like. Now 
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where the integrations now both run from 0 to t. The times ordered product ensures that 
the ordering of operators is as before and the factor of 1/2 comes because the integral now 
“overcounts”. Similarly w e  o l h i n ,  

We are now in a position to formally sum the contributions into an exponentid, 

(2.15) 

(2.16) 

This is in many senses a formal solution. AS we will see later the perturbative evalua- 
tion typically involves finding U1, U2 themselves. We will spend a considerable effort in 
evaluating the Vi operators later. 

2.2 Lagraiigiaii Quaiituiii Mechanics aiid t h e  P a t h  Integral  
We now turn to the secoiicl distinct part of this section on Quantum mechanics. This 

will involve a formulation of quantum mechanics which involves the Lagrangian rather 
than the Hamiltonian. We will present this.for a single coordinate Q and momentum p. 
We will take two steps later: firstly to consider q as a vector of coordinates and secondly 
to take it as a field. We mill initially work with a simplified Hamiltonian, 

a($, i )  = - ii2 + V(i)  
21n 

(2.17) 

Recall that we can consider eigenstates or either position lq) satisfying {IQ) = qlq) or 
momentum Ip) satisfying $lp) = pip) but we cannot have simultaneous eigenstates. In fact 
the momentum and position eigenstates can be expressed in terms of each other via 

We consider the amplitude for a particle to start at initial point q j  at time t = t i  and end 
up at point q j  at t = fj. 111 the Schrodinger picture this is 

(2.19) 

where IQ) are the time independent eigenstates of 4 and we take ti = O,tf = t. The 
following manipulation of this a.mplitude is due to Feynman originally. We split up the 
time interval t into a large number, n, of small steps of length A = (tf - ti ) /n. Then, 
trivially, 

(2.20) ,-iHt - - iHA . ,-iHA . e-ifiA,. . , e-iHA - e  

(2.21) 
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In between the terms we now insert representations of one (quantum mechanically) 

j t w q l  =1 

to obtain the following expression for A, 

In the above we may make tlie replacement 

We may also evaluate apprositiiately 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

where we are using the fact t.1ia.t A is sma.11 and the form of H. Note that we have turned 
operators into numbers in the above. We can now rewrite the amplitude and take the limit 
12 4 00, 

n-1 . . 

The last line is the Path Integral formulation. It  is an interesting question what the symbols 
niean in this equation!. In the integrations 41 intermediate values of p,q contribute. We 
can interpret this as an integral over all possible paths a particle may take between qi 
and ~ f .  This expression is commonly used but is not quite the Lagrangian formalism. TO 
obtain this we must evaluate the dpj integrals at the penultimate step (before n * 00). 

The integral is assuming the simplified form for H = p2/2m + V(q), 

(2.27) 

11 



where we approsimate ( q j  - q i - 1 )  by &A. Using this we can again take n + 00 to obtain 

(2.28) 

This Formulation of Quantum mechanics is one we will use extensively. A useful object is 
the Action, S, defined as 

S = J d t L  (2.29) 

whence the path integral is 

(2.30) 

(just for fun I reinserted fi. in this equation.) The classical significance of S is that it may 
be used to obtain the equations of motion. Lagrange's equations arise by demanding the 
Action is at an est.remal value. That is, at the classical path 

6s = 0 (2.31) 

If we have path q ( t )  and we vary by 6q(t) then 

BL BL 
BY 34 

. 6L= -6q+-6q  

since 

we may partial integrate to find 

d 
64 = z 6 q  (2.32) 

1 

(2.33) 

I have included the boundary term for completeness. A correct statement of the principle 
is the the classical path is the one which estremises the action with the variation zero at 
initial and final state. Demanding 6s = 0 for arbitrary such 6q( t )  then forces Lagrange's 
equation. 

.4 common way to express the path integral, is to say that all paths are summed over, 
\veighted by ,i xaction . This has a certain appeal. Think about what happens as li 3 0. This 
formulation has strong analogies with statistical mechanics where the partition function is 
the sum over all configurations weighted by the energy 

i 

however t.he factor of i should never be forgotten! 

(2.34) 
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3. Field Theory: A Fkee Bosoii  

3.1 T h e  classical treatiiient 
In this section we will examine our first Field Theory, look at it initially and then 

yuantise and solve. This will only be possible because it is a non-interacting field theory. 
We will consider a field, 4(x).  That is an object which has a value at every point in space. 
This is unlike the harmonic oscillator where, although wavefunctions depend on space these 
are merely the probability of observing a particle at that point. A field configuration is 
then described by a (continuous) infinity of real numbers as opposed to the single number 
describing a harmonic oscillator. This i&ty d, of course, complicate the mathematics. 
1% can regard this as the transition from a finite system described by qr to the case where 
the r-index becomes the continuous E, 

qr -, 4 ( ~ )  (3.1) 

In this limit we we have to replace 

M‘e can easily postulate t.he Kinetic energy of such a field to be 

This gives the field a Kinetic energy at each point. The potential term we take as 

d d r  1) 2 is The “inass term” d2(z, t )  is easy to understand. The remaining kinetic term (+) 
necessary by Lorentz invariance. (Or one may consider the model of an electric sheet with 
potential energy) consider small perturbations and then evaluate the potential energy: a 
term such as this then appea.rs.) The c should be the speed of light for Lorentz invariance. 

From this we may construct the Lagrangian, 

which we may apply Lagrange’s method to. For fields we often speak of the Lagan&= 
density L where L = sd3xL,  Before doing so we will rewrite this form in a more Lorentz 
covariant manner. Define a four-vector Z P  where p = 0. 3 and EO = t. We henceforth 
set c = 1 (otherwise tz would be jealous). Then 

13 



It is a fundamental fact of relativity that d1 and S114 are 4-vectors. I.e. they transform in 
a well behaved fashion uiider Loreiitz transformations. Four vectors are similar to normal 
vectors if one remembers the iiiiportant minus signs. From the vector xp one can define a 
“co-vector” xl, by xo = t o , ,  x i  = -si, i = 1,2,3. In more fancy language xl1 = E, g p , , x ~  
where y, ,  are the elements of a 4 x 4 matrix g .  In this case g ’ =  diag(+l, -1, -1, -1). I 
mention this to introduce the Einstein summation convention where we write x p  = g,, ,X~ 
and the summation is understood. With this convention, xpxP = t2 - x2 - y2 - 2. 

The dot product of two four vectors, 

3 

= I - B e A , B ” = A o B o - C A i B i  
i d  

is invariant under Lorentz transformations. The action S is 

(3.7) 

which since tlie measure d4x E dtd3x is invariant under Lorentz transformation. I am 
actually slipping in a very very important concept here. Namely that synimetries of the 
theory are Manifest in tlie action or Lagrangian. (By contrast the Hamiltonian formulation 
also gives Lorentz invariant licliaviour but it is not maiiifestly Lorentz invariant .) Since 
syiiimetries are very important., the Lagraiigian formalism is a good place to study them. 
We can define tlie iiiomenta. conjugate to the field 4 

mheiice tlie Hainiltoiiian becomes 

(3.10) 

Notice that this is not iiivariaiit under Lorentz transformations. let us now solve this 
system classically now. First we must present Lagrange’s equations for a field. Because 
of tlie space derivatives oQ/a.r the equations become modified. (We could see this by 
returning to S aiid esaniiniiig the conditions that S is estremised.) 

(where the sum over i is implied). For our Lagrangian this yields 

(3.11) 

or 

(3.12) 

(3.13) 

14 



We now find the general solut.ion to this equation. Since the system is linear in 4 the sum 
of any two solutions is also a solution. Try a plane wave solution, 

(3.14) - ~ ~ i ( k 2 - w : )  d(:,t) - 

then substituting this into ec1.(3.12) gives 

-4 [-U2 + k* + m2] ei&t-wt) = O  (3.15) 

so that the trial form will be a solution provided 

Notice that there are two solutions. From now on take w ( k )  to denote the positive one. 
The general solution will be 

(3.17) 

The a(k) and u*(k) are constants. We have also imposed the condition $* = Q which 
is necessary for a real field. For purely conventional reasons we have chosen the normal- 
isations given. A classical problem would now just degenerate to finding the a(k) and 
u*(k )  by e.g., examining the boundary conditions. To finish this section on the classical 
properties note that 

(3.18) 

3.2 T h e  Quaiituiii theory 
We will now yuantise the theory. The field variables are $(:, t )  and rI(g, t). we must 

decide upon the commutation relations for these objects. That is, we want the appropriate 
generalisations of (1.12) for the case where the q and p now are a continuous infinite set. 
These are 

[&.A &t)] =o 

[fi(%t), fi(g,t)] =o 
[&, t),  &g, t)] = - ib3(Z - - Y) (3.19) 

This looks reasonable except t.hat the bij present for a discrete number of coordinate is 
replaced by the Dirac-6 function. I'll tv to elucidate this in an exercise. 

15 



Let us now, in the Heiseiiberg picture examine the equations of motion for 6 and fi, 

and for ff, 
ifi(,, t )  = p(g, t ) ,  I?] 

We can combine and rewrite these two equations as 

(3.21) 

(3.22) 

f f ( t - 9  t )  = &, t )  

which is just as before. However, now these are operator equations with the solution 

(3.23) 

Xow the 6 and tit are operators. This can be rewritten using four vectors in the forin 

(3.24) 

Where the four vector kl' is formed from w and H. (It requires a little care and relabelling 
under the integral sign to shorn this.) We can deduce the commutation relationships for 
them from those for 6 and ff, 

[&(&), &(,.')I =o 

[fit(&), &t(g)] =o 
[w t (- ,+I) ] = ( 2 + 2 4 3 ( ~  - g) (3.25) 
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Thus as promised we find an infinite set of harmonic oscillators labeled by the moments 
- k. If we substitute the forms for 6 into the Hamiltonian we find (tediously) 

(3.26) 

So that the Hamiltonian is a sum of independent harmonic oscillators. We can thus apply 
our knowledge of such objects to this case. If we denote the ground state by 10) then we 
will form states by applying raising operators to the vacuum. lit&) will create a particle 
of momentum k and energy tiw(k). (try reinserting the lis!) We can easily check 

fiiit(k)lO) = o ( k ) a t ( ~ ) ~ o )  (3.27) 

Similarly we may create the two particle states 
.'(kl).t(k2)lo) (3.28) 

etc, etc. Notice that because of the commutation relationships that the 2-particles states 
are even under exchange. That means our system is a system of non-interacting bosons. 

We ha\-e taken q5 to be a real field. In practise we wish to consider complex fields. 
Suppose we have two real fields of the same mass, 

then we may define the coiiiples field 
1 s = @ 1 +  i 4 2 )  

Then we may ea.sily check 

Solving Heisenberg's equations as before we find 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

where 
mutation relationsliips 

and 2 are now independent because x is a complex field. these must have com- 

all others being zero, with the Hamiltonian 

(3.33) 

(3.34) 

This is fairly important. SO far no fundamental scalars have not been observed ex- 
perimentally although the standard models as we know it contains a fundamental scalar - 
the Higgs boson. The Higgs boson is complex rather than real. (if it exists!). 
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4. Aii iiiteractiiig Bosoii Theory: Caiioiiical Quaiitisatioii aiid Feyiimaii Dia- 
grams  

We are now in a position to consider an interacting theory. As an example consider a 
theory which contains a real scalar 4 and a complex scalar x. The Lagrangian density we 
take to be 

\vhere ‘cd and Cx are the Lagraiigian densities for a free real and complex scalar (see (3.8) 
and (3.31) ). The interaction term we take 

Ctj + C, +%nt ( 4 4  

(4.2) Lint = -92 t x -8 
We now work with this system. The Heisenberg equations (which we could solve in the 
non-interacting case) are 

(a2 + mZ,) 8 + g f t i  =o 

(a2 + m;)2 + g b x  =o 
(4.3) 

where O2 = 0,181. t These non-linear operator equations have no known solution. We 
must attack them approsimately. As we can see our system provided g is small is suited for 
analysis in the interaction picture. We can split the Hamiltonian into the non-interacting 
piece Ho plus the small additional HI = y i t f 6 .  This will allow us to evaluate transitions 
and scattering perturbatively. . 

Recall that in the interaction picture, the crucial object is the operator r”r(t). In lowest 
order this is 

t / 
ir ( t ; , t j )  = - i li &(t)dt 

(4.4) 
= - 1‘‘ d4z2ti$ 

ti 

We shall use this to esaiiiiiie the transition probability from an initial state containing a 
single 4 boson and a final state consisting of a xxt pair. We will take the initial time ti 
to be -CO and the final times t j  = 00, we have then, 

The initial d boson has four moiiieiita k and the final pair of X-X~ particles have momenta 
p and q. Recall that in the interaction picture the states evolve with time via the U(t )  
operator, la, t ) ~  = f J ( t ) l a ) ~ .  Tlius the initial state &t(k)lO) at t = -00 will evolve into 

0(-00, 0O)b+(&)lO) (4.6) 

t I Ilave slipped over the issue of how to deal with complex fields. The correct procedure turns out to 
in terms of it’s real be to treat 

components. 
and x’ as independent fields. This can be justified be rewriting 
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(Note that if HI = 0 then the state remains fixed.) The probability that this state at 
t = 00 is a x x t  pair is the overlap of this with Lt(p)dt(q)IO). This is the rnatriz element - -  

This probability we now e\alua.te. Using the expansions for q5 and x this is 

where 8 p  = d3p/2(27r)3~. We will evaluate this by commuting the annihilation operators 
to the right where they vanish when acting on the vacuum and the creation operators to 
the left where they vanish when multiplied by (01. Since, for example b commutes with ht 
we can throw away the &(,q') - terms. Similarly the tit(&') term disappears. (and also the 
&') - wit11 a little inore tliouglit) leaving 

We can continue commuting ea.ch annihilation operator to the right, obtaining a m-iety 
of &functions on route. The final result is 

(.p ;re- i (  p+ q - k 1 (010) = -ig(2n)4S4(p + q - b)(010) (4.10) J -ig 

The &function imposes conservation of four-momentum. This is in fact a real perturbative 
calculation. Notice that it doesn't make a lot of sense unless g is small. 

In general, to evalua.te to a given order, we need to calculate objects of the form 

In principle we can carry out t.he same procedure as before. This is sandwiching between 
states and commuting annihilation operators to the right until we obtain some kind of 
result. There is a very well specified procedure for doing so in a systematic manner which 
is known as Wick's theorem. The diagrammatic representation of this is more or less 
the Feynman diagram approach. We will now think a little more generally in terms of 
operators. Since we wish to have operators with annihilation operators acting on the right 
we define the normal ordered operator to be precisely this. For eiample consider the 
composite operator T(&z)&y)) then 
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is the same operator but with the annihilation operators pushed to the right. T(q5(~)4(y)) 
and : d(z)d(y) : differ by a term which we call the contraction 

T(d(:&(Y)) =: &)6(y)  : + 6 ( N ) d ( Y )  (4.13) 

since 4 is linear in operators and hence T(d(z)q5(y)) quadratic the contraction term will 
be a pure number (that is no operator). We may evaluate this by sandwiching the above 
equation between (01 and 10) so that 

(OlT(4(44(Y))lO) = d ( 4 i ( Y )  (4.14) 

We now present Wick’s theorem which tells us how to evaluate large collection of opera- 
tors into the normal ordered pieces and the contraction terms. Consider a large class of 
operators A, B, C S, Y, Z which are linear in annihilation/creation operators. Then the 
time ordered product may be espanded, 

T( ABC * XE’Z) = : -4BC XYZ  : 
+.AB : C D . - * S Y Z  : +AC : BD**..XYZ : +perms. 
+ ,AB CD : E - XYZ  : +perms. (4.15) 
+... 
+ -4B CD - YZ + perms. 

(This needs a little modification for fermions.) Now we apply this to the case we are 
interested in. Namely the decay of a 4 particle into a x ~ t  pair. We need to sandwich the 
t ime-ordered products of Haiiiil t onians 

J c/t,c/t, . . . dtn~(~I(tl)~l(tz) ~ l ( t ~ )  (4.16) 

between the initial and final st.ates to evaluate the matris element. We have done this for 
72 = 1. Let us examine the systematics of n > 1. First we define ‘initial’ and final state 
operators (also linear in creat.ion operators), 

li >= o;[o), I f  >= o;o;, 10) (4.17) 

(The operator for creating a. $-state is in many ways a “sub-operator” of the 6 operator.) 
The first correction we can take as 

We can evaluate this using Wicks theorem and throwing away all the normal ordered terms 
since they vanish me sandwiched between (01 and 10). Fortunately a large number of the 
possible contractions are zero, For example the contraction between a 4 and a x field is 
zero since the operators in 4 commute with those in x. Thus we have 
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a1d the 011ly non-zero contractions will be between pairs of 8 operators and pairs of x and 
xt operators. It is a very useful esercise to repeat the previous calculation using IVick’s 
t.heorem. Note that the contraction between a d ( x )  operator and an initial state operator 
is rather simple q5(x)S$ = Pc. If we consider the next case the correction is 

Since we have an odd number of terms the contractions must leave a single 6 operator 
which will vanish when sandwiched. Thus the second correction will be identically zero. 
The third is 

This will be non-zero and by Wick’s theorem will produce a whole splurge of terns. Let 
us try to organise them. -4 term will be, 

If we draw a diagram wit.11 three points t l ,  2 2  and x3 then we can “join the dots“ using 
the contraction terms as 1a.belled lines and obtain a diagram 

Figure 2. A Feynman Diagram. 

Similarly for the other terms we can also draw diagrams. The real trick is, of course, 
not to do it this way but in reverse. It is much easier to draw diagrams to keep track 
of contributions than to look after terms. We draw diagrams with the “Feynman rules” 
which are rules for sewing together vertices with propagators. These may be written down 
directly from the Lagrangian. In our case we have Hamiltonian q5xxt and the rule for 
vertices is that we have a three point vertex with one q5 line, one x line and one xt line. 
The general case is easy to see (and to understand in terms of what has gone before). For 
esample if we had 

HI = 4’’ (4.23) 

then we would have a n-point vertex. The vertices are joined together with lines to form 
all possibilities. We can t.lien associate with each diagram the appropriate contribution. 
The contributions are given in ternis of the contractions of pairs of fields. This contraction 
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is known as the Feyiiman propagator. Let us now evaluate the Feynman propagator for 
the q5 field 

(4.24) 

(we have dropped the terms giving zero trivially) The two operator terms can be commuted 
past each other to yield 

The &function can now be evaluated. In the above we assumed t1 > t 2  when evaluating. 
The result in general is 

where B(t)  = l , t  > 0 ancl B( t )  = 0 , t  < 0. There is a more Lorentz invariant looking 
espression for the above ivhicli is 

(4.27) 

where we lime slipped into relativistic four vector notation. The proof of the equivalence 
of these two forms relies upoii Ca.ucliy’s theorem. For the more mathematically inclined we 
can prove this by esaiiiining the integration in iko and continuing to a complex integration. 
The poles in the integral occur when 

( k 0 l 2  - k2 - m2 + ie = o (4.28) 

which happens when ko = fzu( k)  
the real asis with poles lying at ( -w(k ) ,  +ie) and ( w ( k ) ,  -ie). 

ie The integral in the complex iko plane now lies along 

Figure 3. The contour integrations for the Feynma.n propagator. 
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We can close the contour with a semi-circle at infinity to obtain a curve which we then 
apply Caucliy’s theorem to. Whether we use the upper or lower hemisphere depends upon 
whether tl > t 2  or not. If tl < t 2  then we close in the upper plane and have to evaluate 
the residue at (--w(k), +ie.  The general case can be combined 

which is as before. We now have a form of the propagator which integrates over d4k rather 
than d3k. IVe are thus integrating over particles which need not be on mass-shell. 
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5. Functional Methods 
I will now rework some of t.lie results of the previous section but using the path integral 

approach instead. This is iii iiiaiiy ways much slicker. First for a set of discrete coordinates 
qi define 

The Ji are dummy variables which will allow US to calculate expectations of qi etc by 
derivatives of TV[J). For example 

We with to extend this coiicept to a field theory. This means extending q; 3 d(z). This 
gives 

Now TV[J(x)]  is a functional. That is something which takes a function and produces a 
nuniber. Before continuing we must define a functional derivative. Consider a functional 
F[J(s)]  then 

F [ J ( x )  + €6(Z - y)] - F[J(Z)] -- = lim JF 
JJ(g) c-0 E 

If we coiisider a siiiiple esample, 

then 

=d(d  
We now will apply these methods to the theory with Lagrangian, 

1 84 1 ab 1 M4 2rn2d2 -I- - L = -(-+ - 
2 ax,  4! -(-)2 - 

i= 1 
2 at 

(5.4) 

(5.7) 

This Lagrangian has the free part plus an interaction terms 94. We will consider the free 
part first. The path integra.1 for the free theory is Gaussian and hence calculable by our 
favourite integrals. However we must carefully take the qi +(z) transition carefully. 
Recall that we can carry our Gaussian integrals where the exponential contains the term, 
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mhere I< is a matrix. The correct generalisation will be to replace I< by an operator. We 
thus wish to transform the esponent in the path integral into the form 

/ d4x 1 d4y4(z) Operator 4(y) (5.9) 

By integrating 
written, 

by parts (and neglecting surface terms) the Lagrangian density may be 

(5.10) 

whence we may rewrite W[JJ as 

(5.12) ~ < ( x .  y) = ~ ( 1 -  y) [-% + ~2 - m2] 

We may now evaluate T-l*i[J] in terms of the inverse operator of I<. This is the operator 
satisfying / d4yI<(z, y)A(y, 2) = 6(z - z )  (5.13) 

a2 where 

and we find 

whence 

(5.14) 

(5.15)515 

Now, the inverse operator A is in fact precisely the Feynman propagator encountered in 
canonical inethods (up to the odd normalisation factor of i or -1). To see this 

Now if we wish to evaluak, using functional methods, objects such 

(5.16) 

(5.17) 
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then we can obtain these by acting upon Wo[J] with 

6 6 64 b4- 
J ( x )  J ( y )  J(u)4 4 4 4  
---- (5.18) 

and then setting J = 0. (together with integrating d4u and d42).) Since, the expoiiential 
is quadratic, and we set J = 0 finally, every time a propagator is brought down a further 
functional derivative must act. The end result is that the object is a sum of products of 
propagators. 

As in the canonical case the simplest way to keep track of the terms is by drawing 
Feynman diagrams. This functional approach provides an alternate derivation. In the cases 
considered up till now we have seen simple vertices (corresponding to just polynomial terms 
in HI) this will now be the case for gauge theories but the methods still apply. t 

5.2 Moiiieiituiii space Feyiiiiiaii diagrams 
The Feyninan diagraiiis I have drawn are not really the conventional ones. These are 

nornially drawn in iiiomentuiii space rather then z space. The very good reason for this 
is that the external states are normally momentum eigenstates. The momentum space is 
really just a Fourier transform of the configuration space rules -and it may be regarded as 
an esercise to transform these. Just a few points, the rules then require that we draw all 
diagrams, the niomeiita now flowing through the legs is now integrated over and each vertex 
has a &function in momenta. Tree level diagrams in momentum space are then merely the 
product of the propagators 1/( k2 -m2) however loop diagrams have more integrations over 
niomenta than there are 6- functions and we obtain (the infamously difficult to evaluate) 
loop momentum integrations. We always obtain (look at our example) a &function in our 
results which imposes total coiiservation of energy and momentum. From the esamples 
we can easily (?!) see what the general rule for vertices will be - whatever is in Cz will be 
reflected in terms of the rules for the vertex: A $xxt vertex leads to a vertex with a 4 a 

and a ~t outgoing state: A : d"(z) : Lagrangian will yield a vertex with n outgoing 4 
states. Constants multiplying the vertex (such as g )  get reflected in the rules. 

t I have cut more corners in this section than I care to think about in an attempt to convey some 
understanding of the path integral approacli. Some of these corners came back to haunt me in 
tutorials. 
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6. Gauge Theories 1: Electro-Magnetisin 
The great success in part.icle physics has been the ability to use gauge theories to 

describe tlie fundamental forces. As far as we know, both the strong and electro-weak 
forces are described by gauge theories. The strong force is believed to be described by a 
Slr(3) gauge theory known as QCD and the Electro-weak by SU(2) x U(1). Hopefully 
these terms will become clearer. 1’11 take two “bites” at this very important type of field 
theory. (Graham will also spend a lot of time on gauge theories as will Jonathon). The 
first bite will be simply electro-magnetism or a U(1) gauge theory - although it might not 
seem so simple and on the second pass I’ll extend to SU(3) and SU(2) (or in fact any 
gauge group). 

