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RAL Summer School for Young Experimental High Energy Physicists
Cosener's House, 01-13 September 1996

Preface

Fifty-four young experimental particle physicists attended the 1996 Summer School, held as
normal, at Coseners House in Abingdon in September. This year twenty of the students
were women, double the previous highest number. The weather was fine allowing tutorials
and private study to take place in the relaxed atmosphere of the lovely gardens.

The material was as usual, intellectually challenging, not least to the experimentalist tutors
and the Director! The lectures reproduced here were given by David Dunbar (Quantum
Field Theory), Steve King (Relativistic Quantum Mechanics), Tim Morris (The Standard
Model) and Nigel Glover (Phenomenology). They were all of a very high standard and
thoroughly enjoyable. :

Sarah Unger (RAL) gave an interesting seminar on the ISO Project and Jan Corbett (PPARC)
delivered an upbeat after dinner speech. Mike Whalley (Durham) introduced the new
generation of students to the Durham HEP database.

The students each gave a ten minute seminar in the evening sessions. The quality of the talks
was very impressive and the time keeping excellent. The broad range of activities covered
from front-line physics results to preparations for the next generations of machines gave a
clear indication of the breadth of particle physics activities in the UK.

The tutors, Paul Dauncey (RAL), Jeff Forshaw (Manchester), Stephen Haywood (RAL), Ken
Long (IC) and Julia Segebeer (IC) worked tremendously hard and their efforts were well
appreciated by the students