The theory of electromagnetism as described by Maxwell’s equations is our proto- 
gauge theory. Maxwell’s ecluations are 

o x & = - -  aE 
at 

V * E = p  
V x B = j + -  a& 

- a t  
-4s might be familiar to you. it. is common to espress E and 
scalar poteiitials 

in terms of the vector and 

(6.2) 
aA E = -04  - - 
at 

- B = V X A  - 
whence the two equations P - = 0 and V’x E = -$f become automatic. Our first task 
will be to write these equations in manifestly Lorentz covariant form. Firstly we form a 
4-vector potential A,, = (4, -A) and j ,  = (p ,  -1) and define a field strength F,, such that 

-EL 0 
Fw= [ -E, B, 0 -B, 

\-E* -By B, 0 1  

F,, = apAU - aUAp 

This definition is in fact ecluir-alent to 

03-41 

With this definition it is fairly easy to see that the last two of Maxwell’s equations (four 
ecluations really) can be writ ten (don’t forget the Einstein summation convention!) 

a,F’” = j ”  (6.5) 

We now wish to provide a Lagrangian formalism for these equations. It turns out that the 
appropriate Lagrangian density is given by 

(6.6) 
1 1: = zFl,,,Fpu + jpAQ 
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whose Lagrange equations are just those of (6.5) . To see this, for example, take the 
Lagrange equation for Ao, “[““I+”[ aL 

dt 3AO BX a(&Ao) 
a ]  

0 + [ -FoI] + (y and z terms) + p = O 

There is a difficulty in carrying out a Hamiltonian approach to electro-magnetism. This is 
because the momentum wliicli is conjugate to A0 is identically zero, 

since the Lagrangian densit?. does not depend upon A,. 
Although not so obvious a. problem in the Lagrangian formalism, this will rear it’s 

ugly head fairly soon. The reason that there is a problem is because, in some ways, we 
have too many variables AI, describing the fields. This will lead us into gauge symmetry. 
Notice that the field streiigtli E‘,,, is invariant under a transformation 

where A(.> is an arbitrary function of x. Now, classically, the two choices of A,, give the 
same d u e s  of E and B thus since everything can be written in terms of and B this 
symmetry in merely a curiosity. 3 

Before discussing the cluantisation of Electro-magnetism I will consider the theory 
coupled to Dirac fermion (or scalar ) If we consider a Dirac fermion II) then the Lagrangian 

will be invariant under the bransformation, 

where here Q is a constant and not a function of x. (We could also consider coupling to 
the scalar Lagrangian d , , ~ t 8 1 ’ ~ . )  Suppose we would like to extend our transformation so 
that a($). Then the Lagrangian is not invariant but an extra term 

- iq&@ $tdP a! (6.12) 

t An analogy of the problems we are encountering is the simple pendulum. Suppose I was silly enough 
to over specify my systein by describing it by 2, y, and B .  I might be tempted (obviously not but..) 
because the kinetic t,erm is simple in t and y whereas the potential is simple in terms of 8. If I then 
chose L = f(5’ + y’ + e?)  we would obtain the momentum = 0. This constraint on (p, q) space 
is similar to the electroiiiagiietisln case.) 
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arises. Now we could make the Lagrangian invariant i f  we add an interaction term 

and the conibination 
CA + + Lint (6.14) 

will be invariant under the combined gauge transformation. 

In terms of the fermions the transformation act via multiplication by a phase eia. Such 
phases form a group. A very simple group which is known as U(1)- the group of 1 x 1 
unitary matrices. ( U (n )  will be the group of n x n unitary matrices). We can include the 
interaction term with the kinetic term for + by defining the covariant derivative 

This is known as the covariant derivative because it transforms in the same was' as $, 
naniely with just a phase. 

Dp$ --$ e -'gQ(t)D cc $ (6.17) 

This general trick of gauging synimetries has been enormously useful. It allows us to build 
models which have proved enormously useful in describing physics. 

There are several conventions for phases in this area. Later I will use a different 
convention wliicli can be obtained by replacing a, by -a,/g. Whence the fields transforms 

(6.18) 
as 

$ + e'"$, A,, + A,, - -spa 1 

9 

(6.19) 

6.2 Quaiituiii Gauge Theories 
Our naive attempts to quantise electrodynamics will prove to be sick because we 

are missing an important point. however, let us see how the sickness develops in the 
path integral formulation. We attempt to find the propagator. To do so, we must write 
the quadratic part of the Lagrangian as FIELD.OPERAT0R.FIELD. The action may be 
rewi  t t en 
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\ye thus have the inverse-propagator orgmiised in position space. When we Fourier trans- 
form tlie above we obtain the inomenturn space inverse propagator, 

P,(” = (A!,&” - k21,t”) (6.21) 

This “inverse propagator” has the unfortunate property that it does not have an inverse 
(so it is not the inverse of anything!). TO observe this note that 

(6.22) 

Now any matrix satisfying .!If2 = X.M cannot be invertible (unless M = X . 1  which P 
clearly is not,) so P is not an invertible operator. 

Now we have reached a problem in the path integral formalism (just as we would have 
in canonical methods.) What is the reason for this? The interpretation of the “sickness” 
is that we are actually counting too many states in our path integral. I f  we have field 
configurations A,, and A,,’ related by a gauge transformation, they only represent a single 
equivalent states so we should only count them once rather than twice. In fact an infinite 
over-counting occurs in the path integral. Consider the following diagram, where I have 
“scpeezed” the integration of the path integral onto two dimensions. Configurations related 
to a field configuration lie in the orbit of the configuration. 

Figure 4. Orbits in p i g e  configuration space. 

In this figure the orbits are shown and a curve which cuts each orbit is shown. Such 
a curve is given generically by 

(6.23) 

We can think of implementing the gauge fixing by inserting a &function into the path 
integral. (However they are important coefficients!). Such a condition is called a gauge 
fixing condition. A good function g[A] is clearly one which cuts each orbit once and once 
only. The implementation of gauge-fixing is important technically in quantising a gauge 
theory. I will denionstrate (rather than prove) how to implement this. I will try to switch 
back and forth between a two-dimensional analogy and tlie real situation. 
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Consider a two dimensional integral 

in analogy with the gauge theories the function f is invariant under rotations thus 

by analogy with gauge synimetries let US assume that the different values of 8 should not 
be counted. Thus we wish to evaluate 

I’ = 1 drrF(r) (6.26) 

rather than (6.24) (which differs by a factor of i t f d O  = 2n. Now we can just implement 
this by inserting a &function within the integral. We define 

We can define this for any function and by definition 

I = Jd4I4  (6.28) 

however only for rota.tionally invariant functions will I,p be independent of 4. Since I4 is 
independent of 4, 

I = J = 2nI,p, (6.29) 

where 4 0  is any value of 4. In many ways I have just cheated! - I “knew” that the curve 
8 = const. cut each orbit one and one only (and also smoothly!). In general we want 
to consider a general curve g ( x , y )  = 0. (analogous to (6.23) ). Again I want to insert 
6(g(a!, y ) )  into the integral but now we need factors. We can see these from the identity, 

(6.30) 

(For intuition on this equation look, for example, at the prerequisites where s(a.) = 
6(x)/lal.) It  is important that 

A&) l ~ l g = o  09 (6.31) 

is rotation invariant. To see this note 

(6.32) 
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We may now insert the factor of one in (6.30) into the integral I 

So we can obtain 
(6.34) 

As espected we have introduced a &function but we have a correcting factor Ag, In a 
quite considerable generalisation to gauge theories there is an identity, 

(6.35) 
t 

where 
69 Ag(AP) = det (=) (6.36) 

and U,.c) = 
the functional integral we obtain, 

-we are integrating over elements of the U(1) group. Inserting this into 

~ [ ~ p ] ~ - A c t i o r i  

(6.37) 
= /[dU] J d[A~']e-AC''onAP(A~) fl 6(y(ApU) 

J 
The formal method of quantising is now rather simple - we just throw away the integration 
of the group variables s[dlj] .  (analogously to Jd$)  leaving us with a "gauge fised" path 
integral which only counts each orbit once. . 

Great. We however have one more step before this is any use!. (How do we implement 
a general gauge fising 6-fuiiction?) Obviously, the gauge fised path integral is independent 
of g.  (It's not easy to show this ...) So using the gauge fising functional 

9 ' Z g - B  (6.38) 

where B is just a function of s (just a constant really in functional space!) will give just 
the sanie result. Inserting a factor 

/[dB1 fl 6(g(Ai") - B)e-* s d4z B2 (2) (6.39) 

instead of n 6 ( g ( A p U ) )  merely changes the path integral by a constant. This is really just 
averaging (or smearing) over the gauge functions g - B with a factor eE . This trivial trick 
allows us to get rid of the &functions and the gauge fixed path integral is 

2 

(6.40) 
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So we have promoted the &function to an estra term in the action - the “gauge-fixing” 
term plus a determinant in the action (maybe more later). Many choices of “gauge-fi?cing” 
esist (and thus much effort to find good gauges - in some sense). I’ll try to illustrate one 
approach via the so-called covariant gauges. 

6.3 The Covariaiit gauges 
This gauge choice uses the gauge fixing term, 

With this gauge choice we find that the gauge fixing term in the action becomes 

This will affect the quadratic ternis in the action ( thankfully!) to be 

A,l k,,k,(l - -) 1 - P’lr,) A, 
( 6 

Now, we can invert t.his operator and obtain a propagator in momentum space 

k2 + ie 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

Aiiiongst this class of gauge clioices two special ones are when 6 = 0 , l  These are 

Vrru Feynnian Gauge, = 1, Ppy = - P (6.45) 
V p u  - It ,k , /k2  

k2 
Laiidau Gauge, 6 = 0, P,, = 

So gauge fising has resolved this (and in fact all other) problems with quantisation of the 
gauge theory. 

In tlie absence of either scalars or fermions, the quantised theory is a free theory and 
we may solve as for free scalar theory. (The Lagrangian contains only quadratic terms 
and, in the Feynman gauge, tlie propagator is just S, , /k2  which means the A, act just 
like multiple scalar fields.) In the presence of scalar or fermion fields the theory becomes 
a real live interacting quantum theory - QED for fermions or scalar-QED for scalars. For 
a fermion the covariant derivative contains an interaction term 

(6.46) 

implying a Fepnman vertes 
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Figure 5. Feynman Diagram for QED. 
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7. Gauge Theories 2: Non-Abelian gauge theories 
In this section we will generalise the concept of a gauge theory to that of a non- 

-4belian gauge theory. Both t.he strong and weak interactions appear to be described by 
such theories. R.ecal1 that the a.ction of a gauge transformations for electromagnetism act 
as 

Now complex phases could, if one were perverse, be described as 1 x 1 unitary matrices. 
The U( 1) such matrices form a group. The basic definition of group's I quickly review here 

7.1 basic group theory 

following axioms are satisfied, 
A group G, is a set of objects with an action, or multiplication, defined such that the 

1 :if a , b  E G,blieii a.b E G (closure) 
2 :there esists an identity , e, s.t.a.e = e.a = a,Va E G 
3 :for all Q E G, there exists an inverse a-l, a.a" = e, a-l .a = e 
4 :h.(b.c) = (a.b).c Vu, b,c 

There are many esaniples of groups. For esample, 
a) the numbers { 1, -1) uiider multiplication 
1)) tlie real numbers uiider addition (but not multiplication since zero has no inverse.) 
c) the set of 11 x 11 matrices which are unitary ( A-' = At ) and which have determinant 

d) tlie set of ort.liogona1 iiiatrices (A-l = A*) of determinant one. This is known as 

Esamples c) and d) are examples of Lie Groups. Lie groups are groups which depend 

one. This group is known as SU(N). 

SO(1V). 

smoothly (in a well defines mathematical sense) 
SO(2) matrix can be writt.en in the form, ' 

on parameters. For example, a general 

sin 8 
cos e (7.3) 

which we can parametrise by 8. Clearly group multiplication (and inverses etc) depend 
sinootlily upon 8, for esaiiiple 

(If you are particularly obseryant you might notice that there is a lot of similarity be- 
tween these matrices and U(1). In fact SO(2) and U(1) are essentially the some algebraic 
structure.) If all elements of a group commute, 

a.b = b.a Va,b (7.5) 

then we cal l  the group Abeliaii. 
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7.2 Lie Algebras 
.An important object of interest in a Lie group is it's dgebru. This is defined in 

terms of the behaviour of the group elements near the identity. For esample consider the 
group Su(2), ( AtA = 1, det(A) = 1). If we have an arbitrary element near the identity, 
A = I + iT (where T is sinal1 ) then T must satisfy, 

Tt = T, tr(T) = 0 (7.6) 

thus T can be parametrisecl as 
3 

T = CdT" 
u=l 

where 
p = - (  1 0 1  ) , P = - (  1 0  -i)  , T ~ = Z ( ~  1 1 0  -1) 

2 1 0  2 i o  

(7.7) 

The matrices Ti generate an algebra under commutation. That is the commutator of any 
two T matrices is a sum of T matrices. For esample 

[T',T2] = iT3 (7.9) 

In general for SU(A'), if ire consider the algebra, then it is generated by hermition traceless 
matrices of which there are N' - 1. This is the dimension of the Lie algebra. For SU(3) 
there are thus eight matrices. A standard basis is 

0 1 0  1 0 0  0 0 1  

0 0 0  0 0 0  0 0 0  1 0 0  
0 0  0 0 0  0 0  0 1 0  0 

0 0  0 1 0  
(7.10) 

which are closed under commutation. Elements of the Lie algebra are linear combinations 
of these. There is a very important relationship between the elements of the algebra and 
tlie group itself. Essentially tlie group elements can be obtained by exponentiating the 
algebra, 

(7.11) 
U 

where the Q are no longer infinitesimal. Similar to the case of SU(2),  the Tu obey com- 
mutation relations, 

P , T ' ]  = i p T c  (7.12) 

where f a b c  are known as tlie structure constants of the algebra. For SU(2),  fobc  = eUbc. 
(We normally normalise the Tu such that tr(TuTb) = P b / 2 . )  Although I won't really 
justify this, the structure constants really contain all the information in the group. 
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7.3 Represeiitatioiis 
The structure of a group is defined abstractly in terms of the multiplication. A concrete 

realisation of a group is called -4 representation. A representation has two objects. Firstly, 
there must be a specific object for each element of the group. Normally we will be interested 
in matrix representations of a group. So we will have a mapping between the group and 
our set of matrices, 

f : f ( G )  + (7.13) 

which preserves the multiplication structure i.e. f (G.H) = f ( G ) . f ( H ) .  For our SU(2) and 
SU(3) groups we have actually been looking at a representation of the formal mathematical 
structure. However, it has been a very special representation - the fundamental. For a given 
group there are many representations. For example the is always the trivial representation 
where every matrix gets mapped to the number 1. Also very importantly, the matrices 
must have a vector space to act upon. Normally we view this as column vectors. A 
cultural gap between mathematicians and physicists is that mathematicians focus upon 
the matrices whereas physicists focus upon the vector space. 

7.4 Noli Abeliaii Gauge syiiiiiietries 
Let us generalise our gauge transformation acting upon a fermion 

(7.14) 

where U is an element of a. group G such as SU(2) and II, lies in a representation of G. 
For esample for SLT(2) we could take - II, to be .a doublet ofermions 

If U did not vary with x then the Lagrangian 

(7.15) 

(7.16) 

is invariant, however for a gauge symmetry we wish the gauge transformation to vary with 
2. The technique will be to construct a cot-ariant derivative D, such that 

(7.17) 

which will require 
U ( Z ) D ~ , U - ~ ( Z )  = D’, (7.18) 

We will postulate a form for D” analogously to the U(1) case, 

D,, = a,, + ig TaW; 
a 
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where T” are tlie generators of tlie algebra and IVi and tlie gauge fields - which now carry 
a group label a. (I have also introduced a coupling constant 9.) This implies that tlie W; 
transform as 

TT”,, = UT/V,U-’ - - U ( Z ) ~ ~ U - ’ ( Z )  (7.19) 

ii*\.here we define WIl = CO 1V;T’. Given this strange transformation the covariant deriva- 
tive \vi11 transform appropriately. We can also define the field strength F,,, = C, F;Ja 

(7.20) 

i 
9 

F,,,, = t?,Wu - 8”IVp - ig 
by 

In terms of F;,, this is 

(7.21) 

From this matrix, due to this simple transformation property, it is possible to construct 
gauge invariaat Lagrangiaiis. Tlie appropriate one is 

.I . 
1 L: = +~trctce(F~’”F,ly)  = F;,,FaJr” 
L a 

(7.22) 

which is invariant under Lorentz and gauge transformations. (there are other possibilities 
such as using det but these liave problems.) 

The gauge fising we applied to the U(1) case will also work here if we chose a gauge 
fixing term 

trace(d A)2 (7.23) 

7.5 Feyiiiiiaii Rules  
We now look at the Lagrangian and determine the Feynman rules and comment on 

the consequences. Firstly tlie propagator. Tlie propagator will only be determined by the 
quadratic terms in H. These will just look like 

Tvp” &b I;vb” (7.24) 

where P is the propagators for the U(1) case. Thus the (unsurprising) result is that 

P$ = Ppp6,b (7.25) 

However when we esamine the Lagrangian we find there are terms which are both cubic 
and quartic in the TY-fields. In particular, the cubic terms are 

f abcapIv”o w,cc wc” (7.26) 

What does this imply for oiir Feynman rules?. We will still have a 3-point vertex but now 
there is considerably more structure in the vertex. When evaluating we will have derivatives 
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of the propagator, which in momentum space will lead to kp terns. The precise answer 
for the three point momentum space Feynman vertex, in the Feynman gauge, i s  

as we show diagrammatically, 

Figure 6. Feynman Diagrams for Non-Abelian Gauge Theory. 

Note that i s  has crossing symmetry under interchange of legs and has one power of 
momentum in the vertex The general situation is probably fairly clear from now on. There 
will also be a 4-point vertes. This contains no momentum (but a factor of g2 rather than 
Y.1 
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8.  Critique of Perturbation theory 

I'll try to illustrate the "light" and then the "shade" 
Perturbation theory has been enormously successful but it does have limitations. First 

T h e  Light 
Perhaps the most impressive demonstration of perturbative field theory is the evalu- 

ation of 9 - 2 of the electron in QED. The magnetic moment of a fermion is related to it's 
spin via 

e 
p = -g-s 2m (8.1) 

The cZassica2 Dirac Lagrangian gives a prediction for g to be exactly 2. However, as a 
purely Quantum mechanical effect, g may not exactly equal 2 but may be anomalous. 
This is calculable, using Feynman diagrams, perturbatively. 

The great success is 

g - 2  
(-) =1159657.7 f 3.5 x lO-' : Esperiment 

. I  
2 

=1159655.4 f 3.3 x lO-' : From Theory 

The theoretical, pTediction includes Feynman diagrams up to three loops. The only sensible 
conclusion is that 

P E R T U R B A T I O N  T H E O R Y  WORKS 

T h e  Shade 
Consider the function 

f ( x )  = 0 : x = 0 
1 

f ( z )  = e - 3  

This little function lias a lot to teach us. It is not a particularly badly behaved function 
or very exiting to look at. It is continuous differentiable and it isn't very difficult to show 
that 

f '(0) = 0 

f ' " ' ( 0 )  = 0 

If fact, with a little more work me can show that 

T h ~ s  the Taylor series of f ( r )  around x = 0 is 

00 

f'"'(0)"R = 0 # f ( x )  
n 

n=O 

Thus it is a fairly simple example where the Taylor series does not equal the function. NOW 
a typical decay amplitude is a function of the coupling constant g 
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IJ’e attempt to evaluate R(g) by perturbation theory - this is essentially just it’s Taylor 
series. So any component of R which takes the form 

- e’lg2 f ( g )  

will never show up in a perturbative expansion. One might argue that such functions are 
pathological. I.e. that they are really just mathematical and don’t effect real problems 
however I’ll try to argue the reverse. Consider SU(2) pure gauge theory. Rescale the 
potential field 

1 
9 

1 
9 

w, + -w; (8.8) 

F,” + -F;” 
whence 

where F‘ has no explicit dependence on g. Then the Path integral looks a bit like 

Wliicli definitely looks dangerous! Thus we can easily see how contributions not accessi- 
ble by perturbative results can creep in. This is especially true in any form of classical 
background 

A, =A; +A: (8.10) 

(I.e. looking at transitions in the presence of a non-zero background.) 
I present this esaniple ( another good example is 1/(1 + g2 ) not to try to destroy 

Feyninan diagram techniques hut to point out that they are not everything. We must 
consider the realm of validity. Unfortunately, we have few alternate techniques. One 
technique is to take the path integral and just evaluate it numerically. To do so we must 
discretise space-time , the coilfiguration etc etc. It takes a lot of computing effort and still 
has yet to be enormously fruitful but , at present, we have nothing else other than Fe!=man 
diagrams (and variations thereof). Despite these concerns, field theory does “produce the 
goods”. 
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9. Soiiie Things to look out  for 
In an informal session we tred to peek beyond the standard model and give some 

tlieorists prejudices. I have suiiimarised somr of the areas we covered here. These very 
much reflect my personal prejudes and imperfect recollections. you  should under no  cir- 
cltmstances take m e  too seriously!. Firstly, I will try to explain some of the issues inspiring 
theoretical interest . 

One of the biggest areas of theoretical work is in supersymmetry and many of you 
will no doubt be involved in searches for “supersymmetric” partners of the known par- 
ticles. Supersymmetry is a symmetry which relates particles of different spins. This is 
very different from any other symmetry we have presented to you - and so far has no 
experimental realisation. The main prediction of supersymmetry is that every particle 
should have a “superpartner” of the same quantum numbers but differing by 1/2 spin. 
That is the “photino” would be a fermion of spin 1/2. Examining the standard model no 
such pairing has yet been observed!. Thus if supersymmetry were true, there must be a 
whole set of partners of tlie esisting known particles waiting to be found. Supersymmetry 
predicts that the superpartners have the same mass - It  is obviously a broken symmetry!. 
Theorists love supersymiiietry because supersymmetric theories have much better quan- 
tum properties than non-supersymmetric theories. Theorists in the USA and Europe have 
had, in general, rather different “cultures” regarding supersymmetry. In Europe it  come 
close to religious fervour aiiioiigst some whereas in certain, influential, circles in the USA 
there is strong disbelief. This unfortunately has led the US experimentalism to be less ag- 
gressive iii many cases in supersymmetric partner searches than in Europe. The discovery 
of supersymmetric partners to tlie esisting particles would be a great vindication for the 
believers. (and extremely exciting for everyone!) The running of the coupling constants 
to “unification” scales tends to support supersymmetry rather than not but, despite the 
hype, most “neutrals” take rather a cynical view. 

An area of great theoretical interest has been in formulations of quantum gravity. 
Although of no esperimental significance very many theorists think this‘ is a valid area of 
research both in it’s own right and also for the implications if has for the other forces. 
The basic problem is that if one takes the classical Lagrangian known to describe general 
relativity (tlie Einstein-Hilbert action) and applies the perturbative techniques described 
in these lectures is just gives nonsense. The nonsense takes the form of infinities which 
oiie eiicouiiters in scattering aiiiplitudes and we have no, sensible, way to eliminate these 
infinities. One can take two approaches to this problem 1) modify Quantum Mechanics or 
2) modify Gravity. Personally I don’t like the approaches which involve modifying quan- 
tum mechanics but a surprising number of smart people do. One of the most interesting 
modifications to gravity has been “String Theory”. Instead of having point particles the 
fundamental objects in one’s theory are one-dimensional strings. Obviously a string has 
an infinite nuniber of degrees of freedom compared to a point particle - easily thought of 
a the modes- but one can still just apply Quantum mechanics in principle to the theory. 
-4lthough the mathematics is shockingly difficult the Quantum behaviour of the theory is 
very good. It appears that tlie theory is quantum consistent and includes gravity. So far 
string theory provides an honest answer to a real question. whether it is the only solution 
aiid whether it is the solution chosen by nature who knows. The mathematics of string 
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theory have proven so rich that many theorists are difficult to recognise as physicists now. 
To finish with, I’ll mention something which doesn’t see a lot of theoretical output 

these clays but which many people if you ask them in a quite corner, hand on heart might 
agree with. This is that quarks and leptons and especially the Higgs might be composite. 
Again many of you might get involved in compositness searches. Theories where the H i a s  
is composite can be very attractive. These are often called Technicolour theories. However 
it’s rather difficult to get them to work convincingly. One major problem with any such 
calculations is that, basically, we can only handle weakly interacting theories with much 
success. As soon as a theory is strongly coupled life becomes very hard. And any theory 
which binds composite objects into quarks/leptons/Higgs must be strongly interacting. 
The difficulty in calculating makes it very hard to speculate on the type of theory. Take 
the case of QCD: the lattice gauge theory community has poured huge amounts of effort 
and time and computer power into evaluating QCD quantities numerically. So far this 
has had limited success (this isn’t to criticise - lattice techniques are the only techniques 
available). If I visited the office of a local lattice theorist and asked him what are the 
masses of the bound states of SU(4) or some other weird theory (so I might compare to 
the quark mass spectrum for esample) I wont b get a lot of sympathy. Despite the fact 
that humans can’t calculate strongly interacting theories doesn’t mean that the universe 
can’t and compositness is a very real possibility. 
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10. Exercises (selected) 
1.1 Consider the double pendulum. 

Figure El. The Double pendulum. 

Assuming small oscillatioiis find L(01,8,, 0 2 ,  &). Find Lagranges equations for this 

1.2 Calculate the Poissoii brackets, 
system. Find H and evaluate Hamilton's equations. Optional- Solve. 

{ Q2,P}, {Q2iP2} 

How do these compare with 
M2 9 I31 9 [i2 ' 2j21 

1.3 Suppose 
1 

then what is H?. 
1.4 Show that the time dependence of any function F(pr,  Qr) is given by 

F =  { F ,H }  (10.1) 

2.1 In the low temperature limit of the partition function in statistical mechanics it 
is the low-energy states whose contributions dominate. In the small-6 limit which paths 
will dominate in the path integral? 

3.1 Suppose 
c = zaii$a,l$ 1 - 

what are Lagranges equat.ions for this?, 
4.1 Suppose w e  have a single real scalar field +,t) and 
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so that Hint = 
and k2 

d3zX : $"(,x, i ' )  :. For an initial state with two particles of momenta kl 

It = -00) = Ut(k,)ut(k,)lo)(*) 

Suppose the final state has AI-particles 

To leading order, (VI) what is the value of M so that the transition is non-zero? 

the notes ). If we have initial state (*) and final state 
4.2 Suppose we have d(g,t) and a complex x(:,t) with Lint = -g : xtxg5 the case in 

then 
(a) Show to lowest order (IT,) that the matrix element is zero 
(b) What is the first order where the matrix element is non-zero and for this order what 
are the values of M and N? 

6 5.1 Compute 6 ~ 0  ' d J ( y ; ; J ( r )  Of 

6.1 Express both FI,,FI"' and ECcupaFjtvFPu in terms of E and B. 
7.1 An alternate Definition of F,, is 

7.2 Find a set of 3 x 3 niatrices which form a representation of SU(2). i.e. matrices 
satisfying (7.9) 
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1 Introduction 
The traditional aim of this course is to teach you how to calculate amplitudes, cross- 
sections and decay rates, particularly for quantum electrodynamics, QED, but in principle 
also for quantum chromodynamics, QCD. By the end of the course you should be able 
to go from a Feynman diagram such as the one for e+e- + p+p- in Figure l.l(a), to a 
number for the cross-section, for example. 

We will restrict ourselves to calculations at tree level but will also look qualitatively 
at higher order loop effects which amongst other things are responsible for the running 
of the QCD coupling constant, where the coupling appears weaker when you measure it 
at higher enegy scales. This running underlies the useful application of  perturbative QCD 
calculations to  high-energy processes. As you can guess, the sort of diagrams which are 
important here have closed loops of  particle lines in them: in Figure l . l(b) is one example 
contributing to  the running of the strong coupling (the curly lines denote gluons). 

In order to do our calculations we will need a certain amount of  technology. In 
particular, we will need to describe particles with spin, especially the spin-l/2 leptons 
and quarks. We will therefore spend some time looking at the Dirac equation and its free 
particle solutions. After this will come revision of Fermi’s golden rule to find probability 
amplitudes for transitions, followed by some general results on normalisation, flux factors 
and phase space, which will allow us to obtain formulas for cross sections and decay rates. 

With these tools in hand, we will look at some examples of tree level QED processes. 
Here you will get hands-on experience of calculating transition amplitudes and getting 
from them to cross sections. We then move on to  QCD. This will entail a brief introduction 
to renormalisation in both QED and QCD. We will introduce the idea of  the running 
coupling constant and look at asymptotic freedom in QCD. 

In reference [l] you will find a list of textbooks which may be useful. 

1.1 Units and Conventions 
I will use natural units, c = 1, h = 1, so mass, energy, inverse length and inverse time all 
have the same dimensions. 

4-vector up p = 0 , 1 , 2 , 3  a = (ao, a)  
scalar product a.b = aobo - a-b = g,,aW’ (1.1) 

From the scalar product you see that the metric is: 

= v  
g = diag(1, -1, -1, -I), 9 PA gAu = 6; = { if I.1 

0 i f p # v  
For c = 1, gpu and gPv are numerically the same. 

e+ \ / P+ 

Figure 1.1 Examples of Feynman diagrams contributing to (a) e+e- 3 p+p- and (b) the 
running of the strong coupling constant. 
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n o m  the above, you would think it natural to write the space components of a 4-vector as 
ui for i = 1,2,3. However, for 3-vectors I will normally write the components as ai. This 
is confusing only when you convert between ordinary vector equations and their covariant 
forms, when you have to remember the sign difference between ui and ai. 

Note that aP is a covector, 

dpxY = q, (1.3) 
a 4 = 

so Vi = -8 and P = (a", -V) 
My convention for the totally antisymmetric Levi-Civita tensor is: 

+I if {p, v, A, a}  an even permutation of {O,1,2,3} 
E ~ " ' ~  = -1 if an odd permutation (1.4) { 0 otherwise 

Note that epvXU = -ePY~,,, and P'xuppq,,r~su changes sign under a parity transformation 
(which is obvious because it contains an odd number of spatial components). 

1.2 Relativistic Wave Equations 
The starting point for this course is the good old Schrodinger equation which can be 
written quite generally as: 

. a w  
HlCl(t) = $7 

where H is the Hamiltonian (i.e. the energy operator). In this equation $(t) is the 
wavefunction describing the single particle probability amplitude. In this course we shall 
reserve the Greek symbol $ for spin 1/2 fermions and q5 for spin 0 bosons. So for pions 
and the like we shall write: . a m  H W  = 

Now in this course we want to  extend non-relativistic quantum mechanics into the 
relativistic domain. The good news is that  the Schrodinger equation as written above 
applies equally well in relativistic quantum mechanics. However care must be taken 
with the Hamiltonian to  ensure that  it is relativistically invariant. For example, in non- 
relativitic quantum mechanics you are used to writing 

H = T + V  (1.7) 

where T is the kinetic energy and V(r) is the potential energy. A particle of mass m and 
momentum p has non-relativistic kinetic energy, 

P2 T = -  
2m 

where capital P is the operator corresponding to momentum p. For a slow moving 
particle v << c (e.g. an electron in a Hydrogen atom) this is adequate, but for relativistic 
systems ZI - c the Hamiltonian above breaks down. For a free relativistic particle the 
total energy E is given by the Einstein equation 

E 2 = p 2 + m 2  (1.9) 
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Thus the square of the relativistic Hamiltonian H2 is simply given by promoting the 
momentum to operator status, 

So far so good, but now the question arises of how to implement the Schrodinger equation 
which is expressed in terms of H rather than H2. Naively the relativistic Schrodinger 

H 2 = P 2 + m 2  (1.10) 

equation looks like 
d P V ? ) ( t )  = i-  a$ (t) 

at (1.11) 

but this is difficult to interpret because of the square root. There are two ways forward: 

Work with H2. By iterating the Schrodinger equation we have 

(1.12) 

which is known as the Klein-Gordon (KG) equation. In this case the wavefunction 
describes spinless bosons. 

Invent a new Hamiltonian HD which is linear in momentum, and whose square is 
equal to H2 given above, H i  = P2 + m2. In this case we have 

(1.13) 

which is known as the Dirac equation, with HD being the Dirac Hamiltonian. In 
this case the wavefunction describes spin one half fermions, as we shall see. 

Wavefunctions vs. Fields 
You may be wondering why I am talking about wavefunctions while in your field theory 
course Dave Dunbar is telling you about fields. Some of you may even be wondering 
what is the difference between a wavefunction and a field. Well, you all know that 
wavefunctions are just probablility amplitudes for finding the particle. This is fine and 
dandy - so why can’t we stick with wavefunctions rather than go to the trouble of 
inventing fields? The answer has to do with some problems faced by relativistic quantum 
mechanics. As we know from the non-relativistic Schrodinger equation one can define a 
probability density 

P = $*$ (1.14) 

and a current density 
-a 
2m 

J = -(4*V$ - 4Vf) 

which satisfy the so called continuity equation 

-- a’ - -V.J 
at 

(1.15) 

(1.16) 

which just expresses conservation of probability. The existence of this equation enables 
one to interpret $*$ as a probability distribution. (This is why probability is indentified 
with 1 $ 1 2  rather than say for example.) OK - now what about relativity? 
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In the relativistic domain for the KG and Dirac equations there are analagous con- 
tinuity equations for probability but here there are some problems of interpretation. To 
begin with the KG equation turns out to have a probability density which can be nega- 
tive! This is the tip of a conceptual iceberg because even if it were positive all the time, 
we have no right to expect that probability is conserved for bosons which can be created 
and destroyed in arbitrary numbers (e.g. any number of pions can be produced when 
a high energy proton beam hits a target). There is clearly a conceptual problem with 
the single particle interpretation of the wavefunction II, in this case, and quantum field 
theory is the solution! The KG equation also suffers from the problem of having negative 
energy solutions, and here again one finds the solution in quantum field theory. 

Quantum field theory draws much of its inspiration from electromagnetic fields. We 
are used to thinking of an electromagnetic field as a real physical quantity which can 
occupy space and which can contain energy. When you wiggle around a bar magnet as 
a child it is quite natural to think of the magnetic field as a real quantity which exists in 
the space around the magnet, and gets carried around with the magnet. When this field 
encounters some iron filings it interacts with them, and so on. We also know that photons 
are packets of energy and that they must be regarded as the result of quantising the 
electromagnetic field. Like the pions, photons can be created and destroyed in arbitrary 
numbers (e.g. an excited atom can emit one or more photons). This presents no problem 
if photons are regarded as quanta of the electromagnetic field, since a state with n photons 
just corresponds to a higher level of exitation of the electromagnetic field than a state 
with no photons (the vacuum or ground state of the field). Given our experience with 
electromagnetism it seems perfectly natural to try to play the same game with spinless 
bosons such as pions, and invent a new field analagous to the electromagnetic field, whose 
quantum excitations can be interpreted as spinless bosons. 

Such considerations led inevitably to the development of quantum field theory as 
the solution to the problem with probability faced by the KG equation. However the 
same problem also led Dirac to invent his equation, for which the probability is always 
positive, and his now famous prediction of spin and antiparticles. However the existence 
of antiparticles implies that particle-antiparticle pairs can be created and destroyed in 
arbitrary numbers, just as in the case of bosons, so again there is the problem with the 
single particle wavefunction interpretation, and again one is led to quantum field theory. 
Indeed here the case is even more compelling since one desires to treat electrons and 
photons on the same basis in order to understand their interactions properly, and given 
that photons are quanta of the e.m. field one is led to the Dirac field immediately. 

It is important to emphasise that a field is a very different beast from a wavefunction. 
A wavefunction #(r, t )  is just a mathematical object, a complex number from which we 
can extract information about the whereabouts of the particle. A field on the other hand 
is a physical object which exists in space and which can have energy. In order to be 
able to carry energy, the field is described by a function d(r,t) which is regarded as a 
dynamical variable or generalised coordinate. I find it useful to think of the value of 
the field at  a point in space as a coordinate describing the motion of some (ficticious) 
infinitesimal harmonic oscillator associated with that point. The total field describes the 
collection of all such little (coupled) harmonic oscillators corresponding to all the points 
in space. Each little pretend oscillator is described by its own coordinate, and carries an 
infinitesimal energy. The field is in fact analagous to a set of oscillating coupled atoms 
in a crystal lattice. However the field variable #(r,t) is not to be thought of literally as 
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the displacement of some oscillator, but rather something akin to an electric or magnetic 
field. Nevertheless the field coordinate at a particular space point can oscillate, does 
couple to neighbouring field points, and does carry an infinitesimal energy - just like a 
vibrating atom in a crystal - so it is a useful picture to  have in your mind. 

When Dave Dunbar considers quantum mechanics of the field (quantum field theory) 
all he has to do is quantise each of the little oscillators for each space point, in just the 
same way as we would quantise the coordinates of atoms in a crystal. Since coordinates 
become operators in quantum mechanics this implies that the field variables #(r,t) get 
promoted to the status of operator. Of course there are some slight technicalities involved 
with this proceedure, and so it will take Dave a whole course to explain how to do it! 

You have probably noticed that I have used the same symbol 4 for both the wave- 
function and the field, even though one is a complex number and the other is a dynamical 
variable which must be regarded as a quantum operator. The reason I am able to get 
away with such sloppiness is that it turns out (although this is not obvious) that the 
wavefunction and the field obey the same equation of motion, even though they are very 
different beasts. So when I talk about the KG equation, I can equally well be talking 
about the equation for the wavefunction or the field - they are the same. So you must 
have your wits about you at all times to decide if I am talking about the wavefunction 
or the field! 

1.4 The Klein-Gordon Equation 
We now write the I<G equation 1.12 in position space, using a rather fancy notation with 
which you can impress your friends. In position space we write the momentum operator 
as 

p + -iv, (1.17) 
so that the KG equation 1.12 becomes, 

(0 3- m2) 4(x) = 0 (1.18) 

where we have introduced the impressive box notation, 

o = a p  = a2/at2 - v2 (1.19) 

and x is the 4-vector (t,x). 
The operator 0 is Lorentz invariant, so the Klein-Gordon equation is relativistically 

covariant (that is, transforms into an equation of the same form) if 4 is a scalar function. 
That is to say, under a Lorentz transformation (t,  x) + (t', x'), 

4@, x)  3 4'(t', x') = 4(t, 4 
so 4 is invariant. In particular 4 is then invariant under spatial rotations so it represents 
a spin-zero particle (more on spin when we come to the Dirac equation), there being no 
preferred direction which could carry information on a spin orientation. 

The Klein-Gordon equation has plane wave solutions 

4 ( 4  - - Ne-'(Et'P'X) (1.20) 

where N is a normalisation constant and E = &,/m. Thus, there are both positive 
and negative energy solutions. In the quantum field 4, these are just associated with 
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operators which create or destroy particles. However, they are a severe problem if you 
try to  interpret as a wavefunction. The spectrum is no longer bounded below, and you 
can extract arbitrarily large amounts of energy from the system by driving it into ever 
more negative energy states. Any external perturbation capable of pushing a particle 
across the energy gap of 2m between the positive and negative energy continuum of 
states can uncover this difficulty. 

A second problem with the wavefunction interpretation arises when you try to find 
a probability density. Since 4 is Lorentz invariant, 1412 doesn’t transform like a density. 
To search for a candidate we derive a continuity equation, rather as you did for the 
Schrodinger equation in the pre-school problems. Defining p and J by 

(1.21) 

you obtain (see problem) a covariant conservation equation 

apJp = 0 (1.22) 

where J is the 4-vector ( p ,  J). It  is natural to interpret p as a probability density and J 
as a probability current. However, for a plane wave solution (1.20), p = 21NI2E, so p is 
not positive definite since we’ve already found E can be negative. 

Derive the continuity equation (1.22). Start with the Klein-Gordon equation multiplied 
by 4* and subtract the complex conjugate of the K-G equation multiplied by 4. 

Thus, p may well be considered as the density of a conserved quantity (such as 
electric charge), but we cannot use it for a probability density. To Dirac, this and the 
existence of negative energy solutions seemed so overwhelming that he was led to intro- 
duce another equation, first order in time derivatives but still Lorentz covariant, hoping 
that the similarity to Schrodinger’s equation would allow a probability interpretation. In 
fact, with the interpretation of 4 as a quantum field, these problems are not problems at 
all: the negative energy solutions will find an explanation in terms of antiparticles and p 
will indeed be a charge density as hinted above. Moreover, Dirac’s hopes were unfounded 
because his new equation also turns out to admit negative energy solutions. Fortunately 
it is just what we need to describe particles with half a unit of spin angular momentum, 
so we will now turn to it. 

DExercise 1.1 
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2 The Dirac Equation 
Dirac wanted an equation first order in time derivatives and Lorentz covariant, so it had 
to be first order in spatial derivatives too. His starting point was to assume a Hamiltonian 
of  the form, 

where Pi are the three components of the momentum operator P, and ai and /3 are 
some “unknown quantities”, which as will be seen below cannot simply be commuting 
numbers. When the requirement that the Hi = P2 + m2 is imposed, this implies that 
ai and p must be interpreted as 4 x 4 matrices, as we shall discuss. The first step is to 
write the momentum operators explicitly in terms of  their differential operators, using 
Eq.1.17, then the Dirac equation 1.13 becomes, using the Dirac Hamiltonian in Eq.2.1, 

HD = a1 PI + a2 P2 + a3 P3 + pm (2.1) 

a$ i - = ( - i  a.V + pm)$ 
at 

which is the position space Dirac equation. Remember that in field theory, the Dirac 
equation is the equation of  motion for the field operator describing spin 1/2 fermions. In 
order for this equation to be Lorentz covariant, i t  will turn out that $ cannot be a scalar 
under Lorentz transformations. In fact this will be precisely how the equation turns out 
to describe spin 1/2 particles. We will return to this below. 

If $ is to describe a free particle i t  is natural that i t  should satisfy the Klein- 
Gordon equation so that it has the correct energy-momentum relation. This requirement 
imposes relationships among the Q and p. To see these, apply the operator on each side 
of equation (2.2) twice, i.e. iterate the equation, 

with an implicit sum-over i and j from 1 to 3. The Klein-Gordon equation by comparison 
is 

If we do not assume that the ai and p commute then the K G  will clearly be satisfied if 

for i, j = 1 , 2 , 3 .  It is clear that the oi and p cannot be ordinary numbers, but i t  is natural 
to give them a realisation as matrices. In this case, $ must be a multi-component spinor 
on which these matrices act. 

Prove that any matrices Q and ,O satisfying equation (2.4) are traceless with eigenvalues 
fl. Hence argue that they must be even dimensional. 

 exercise 2.1 

In two dimensions a natural set of matrices for the a, would be the Pauli matrices 
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However, there is no other independent 2 x 2 matrix with the right properties for p, so 
the smallest dimension for which the Dirac matrices can be realised is four. One choice 
is the Dirac representation 

Note that each entry above denotes a two-by-two block and that the 1 denotes the 2 x 2 
identity matrix. 

There is a theorem due to Pauli which states that all sets of matrices obeying the 
relations in (2.4) are equivalent. Since the Hermitian conjugates at and Pt clearly obey 
the relations, you can, by a change of basis if necessary, assume that a and P are Her- 
mitian. All the common choices of basis have this property. Furthermore, we would like 
ai and p to be Hermitian so that the Dirac Hamiltonian (2.18) is Hermitian. 

Derive the continuity equation 8,J. = 0 for the Dirac equation with 
[>Exercise 2.2 

;O = Jo = ?,ht(z)?,h(z), J = $J~(~)Q?,~(x).  

We will see in section 2.6 that (p, J) does indeed transform as a four-vector. 

2.1 
We look for plane wave solutions of the form 

Free Particle Solutions I: Interpretation 

where d(p) and ~ ( p )  are two-component spinors which depend on momentum p but are 
independent of x. Using the Dirac representation of the matrices, and inserting the trial 
solution into'the Dirac equation gives the pair of simultaneous equations 

There are two simple cases for which Eq.2.9 can readily be solved, namely 

(1) p = 0, m # 0 corresponding physically to an electron in its rest frame. 

(2) m = 0, p # 0 corresponding physically to a massless neutrino. 

For case (l), an electron in its rest frame, the equations 2.9 decouple and become 
simply, 

so that in this case we see that x corresponds to solutions with E = m, while 4 corre- 
sponds to solutions with E = -m : negative energy solutions! 

These negative energy solutions persist for an electron with p # 0 for which the 
solutions to Eq.2.9 are readily seen to be 

Ex = mX, E4 = -m4 (2.10) 

0.P 
qk- x, x =  -4. . E+m E-m (2.11) 
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I I’ 
Figure 2.1 Feynman interpretation of a process in which a negative energy electron is absorbed. 
Time increases moving upwards. 

Thus the general positive energy solutions with E = + l d m I  are: 

-i(Et-p.x) 
9 

E+m 

while the general negative energy solutions with E = - l d G z I  are: 

(2.12) 

(2.13) 

for arbitrary constant 4 and x. Clearly when p = 0 these solutions reduce to the 
positive and negative energy solutions discussed previously. Now, since E2 = p2 + m2 by 
construction, we find, just as we did for the Klein-Gordon equation (1.18), that there exist 
positive and negative energy solutions given by equations (2.12) and (2.13) respectively. 
Once again, the existence of negative energy solutions vitiates the interpretation of $ as 
a wavefunction. 

Dirac interpreted the negative energy solutions by postulating the existence of a 
“sea” of negative energy states. The vacuum or ground state has all the negative energy 
states full. An additional electron must now occupy a positive energy state since the 
Pauli exclusion principle forbids it from falling into one of the filled negative energy 
states. By promoting one of these negative energy states to a positive energy one, by 
supplying energy, you create a pair: a positive energy electron and a hole in the negative 
energy sea corresponding to a positive energy positron. This was a radical new idea, and 
brought pair creation and antiparticles into physics. Positrons were discovered in cosmic 
rays by Car1 Anderson in 1932. 

The problem with Dirac’s hole theory is that it doesn’t work for bosons, such as 
particles governed by the Klein Gordon equation, for example. Such particles have no 
exclusion principle to stop them falling into the negative energy states, releasing their 
energy. We need a new interpretation and turn to Feynman for our answer. 

According to Feynman and quantum field theory, we should interpret the emission 
(absorption) of a negative energy particle with momentum p” as the absorption (emission) 
of a positive energy antiparticle with momentum +. So, in Figure 2.1, for example, an 
electron-positron pair is created at point A. The positron propagates to point B where 
it is annihilated by another electron. 

Thus Feynman tells us to keep both types of free particle solution. One is to be used 
for particles and the other for the accompanying antiparticles. Let’s return to our spinor 
solutions and write them in a conventional form. Take the positive energy solution of 
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equation (2.12) and write, 

(2.14) 

For the former negative energy solution of equation (2.13), change the sign of the energy, 
E 3 -E, and the three-momentum, p + -p, to obtain, 

(2.15) 

In these two solutions E is now (and for the rest of the course) always positive and given 
by E = (p2 + m2)lI2. The subscript r takes the values 1,2, with 

(2.16) 

For the simple case p = 0 we may interpret x1 as the spin-up state and x2 as the 
spin-down state. Thus for p = 0 the 4-component wavefunction has a very simple 
interpretation: the first two components describe electrons with spin-up and spin-down, 
while the second two components describe positrons with spin-up and spin-down. Thus 
we understand on physical grounds why the wavefunction had to have four components. 
The general case p # 0 is slightly more involved and is considered in the next section. 

At this point I would like to introduce another notation, and define 

wp E dp2 + m2, (2.17) 

so that, wp is the energy (positive) of a particle or anti-particle with three-momentum 
p (I write the subscript p instead of p, but you should remember it really means the 
three-momentum). I will tend to use E or wp interchangeably. 

The u-spinor solutions will correspond to particles and the v-spinor solutions to 
antiparticles. The role of the two x’s will become clear in the following section, where it 
will be shown that the two choices of T are spin labels. Note that each spinor solution 
depends on the three-momentum p, so it is implicit that po = wp. 

2.2 
Now it’s time to justify the statements we have been making that the Dirac equation 
describes spin-l/2 particles. The Dirac ,Hamiltonian in momentum space is given in 
Eq.2.1 as 

(2.18) 
and the orbital angular momentum operator is 

Free Particle Solutions 11: Spin 

Ho = a.P + /3m 

L = R x P .  

Normally you have to worry about operator ordering ambiguities when going from classical 
objects to quantum mechanical ones. For the components of L the problem does not arise 
- why not? 
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Evaluating the commutator of L with Hi, 
[L ,HD] = [ R x  P,CU.P] 

= [ R , a * P ]  x P 
= icux P ,  

(2.19) 

we see that the orbital angular momentum is not conserved (otherwise the commutator 
would be zero). We’d like to  find a total angular momentum J which U conserved, by 
adding an additional operator S to L, 

J = L+S, [J ,HD] = 0 (2.20) 

To this end, consider the three matrices, 

a 0  C ( a )  = -icu~cu2cu3cY. (2.21) 

where the first equivalence is merely a definition of C and the last equality can read- 
ily be verified. The C/2 have the correct commutation relations to represent angular 
momentum, since the Pauli matrices do, and their commutators with cu and p are, 

D Exercise 2.3 
Verify the commutation relations in equation (2.22). 

From the relations in (2.22) we find that 

[E, HD] = - 2 h  x P. 

Comparing this with the commutator of L with HD in equation (2.19), you readily see 
that 

and we can identify 
[L + fC, HD] = 0, 

1 
2 

S = -c. 
as the additional quantity which when added to L in Eq.2.20 yields a conserved total 
angular momentum J .  We interpret S as an angular momentum intrinsic to  the particle. 
Now 

and recalling that the eigenvalue of J 2  for spin j is j ( j +  l), we conclude that S represents 
spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised. 

We worked in the Dirac representation of the matrices for convenience, but the result 
is of course independent of the representation. 

Now consider the u-spinor solutions U; of equation (2.14). Choose p = (O,O,p,) and 
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It is easy to see that, 
1 1 

So, these two spinors represent spin up and spin down along the z-axis respectively. For 
the v-spinors, with the same choice for p, write, 

2 , V f  = vpz = (2.24) 

1 
where now, 

1 
2 S,V$ = ;U$, s,vt = --ut. 

This apparently perverse choice of up and down for the U’S is because, as you see later for 
the quantum Dirac field, ut multiplies an annihilation operator which destroys a particle 
with momentum pz and spin up, whereas VI multiplies an operator which creates an 
antiparticle with momentum p, and spin up. 

2.3 Normalisation, Gamma Matrices 
We have included a normalisation factor d E  in our spinors. With this factor, 

(2.25) 

This corresponds to the standard relativistic normalisation of 2wp particles per unit 
volume. It  also means that utu transforms like the time component of a 4-vector under 
Lorentz transformations as we will see in section 2.6. 

Check the normalisation condition for the spinors in equation (2.25). 
o. Exercise 2.4 

I will now introduce (yet) more standard notation. Define the gamma matrices, 

yo = p, y =pa. (2.26) 

In the Dirac representation, 

(2.27) 

In terms of these, the relations between the cy and p in equation (2.4) can be written 

{ ~ p ,  7”) = 2gPy. (2.28) 
compactly as, 

Combinations like up?” occur frequently and are conventionally written as, 

pronounced “a slash.” Note that yp is not, despite appearances, a 4-vector - i t  just 
denotes a set of four matrices. However, the notation is deliberately suggestive, for when 
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combined with Dirac fields you can construct quantities which transform like vectors and 
other Lorentz tensors (see the next section). 

Let’s close this section by observing that using the gamma matrices the Dirac equa- 
tion (2.2) becomes 

(2.29) (iQ - m)@ = 0 ,  

or in momentum space, 

The spinors U and 21 satisfy 

($ - m)$ = 0. 

($-m)u; = 0 
($+m)v,’ = 0 

D Exercise 2.5 
Derive the momentum space equations satisfied by U; and 21;. 

(2.30) 

(2.31) 

2.4 Lorentz Covariance 
We want the Dirac equation (2.29) to preserve its form under Lorentz transformations 
(LT’s). Let AYy represent an LT, 

xp + x‘P = A”yxy (2.32) 

A familiar example of a LT is a boost along the z-axis, for which 

with as usual /3 = v (in units of c) and 7 = (1 - p2)-1/2. LT’s can be thought of as 
generalised rotations. 

The requirement is, 

where = A“&. This last equality follows because 

a dx’“ a a 
A“Pd5’0 ap = - = -- = 

a x p  a x p  ax‘g 

where Eq.2.32 has been used in the last step. We know that 4-vectors get their com- 
ponents mixed up by LT’s, so we expect that the components of $ might get mixed UP 
also, 

$(x) + @’(x’) = S(A)$(x) = S(A)@(A-’x‘) (2.33) 

where S(A) is a 4 x 4 matrix acting on the spinor index of @. Note that the argument 
A-lx’ is just a fancy way of writing 2, so each component of $(x) is transformed into a 
linear combination of components of @(x). 
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It is helpful to recall that for a vector field, the corresponding transformation is 

AP(x) + A'P(z') 

where XI = Ax. This makes sense physically i f  one thinks of space rotations of  a vector 
field, For example the wind arrows on a weather map of  England are an example of a 
vector field: at each point on the map there is associated an arrow. Consider the wind 
direction at a particular point on the map, say Abingdon. If the map of  England is rotated, 
then one would expect on physical grounds that the wind vector at Abingdon always point 
in the same physical direction and have the same length. In order to achieve this, both 
the vector itself must rotate, and the point to which it is attached (Abingdon) must be 
correctly identified after the rotation. Thus the vector at the point x' (corresponding to 
Abingdon in the rotated frame) is equal to the vector at the point x (corresponding to  
Abingdon in the unrotated frame), but rotated so as to keep the physical sense o f  the 
vector the same in the rotated frame (so that the wind always blows towards Oxford, say, 
in the two frames). Thus having correctly identified the same point in the two frames all 
we need to do is rotate the vector: 

A'P(d) = AfA"(x). 

A similar thing also happens in the case of the 4-component spinor field above, except that 
we do not (yet) know how the components of the wavefunction themselves must transform, 
i.e. we do not know S. 

To determine S we rewrite the Dirac equation in terms of the primed variables (just 
a mathematical substitution), 

(2.34) (iypAup8L - m)$(A -1 Z )  I = 0. 

Some new matrices can be defined, 7'" = yPAur which satisfy the same anticommutation 
relations as the 7% in equation (2.28), 

(2.35) 

DExercise 2.6 
Check relation (2.35). 

Now we invoke the theorem (Pauli's theorem) which states that  any two represen- 
tations of the gamma matrices are equivalent. This means that  there is a matrix S ( h )  
such that  

y'P = S-'(A)ypS(A). (2.36) 
This allows us to  rewrite equation (2.34) as 

or using Eq.2.33, 

so that the Dirac equation does indeed preserve its form in the primed frame. 
(iyw; - m)$'(d) = 0, 

To construct S explicitly we must solve Eq.2.36, which may be written as, 

(2.37) 

(2.38) 



For an infinitesimal LT, it can be verified that, 

A”U = - ~ ( g ” ’ ’ 6 ~ ~  - g‘”6Py) (2.39) 

where E is an infinitesimal parameter and p and a are fixed. Since this expression is 
antisymmetric in p and a there are six choices for the pair (p,  a) corresponding to  three 
rotations and three boosts. 

For example a boost along the z-axis corresponds to p = 0, Q = 3, since in this case, 

APU = 6”” - -~(9O”6~~ - g 3 ” 6 O U )  

1 O O - - E  =(!-E H ; s ) .  
which can be identified with the previous example with p = -e and 7 = 1 in the low 
velocity limit. 

Writing, 
S(A) = 1 + i esPu (2.40) 

where spO is a matrix to be determined for each choice of p and a, we find that equa- 
tion (2.3G) for -y‘ is satisfied by, 

(2.41) 

Here, I have taken the opportunity to define the matrix u p u .  Thus S is given explicitly 
in terms of gamma matrices, for any LT specified by p, Q and E. 

Verify that equation (2.36) relating and y is satisfied by spa defined through equa- 
tions (2.40) and (2.41). 

We have thus determined how $ transforms under LT’s. To find quantities which 
are Lorentz invariant, or transform as vectors or tensors, we need to introduce the Pauli 
and Dirac adjoints. The Pauli adjoint $ of a spinor $ is defined by 

(2.42) 

DExercise 2.7 

- 
$ E $tyO = $‘p. 

The Dirac adjoint of a rnatriz A is defined by 
(3Aq5)” = $Z$. (2.43) 

For Hermitian ro it is easy to show that 

(2.44) 
- 
A = r O ~ t y O .  

Some properties of the Pauli and Dirac adjoints are: 

( X A + p B )  = -- X*x+p*B ,  
AB = B A ,  
- 
- -- 
A$ = $ A .  

With these definitions, 3 transforms as follows under LT’s: 
- 
$ + 3‘ = $S-’(A) 

DExercise 2.8 

(2.45) 
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(1) Verify that rfit = rorfiro. This says that 7’’ = rfi. 
(2) Using (2.40) and (2.41) verify that roSt(A)ro = S-l(A), i.e. ’F = S-l. So S is not 

unitary in general, although it is unitary for rotations (when p and 0 are spatial 
indices). This is because the rotations are in the unitary 0(3) subgroup of the 
nonunitary Lorentz group. Here you show the result for an infinitesimal LT, but it 
is true for finite LT’s. 

(3) Show that 3 satisfies the equation 
c. - 

II, (-q - m) = 0 

where the arrow over g implies the derivative acts on 3. 
(4) Hence prove that 3 transforms as in equation (2.45). 

Note that result (2) of the problem above can be rewritten as 3(A) = S-l(A), and 
equation. (2.36) for the similarity transformation of yp to y’fi takes the form, 

- 
SypS = AP,,yy. (2.46) 

Combining the transformation properties of 1c, and 3 in equations (2.33) and (2.45) 
we see that the bilinear 3$ is Lorentz invariant. In section 2.6 we’ll consider the trans- 
formation properties of general bilinears. 

Let me close this section by recasting the spinor normalisation equations (2.25) in 
terms of “Dirac inner products.” The conditions become, 

Tu; = 2 m P  

?$U; = - 2 m P  
- 1 s  

upup 
- 1 ’ s  upup = 0 

DExercise 2.9 
Verify the normalisation properties in the above equations (2.47). 

(2.47) 

2.5 Parity 
In the nest section we are going to construct quantities bilinear in 1c, and 3, and classify 
them according to their transformation properties under LT’s. We normally use LT’s 
which are in the connected Lorentz Group, SO(3, l), meaning they can be obtained by 
a continuous deformation of the identity transformation. Indeed in the last section we 
considered LT’s very close to  the identity in equation (2.39). The full Lorentz group has 
four components generated by combining the SO(3,l) transformations with the discrete 
operations of parity or space inversion, P, and time reversal, T, 

0 0 0  - 1 0 0 0  
A p = ( i  -! -; :). A T = (  0 0 1 0 0  0 1 .). 

-1 0 0 0 1  

LT’s satisfy ATgA = g (see the preschool problems), so taking determinants shows 
that det A = f l .  LT’s in SO(3,l) have determinant 1, since the identity does, but the 
P and T operations have determhant -1. 
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Let’s now find the action of parity on the Dirac wavefunction and determine the 
wavefunction $Jp in the parity-reversed system. According to the discussion of the previ- 
ous section, and using the result of equation (2.46), we need to find a matrix S satisfying 

It’s not hard to see that S = 3 = +yo is an acceptable solution, from which it follows that 
the wavefunction $Jp is 

$JP ( t , X )  = rON,  -x). (2.48) 

In fact you could multiply ro by a phase and still have an acceptable definition for the 
parity transformation. 

In the nonrelativistic limit, the wavefunction ?I, approaches an eigenstate of parity. 
Since 

the u-spinors and v-spinors at rest have opposite eigenvalues, corresponding to particle 
and antiparticle having opposite intrinsic parities. 

2.6 Bilinear Covariants 
Now, as promised, we will construct and classify the bilinears. To begin, observe that by 
forming products of the gamma matrices it is possible to construct 16 linearly independent 
quantities. In equation (2.41) we have defined 

and now it is convenient to define 

0 1 2 3  
75 = r5 f iY Y Y Y 9 (2.49) 

with the properties, 

Then the set of 16 matrices 
rs = 75, ’ {Y5,Yc1l = 0. 

r : (1, 75,YP, YP^15, UP”} 

form a basis for gamma matrix products. 
Using the transformations of $J and from equations (2.33) and (2.45), together 

with the similarity transformation of ~p in equation (2.46), construct the 16 fermion 
bilinears and their transformation properties as follows: 

(2.50) 

DExercise 2.10 
Verify the transformation properties of the bilinears in equation (2.50). 

67 



Observe that &h,b = (p, J) is just the current we found earlier in equation (2.7). 
Classically p is positive definite, but for the quantum Dirac field you find that the space 
integral of p is the charge operator, which counts the number of electrons minus the 
number of positrons. 

Q N I d 3 %  $t$ - j d 3 p  [btb - dtd]. 

The continuity equation a,P = 0 expresses conservation of electric charge, 

2.7 Charge Conjugation 
There is one more discrete invariance of the Dirac equation in addition to parity. It is 
charge conjugation, which takes you from particle to antiparticle and vice versa. For 
scalar fields the symmetry is just complex conjugation, but in order for the charge conju- 
gate Dirac field to remain a solution of the Dirac equation, you have to mix its components 
as well: 

Here qT = yoT$* and C is a matrix satisfying the condition 
$ + $c = C$T. 

In the Dirac representation, 

I refer you to textbooks such as [l] for details. 
When Dirac wrote down his equation everybody thought parity and charge conju- 

gation were exact symmetries of nature, so invariance under these transformations was 
essential. Now we know that neither of them, nor the combination CP, are respected by 
the standard electroweak model. 

2.8 Neutrinos 
In the particle data book [2] you will find only upper limits for the masses of the three 
neutrinos, and in the standard model they are massless. Let’s look therefore at solutions 
of the Dirac equation with rn = 0. From Eq.2.9 we have in this case 

These equations can easily be decoupled by taking the linear combinations and defining 
in a suggestive way the two component spinors UL and UR, 

which leads to 

Since E = IpI for massless particles, these equations may be written, 
EUR = 0.p UR,  EUL = - 0 . p ~ ~ .  

0.P -vR = V R  
0.P -Ur, = - u L ,  
IPI lPl 

(2.52) 

(2.53) 

(2.54) 
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Since is identified as the helicity operator (i.e. the spin operator projected in the 
direction of motion of the momentum of the particle) we see that the U,, corresponds to 
solutions with negative helicity, while VR corresponds to solutions with positive helicity. 
In other words UL descibes a left-handed neutrino while VR describes a right-handed 
neutrino - and each type of neutrino is descibed by a two-component spinor. 

The two-component spinors describing neutrinos transform very simply under LT's, 

(2.55) 

(2.56) 

where 8 = n8 corresponding to space rotations through an angle 8 about the unit n 
axis, and 4 = v4 corresponding to  Lorentz boosts along the unit vector v with a speed 
ZJ = tanh 4. Under parity transformations they become transformed into each other, 

VL f) UR (2.57) 

so a theory which involves only VL without VR (such as the standard model) manifestly 
violates parity. 

Although massless neutrinos can be described very simply using two component 
spinors as above, they may also be incorporated into the four-component formalism as 
follows. From equation (2.2) we have, in momentum space, 

For such a solution. 
&.P S-P 
IPI IPI 

Y5$ = 75-$ = 2-$, 

using the spin operator S = = iy5a, with C defined in equation (2.21). But S-p/IpI 
is the projection of spin onto the direction of motion, known as the helicity, and is equal 
to f1 /2 .  Thus (l+y5)/2 projects out the neutrino with helicity 1/2 (right handed) and 
(1-y5)/2 projects out the neutrino with helicity -1/2 (left handed), 

(2.58) 

which defines the four-component spinors ?,!JR and $L. 

trinos appear in the standard model. Since 
To date, only left handed neutrinos have been observed, and only left handed neu- 

any theory involving only left handed neutrinos necessarily violates parity - as we saw 
before in the two-component formalism. 

Finally note that in the Dirac representation which we have been using, 

(2.59) 

and the relation between the two-component and four-component formalisms is via the 
change of variables in Eq.2.52. However there exists a representation in which this change 
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of variables is done automatically and the (massless) Dirac equation falls apart into the 
two two-component 

and hence, 

equations discussed above. In this chiral representation, 

(2.60) 

where we have identified UR and UL as the two-component spinors discussed previously. 
These results are also applicable to  the electron in the approximation that its mass is 
neglected, by the simple transcription UR + e R ,  UL + eL. In fact in the standard model 
the electrons start out massless, so these results will be of use to Tim Morris in his course. 

The standard model (and the minimal supersymmetric standard model) contains only left 
handed massless neutrinos, and neutrino mass terms are forbidden by gauge symmetry, 
at least given the limited number of  fields present in the standard model. If extra fields 
(e.g. right handed neutrinos) are added then neutrino masses become possible. If neutrino 
oscillations are confirmed as the solution to the solar neutrino problem, or are discovered 
in laboratory experiments, then such a modification would become a necessity. 
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3 Cross Sections and Decay Rates 
In section 4 we will learn how to calculate quantum mechanical amplitudes for elec- 
tromagnetic scattering and decay processes. These amplitudes are obtained from the 
Lagrangian of QED, and contain information about the dynamics underlying the scat- 
tering or decay process. This section is a brief review of how to get from the quantum 
mechanical amplitude to a cross section or decay rate which can be measured. We will 
commence by recalling Fermi's golden rule for transition probabilities. 

3.1 Fermi's Golden Rule 
Consider a system with Hamiltonian H which can be written 

We assume that the eigenstates and eigenvalues of HO are known and that V is a small, 
possibly time-dependent, perturbation. The equation of motion of the system is, 

If 17 vanished, we could calculate the time evolution of I$(t)) by expanding it as a 
linear combination of energy eigenstates. When V does not vanish, the eigenstates of 
HO are no longer eigenstates of the full Hamiltonian so when we expand in terms of 
Ho eigenstates, the coefficients of the expansion become time dependent. To develop 
a perturbation theory in V we will change our basis of states from the Schrodinger 
picture to the interaction or Dirac picture, where we hide the time evolution due to HO 
and concentrate on that due to V. Thus we define the interaction picture states and 
operators by, 

so that the interaction picture and Schrodinger picture states agree at time t = 0, 
I$Jr(O)) = I+(O)), with a similar relation for the operators. In the new basis, the equation 
of motion becomes, 

Ilcll(t)) eiHot IW)) , OZ(t) = 9 (3.3) - e i H ~ t ~  ( t I e - i H 0 t  

(3.4) 
a 
at i- Ilclz(t)) = W) I$r(t) )  , 

which can be iterated to yield an infinite series in V,  

The interation involves formally integrating Eq.3.4 by writing 

To first order we insert I$~l(t,)) x 17,l~~(-T'/2)) into the rhs so that we have, 
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Then this solution is used in the rhs of the original equation to improve the approxima- 
tion, and so on. This process of iteration is useful only if the perturbation V, is small 
and so a small number of terms in the series (i.e. a small number of iterations) may be 
taken. 

Here, we have chosen to start with some (known) state l~+!q-T/2)), at time -T/2, 
and have evolved it to I$r(t)) at time t. The evolution is done by the operator, U, that 
you've seen in the field theory course: 

For an infinitesimal time interval the operator U is given by 

U ( t  + 6t, t )  = I - i&(t)dt (3.7) 

which is the formal solution to Eq.3.4 over an infinitesimal time. 

at time t .  The amplitude is, 
Now consider the calculation of the probability of a transition to an eigenstate Ib) 

so l(bl$(t))12 = I(bl$l(t))12. We let V be time independent and consider the amplitude 
for a transition from an eigenstate la) of HO at t = -T/2 to an orthogonal eigenstate 
Ib) at t = T/2. The idea is that at  very early or very late times HO describes some set 
of free particles. We allow some of these particles to approach each other and scatter 
under the influence of V, then look again a long time later when the outgoing particles 
are propagating freely under Ho again. To first order in V, using Eq.3.6 we find 

(b 17,bI(T/2)) = -i (bl h(t) la) dt = -i(blVla) T/2 eiubatdt, 
-T/2 -T/2 

2 (b l$r(T/2)) = -i(blVl~)- s in (~b~T/2 )  
Wba 

where wba = Eb - Ea. 

DExercise 3.1 
Show that for T + 00 the first order transition amplitude for general V can be written 
in the covariant form 

(b ~$r(w)> = -i Jd4r $;'ir)v4a(Z), 

where &(z) 
state of Ho, with energy Ei. 

the scattering taking place divided by the time T taken, 

&(X)e-Eit and $i(x) is the usual Schrodinger wavefunction for a stationary 

The transition rate Wba for time independent V is just given by the probability of 
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If Eb # Ea, this probability tends to zero as T + 00. However, for Eb = Ea we use the 
result, 

For long times the transition rate becomes, 

(3.10) 

We need V small for the first order result to be useful and T large so that the delta- 
function approximation is good. However, T cannot be too large since the transition 
probability grows with time and we don’t want probabilities larger than one. 

The above result assumes a well-spaced discrete set of states. Typically scattering 
takes place from some initial state la) into one of a continuous number dn of final states 
closely spaced around Ib). In this case since there are dn states to scatter into rather 
than just one, we multiply by dn to give a differential transition rate, 

2 
dWba = 27rdnl(blVla)l 6 ( E b  - Ea). (3.11) 

If we define a density of final states p(Eb) = f& around Ib) with energy Eb, the differential 
transition rate may be integrated over the final state energy, 

(3.12) 

This i s  Fermi’s golden rule. In words it says simply: 

transition rate = 27r x density of  final states x lamplitude12. 

D Exercise 3.2 
Justify the result of equation (3.9) and hence verify Fermi’s golden rule in equation (3.12). 

I’ll stop at first order in V. The answer you get from the formal solution in equa- 
tion (3.5) depends on the form of V and the initial conditions. Your field theory course 
gives you a systematic way to perform perturbative calculations of transition amplitudes 
in field theories by the use of Feynman diagrams. In particular, you’ve seen the operator 
method of generating these diagrams, which I’ve mirrored in deriving the Golden Rule. 
Let’s now move on to see how to get from these amplitudes to cross-sections and decay 
rates. This corresponds to finding the density of states factor in the Golden Rule. 

3.2 

We now apply these ideas to quantum field theory. We first discuss the quantum field 
theory prediction for the amplitude, then discuss the number of final states, hopefully get- 
ting all the normalisation factors straight. We then define the famous Lorentz Invariant 
Phase Space. 

Transition Rates in Quantum Field Theory 
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Figure 3.1 Scattering (a) and decay (b) processes. 

3.2.1 The Amplitude 

We saw in the previous section that (bl$q(oo)) gives the probability amplitude to go 
from state la) in the far past to state Ib) in the far future. In quantum field theory you 
calculate the amplitude to go from state li) to state I f )  to be, 

where iM,i is the result obtained from a Feynman diagram calculation, and'the overall 
energy-momentum delta function has been factored out (so when you draw your Feynman 
diagrams you conserve energy-momentum at every vertex). We have in mind processes 
where two particles scatter, or one particle decays, as shown in Figure 3.1. 

Attempting to take the squared modulus of this amplitude produces a meaningless 
square of a delta function. This is a technical problem because our amplitude is expressed 
between non-normalisable plane wave states. These states extend throughout space-time 
so the scattering process occurs everywhere all the time. To deal with this properly 
you can construct normalised wavepacket states which do become well separated in the 
far past and the far future. We will be low-budget and put our system in a box of 
volume V = L3 l. We also imagine that the interaction is restricted to act only over a 
time of order T. The final answers come out independent of V and T, reproducing the 
lusury wavepacket ones. We are in good company here: Nobel Laureate Steven Weinberg 
says in his recent book, when discussing cross sections and decay rates, ". . . (as far as 
I know) no interesting open problems in physics hinge on getting the fine points right 
regarding these matters." 

In infinite spacetime with plane wave states the transition amplitude from i to  f is 
given by (3.13). However in our box of finite size L and for our finite time T the amplitude 
is given by Eq.3.13 but with the Dirac delta functions replaced by well behaved functions: 

'Please do not confuse the volume of the cube V = L3 with the potential 

L) (3.14) 

(3.15) 

V introduced earlier 
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which is familiar from Eq.3.8. This function has the property that, as T + 00, 

(3.17) 

with analagous results for I(Pf - Pi, L). Thus in our spacetime box we have the approx- 
imate result, 

1 ( 2 ~ ) 4 6 4 ( ~ ~  - pill2 v ~ ( 2 ~ ) 4 6 4 ( p ,  - pi). (3.18) 

The second ingredient in the amplitude is a factor of 1/(2EiV)’/2 for every particle 
in the initial or final state (here I am using Ei synonymously with wki). This comes from 
converting between relativistic and box normalisations for the states. 

The box states are normalised to one particle in volume V and the relativistic states have 
2wk particles per unit volume, thus the states which occur in the amplitude are related by 

I%€!, - J z s ; ~ l k ) b o x .  

We shall l!enceforth use box normalisation for the final states which we simply label by 
I f )  = Ikl, . . . , kn) and similarly for the initial states which we write as 

one particle li) = { y ) 
p1, p2 two particles 

Allowing for one or two particles in the initial state and N in the final state, 

(3.19) 

The squared matrix element is thus: 

where we have used Eq.3.18. 

3.2.2 The Number of Final States 

For a single particle final state, the number of available states dn in some momentum 
range k to k + dk is, in the box normalisation, 

V. dn = - d 3k 
(W3 

(3.21) 

This result is proved by recalling that the allowed momenta in the box have components 
which can only take on discrete values such as k, = 2 r n , / L  where n, is an integer. Thus 
dn = dn,dnydn, and the result follows. 

For a two particle final state we have 

dn = dnldn2 
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where 
d 3k2 

V, dn2 = - v, d3kl 
dnl = - 

(27rI3 (27d3 
where dn is the number of final states in some momentum range kl to  kl +dk1 for particle 
1 and k2 to k2 + dkz for particle 2. There is an obvious generalisation to  an N particle 
final state, 

d n =  n-. d 3 k f V  . 
f=1 (W3 (3.22) 

3.2.3. Lorentz Invariant Phase Space (LIPS) 

Our experience with Fermi's Golden Rule tells us that  the differential transition rate is 
given by 

lbox amp12dn 
T dW = (3.23) 

Note that the energy delta function in Fermi's Golden Rule has already been taken into 
account by the presence of the energy delta function multiplying the original amplitude in 
Eq. 3.13. 

Using Eqs.3.22 and Eq.3.20 we find, 

This can be written as 
1 

dW = S IMjil 'Vn [-I x (LIPS) 9 
in 2EiV 

where the LIPS is, 

(3.25) 

(3.26) 

(3.27) 

Observe that everything in the transition rate is Lorentz invariant save for the initial 
energy factor and the factors of V (using d 3 k / 2 E  = d4kd4(k2 - m2)>e(ko), which is 
manifestly Lorentz invariant, where E = (k2 + m2)lI2). For a one particle initial state 
the factor of V cancels, 'and we can breath a sigh of relief (after all we would not expect 
physical quantities to depend on the size of our artificial box). For a two initial particle 
scattering situation the factors of V will also cancel in the physical cross-section as we 
will show in the next section. I have smuggled in one extra factor, SI in equation (3.23) 
for the transition probability. If there are some identical particles in the final state, we 
will overcount them when integrating over all momentum configurations. The symmetry 
factor S takes care of this. If there ni identical particles of type i in the final state, then 

1 
ni! 

S = U - .  (3.28) 
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D Exercise 3.3 
Show that the expression for two-body phase space in the centre of mass frame is given 
bY 

1 
( 2 ~ ) ~ 6 ~ ( P  - kl - k2) = - X1/2(s, m:, mi)dR’,  (3.29) 

d3k1 d 3k2 
(27r)3 2wkl ( 2 7 ~ ) ~  2wkz 3 2 7 ~ ~ s  

where s = P2 is the centre of mass energy squared, dR’ is the solid angle element for the 
angle of one of the outgoing particles with respect to some fixed direction, and 

A(a, b, c) = a2 + b2 + c2 - 2ab - 2bc - 2ca. (3.30) 

3.3 Cross Sections 
The total cross-section for a static target and a beam of incoming particles is defined as 
the total transition rate for a single target particle and a unit beam flux, The differential 
cross-section is similarly related to the differential transition rate. We have calculated 
the differential transition rate with a choice of normalisation corresponding to a single 
“target” particle in the box, and a “beam” corresponding also to one particle in the box. 
A beam consisting of one particle per volume V with a velocity v has a flux No given by 

particles per unit area per unit time. Thus the differential cross-section o is related to 
the differential transition rate in Eq.3.26 by 

V 
- d W x -  

dW 
NO V 

d o = - -  (3.31) 

where as promised the factors of V cancel in the cross-section. 
Nom let us generalise to the case where in the frame where you make your measure- 

ments the “beam” has a velocity v1 but the “target” particles are also moving with a 
velocity 212. In a colliding beam experiment for example v1 and 212 will point in opposite 
directions in the laboratory. In this case the definition of the cross-section is retained as 
above, but now the beam flux of particles No is effectively increased by the fact that the 
target particles are moving towards it. The effective flux in the laboratory in this case is 
given by 

which is just the total of particles per unit area which run past each other per unit time. 
I denote the velocities with arrows to remind you that they are vector velocities which 
must be added using the vector law of velocity addition not the relativistic law. In the 
general case, then, the differential cross-section is given by 

(3.32) 

where we have used Eq.3.26 for the transition rate, and the box volume V has again 
cancelled (phew!). We re-emphasise that the velocities in the flux factor, 1/1G - 

~ ~~ 

‘Because the result is independent of the dimensions of the box, you can think of making the box as 
large as you like - say as large as CERN or perhaps as large as the Earth, or the Universe! This means 
that there is no reason to worry about the box. 
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Figure 3.2 2 3 2 scattering. 

g2 1, are subtracted nonrelativistically. The amplitude-squared and phase space factors 
are manifestly Lorentz invariant. What about the initial velocity and, energy factors? 
Observe that 

In a frame where p1 and p2 are collinear, 
J W 2 ( v i  - 52) = E2Pl - ElP2. 

2 2  
lE2~1- Elp212 = ( ~ 1 . ~ 2 ) ~  - m1m2, 

and the last expression is manifestly Lorentz invariant. Hence the differential cross section 
is Lorentz invariant, as is the total'cross section, 

3.3.1 Two-body Scattering 

An important special case is 2 3 2 scattering (see Figure 3.2), 

a(pa> + b(p6) + &c) + @d). 

D Exercise 3.4 
Show that in the centre of mass frame the differential cross section is, 

The result of equation (3.34) is valid for any 

Invariant 2 + 2 scattering amplitudes are 
can trivially get the total cross section. 

Mandelstam variables, defined by, 

s f (pa +pb)2 = 
t E (pa -pJ2 = 
21 E (pa -pd)2  = 

(3.33) 

(3.34) 

MjiI21 but if IMfi12 is a constant you 

frequently expressed in terms of the 

(3.35) 

In fact there are only two independent Lorentz invariant combinations of the available 
momenta in this case, so there must be some relation between s, t and U. 

Show that 
PExercise 3.5 

s -I- t + u = m: + m i  -I- mt -I- m:. 
DExercise 3.6 

Show that for two body scattering of particles of equal mass m, 

s > 4 m 2 ,  tso, U S O .  
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3.4 Decay Rates 
With one particle in the initial state the total transition rate is 

Only the factor 1 / 2 E  is not manifestly Lorentz invariant. In the rest frame, for a particle 
of mass m, we have 

1 
I’ E - E/ IMjil’ x LIPS. 

2m final states 
(3.36) 

This is the “decay rate.” In an arbitrary frame we find, W = (m/E)r, which has the 
expected Lorentz dilatation factor. In the master formula (equation 3.26) this is what 
the product of 1 / 2 4  factors for the initial particles does. 

3.5 Optical Theorem 
When discussing the Golden Rule, we encountered the evolution operator U(t’, t) ,  which 
you also met in the field theory course. This takes a state at  time t and evolves it to 
time t’. The scattering amplitudes we calculate in field theory are between states in 
the far past and the far future: hence they are matrix elements of U(o0, -CO), which is 
known as the scattering operator or S-operator, 

Since the S-operator is unitary, we can write, 

(S - I)(St - I) = -((S - I) + (S - I)t). (3.37) 

Note that S - I is the quantity of interest, since we generally ignore cases where there is 
no interaction (the “I” piece of S). In terms of the invariant amplitude, 

( f l  S - I li) = iMji(2~) ‘6 ‘ (Pj  - P,)  
( f l  (S - 1)’ li) = - i M ; j ( 2 ~ ) ‘ 6 ~ ( P j  - Pi) 

Sandwiching the above unitarity relation (equation 3.37) between states li) and If), and 
inserting a complete set of states between the factors on the left hand side, 

where D, is the LIPS for the state labelled by m, containing f m  particles, Dm f 
Dr,(Pi; kl, . . . , kr,). Hence, 
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If the intermediate state m contains ni identical particles of type i, there is an extra 
symmetry factor S, with,. 

on the left hand side of the above equation to avoid overcounting. The same factor (see 
equation 3.28) appears in the cross section formula (equation 3.32) when some of the final 
state particles are identical. 

If li) and I f )  are the same two particle state, corresponding to two particles scattering 
elastically in the forward direction, then 

2 Im M ii = 4E~pi Q. (3.38) 

This is the optical theorem which relates the forward part of the scattering amplitude to 
the total cross-section. If particles of masses ml and m2 scatter, then ET = s1I2 and 
4sp: = A(s, mf, m;), where A is the function defined in equation (3.30). Then the optical 
theorem reads, Im Mii = A t  (s ,  m:, mi) Q. 
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4 Quantum Electrodynamics 

4.1 The Free Dirac Field 
Dirac Field Theory is defined to be the theory whose field equations correspond to the 
Dirac equation. We regard the two Dirac fields $(z) and $(z) as being dynamically 
independent fields and postulate the Dirac Lagrangian density: 

C = q(z)(irpap - m)$(z) (4.1) 

The Euler-Lagrange equation 

a ac ac - 
azp a&$) - = O 

leads to the Dirac equation. 
The canonical momentum is 

The Hamiltonian density 

which is not positive definite. The general solution to 
panded in terms of plane waves 

(4.4) 

the Dirac equation may be ex- 

d3k m (b, ( k)ua (k)e-ik*" + dL(k)va (k) eikez] 

The total Hamiltonian is 
H = p z X  

After some algebra we find 

(4.5) 

(4.7) 

So far no commutation relations have been assumed, and H could quite easily be 
negative, unlike the Hamiltonian in the case of the charged scalars for example which 
was positive definite. In order to give a positive definite Hamiltonian we require the 
creation and annihilation operators to  satisfy anticommutation relations, first proposed 
by Wiper:  

{ba(k), &(k')}  = ( 2 ~ ) ~ 2 b ~ ( k  - k')b,& (4.9) 
k 
rn 
k 

{d,(k), dL,(k')} = ( 2 ~ ) ~ - % ~ ( k  m - k')ba& (4.10) 
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{ba(k),bat(k')} = 0 (4.11) 

{bL(k),b;,(k')} = 0 (4.12) 

{da(k), dat(k')} = 0 (4.13) 

{dL(k), dL,(k')} = 0 (4.14) 
The Hamiltonian is then defined as the normal ordered version of Eq.4.8 but with a 

change of sign f o r  each interchange of operator 

which results in 

which is nom postive definite. 
Anticommutation implies Fermi statistics.for example: 

* bL(k)bL(k) = 0 

=$ bL(k)bL(k)10 >= 0 
so that two quanta in the same state are not allowed (Pauli exclusion principle). 

The charge operator is 

Q = J d3x : jo(z) := J d3x :, $tia$ : 

(4.15) 

(4.16) 

(4.17) 

which shows that bt creates fermions while dt creates antifermions of opposite charge. 
Finally the equal time commutation relations are (after some algebra): 

(4.19) 

(4.20) 

(4.21) 
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4.2 The Free Electromagnetic Field 
The four Maxivell equations are: 

dE 
V x B = poj + poco- V * B  = 0 

at 
It is straightforward to show that 

aP - + V * j = O  
at 

In covariant form, 

where j p  = (cp, j). 

A by defining 

whence two of the Maxwell equations become automatic. 

changed when 

a,jp = 0 

It is convenient (and even essential) to introduce scalar and vector potentials 4 and 

B = V x A E = -V$ - aA/dt. 

Recall the gauge invariance of electrodynamics which says that E and B are un- 

dA A + A + V A  and 4+4- -  
at 

for any scalar function A. Gauge invariance corresponds to a lack of uniqueness of the 
scalar and vector potentials. This lack of uniqueness can be reduced by imposing a 
further condition on the scalar and vector potentials, for example 

184 
c2 at 

V . A  = --- 

Assuming that 4 and A can be combined into a four vector 

this can be written as 
d,Ap = 0 (4.22) 

which is known as the Lorentz gauge condition. Gauge invariance in four-vector notation 
is just: 

Ap + A, + a,A (4.23) 

Note that even the imposition of the Lorentz gauge condition does not completely fix the 
vector potential; it merely restricts the function A to satisfy 

a2A = 0 (4.24) 

With the Lorentz gauge condition Maxwell’s equations are equivalent to 
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The tensor F,, is defined by 

FPu clearly has six independent components, and can be written: 

4, -E# Bz 0 -B, 
-E, -By B, O 

It is straightforward to  show that, 

F,,FP” = -2 (z - B’) 
where 

+1 if p p a  is an even permutation of 0123 
-1 if p p a  is an odd permutation of 0123 
0 otherwise 

E,w = 

This gives the relativistic invariants which can be constructed from E and B. 
It  is easy to  see that in any gauge the Maxwell equations can be written, 

The Maxwell equations, in this compact form, can be reproduced by the following La- 
grangian density, 

(4.25) 
1 

C = - -F FP’Y- &AP 4 cl, 

via the Euler-Lagrange equations for each of the four A, fields separately. 
In Lorentz gauge the Lagrangian density has the more general form: 

where < is a free parameter. The EL equations then imply 

1 aPFPU + -d”(dPAP) = j y  
t 

(4.26) 

(4.27) 

which reduce to Maswell’s equations in Lorentz gauge. The extra term in the Lagrangian 
density thus has no effect on physics in Lorentz gauge. In fact it is possible 
to turn the argument around and use this term to  fix the gauge to  be Lorentz gauge 
by imposing current conservation instead of obtaining it as a consequence of Maxwell’s 
equations. If one adds the extra term to  the Lagrangian and imposes current conservation 
then Eq.4.27 implies immediately the Lorentz gauge condition by the antisymmetry of 
F,”. For this reason the extra term is referred to  as a gauge fixing term and < is a 
Lagrange multiplier. The choice ( = 1 is known as Feynman gauge although it  is within 
the framexork of the Lorentz gauge. 
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As usual we can expand the field A,(z) in its Fourier components 

(4.28) 

where w = ko = lkl. The Lorentz gauge condition implies 

k.a(k)  = 0 (4.29) 

This implies that 
ao(k) = k.a(k) 

where i; = k/lkl. Thus the time component of up equals the longitudinal component 
a.k. Of course only the transverse components are physical (since the E and B fields are 
always orthogonal to the three momentum) and it can be shown that the contribution 
to the Hamiltonian from the time component and longitudinal component cancel against 
each other. In fact it is possible to completely specify the gauge by requiring that 

ao(k) = i;.a(k) = 0 

which is called’ Coulomb gauge. In Coulomb gauge we can write 

a,@) = c aX(k)+k) 
k 1 , 2  

where c i ( k )  are two orthonormal spacelike vectors in the plane transverse to k. 
In a general Lorentz gauge we can write: 

where now ~ i ( k )  are arbitrary unit four-vectors. Suppose that k is along the third axis, 
k = (U, O,O, w) then we can define the basis vectors as: 

(4.30) 

so that we call X = 1,2  the physical transverse polarisations, X = 0 the unphysical 
timelike polarisation and X = 3 the unphysical longitudinal polarisation. Clearly, 

k.&* = 0 

and 

which is in fact a basis independent result, although we shall always work in this basis. 
We shall now quantise the free e m .  theory (j” = 0). To quantise the theory 

canonically we introduce the canonical momenta 

x A’ AA‘ € , €  = g  

ac # = - aA, (4.31) 
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and impose the equal time covariant canonical commutation relations 

Now if the Lagrangian were simply 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

then we would find that  
T O = - =  aL 0 

aA0 
which would imply that  r’ always commutes with A’, which loses us both covariance 
and quantum mechanics at a stroke! 

We clearly need a T O  that  does not vanish. In order to  do this we need to change 
the Lagrangian without changing the physics. But we have learned how to do this in 
Lorentz gauge which corresponds to the Lagrangian: 

1 1 

(4.36) 

and the field equations: 
1 

a2A, - (1 - -)a,,(auAu) = o (4.37) J 
Henceforth for simplicity we shall take ( = 1 which is called Feynman gauge (a sub-class 
of Lorentz gauge). 

At first sight this doesn’t help us because we find 

which apparently vanishes in Lorentz gauge. However we shall only assume that matrix 
elements of d,,Ap vanish rather than imposing the operator condition that  i t  vanish. 

In Feynman gauge we have the field equations: 

d2A, = 0 (4.38) 

and we can once again expand the A,, field in plane wave solutions similar to the previous 
section: 

(4.39) 

Here e i ( k )  are the set of four linearly independent vectors defined in Eq.4.30, but now we 
regard a and its hermitian conjugate as operators whose commutation relations readily 
follow from Eq.4.32 

[ ~ ’ ( k ) ,  ~ ” ( k ‘ ) ~ ]  = -g”’2ko(2~)~6~(k - k‘) (4.40) 
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For longitudinal and transverse photons quantisation proceeds in the usual way. But for 
timelike photons with X = A‘ = 0 we have a negative quantity on the rhs which gives 
problems. This leads to timelike photons with negative norm. However i t  is possible to 
overcome these problems using the Gupta-Bleuler formalism. However at this point we 
prefer to abandon the canonical approach and move on to  the path integral approach 
which has its own problems. 

We have seen that the freedom to make gauge transformations means that the AP 
fields are not uniquely specified, and this causes problems with the theory in the canonical 
formalism. It should be no surprise that these problems persist in the path integral 
approach. 

The generating functional in this case is 

(4.41) 

where ,C is the Lagrangian for the free photon field which we might naively take to  be 

(4.42) 

(since we have already found problems with this form in the canonical formalism it  really 
is naive to expect it to work here). The field equations in this case are as in Eq.4.27 

a,Fpu = 0 (4.43) 

which can be written as 
(gpua2 - dpdv)A’ = 0 (4.44) 

After partial integration and discarding surface terms we can write the generating func- 
tional as 

&[J] o( 1 ~ ~ , ~ i ( ~ d ~ ~ t A ’ [ g ’ ~ a ~ - 8 , ~ ~ ] A ~ + J r A , )  (4.45) 

By now.we know that the photon propagator D,,, is going to  be the inverse of the operator 
in square brackets, and it will satisfy the equation: 

(&”a2 - a,au)DUX(z - y) = qp4(z - y) (4.46) 

If we multiply this equation by P we get zero multiplying DuA(z - y) on the lhs and 
something non-zero on thhe rhs, which would seem to imply that DUX(z - y) is infinite. 
In fact the problem is that the operator in square brackets does not have an inverse! To 
show this all we need to do is show that it has a zero eigenvalue, and this can easily be 
done: 

for any function $2. 
From the point of view of the path integral the problem is that the functional 

integral is taken over all A, including those related by a gauge transformation, leading 
to an infinite overcounting in the calculation of the generating functional, and hence an 
infinite overcounting for the Green’s functions which are obtained from it  by functional 
differentiation. To cure this problem we need to  fix a particular gauge, and we do this 
by imposing the Lorentz gauge condition: 

(g,”a2 - a,a”)a’R = 0 

a,A” = 0 (4.47) 
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Recall the Lagrangian with gauge fixing term, 

(4.48) 

and the field equations: 
1 

After partial integration and discarding surface terms we can now write the generating 

a2A, - (1 - ~ ) 8 ~ ( 6 ’ ” A ” )  = 0 (4.49) 

and the operator in square brackets now has an inverse given by 

The Fourier transform of the Feynman propagator is thus 

(4.50) 

(4.51) 

(4.52) 

Amongst this class of gauge choices two common choices are Feynman gauge (c = 1) and 
Landau gauge (c = 0). 

4.3 Feynman Rules of QED 
QED involves the interaction of electrons and photons where the interaction corresponds 
to the Lagrangian 

Such an interaction may be introduced by the concept of “minimal substitution” familiar 
from classical electrodynamics. The momentum and energy become: 

- 
Lint = -e$+‘A,$J. (4.53) 

p + p - e A  

E + E - e d  
or in four vector notation, the four momentum becomes: 

Applying this classical concept of minimal substitution to the Dirac equation gives: 

(ip - m)$ = 0 (4.54) 

where we have introduced the covariant derivative notation 

D, 8, + ieA, 

The QED Lagrangian describing electrons, photons and their interactions is then given 

1 1 
4 

L = --F,,Fp” - 5(8pA’)2 +$(i.P, - m)$. (4.55) 
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Here, D,, = a,, + ieA, is the electromagnetic covariant derivative, F,,” = a,A, - &A,, 
and (a-A)2/2  is the gauge fixing term for Feynman gauge. 

The QED Lagrangian is invariant under a symmetry called gauge symmetry, which 
consists of the simultaneous gauge transformations of the photon field: 

A,, + A,, + a,,A 

and a phase transformation on the electron field 

$ + e+*$ 

(4.56) 

(4.57) 

The point is that the value of the phase transformation given by the same gauge function 
A(.) as controls the photon gauge transformation. It is important to emphasise that 
A(%) is a function of z so that the action of a derivative on e-ieA$ will yield two terms 
by the product rule. However the simultaneous gauge transformation of the photon field 
means that the covariant derivative of $ transforms like $ itself under the combined 
gauge transformations above: 

D,,$ + e-iehD,,$ (4.58) 

Thus the QED Lagrangian is invariant under the simultaneous transformations above, 
referred to collectively as a gauge transformation. 

In this section we are going to get some practice calculating cross sections and decay 
rates in QED. The starting point is the set of Feynman rules in Table 4.1 derived from the 

For every . . . draw . . . write . . . 

Internal photon line 

Internal fermion line 

Ire r t ex 

Outgoing electron 
Incoming electron 
Outgoing positron 
Incoming positron 
Outgoing photon 
Incoming photon 

b a 

0 Attach a directed momentum to every internal line 
Conserve momentum at every vertex 

Table 4.1 Feynman rules for QED. p, U are Lorentz indices and a, p are spinor indices. 
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Figure 4.1 Lowest order Feynman diagram for electron-muon scattering. 

QED Lagrangian above. The fermion propagator is (up to factors of i )  the inverse of the 
operator, - m, which appears in the quadratic term in the fermion fields, as discussed in 
Dave Dunbar's lectures. The derivation of the photon propagator, along with the need for 
gauge fixing, was discussed in section 4.2. The external line factors are easily derived by 
considering simple matrix elements in the operator formalism, where they are left behind 
from the expansions of fields in terms of annihilation and creation operators, after the 
operators have all been (anti-)commuted until they annihilate the vacuum. One could 
consider for example the process 7 + e+e'. In path integral language the natural objects 
to compute are Green functions, vacuum expectation values of time ordered products of 
fields: it takes a little more work to convert them to transition amplitudes and see the 
external line factors appear. 

The spinor indices in the Feynman rules are such that matrix multiplication is per- 
formed in the opposite order to that defining the flow of fermion number. The arrow on 
the fermion line itself denotes the fermion number flow, not the direction of the momen- 
tum associated with the line: I will try always to indicate the momentum flow separately 
as in Table 4.1. This will become clear in the examples which follow. We have already 
met the Dirac spinors U and U. I will say more about the photon polarisation vector E 

when we need to use it. 

4.4 Electron-Muon Scattering 
To lowest order in the electromagnetic coupling, just one diagram contributes to this 
process. It is shown in Figure 4.1. The amplitude obtained from this diagram is 

(4.59) 

Note that I have changed my notation for the spinors: now I label their momentum as an 
argument instead of as a subscript, and I drop the spin label unless I need to use it. In 
constructing this amplitude we have followed the fermion lines backwards with respect 
to fermion flow when working out the order of matrix multiplication. 

The cross-section involves the squared modulus of the amplitude, which is 

where the subscripts e and p refer to the electron and muon respectively and, 

with a similar expression 'for Lr;). 
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D Exercise 4.1 
Verify the expression for lMji12. 

Usually we have an unpolarised beam and target and do not measure the polarisation 
of the outgoing particles. Thus we calculate the squared amplitudes for each possible spin 
combination, then average over initial spin states and sum over final spin states. Note that 
we square and then sum since the different possibilities are in principle distinguishable. 
In contrast, if-several Feynman diagrams contribute to the same process, you have to 
sum the amplitudes first. We will see examples of this below. 

The spin sums are made easy by the following results (I temporarily restore spin 
labels on spinors): \ 

C u ’ ( p ) ~ ~ ( p )  = j + m  
(4.60) 

r 

D Exercise 4.2  
Derive the spin sum relations in equation (4.60). 

Using the spin sums we find, 

Since all calculations of cross sections or decay rates in QED require the evaluation of 
traces of products of gamma matrices, you will generally find a table of “trace theorems” 
in any quantum field theory textbook [l]. All these theorems can be derived from the 
fundamental anticommutation relations of the gamma matrices in equation (2.28) to- 

’gether with the invariance of the trace under a cyclic change of its arguments. For nom 
it suffices to use, 

tr(Cv> = 4 2 4  

tr(n/pl --.-fn) = 0 for n odd 
tr(Qv#$) = 4(a.b c-d - a-c b-d + a-d b-c) (4.61) 

D Exercise 4.3 
Derive the trace results in equation (4.61) 

of equation (3.35), we find, 
Using these results, and expressing the answer in terms of the Mandelstam variables 

1 2e4 
- c 1Md2 = ~ ( s ~  4- U2 - 4(mz + mi)(s + U) + 6(m2 + m$2). 
4 spins 

This can now be used in the 2 + 2 cross section formula (3.34) to give, in the high energy 
limit, s, U >> m:, m;, 

-=- da e4 sa +u2 
dfl* 3 2 ~ 2 s  . t 2  * 

(4.62) 

for the differential cross section in thq centre of Inass frirme. 

Derive the result for the electron-muon scattering cross section in equation (4.62). 
D Exercise 4.4 
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e- Pa -$ PC -+ Pa -$ 

e- 
Pb -+ Pd -$ 

Figure 4.2 Lowest order Feynman diagrams for electron-electron scattering. 

Other calculations of cross sections or decay rates will follow the same steps we have 
used above. You draw the diagrams, write down the amplitude, square it and evaluate 
the traces (if you are using spin sum/averages). There are one or two more wrinkles to 
be aware of, which we will meet below. 

4.5 Electron-Electron Scattering 
Since the two scattered particles are now identical, you can't just replace m, by me in 
the calculation we did above. If you look at the diagram of Figure 4.1 (with the muons 
replaced by electrons) you will see that the outgoing legs can be labelled in two ways. 
Hence we get the two diagrams of Figure 4.2. 

The two diagrams give the amplitudes, 

ie2 - 
iM 1 

iM 2 = .- -'U (pd) (pa)z (pc )  7," (pb) * 

= -'U (pc) ?'U (pa )z(pd) ?,U (pb ) I t 
ie2 - 
U 

Notice the additional minus sign in the second amplitude, which comes from the anti- 
commuting nature of fermion fields. You should accept as part of the Feynman rules for 
QED that when diagrams differ by an interchange of two fermion lines, a relative minus 
sign must be included. This is important because 

so the interference term will have the wrong sign if you don't include the extra sign 
difference between the two diagrams. 

4.6 Electron-Positron Annihilation 
4.6.1 e+e- + e+e' 

For this process the two diagrams are shown in Figure 4.3, with the one on the right 
known as the annihilation diagram. They are just what you get from the diagrams for 
electron-electron scattering in Figure 4.2 if you twist round the fermion lines. The fact 
that the diagrams are related this way implies a relation between the amplitudes. The 
interchange of incoming particles/antiparticles with outgoing antiparticles/particles is 
called crossing. This is a case where the general results of crossing symmetry can be 
applied, and our diagrammatic calculations give an explicit realisation. Theorists spent 
a great deal of time studying such general properties of amplitudes in the 1960's when 
quantum field theory was unfashionable. 
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Figure 4.3 Lowest order Feynman diagrams for electron-positron scattering in QED. 

4.6.2 

If electrons and positrons collide and produce muon-antimuon or quark-antiquark pairs, 
then the annihilation diagram is the only one which contributes. At sufficiently high 
energies that the quark masses can be neglected, this immediately gives the lowest order 
QED prediction for the ratio of the annihilation cross section into hadrons to that into 
u+u-. 

e+e- 3 p+p- and e+e- + hadrons 

, . I  

a(e+e- + hadrons) 
R E  = 3 C Q ; ,  

a(e+e- + p+p-) f 
(4.63) 

where the sum is over quark flavours f and Qf is the quark’s charge in units of e. The 
3 comes from the existence of three colours for each flavour of quark. Historically this 
was important: you could look for a step in the value of R as your e+e- collider’s CM 
energy rose through a threshold for producing a new quark flavour. If you didn’t know 
about colour, the height of the step would seem too large. Incidentally, another place 
the number of colours enters is in the decay of a ?ro to two photons. There is a factor of 
3 in the amplitude from summing over colours, without which the predicted decay rate 
would be one ninth of its real size. 

At the energies used today at LEP, of course, you have to remember the diagram 
with a 2 replacing the photon. We will say some more about this later. 

Show that the cross-section for e+e’ + p+p- is equal to 47rcy2/(3s), neglecting the lepton 
masses. 

DExercise 4.5 

4.7 Compton Scattering 
The diagrams which need to be evaluated to compute the Compton cross section for 
y e  + y e  are shown in Figure 4.4. For unpolarised initial and/or final states, the cross 
section calculation involves terms of the form 

(4.64) 
x 

where X represents the polarisation of the photon of momentum p. Since the photon 
is massless, the sum is over the two transverse polarisation states, and must vanish 
when contracted with pp or p,. In addition, however, since the photon is coupled to 
the electromagnetic current J P  = @ypq$ of equation (2.7), any term in the polarisation 
sum (4.64) proportional to p” or pv  does not contribute to the cross section. This is 
because the current is conserved, a,JP = 0, so in momentum space ppJP = 0. The 
upshot is that in calculations you can use, 

- 

(4.65) 
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Figure 4.4 Feynman diagrams for Compton scattering. 

since the remaining terms on the right hand side do not contribute. 
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Figure 5.1 Diagrams for vertex renormalisation in QED up to one loop. 

5 Introduction to Renormalisation 

5.1 Renormalisation of QED 
Let’s start by considering how the electric charge is defined and measured. This will 
bring up the question of what happens when you try to  compute higher loop corrections. 
In fact, the expansion in the number of loops is an expansion in Planck’s constant A, as 
you can show if you put back the factors of h for once. 

The electric charge 2 is usually defined as the coupling between an on-shell electron 
and an on-shell photon: that is, as the vertex on the left hand side of Figure 5.1 with 
p? = pi = m2, where m is the electron mass, and q2 = 0. It is 2 and not the Lagrangian 
parameter e which we measure. That is, 

2 2  1 
47r 137’ 

We call 2 the renormalised coupling constant of QED. We can calculate 2 in terms of e 
in perturbation theory. To one loop, the relevant diagrams are shown on the right hand 
side of Figure 5.1, and the result takes the form, 

-= -  

M2 
m2 

2 = e + e3[a, In - + bl] + 
where a1 and bl are constants obtained from the calculation. The e3 term is divergent, 
so we have introduced a cutoff M to regulate it. This is called an ultraviolet divergence 
since it arises from the propagation of high momentum modes in the loops. The cutoff 
amounts to  selecting only those modes where each component of momentum is less than 
M in magnitude. Despite the divergence in (5,1), it still relates the measurable quantity 2 
to the coupling e we introduced in our theory. This implies that e itself must be divergent. 
The property of renormalisability ensures that in any relation between physical quantities 
the ultraviolet divergences cancel: the relation is actually independent of the method used 
to regulate divergences. 

As an example, consider the amplitude for electron-electron scattering, which we 
considered at tree level in section 4.5. Some of the contributing diagrams are shown in 
Figure 5.2, where the crossed diagrams are understood (we showed the crossed tree level 
diagram explicitly in Figure 4.2). Ultraviolet divergences are again encountered when 
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Figure 5.2 Some diagrams for electron-electron scattering in QED up to one loop. 

the diagrams are evaluated, and the result is of the form, 

M2 + e4[c1 In- + dl] + -. 
m2 iMf i  = 

where co, c1 and dl are constants, determined by the calculation. In order to  evalu- 
ate M,i numerically, however, we must express it in terms of the known parameter E. 
Combining (5.1) and (5.2) yields, 

where the ellipsis denotes terms of order C6 and above. Since IM,il2 is measurable, 
consistency (renormalisability) requires, 

c1 = 2u1co. 

This result is indeed borne out by the actual calculations, and the relation between M J i  
and E contains no divergences: 

To understand how this cancellation of divergences happened we can study the con- 
vergence properties of loop diagrams (although we shall not evaluate them). Consider 
the third diagram on the right hand side in Figure 5.1 and the middle diagram in Fig- 
ure 5.2. These both contain a loop with one photon propagator, behaving like l /k2 at 
large momentum k ,  and two electron propagators, each behaving like l/k. To evaluate 
the diagram we have to integrate over all momenta, leading to an integral, 

d4k 
I rv l a r g e  k k4' (5.5) 

which diverges logarithmically, leading to the lnM2 terms in (5.1) and (5.2). Notice, 
however, that the divergent terms in these two diagrams must be the same, since the 
divergence is by its nature independent of the finite external momenta (the factor of two 
in equation (5.3) arises because there is a divergence associated with the coupling of each 
electron in the scattering process). In this way we can understand that at least some of 
the divergences are common in both (5.1) and (5.2). What about diagrams such as the 
third box-like one in Figure 5.2? Now we have two photon and two electron propagators, 
leading to, 

d4k 
I l a r g e  k Ic6' 

This time the integral is convergent. 

96 



Figure 5.3 Primitive divergences of QED. 

Figure 5.4 Diagram containing a primitive divergence. 

Detailed study like this reveals that ultraviolet divergences always disappear in re- 
lations between physically measurable quantities. We discussed above the definition of 
the physical electric charge 2. A similar argument applies for the electron mass: the 
Lagrangian bare mass parameter rn is divergent, but we can define a finite physical mass 
7it. 

In fact you find that all ultraviolet divergences in QED stem from graphs of the 
type shown in Figure 5.3 and known as the primitive divergences. Any divergent graph 
will be found on inspection to contain a divergent subgraph of one of these basic types. 
For example, Figure 5.4 shows a graph where the divergence comes from the primitive 
divergent subgraph inside the dashed box. Furthermore, the primitive divergences are 
always of a type that would be generated by a term in the initial Lagrangian with a 
divergent coefficient. Hence by rescaling the fields, masses and couplings in the original 
Lagrangian we can make all physical quantities finite (and independent of the exact 
details of the adjustment such as how we regulate the divergent integrals). This is what 
me mean by renormalisability. 

This should be made clearer by an example. Consider calculating the vertex correc- 
tion in QED to one loop, 

P j l o  

The calculation shows that A is divergent. However, we can absorb this by adding a 
cancelling divergent coefficient to the &4$ term in the QED Lagrangian (4.55). The B 
and C terms are finite and unambiguous. This is just as well, since an infinite part of B, 
for example, would need to be cancelled by an infinite coefficient of a term of the form, 

which is not available in (4.55). 
In fact, the B term gives the QED correction to the magnetic dipole moment, 9 ,  of 

the electron or muon (see page 160 of the textbook by Itzykson and Zuber [l]). These 
are predicted to be 2 at  tree level. You can do the one-loop calculation (it was first done 
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by Schwinger between September and November 1947 [3]) with a few pages of algebra to 
find, 

g = 2  1 + - .  ( 9 
This gives 9/2 = 1.001161, which is already impressive compared to the experimental 
values [2]: 

( 9 / 2 )  electron = 1.00 1 15965 2 193 (1 0) , 
(9/2)muon = 1.001 165923(8). 

Higher order calculations show that the electron and muon magnetic moments differ at 
two loops and above. Kinoshita and collaborators have devoted their careers to these 
calculations and are currently at the four loop level. Theory and experiment agree for 
the electron up to the 11th decimal place. 

The C term gives the splitting between the 25112 and 2~112 levels of the hydrogen 
atom, known as the Lamb shift. Bethe’s calculation [4] of the Lamb shift, done during a 
train ride to Schenectady in June 1947, was an early triumph for quantum field theory. 
Here too, the current agreement between theory and experiment is impressive. 

In discussing the vertex correction in QED, me said that the divergent part of the 
A term could be absorbed by adding a cancelling divergent coefficient to the $b$ term 
in the QED Lagrangian (4.55). When a theory is renormalisable, all divergences can be 
removed in this way. Thus, for QED, if the original Lagrangian is (ignoring the gauge- 
fixing term), 

C = -ZFpuFpu -k i@$ - e$&$ - m&b, 
1 

then redefine everything by: 

where the subscript R stands for “renormalised.” In terms of the renormalised fields, 

Writing each Z as 2 = 1 + 62, reexpress the Lagrangian one more time as, 

Now it looks like the old lagrangian, but written in terms of the renormalised fields, with 
the addition of the dZ countertemns. Now when you calculate, the counterterms give you 
new vertices to include in your diagrams. The divergences contained in the counterterms 
cancel the infinities produced by the loop integrations, leaving a finite answer. 

The old A and $ are called the bare fields, and e and m are the bare coupling and 
mass. 

Note that to maintain the original form of C, you want Z1 = 2 2 ,  so that the 8 and 
i,jl terms combine into a covariant derivative term. This relation does hold, and is a 
consequence of the electromagnetic gauge symmetry: it is known as the Ward identity. 
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5.2 Renormalisation in Quantum Chromodynamics 
QCD is a theory of interactions between spin-1/2 quarks and spin-1 gluons. It is a 
nonabelian gauge theory based on the group SU(3), with Lagrangian, 

1 gauge fixing and 
4 ghost terms Lc-- G;,GQp” + C$j(i@ - mj)$~j  + 

f 

Here, a is a colour label, taking values from 1 to 8 for SU(3), and f runs over the quark 
flavours. The covariant derivative and field strength tensor are given by, 

where the fabc are the structure constants of SU(3) and the T” are a set of eight in- 
dependent Hermitian traceless 3 x 3 matrix generators in the fundamental or defining 
representation (see the pre school problems and the quantum field theory course). 

As in QED gauge fixing terms are needed to define the propagator and ensure that 
only physical degrees of freedom propagate. The gauge fixing procedure is more compli- 
cated in the nonabelian case and necessitates, for certain gauge choices, the appearance 
of Faddeev-Popov ghosts to cancel the contributions from unphysical polarisation states 
in gluon propagators. However, the ghosts first appear in loop diagrams, which we will 
not compute in this course. 

There are no Higgs bosons in pure QCD. The only relic of them is in the masses for 
the fermions which are generated via the Higgs mechanism, but in the electroweak sector 
of the standard model. 

A fundamental difference between QCD and QED is the appearance in the nonabelian 
case of interaction terms (vertices) containing gluons alone. These arise from the nonva- 
nishing commutator term in the field strength of the nonabelian theory in equation (5 .7 ) .  
The photon is electrically neutral, but the gluons carry the colour charge of QCD (specif- 
ically, they transform in the adjoint representation). Since the force carriers couple to 
the corresponding charge, there are no multi photon vertices in QED but there are multi 
gluon couplings in QCD. This difference is crucial: it is what underlies the decreasing 
strength of the strong coupling with increasing energy scale. 

In QCD, liadrons are made from quarks. Colour interactions bind the quarks, produc- 
ing states with no net colour: three quarks combine to make baryons and quark-antiquark 
pairs give mesons. It is generally believed that the binding energy of a quark in a hadron 
is infinite. This property, called confinement, means that there is no such thing as a free 
quark. Because of asymptotic freedom, however, if you hit a quark with a high energy 
projectile it will behave in many ways as a free (almost) particle. For example, in deep 
inelastic scattering, or DIs, a photon strikes a quark in a proton, say, imparting a large 
momentum to it. Some strong interaction corrections to this part of the process can be 
calculated perturbatively. As the quark heads off out of the proton, however, the brown 
muck of myriad low energy strong interactions cuts in again and “hadronises)) the quark 
into the particles you actually detect. This is illustrated schematically in Figure 5.5. 

We nom try to repeat the procedure we used for renormalising the coupling in QED, 
but this time in QCD, which is also a renormalisable theory. If we define the renormalised 
coupling j as the strength of the quark-gluon coupling, then in addition to the diagrams 
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Figure 5.5 Schematic depiction of deep inelastic scattering. An incident lepton radiates a 
photon which knocks a quark out of a proton. The struck quark is detected indirectly only 
after hadronisation into observable particles. 

Figure 5.G Additional diagrams for vertex renormalisation in QCD up to one loop. The dashed 
line denotes a ghost. For some gauge choices and some regularisation methods not all of these 
are required. 

of Figure 5.1, with the photons replaced by gluons, there are more diagrams at  one loop, 
shown in Figure 5.6. Looking at  the second of these new diagrams, it is ultraviolet 
divergent (containing a InM2 term), but also infrared divergent, since there is no mass 
to regulate the low momentum modes. In QED all the loop diagrams contain at least 
one electron propagator and the electron mass provides an infrared cutoff (you still have 
to worry when the electron is on-shell, but this is not our concern here). In the second 
diagram of Figure 5.6 there is no quark in the loop. Now suppose we choose to define 
the renormalised coupling off-shell at  some non-zero q2. The finite value of q2 provides 
the infrared regulator and the diagram has a term proportional to ln(M2/q2). 

Thus in QCD we can’t define a physical coupling constant from an on-shell vertex. 
This is not really a serious restriction since the QCD coupling is not directly measurable 
anyway. Now the renormalised’coupling depends on how we define it and therefore on 
at  least one momentum scale (in almost all practical cases, only one momentum scale). 
The renormalised strong coupling is thus written, 

When physical quantities are expressed in terms of ij(q2) the coefficients of the pertur- 
bation series are finite. 

It would of course be possible to define the renormalised QED coupling to depend on 
some momentum scale. However, the on-shell definition used above is a natural one to 
pick. 
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A2 P2 

Figure 5.7 Running of the strong coupling constant with renormalisation scale. 

You can define counterterms for QcD in the same way as was demonstrated for 
QED. Now the gauge coupling g enters in many terms where i t  could get renormalised 
in different ways. In fact, the gauge symmetry imposes a set of  relations between the 
renormalisation constants, known as the Slavnov-Taylor identities, which generalise the 
Ward identity of QED. 

We have just seen that the renormalised coupling in QCD, j (q2 ) ,  depends on the 
momentum at which i t  is defined. We say it depends on the renormalisation scale, and 
commonly refer to i j  as the “running coupling constant.” We would clearly like to know 
just how 8 depends on g2, so we calculate the diagrams in Figures 5.1 and 5.6, to  get the 
first terms in a perturbation theory expansion: 

where a1 and bl are constants and g is the “bare” coupling from the Lagrangian (5.6). 
I have switched to using p2 in place of g2, and have written j as a function of  p for 
convenience. From this equation i t  follows that, 

p - aij P( j)  = -2a1 g -3 + - * 

aP 
(5-9) 

The discovery by Politzer and by Gross and Wilczek, in 1973, that a1 > 0 led to the 
possibility of using perturbation theory for strong interaction processes, since i t  implies 
that the strong interactions get weaker at high momentum scales - j(00) = 0 is a stable 
solution of the differential equation (5.9). Keeping just the j3 term, we can solve (5.9) 
to find, 

(5.10) 

where A is a constant of integration and 00 = 321r2al. Thus aS(p) decreases logarith- 
mically with the scale at which i t  is renormalised, as shown in Figure 5.7. If for some I 

process the natural renormalisation scale is large, there is a chance that perturbation 
theory will be applicable. The value of  PO is, 

n 

(5.11) 

where nf is the number of quark flavours. The crucial discovery when this was first 
calculated was the appearance of the “11” coming from the self-interactions of the gluons 
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via the extra diagrams of Figure 5.6. Quarks, and other non-gauge particles, always con- 
tribute negatively to ,&. Nonabelian gauge theories are the only ones we know where you 
can have asymptotic freedom (providing you don’t have too much “matter” - providing 
the number of flavours is less than or equal to 16 for QCD). 

What is the significance of the integration constant A? The original QCD La- 
grangian (5.6) contained only a dimensionless bare coupling g (the quark masses don’t 
matter here, since the phenomenon occurs for a pure glue theory), but now we have a 
dimensionful parameter. The real answer is that the radiative corrections (in all field 
theories except finite ones) break the scale invariance of the original Lagrangian. In 
QED there was an implicit choice of scale in the on-shell definition of d. Lacking such a 
canonical choice for QCD, you have to say “measure cu, at p = Mz” or “find the scale 
where as = 0.2,” so that a scale is necessarily involved. The phenomenon was called 
dimensional transmutation by Coleman. A is given by, 

(5.12) 

and is p-independent. The explicit p dependence is cancelled by the implicit p depen- 
dence of the coupling constant. Today it has become popular to specify the coupling by 
giving the value of A itself. 

We’ve seen that the coupling depends on the scale at which it is renormalised. 
Moreover, there are many ways of defining the renormalised coupling at a given scale, 
depending on just how you have regulated the infinities in your calculations and which 
momentum scales you set equal to p. The value of j ( p )  thus depends on the renormal- 
isation scheme you pick, and with it, A. In practice, the most popular scheme today 
is called modified minimal subtraction, MS, in which integrals are evaluated in 4 - E 

dimensions and divergences show up as poles of the form E-” for positive integer n. In 
the particle data book [2] you will find values quoted for Am around 200MeV (it also 
depends on the number of quark flavours). Don’t buy a value of A unless you know which 
renormalisation scheme was used to define it. 

In Figure 5.7 you see that the coupling blows up at p = A. This is an artifact of 
using perturbation theory. We can’t trust our calculations if aS(p) > 1. In practice, 
you can perhaps use scales for p down to about 1 GeV, but not much lower, and 2 GeV 
is probably safer. This region is a murky area where people try to match perturbative 
calculations onto results obtained from a variety of more or less kosher techniques. 

Extending the expansion of j in terms of g in (5.8) to two loops gives 
D Exercise 5.1 

with a similar equation for J(p0) in terms of 9.  Renormalisability implies that j ( p )  can 
be expanded in terms of ij(po), 

n=O 

where the X,, are finite coefficients. Show that this implies that a2 is determined once 
the one loop coefficient a1 is known. In fact al determines all the terms (as In p ) ” ,  called 
the leading logarithms: from a one loop calculation, you can sum up all the leading 
logarithms. 
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For QED there is no positive contribution to the beta function, so the electromagnetic 
coupling has a logarithmic increase with renormalisation scale. However the effect is small 
even going up to LEP energies: cy goes from 1/137 to about 1/128. The so called Landau 
pole, where Q! blows up, is safely hidden at an enormous energy scale. 
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1. Introduction. 

The form of the Lagrangian of the standard model is completely determined by 

1) Invariance under the gauge group: SU(3) x SU(2) x U(1). 
2) The choice of matter fields (i.e. fermions and scalars) together with their transfor- 

3) Perturbative renormalisability. 

three general requirements: 

mation properties under the gauge group (i.e. the representation). 

Do not worry if this is not obvious! I will shortly explain why the form of the La- 
grangian is completely constrained by these requirements. I will try t o  point out where 
these requirements and choices are practically inevitable (for phenomenological or theo- 
retical reasons) and where there are uncertainties. 

Requirements (1) and (2) summarise all the qualitative information we have gleaned 
so far from experiment. Requirement (3) is a theoretical consideration, the motivation for 
which will be discussed in the last lecture, which leads to the following further constraint 
on the form of the Lagrangian: 

A perturbatively renormalisable LaPranRian is constructed bv including in the 
Lagrangian all and only those couplings allowed bv symmetries. with zero or 

positive mass dimension, and all Dossible mass terms allowed bv the svmmetries.' 

This further constraint thus leads to certain predictions that can be tested by exper- 
iment. In principle one could also require some global symmetries be satisfied, e.g. the 
continuous U( 1) groups corresponding to baryon number conservation, and conservation 
of the three separate Lepton numbers, or discrete symmetries such as CPT, but these 
symmetries turn out to be already automatically satisfied once the above constraints are 
imposed. 

Notice that the above requirements determine only the form of the Lagrangian. They 
do not determine the parameters, i.e. physically the couplings, masses etc. We will see 

Actually there is a rather important proviso to this rule: the kinetic terms must not hide any 
mass parameters. We will come back to this later. 
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that the standard model Lagrangian has 19 parameters in total, and at present we can 

only know the physical values of these parameters by determining them from precision 

experiments. 

1.1. Perturbative Renormalisability. 

As I have already stated, I will leave the motivation for this rule to the last lecture, 

but let me note here that this is really two issues, namely, “Why renormalisability?” 

and “Why perturbative?”. The second of these issues is easy to answer, so I will do 

so here. For the electromagnetic interactions, the weak interactions (those mediated by 

the intermediate vector bosom), and at  high energies also the strong interactions (as a 

consequence of asymptotic freedom), the strength of the interaction i s  small and therefore 

treating the interactions as perturbations (of a world with no interactions) seems sensible. 

The situation is much less clear for the Higgs sector. 

1.2. The Field Content of the Standard Model. 

I believe that by now, barring only the Higgs field, the qualitative features of the 

standard model can be regarded as so well experimentally tested and established that there 

can be little doubt that these features are correct. There could in principle be even other 

low energy physics beyond the standard model hiding away in the present data (if they are 

sufficiently difficult to detect e.g. neutrino masses, axions etc. ) and certainly there has to 

be higher energy physics beyond the standard model, but all of these represent additions 

to the standard model and not modifications of the presently posited gauge group, field 

content and representations (via. assignment of charges). Therefore I will for the most part 

simply state what these are, with the odd few ounces of justification, and leave the task 

of demonstrating just how solid the phenomenological evidence is, to my colleague Nigel 

Glover. 
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2. The Strong  Interactions. 

All the hadrons we have seen so far (with the possible exception of the odd resonance) 
correspond to one of two types: baryons with three quarks (and of course antibaryons with 
three anti-quarks) or mesons with a quark and an anti-quark. This pattern can be neatly 
understood if  the quarks are assumed to  come in three colours, i.e. each quark is a vector 

of three Dirac fermions .=(En) 9 

forming a 3 of SU(3), subject to a colour force mediated by 8 bi-coloured gluons - the 
gauge particles of local SU(3). It is then energetically favourable for the bound states to 
be colour neutral, much as it is in QED for charged particles to be bound in electrically 
neutral atoms. The colour neutral combinations are nothing but 

and 

describing the mesons and baryons. Here i , j ,  k are colour indices. 

Aside: A quick reminder how the ‘construction kit’ for the Lagrangian looks for any 
gauge group. (See Dave Dunbar’s course.) If we want some non-Abelian symmetry to be 
a local symmetry so that the global symmetry 

where U is some ‘rotation’ ( i .e .  representation of a non-Abelian group), becomes instead 

then wherever fields in different places are compared e.g. in 4(z)7,aP@(z), we need to 
introduce a gauge field A,(z) to soak up the remainder resulting from different amounts 
of rotation in the two different places. We do this by replacing a, by 

D, = aP - igA,T a a  , 
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where T a  are the generators of the group - satisfying 

[Tay Tb]  = i f  abcTc , 

and f abc are the structure constants. Now, since 

$t(Z) c-) $t(Z)U+(Z) = $t(z)U-l(z) ., 

for a unitary group, $y'D,,$ is invariant providing that 

D, I+ U(Z>D, ,U -~ (~ )  . 

Substituting in the formula for D,, we see that A, gauge transforms as 

A ; ( ~ ) T ~  c-) U ( ~ ) A ; T W - ~ ( ~ )  + 4 q z ) a , ~ - 1 ( ~ )  . 
9 

For a generalgauge transformation like this, there is not any simpler form, but for a small 
gauge transformation U ( z )  = exp ica(z)Ta, the answer can be written down as 

1 
9 

8A;(z)Ta = -O,ca(z)Ta - i[A:Tb, cCTC] 

1 
9 

or SAi(z)  = -~ ,E " ( z )  + f b c a A : ( ~ ) ~ C ( z )  , 

We need something now to act as the gauge invariant kinetic term2 for the gauge field. 
The unique answer lies in considering the field strength 

i T"F;,,(z) = -[D,,D,] . 
9 

Despite appearances, this is not a differential operator but a field. Indeed, if you use the 
fact that 

a,{.W+(z>) - f(4%+(4 = { a P f  (4M4 9 

(where f(z) here is any function), you see that 

TaF;,, = a,,AETa - &A;T" - ig[A,,T b b , ACTC ,, ] , 

so that 

i.e. a term in the Lagrangian with only two fields and with two or less space-time derivatives 
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Now, using equation (2.1) we have, 

required. (N.B. it can be shown that f abc  is totally anti~ymmetric.~ ) End of Aside. 

Quarks have been discovered in six flavours, U ,  d, c, s, t, b, but QCD is flavour blind and 
treats them all the same (hence the approximate strong interaction symmetries of isospin 
which ‘rotates’ U into d etc). Renormalisability only allows the field strength squared 
term and minimal coupling of the glue to the quarks, and thus (given the conventional4 
normalisation of the kinetic, bi-linear terms) we obtain uniquely 

The field strength and the covariant derivative are given by 

Here the (2’ A ) i  j ,  s are the eight 3 x 3 traceless Hermitian matrices, the generators of the 

SU(3) group, conventionally normalised so that 

1 Tr (TATB) = ~6~~ . 
(Let me clear up some possible sources of confusion: I will for the most part understand 
the TA’s  as matrices, the spinors (q) as column vectors, and the barred spinors (q = $70) 

Exercise! Proof follows from $fabe = Tr ( [Ta,Tb]TC). 
except that they must of course have the right sign! 
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as row vectors in the colour space, and therefore suppress the explicit indices i , j ,  k, . 
(and so-on also for other internal groups). Of course I am also doing that for the Dirac 
indices so really 4 E ~ i a ,  where i is a colour index and Q a Dirac index. Once you get 
used to it, it does not take long to figure out from the context all the different, indices that 
ought to be attached in various places. Secondly note that G; is the gluon gauge boson 
and G$ is its field strength. You can tell the two apart by the number of Lorentz indices, 

so it is helpful just to call them both G.) 

Aside: We could have taken the flavours j = U, d,  c, s,  t ,  b, and written a mass matrix 
so that the fermion terms take the form 

Cquork = i g j l h j  .- q j m j k q k  ' (2.6) 

where the matrix m j k  is required Hermitian for Cquark to be real. But by a unitary 
transformation in flavour space qk &qp, we can diagonalize the matrix m j k ,  i.e. we 
choose a j k  so tliat (at)ij n j k  = bik, and 

Because this leaves the q's kinetic term (- bij  in flavour space) alone, this transformation 
turns this Lagrangian back into the original CQCD. Therefore Lagrangian (2.6) is effectively 
identical to that in (2.3). We should mention that these Lagrangians do not describe the 
real way the quarks get masses. They are allowed, in fact required by renormalisability, 
at the moment but they will not be allowed once we consider the charges under weak 
interactions. 

Sou see that there are actually two sorts of field-strength squared. The second one, the 
QCD 19 term, is a bit peculiar (although clearly allowed since any arrangement of  Lorentz 
indices in (2.2) gave a gauge invariant term). It can be shown to be a total divergence 

= 8JF, and so it is tempting to throw it away since what actually enters in the path 
integral is the action S = sd% C. Therefore, La results in just a 'surface term'. But for 
certain special field configurations these surface terms cannot be ignored. For small 93, 
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the important configurations are called ‘instantons’ and lead to  non-perturbative effects 

of order N exp-8n2/gz. Now notice that Ls violates CP. (It is easiest to  see this by 

noting that Cs - G01G23 etc. must violate T invariance [t r-) -t and Go I+ -Go] and 

then use the fact that for all field theories CPT is conserved.) Experimentally however, 

CP appears to be conserved by &CO! The strongest bound on strong CP violation comes 

from putting limits on the neutron electric dipole moment implying ~ P Q C D  < 10-7. why 

is it so small? No-one knows. This is the strong CP puzde. (For completeness, let me add 

-without explanation- that the bound above applies only once we have chosen our quark 

masses all to be real -otherwise these also result in CP violating effects.) 

We can read off from the Lagrangian the QCD Feynman rules. The propagators are 

the same as have appeared in the other lectures (up to a few more Kronecker delta’s): 

Fig.1. The gluon propagator. 

(Actually, this is only true in a certain gauge called Feynman gauge.) 

Fig.2. The quark propagator. 

while the Feynman rules are 
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V C 
Fig.3. The gluon three-point interaction. 

EAC EDB pu p u -  pu pu + f  f ( 9 9  9 9 )  
+ f  EAD f EBC (9 w 9 UP - g w g u y ) ]  

V C 
Fig.4. The gluon four-point interaction. 

P 
Fig.5. The gluon-quark interaction. 

Note that the ~ Q C D  term does not have Feynman rules because it is a surface term with 
effect only at Izl = 00 (i.e. only global effects); it fails to appear at any order of perturbation 
theory! Also along with the gauge fixing one obtains ghosts and their propagators and 
interactions (see Dave Dunbar’s course). 
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Of course, there are fermions other than the quarks in the standard model. These are 
the leptons which, by definition, do not feel the strong force. The gluons carry no other 
charges except colour, but the quarks do carry other charges. Their electromagnetic charges 
are Q = -1/3 for d, s, b and Q = 2/3 for U ,  c, t (as follows from the quark assignements and 
electromagnetic charges of  the hadrons). In addition the quarks feel the weak interactions 

- which is our next subject. 

3. Left Handed and Right Handed Fermion Fields. 

We will very soon need to  talk about left handed and right handed Fermi fields because 
the weak interactions are chird (that is, they depend on the handedness). We can project 
out the left handed and right handed components of a (massless) fermion by introducing 
the ‘projection operators’ 

We then define 

$L = PL$ and $R=PR$ 

where $ is a Dirac fermion. Because PL + PR = 1 (c.f. Problem l), $ can be split in two: 
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Physically, these fields correspond to the following situation (c.f. Problem 1): 

Fig.6. The physical meaning behind’ left handed and right handed helicity. Note that 
the “right handedness” refers to the fact that classically the spin turns as a right-handed 
screw. 

These two guys are mirror images of each other, so you can see that chiral interactions 
must break parity.5 Now, the kinetic term for the Dirac field also splits into two 

c = i$B$ = ~ $ L B $ L  + ~$R+VR , 
because $LWR = $ t ~ ~ r o r p a p ~ ~ $  

= ‘$t?’oPRrpapPR$ 

=$trDypapPLPR$ = o  , 
and similarly $ R ~ $ L  = 0. (These steps follow using the results from Problems 1 and 2.) 
From this we see again that for massless fields we can just have left handed or right handed 
spinors - throwing the other half away. Not so, if they are massive since 

m$$ = ~ ( $ R ’ $ L  + ~ L $ R )  

(c.1. Problem 2). We see that the mass, by coupling right handed spinors to  left handed 
spinors acts as an amplitude for flipping the helicity; helicity is not conserved for massive 
fermions6 

Parity = a reflection + a rotation. 
This is fundamentally because spin is not conserved, only the total angular momentum J = 

- L + 8 is conserved. See Steve King’s course. 
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4. The Electroweak Interactions a n d  The Leptons. 

We start with the leptons because their interactions are easier to describe than those of 
the quarks, for a reason that will become clear later. By now, numerous experiments have 
shown that the weak interactions allow transmutation of  the left handed component of the 
lepton into a left handed neutrino (and vice versa). (This started with the famous Cobalt 
60 experiment of Mme. Wu et a1 [1956] in which the electron in the p decay was seen 
to be preferentially polarised.) Right handed neutrinos, SO far as we can tell, are never 
produced or transmuted by the weak interactions. These interactions are well described 
by the process 

Fig.7. Leptonic decay of the muon by weak interactions. 
for example, which mathematically requires the introduction of the left handed and right 
handed spinors and assignement of the left handed lepton and corresponding left handed 
neutrino into SU(2) doublets (weak isospin): 

i =e, p, r 

Here, you should understand that ve,vP,vr stand for the left handed fermion fields only. 

Since no evidence for right handed U'S exists, we do not introduce them. The right handed 
leptons l i  = e; ,&, 7;; (with i = e , p , r )  do not couple to the charged weak vector bosons 
SO they must be SU(2) singlets. (Note the notation: a little I for a singlet and a big L for 
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doublet. This pattern will be used consistently through the lectures.) The action of the 
weak isospin SU(2) is defined by the generators which may be represented as T, 
on the doublets, where the 00  are the Pauli matrices 

The action of the generators on the singlets is trivial: 

Talj = 0 i.e. T, = O  for a =  1,2,3. 

The electric charge matrix Q must be a generator of the gauge group, so that the 
photon and QED are incorporated. Notice that the entries in the doublets differ by unit 

charge and so e& must have a component e& - eT3, but clearly this is not enough because 

the charges of the doublets would be f e / 2 ,  and the singlets Zi would have charge 0. On 

the other hand you see that the charges in the singlets and doublets are right if we shift 
by a constant charge (-$ for the doublets, -1 for the singlets). Thus 

e& = e (T3 + Y/2} , ( 4 4  

where Y is the hypercharge and is just proportional to the unit matrix on both doublets 

and singlets - and thus is the generator of a separate U(1) group: [T’,Y] = 0. This 
explains the assignement of SU(2) x U(1) for the electroweak gauge group. We have the 

weak hypercharges Y = -2 for singlets and Y = -1 for doublets i.e. 

YZi = -21i YLi = -Li . 

Now we are in a position to write down the Lagrangian 

120 



Here we have introduced the U(1) gauge field Bp which couples to weak hypercharge. Its 
corresponding coupling is 91. The triplet of gauge fields W,O couple to weak isospin - and 
their coupling is g2. The field strengths are 

w;,, = apw; - a,w; + gZEabCw;w; a,b,c= 1,2,3 

Bpv = apBy - duBp 

Once again, the Lagrangian is completely determined by the requirement of renormalis- 

abity. 

You see that there is also a 6 term for the SU(2) gauge fields. Just as in QCD, this 
leads to non-perturbative effects - exp -87r2/gf but because weak interactions are so small 
(g2 << l), these effects are so negligable (at least in normal situations) that it is not usual 
to include this term in the standard model. The B field does not have such a term: the 
reason is that cgrrtain topological arguments? show that unless the gauge group is ‘bigger 
than or equal SU(2) (strictly contains SU(2) as a subgroup) then the surface terms 
can indeed be ignored. 

Note that the Lagrangian contains no mass terms! Preservation of gauge invariance 
forbids us from writing down mass terms - m2W,0W,0 etc. for the gauge fields and we 
cannot write down masses for the fermions because the right handed guys transform dif- 
ferently from the left handed guys. (We would want to try to write - m[LZ + [L] but L 
is a vector and Z is a scalar in weak isospin space so these indices do not match and nor 
are the combinations hypercharge neutral.) Obviously these masslessness properties are a 
phenomenological disaster: electrons, muons and taus do have masses, and there is no such 
thing as a long range (- 1/r2) SU(2) weak force so three gauge bosons must somehow get 
a mass also, 1eaving.massless the one gauge boson coupling to the charge Q. 

At the moment the electric charge is somewhat hidden in the couplings to the fermions: 

Y 
g2T3w; + 9 1 p p  

but because the kinetic terms for these guys 

1 -z { (apW: - &W,”)2 + - a,,BJ2} 

which would unfortunately take too long to explain 
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are just the canonical sum of squares we can rotate to a new basis 

leaving the kinetic terms still properly normalised. In this new basis the couplings look as 

Thus, i f  A, is t o  be the massless photon we need 

9 2  sindw = e and. g1 cos dw = e 

This is illustrated in the little diagram below. 

, Fig.8. Definition of the Weinberg angle. 

9 w  is the Weinberg angle. Zp is the 2 boson that better somehow become heavy. We see 

that it couples to the fermions as 

In this last step I have used the formula (4.1) for Q. You see that Z,, unlike the photon, 

couples to neutrinos (through T3) thus generating ‘neutral current’ weak interactions such 
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as vp e- scattering: 

\ -  e 

Fig.9. vc( e’ scattering via their neutral current weak interactions. 

Let us look at just one of the fermions f (i.e. f = e , p , ~ ,  or one of the neutrinos) 

but both its left handed component and right handed component (if it has one). Both 

couplings of the 2, can be written then as 

where I have written t 3  as the eigenvalue of T3, used the fact that T3f~  = 0, and written 

e& as the electric charge of f. Note that for neutrinos the f R  term disappears anyway 

because Q = 0 in this case. Now we reexpress this in terms of Dirac fermions, 

h r P h  = J r ’ $ ( 1 -  r5)f 

fR7’fR = f7’2 (1 + 75)f 9 

resulting in 

where 

CA f = t3 and C$ = t 3  - 2sin2 SwQ 
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Thus we can write the Feynman rule 

f 

P 

Fig.10. The 2-fermion interaction. 

With this information, Problem 3 of the problems can now be attacked. We will see 

later that the same Feynman rule applies to quarks. You only need that they effectively 

form SU(2) doublets - (i) . With this information, Problem 4 may also be started. 

Note that the 2' is chargeless because [Q, T3] = 0, while the couplings T1Wi + T2W: 

do not commute with Q. If we change basis by writing this sum as 

0 1  where T+ = ( o) and T- = (! :), are SU(2) raising and lowering operators 

respectively, then we see that W: have charges f e  because 

With the changes to physical vector particles all in place, one can read off the Feynman 

rules from CEW. The gauge boson self-couplings are 
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Fig.11. The AWW interaction. 

Fig.12. The ZWW interaction. 

V 

P h 

Fig.13. The weak vector boson four-point interactions. 

where gvector bosons are the following weights, depending on the vector bosons involved in 
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the four-point interactions: 

gW+W+W-W- = ie2/sin26w 
2 

2 

2 

gW+W-AA = -ie 

gW+W-ZZ = -ie cot28W 

gW+W-AZ = -ie cot8w . 
Let me cheat a little and put the masses Mz and MWA in anyway so that we can do some 
phenomenology. (Later we will see that the following steps are correct after all.) Let us 
look again at the charged current interaction of figure 7. Plugging the change of variables 
above, into the Lagrangian CEW we see that the relevant interactions are [check it!]: 

and similarly 

The propagator (Feynman gauge) 

col1 pses t 

9 
Fig.14. The weak vector boson propagator. 

the simple form igPv/M& at low momenta and so the Feynman diagram i L 

figure 7, is equivalent at low energies to an interaction 

(Here the first three factors of i all come from the i in is.) But this is the old Fermi 
current-current interaction, except that the coupling would be written -GF/\/Z. Thus we 
deduce the Fermi constant: 

GF = 
~ $ s i n ~ d w  

d e 2  

(Now you have all that is needed for Problem 4.) 

The neutral current that couples to Z p  is given above 

JFC = f7p (c; - ci75) f 9 
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and evidently leads to the same effective form 

where the p parameter is given as 

9 
M& 

= Mg cos2 dw 

and you see that 2p is the ratio of neutral and charged current interaction strengths. 

5. Spontaneous Symmetry Breaking. 

Why can we not just write down masses as we did above? It breaks the gauge invariance, 
but you should ask: do we really need gauge invariance? The real problem is not gauge 

invariance but the loss of renormalisability and/or unitarity. In the kinetic part of the field 
strength for say the 2 boson, which in momentum space looks as Zp. - ppZu - p Y Z p ,  the 
longitudinal component 2; o( pp slips through: 

PpZ,L - puz; = 0 . 

When we add a mass term 

to the Lagrangian, it is the only term that appears for the longitudinal component and 

thus has to play the r61e that the momentum dependent kinetic term normally plays. TO 
apply the requirements of perturbative renormalisability we then have to normalise this 

term by 2; I+ Z i/m so that its ‘kinetic’ term appears as 

S = 3 I d %  (2,”)’ . 

In this form 2: has mass dimension two, and so you will find it cannot have any inter- 
actions (i.e. cubic or higher in the fields) with itself or anything else without introducing 
perturbatively non-renormalisable couplings (i.e. with negative mass dimension). 
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(Perhaps you have asked yourself why YOU cannot simply add a term that will give a 
sensible kinetic term for Zp e.g. i(&Zp)2. If YOU have not, then ignore this paragraph! 
The answer is that adding such a term always results in a wrong sign for one of the 
components of the 2: 

This then leads to severe unphysical behaviour such as negative probabilities etc. . Gauge 
invariance is there to eliminate this unphysical behaviour, which it does because the time 
component may always be gauged away t o  20 = 0 - but remember we have now broken 
the gauge invariance.) 

A way out of this apparently insuperable problem is to use spontaneous symmetry 
breaking. 

5.1. A Global U(1) Model. 

The simplest example for our purposes is a single complex scalar field 

The theory is invariant under a global U(1) symmetry, namely phase redefinition 

By perturbative renormalisability, the interaction potential has the form 

v(ipi2) = ~ ~ 1 9 1 ~  + ~ 1 4 ~  ) ,  

but in principle there is nothing wrong with M2 < 0. In this case the potential looks as 
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Fig.15. The potential V(lcpI2) with negative M2. 
We can thinksof this cp field as loads of  little arrows, 

Fig.16. Complex cp(z) field as coupled set of 'arrows'. 
one for each position in space, nearest neighbours weakly coupled together through the 
kinetic term a,,p*P'cp. Indeed, i f  we had chosen the arrows not to live in a plane but in 
three dimensional space (i.e. cp cpQ, a = 1,2,3 instead) then this would be a model for 
a ferromagnet. (p would represent the local magnetization - the total spin in some small 
domain.) With the potential in the form above, the minimum energy of  the system is not 
where p = 0 but with cp equal to some value cpo on the circle 

M2 
2x IcpOl2 =-- . 

AS a result the system has 'spontaneously magnetized', and the vacuum (that is, the 
lowest energy state) has spontaneously broken the U(1) symmetry. So far this discussion 
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has been purely classical, but the same is true in the quantum field theory: although 
quantum fluctuations can alter the position of the ‘spins’ locally, they cannot ‘pick up’ the 
whole vacuum state and rotate it to a new position cpo because the whole vacuum has too 
much inertia. (In the ferromagnet analogy: although quantum fluctuations cause spins 
to fluctuate locally, they cannot cause a macroscopic change of direction for the overall 
magnetization, in any finite time interval, because this would cost a macroscopic amount 
of energy.) We can see intuitively what the fluctuations correspond to, also. There will be 
radial fluctuations Q (along the direction cpo) that see a potential N m202 and are therefore 
massive. On the other hand there are fluctuations where the ‘spins’ fluctuate away from cpo 

by going round the circle (‘spin waves’). These cost no potential energy and are therefore 
massless. In fact in any situation where the energetics are such that the vacuum state 
spontaneously breaks a (global) symmetry of the theory, there will be alternative vacua 
(reached mathematically by applying the symmetry to the vacuum state) and there will be 
massless modes corresponding to local fluctuations along these directions. These massless 
modes are known as Goldstone bosons. 

Returning to our example, let us use phase invariance to set cpo 

V 
PO = where 2) = /? 

to be real: 

(Here the factor of 1/& has been taken out of the definition of U, just for convenience.) 
We write 

1 
[U + Q(Z) + i7r(z)] 1 

where sigma and 7-i are real, so that U and 7r represent the fluctuation fields around the 
uucuum ezpectution udue U. Substituting, one obtains, after some algebra, 

c = $(ap.)2 + $<ap7r)2 - XV2U2 + Lint , 
x where Lint = -Xv(02 + 7r2)a - p + 7r2)2 . 

We see that indeed the Q particle has a mass 

2 2 m, = 2Xv 

and 7-i is the massless Goldstone boson. 
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5.2. A Local U(1) Model. 

Next consider what happens when we make the invariance local: 

1 
&A = -zFpuFpu + (ap + igAp)cp*(ap - igAp)cp - V(lcpI2) . 

With the same potential as before, the field cp will again want to choose lcpJ2 = -M2/(2~). 
But this time the Goldstone boson _ .  7r(z)) corresponding to  local phase fluctuations, is not 

iCY(X) 
entirely physical because cp H e cp(z) can be undone with a gauge transformation 

i.e. the 7r field can be considered instead to be part of the vector field! To see clearly what 
is going on, we need to pick the unitary gauge which corresponds to using the local phase 
invariance to fix everywhere cp(z) to be real. In this gauge, fluctuations about the vacuum 
expectation value are just 

44 = [v + 441 /Jz ( 5 4  

and 

1 1 1 
4 

= --Fp,Fp” + sg2v2Ai + Z(~, ,CT)~ - Xv2a2 + cubic and quartic interactions . 

The gauge field has gained a mass, 

and Goldstone’s 7r field has disappeared. It has been ‘eaten’ by the gauge field: the massive 
vector field now has three degrees of freedom (at rest, it points in some spatial direction) 
while the massless vector field had only two (two transverse polarizations of the photon). 
This is the so-called Higgs mechanism. It is worth remarking that this local U(1) L is 
almost precisely the phenomenological Lagrangian used to describe superconductivity. In- 
side the superconductor, the photon is indeed massive (the Meissner effect). It is called 
‘phenomenological’ because the field cp is used to describe the average effect of the con- 
densate of Cooper pairs of electrons. All that is required is that the field be bosonic (SO 
that its particles form a condensate) and have the right quantum numbers (g  = -2e in 
this case). 
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Now I want to finish this section with something strange (that does not have any 
interpretation in terms of superconductivity). Suppose that there existed a fermion whose 
right handed component $R was electrically neutral, but whose left handed component $L 
had charge g = -2e. In this case the constraints of gauge invariance and renormalisability 
uniquely determine the y5 part of the Lagrangian C = + CJ, so that 

(Notice that the two Yukawa intemction terms are complex conjugates of each other - as 

required by the reality of C.) YOU see that no mass term is allowed because -m+($L@R + 
GR$L) is not chargeless. But once the symmetry is broken as in eqn. (5.1), we obtain 
Yukawa interactions with the 0 field, and a mass term for y5 with 

We can use this relation to replace the Yukawa coupling XJ, in Le by the ratio of the mass 
of the fermion and the vacuum expectation value of the scalar field: 

XJ, = -m+ 
V 

Now let us apply these ideas to solve the problem 

(5.2) 

of mass in the standard model. 

5.3. The Higgs. 

Spontaneous symmetry breaking solves our previous problems because this way of gain- 
ing mass is renormalisable. The problems of renormalisability come from the very short 
wavelength high energy interactions and these modes could not care less that a zero energy- 
momentum infinitely long wavelength part has chosen some non-zero solution of the equa- 
tions of motion. The properties of renormalisability are encoded in the Lagrangian - not 
the solutions of the equations of motion. (Nevertheless, the fact that renormalisability does 
now follow, is not at all obvious mathematically and it was 't Hooft's great acheivement 
in 1971, to prove that this is so.) 

All we need now is something bosonic with the right quantum numbers and a choice 
of couplings that make it condense. It could be a single scalar Higgs field, i.e. a single 
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representation, or it could be several representations. It could be just as fundamental as 

the other fields or it could be standing in for a condensate of bound states, like cp did for 
the Cooper pairs, or something more exotic. 

While the Higgs these days is beginning to  be constrained by the precision LEP exper- 
iments, the Higgs sector is still much the weakest in the standard model. The standard 
model corresponds to the simplest assumption: namely that the Higgs is a ‘genuine’ scalar 
field H(z) in a single representation. The solution is then unique. Since we want to provide 
masses for the leptons, H(z) better be equivalent to  a weak isospin SU(2) doublet with 
hypercharge Y = 1 so that the combination - X(zHI+rHtL) is invariant and hypercharge 
neutral. [check it!] Remembering the formula (4.1) for the electric charge, we have, 

with the charges as indicated. 

By global SU(2) x U(1) transformations, we can always choose the vacuum expectation 
value to be real and in the ho direction - which is what we want if we require Q to take 
its conventional form [c.J (4.1)]: 

Q = T3 + Y/2 e .  Q(n) = O  

(In another basis Q is still defined to be the one unbroken generator. Things look different 
mathematically but the physics is just the same.) 

Renormalisability now fixes uniquely the form of the Higgs and Yukawa sector of  the 
standard model to be: 

ua i 

(5.3) 
CHiggs  = [(a, + i g 2 w a -  p 2  + iglBp)Ht I[ (8’ - igzWap- 2 - ?glBp)Ht] 

ua i 

- M ~ H ~ H  - x ( H ~ H ) ~  - xi ( Z ~ H Z ~  + iiHtLi) . 
i=e,p,r 

For spontaneous symmetry breaking we require M2 c 0, then the Higgs will choose a 
non-zero vacuum expectation value 

h+ = 0 

ho = U / &  , 
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where again the factor of 1/* is introduced just for convenience, and 

Gust as in the U(1) model). In the unitary gauge, the Higgs field everywhere is chosen to 
have just a real ho component and so,fluctuations are simply given by 

The one real Higgs, a(z),  survives with mass 

rn; = 2xv2 = - 2 ~ ~  . 
(Again this is just the same equation as in the U(1) model.) The three Goldstone bosons 
have been eaten and given W: and 2; masses. The vacuum expectation value has provided 
the electron, mu and tau with their masses. To see this, substitute the above unitary gauge 
Higgs into LHiggs and set Q(Z) = 0. (We are not for the moment interested in Q and its 
interactions.) If you look at just the electron's Yukawa couplings, these become 

The same manipulations hold for p and r ,  and thus we identify their masses as 

21 
mi = Xi- a i = e,p,r . (5.5) 

Similarly you can show [i.e. check it!] that the mass terms for the gauge bosons read 

Now using the fact that the terms in square brackets can be written 2W2W-P and that, 
from inverting our previous rotation, 

Z,, = sin 6w B,, - cos 6w Wi 
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we see that the mass terms read, 

with 

and 

1 
Mwa = ;g2v 

1 -  

1 ev 
2 sin 6 w  cos t9w 

= -  

In particular we have 
cos6w = Mw/Mz . 

All these relations are classical (tree level) relations and get corrected (a little) quantum 
mechanically. A common convention is to define the ‘physical’ value of t . 9 ~  to be given by 
the above relation. The measured values of MW and Mz are 

+.009 GeV 
Mw = 80.338 f .040 -.018 
Mz = 91.1863 f .002 GeV 

and thus 
2 +.0003 

Being totally ahistorical, we can use these numbers together with a! = e2/(47r) = 1/137, 
to obtain a tree level estimate of the Fermi constant 

sin 6 w  = 1 - M&/Mi = ,2238 f .0008 -.0002 

= 1.12 x l O - ‘  (GeV)-2 , d e 2  
8M& sin2 6 w  

GF = 

which should be compared to the measured value 

GF = 1.16637(2) x 10’‘ (GeV)’2 . 
On the other hand we have at tree level that (twice) the ratio of neutral to  charged current 
interact ions 
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This is not an accident but a consequence of a hidden approximate symmetry (broken only 

when the electric charge e # 0) called custodial SU(2). Not all Higgs representations have 

this symmetry so the fact that is indeed measured to be very close to 1 is strong indirect 

evidence for this class of representations. 

Substituting these numbers into the equations for the 2 and W* masses, (5.6) and 

(5.7), one obtains the tree level estimate for the electroweuk breaking scale: 

ve250GeV . 

This fixes the ratio m:/A = 2v2 but neither the Higgs mass nor its self coupling is known 

separately (if indeed the Higgs exists as such!). Some weak constraints on m$ are being 

deduced indirectly from precision LEP experiments (see Nigel). Note that, from (5.4) and 

(5 .5 ) ,  the Higgs Yukawa couplings are 

mf - --fd V f 9 

so the Higgs couples strongest to the most massive particle. (This will be true for the quarks 

also.) As well as these Yukawa interactions, substitution of the unitary gauge Higgs, (5.4), 

leads to many interactions of the Higgs with the gauge bosons. In the standard way these 

turn into Feynman rules (which I have chosen to write in terms of e, Mw, 6w and mg): 

i e M w  
sin 2 9 ~  Q ...................... I ............ 

Fig.17. The Higgs-WW interaction. 
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Fig.18. The Higgs-22 interaction. 

Fig. 19. The Higgs-Higgs- W W interaction. 

Fig.20. The Higgs-Higgs-22 interaction. 
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0 
Fig.21. The Higgs three-point self-interaction. 

Fig.22. The Higgs four-point self-interaction. 

Just as in the QCD case much earlier, we could have used mass matrices: 

Here they are really Yukawa coupling matrices Xij, but anticipating formulae like (5.2) and 
(5 .5 ) ,  we write Xij = f imij /v ,  and so defining the mass matrix mij in the process. Note 
that now the mass matrix need not be Hermitian. But once again this is entirely equivalent 
to the previous Lagrangian, because now we can use different unitary transformations in 
flavour space 

Lj H (0R)jjtljt  Li H (c2L)iitLit 

and use the fact that any matrix can be diagonalised by two unitary transformations: 
0 

0 m; 
nLrnRR= (T rn, :) . 

You can check that this leaves the rest of the lepton Lagrangian invariant, because these 
bits are still proportional to unit matrices in flavour space ( i .e .  &&j l j  and z.6.. a a3 - 4) 
and couple only 1’to I and E to L. 
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5.4. Weak Interactions of Quarks. 

The weak interactions for the quarks take a very similar form to those for the leptons, 
for example p decay n + pe-ije, or 7r- -+ e-ve, is described at the quark level by 

Fig.23. A d quark weak decay. 
and similarly e.g. charm decay D+ + K - 0  7r + is described as 

Fig.24. A c quark weak decay. 
SO that quarks also form weak isospin doublets according to the generation, i.e. 

i =U, c, t 
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Actually we know this is not quite correct: the weak interactions mix generations e.g. in 

the strangeness-changing decay K+ + p+vp 

+ 

Fig.25. The strangeness changing weak decay: K+ 3 p+up. 

but let us persist with the above assignments and see what happens. First of all we see 

that the hyper-charge of the Qi doublets is 

so that (4.1) comes out right. The right handed partners must all exist, if all the quarks are 

to have masses, but since the right handed quarks do not have charged current interactions 

they must be assigned to singlets. Thus the right handed hypercharges are just twice their 

charges: 

We have already defined all the other parts of the standard model so now we can write 
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down uniquely (by renormalisability) the quark sector: 

. .  
j=d,s,b 

d5 - - 1mj"i.q ( Q j  x H )  + m; (Qi x H') q;} . 
i,j=uIc,t 

21 

I have put in.the gluon interactions because the quark part of LQCD I gave you much 
earlier, in (2.3) and (2.6), was wrong and should be replaced with the above. (It was 

wrong because I had not of course included the SU(2) x U(1) gauge fields, and you see 
that quark masses are now forbidden - by the SU(2) x U(1) charges.) The funny looking 
interactions on the last line are a consequence of a little serendipitous accident of SU(2). 
Rotations in the two dimensional plane of the vectors 2 and 2 leave (g x 2) invariant i.e. 
- U x 2 is a two dimensional scalar 

This is true for complex vectors U, ,  Vb and SU(2) rotations U a b  too because in both cases 
the 'rotations' have unit determinant: 

Since 

') H' = Q (iazH') 

is SU(2) invariant, it follows that 

l3 = ia2H' 
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transforms as an SU(2) doublet. (The proof is simple - can you see it?) Now we can write 

the up Yukawa terms in a more normal way 

(Ezercise: check that you understand that Lquark8 is invariant under SU(2) weak isospin 

and check that it is indeed hypercharge neutral.) 

The full Lagrangian of the standard model has now been written! It is 

the formulae for the various parts appearing in (2.5), (2.4), (4.2), (5.3), (5.8), respectively. 

(Another ezekise: Convince yourself that there are no other renormalisable interaction 

term consistent with the local SU(3) x SU(2) x U(1) symmetry, the chosen field content 

and their representations! i.e. that this is indeed the unique solution to the three principles 

we started with.) 

5.5. The CKMMatrix. 

In unitary gauge, recal that H takes the form (5.4). This implies that 

f i ( z ) = L (  v + * a(x) ) . 
4 

Putting these into the quark Yukawa interaction terms you see that we obtain 

where I have introduced the notations 

142 



This is a more helpful notation no,w that SU(2) invariance is broken. The first two terms 
are the mass matrices and we can diagonalize them, like in the lepton case, by separate 
unitary transformations on each flavour vector: 

chosen so that 

and thus the Yukawa terms simply read 

flavours 

Now for the quarks, this is not the end of the story. Unlike for the leptons our flavour 

transformations 52; # f2i are different for the top and bottom part of SU(2) doublets! 
Therefore this transformation messes up those interactions in CSM that ‘cared’ that Q - (2) was an SU(2) doublet. (In the lepton case this problem does not arise because 

the standard model has no right handed neutrinos and therefore the analogous second 
mass term N r n ; & H ( v ~ ) ~  is missing.) We must distinguish, then, between the primed 
basis U’ and D’ that propagate with well defined masses - and are thus called the mass 

eigenstates, and the original basis (2 )  , UR, DR which form (irreducible) representations 

of the SU(2) x U(1) algebra and are thus called weak eigenstates. Roughly speaking, the 
weak eigenstates do the interacting, while the mass eigenstates do the propagating (e.g. 

outwards into the detector). We see that there is a (non-trivial) unitary transformation 
between them. 

The parts of LSM that do not care, are all the terms diagonal in flavour space. Therefore 
the quark kinetic terms are left invariant by (5.9). Also the 2, and A, couplings are left 
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invariant since 2'3 is diagonal in flavour space. (YOU easily see from Lquorbs, CEW and the 
analysis given there, that these couplings take the same form as for the leptons - only the' 
values of tJ and Q [i.e. Y ]  differ.) Therefore there are no flavour changing neutral currents 
(part of the GIM mechanism - after Glashow, Iliopoulos and Maiani). 

The only parts that do care about the doublet structure are the charged current inter- 

actions: 
e 0 ~ 7 p  W;'Dh +complex conjugate 

fisin t9w \ t 4 

5 7  l0 "W,'(l- 75)D 
(compare Cp-p interaction earlier). These become 

e 

2JZsin 6w 
D ' + ~ ~ W ; ( I  - 7 5 ) ~ ~ '  + complex conjugate, 

where 

is a unitary matrix - the famous Cabibbo-Kobayushi-Muslcawa matrix (and in the standard 
model is responsible for the cross-generational decays we have so far been ignoring). 

The CKM matrix, being a unitary 3 x 3 matrix, has 9 'angles' [the 8 rotations of SU(3) 
and an overall phase. This last allowed because det V is in general a phase, rather than 
1 as for SU(3)J. On the other hand not all these angles are physical. If we make a phase 
redefinition on each quark U c) eipuu etc. , nothing further changes in the &arks except 
that 

0 eiVd 0 

v c) ( e-;'' e-ipr O )v( e;' 

0 

If all these phases were equal, V would not change at all, so we can only define away 5 
phases this way, leaving 4 physical parameters in V. If V had been real it would be a 

three dimensional rotation and described by three Euler angles, therefore the full complex 
V has 3 Euler angles and one phase. A popular parametrisation* is: 

Sl3 e-& 
c12c13 s12c13 

V =  ( -s12c23 - ~ 1 2 ~ 2 3 ~ 1 3  ei61s c12c23 - ~ 1 2 ~ 2 3 ~ 1 3  ei61s s23c13 

s12s23 - c12c23s13 ei61s -c12s23 - ~ 1 2 ~ 2 3 ~ 1 3  ei61s c23c13 

* There are many possible parametrisations - all physically equivalent. 
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cij = cosflij, sij = sindij ,  i , j  being generation labels. Experimentally, the rnagnitudw 

IKjl are 
0.9747- 0.9759 0.218 -0.224 0.002 -0.005 

0.218 -0.224 0.9738 -0.9752 0.032 -0.048 
0.004 - 0.015 0.030 - 0.048 0.9988 - 0.9995 

(taken from the 1994 Particle Data Book). 613 is known to lie between 0 and 2n (!). Since 

lKbl is so close to 1,  ~ 1 3  = ~ 2 3  = 1 to  an excellent approximation, so VU8 s12. This is 
the sine of the Cubbibo angle - the only mixing angle there would be if there were just two 

generations. What is the significance of  613? The interactions with 613 in, are again - 

Under CP: 
P O  $-r+ 

$ s C$* where c = i y 2 y 0  , 
and so-on, the two terms are interchanged but without changing Kj into I$, therefore if 

there is irremovable complexity in the CKM matrix, it  is a signal of CP violation. This is 

the case, if 6 # 0 or 7r. 

Final exercise: Count the number of parameters in the standard model and verify it is 

nineteen. 

6. Why Renormalisability? 

I want to stress this has ultimately nothing to do with the voodoo idea of “sweeping 

infinities under the carpet”! This was Dirac’s pejorative comment, but this 1940’s way 

of apologising for renormalisation was replaced by a complete intuitive understanding of 

the meaning of renormalisation after Wilson’s work of the 1970’s. (Incidentally the prime- 

movers behind perturbative renormalisation, namely Feynman and Schwinger, had already 

an understanding much closer to that of Wilson than Dirac.) 
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Energy 

Low energy - Interesting region. 
f \  

High Energy 

(Boring region.) 

A 

High Energy 

(Boring region.) 

Fig.26. The energy scales relevant to the issue of renormalisability, The ‘Interesting 

region’ includes all accessible physics - in particular all the masses of the particles in the 

standard model. The ‘Boring region’ covers a range of energy scales very much larger than 

the ‘Interesting region’. The bare Lagrangian CO is defined at the ultra-high energy scale 

ho, and contains parameters tuned to ensure that all physical masses m are very much 

less than Ao. 

The real reason for renormalisability has to do physically with very high energies, 

for example the Planck mass MPlanck  = d z  - 10lgGeV: the energy where 

quantum gravity effects must become important. We know gravity exists but we do not 

know how to describe it quantum mechanically, and in particular it is not part of the 

standard model. (Actually, any very high energy physics which is not included in the 

standard model will do for this argument.) Therefore we have to conclude that the standard 

model is only an effective description: just a good approximation up to some energy scale 

ho < MPlanck.  Let us assume however that this energy scale A0 is still very much higher 

than all the particle masses in the standard model. (We will mention later what happens 

if this is not the case.) 
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To construct our effective description we supply a ‘bare’ Lagrangian CO and compute 
the field theory ‘path integral’ by restricting by hand, in some way, all the energies that 
arise so that they are in the well described region, i.e. less than Ao. In other words we use 
A0 as an ultraviolet cut08 

Now we have a very peculiar situation: It is not at all the generic situation in quantum 
field theory that the particle masses m measure much less than the highest allowed energy. 
On the contrary, the particles experience so much inertia from ‘wading’ through the sea of 
virtual particles that, unless there is some very special reason, their effective masses are 
all m - A0 (or they could be even heavier than this in which case they fail to propagate 
at all. Recall, virtual particles of energy E continually pop out of the vacuum for some 
time At 6 li/E, as allowed by Heisenberg’s uncertainty principle. If you prefer to draw 
Feynman diagrams, then they take the sort of form shown below. Nevertheless the result 
above simply follows from dimensional analysis.) 

Fig.27. 

result in 
Self-energy diagrams are interactions of real particles with the virtual sea and 
effective masses m,ff - A0 unless something very special happens. Shown are 

a fermion interacting with a virtual gauge boson, and a scalar self-interacting through a 
virtual pair. 

This “very special reason” for small effective masses, could be symmetries for special 
sorts of particles (gauge bosons of unbroken local symmetry are always massless - like the 
photon; unbroken chiral symmetry can ensure massless fermions - as we will see later), but 
for bog-standard particles it can only come about from tuning values of the parameters 
in the bare Lagrangian CO so that the classical values in the Lagrangian almost precisely 
cancel out the big - A0 effects arising quantum mechanically. (Roughly speaking we choose 
the classical values to be almost the negative of the resulting quantum effects.) When this is 
done, the interesting part of the quantum field theory is governed by very long wavelength 
excitations X - l / m  compared to the small length scale of the bare Lagrangian - I/Ao. 
Consequentially, nearly all these small length details are washed out, i.e. are invisible to the 
interesting long wavelength excitations: we are left with a universal quantum description 
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(up to very tiny corrections - m2/A$ which for the moment we ignore) that depends on 
only finitely many parameters. These finitely many parameters are nothing but the fine- 
tuned differences remaining after cancelling the large quantum effects. We see that the 
fine-tuned differences just correspond physically to all the couplings with zero or positive 
mass dimensions, and all the masses, because only these parameters can receive large 
quantum corrections (by dimensional arguments again: any coupling of dimension d will 
get a high energy quantum correction of - A:, which is large if  and only if d > 0. Zero 
mass dimensions must be included because dimensionless couplings can suffer logarithmic 
divergences N ln(Ao/rn).) These fine-tuned differences are the real couplings and masses, 
i.e. the parameters that are meaiured by experiment. They are called renormalised to 
distinguish them from the bare parameters in the bare Lagrangian CO. 

It is a very important and deep fact that the resulting quantum field theory is universal, 
so it is worth repeating this with different words. The precise choice of CO (and also the 
precise way the theory is cutoff) is entirely irrelevant: there are infinitely many different 
bare Lagrangians (and cutoffs) which yield exactly the same answer once a sufficient num- 
ber of parameters are fine-tuned. (This infinite set of choices is called the “universality 
class”.) The real physics is the universal physics we obtain at energies much lower than 
Ao: all the rest is theoretical scaffolding (usually) mathematically required in order to 
construct the real physics -but finally when the real physics is produced, it is independent 
of how the scaffolding was constructed. 

The simplest bare Lagrangian we can take is one in which we include all and only those 
parameters which need fine-tuning to cancel large quantum effects. This is the modern 

understanding ufwhat it means to have a renormalisable Lagrangian: it is just the simplest 
bare Lagrangian capable of producing (by fine tuning) the universal low energy behaviour 
we actually want. 

So which parameters must we include? For a theory in which quantum effects could be 
strongly interacting throughout the region of interest, this is a hard theoretical problem 
and no general answer is known. Fortunately, if we assume that the standard model is 
weakly interacting, and therefore treatable by perturbation theory - as has already been 
argued, the answer is easy: to lowest order we can ignore the quantum effects entirely and 
the renormalised couplings observed in the low energy region are then simply the same as 
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the bare couplings appearing in CO. But as underlined above the renormalised couplings 
are all the parameters with non-negative mass dimensions and so we have the following 
general rule, already quoted at the very beginning of these lectures, for constructing a 
perturbatively renormalisable bare Lagrangian: 

A perturbativelv renormalisable Lanangian is constructed bv including in the 
Lamangian all and onlv those couplings with zero or Dositive mass dimension 

and all possible mass terms. 

All these couplings and masses are known as the (perturbatiuely) renonnalisable cou- 
plings. All the couplings, infinite in number, that we are leaving out, are known as (per- 
turbatively) non-renormalisable couplings. We can now see why the requirements (l), (2) 

and (3) mentioned in the first lecture, fix the Lagrangian completely. We do not have any 

freedom ove; the choice of couplings once the symmetries and field content are fixed. 

Let me finish this section with some paranthetical comments. 

Where are the infinities that have been swept under the carpet? Theoretically it  is often 

helpful to imagine that the standard model (or other partial theory) is actually valid up 
to infinite energies - even though we know this is not true. To obtain these circumstances 

we send A0 + 00, and as a result we find that unless we fine-tune the bare couplings with 
infinite precision, interactions with the virtual sea over the infinite range of energy will 
result in infinite answers. 

Note well that our choice of bare Lagrangian is by itself very little connected to reality, 

rather most of it (as a result of universality) is a figment of the theorists imagination! We 

can add any, or as many, of the so-called non-renormaliiable couplings to the Lagrangian, 
as we wish, but after the requisite amount of fine-tuning, the experimentally measurable 
results are guaranteed - to very good accuracy - to be unchanged, by universality. Put 
another way, universality tells us that we are guaranteed to be almost totaily blind to 

Physics with very high energies - ho. The blind-ness of the low energy, long wavelength, 
physics to the ultra-high energy, short distance, cutoff-scale physics is not complete: effects 

of order - m2/At can seep through, but if  A. is sufficiently large these will be practically 
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unobservable unless they correspond to some process which would be forbidden by the 
renormalisable CO. 

We have all the while been assuming that A0 >> m i.e. the cutoff scale is much greater 
than energy scale of the interesting region. What happens if the opposite is assumed 
true and the standard model is assumed only valid to slightly higher energies than the 
interesting region? In this case we must assume A0 is quite low, and the corrections to 
universality that we have just been discussing become very important. In this case we 
can predict virtually nothing because all the infinitely many couplings we can add to  Lo 
crucially affect the answer, and obviously it is useless to attempt an infinite number of 
experiments to fix them all! On the other hand nor should we be able to  predict anything 
in this case because i f  the standard model breaks down at this low energy scale then by the 
same token the new physics (be it new particles with masses 2 A0 or whatever) crucially 
affects the physics at energies below A0 through virtual effects. (This was very much the 
situation with strong interaction physics during the 1960’s, before the underlying theory 
of QCD was hypothesised, and led some people to disbelieve in quantum field theory for a 
while.) 
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7. Problems. 

1. Check that 7; = 1 and {75,7,,} = 0. Show that PL = i(1- 7 5 )  and PR = $(I+ 7s) 

are projection operators, i.e. 

Consider a massless fermion with p,, = (E, 0, 0, E). Show that P~u(p) and P R U ( ~ )  are 
eigenstates of the helicity h with eigenvalues -4 and +i respectively. 

2. Show P'yP = ~PPR and PR~P = ?PI''. Show $R$R = $L$L = 0 (so these cannot be 
included in a Lagrangian) and hence 

3. The decay rate for the two-body decay 2 + ff is 

where D denotes the phase space measure. Recall that the 2ff vertex is 

-ie 
2 sin 2 9 ~  cos 2 9 ~  TP (ct - cfi75) 

First show that, summing over the fermion and averaging over the boson spins, 

where k1, k2 are the fermion momenta and the gauge boson polarisation S U ~  is 
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Hence show that the decay rate is 

4. Using the explicit forms for Cv and CA in the standard model, derive expressions for 
the decay rates 2 4 Vefie, + e+e', 3 uii and Z + &in terms of sin2t9w. 

What is the total width of the 2 in the standard model? 

[Take GF = 1.2 x lO-' ( G e V ) - 2 ,  sin2 9w = .23, and Mz = 91 GeV.] 

5. By carefully comparing the form of the relevant current-vector interactions, show that 
the decay rate of W+ -+ e+ve is 

Hence predict the total width of the W+ (before LEP measures it!). 

(Hints: Use the calculations of Problems 3 and 4. Use weak eigenstates!) 
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. two difficult regions 

ii) explorable mass range with 10’ pb“ 
taken at 1034 cm-2s-1 



Questions 

1. SIIOW thnt 

2. "tic Gottfricd sum rule, 

gtp = 0. 

1' 4 (V(4 - Jm4). 
has bccn mecuuml by the NMC Collaboration to be, 

$ (cc(x) - F(r)) = 0.236 f 0.009 f 0.0014. 

Assuming that this ean be cxtrnpolatd to c o w  the whole t tnnge, 

1' $ ( v ( r )  - e(r)) - 0.258 k 0.017, 

what ean be snid about, 1' &(a&) - 4&))? 
3, BeM'ng in mind that GP(r) is constant or l n c d n g  IU r 4 0, what can be said about 

the number of up quark8 in the proton, 

E 
OI 4. Data for the ratIo&"(r)/~(r) w shown In the lecture. Expldn why this ratio tends 

to 1 M o 4 0. What ean be said about +/U. at large r where the sea quark dcnsity 
functions nte negligible? 

6. For the 7' 4 qfg proecss nt centmf-ma*l energy 6, rI, xs and ra nrc the scald 
energy fractions carried by lhe quark, antiquark and gluon respmtivcly. Show that the 
In&ant mess of the quark and antiquark pdr is given by 2 9 1 . ~  = 6(l - ra). 

6. Show that in the limit w h u c  thc quark and ghon momenta BIO p;udlel, 

7. Show that in the limit whuc the gluon momentum is son, 
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Show (lint tlic miutimcim d u e  of Dr is 1 / 2 a  for a thrcc jet cvfnt. 

&ion nrc pnrnllcl, Dr -. 0. 
10. Show that in the limit r, -. 0, Or 4 0. Show thnt in the limit tlint the qciFk and 

show thnt the thwt distribution for 94g m n b  involving a scalar gluon is, 

12. Civcn that 

whcrc. 

What is the significnnec of this mull? 

glnon density fiinction, 
13. Draw Fcyninnn diagrnms to motivate why the pp - 7+ jcl procas is scnsitivc to the 

14. Coiisideriiig only wd wntterisg, show llinl lite W nryiiiiitctry, 

rhriv*) kl l~') 

AlV(d = & rr + + 8 

eth!tiwlp cleteniiincR die d/a rntin in itt; aillhhrtin. 


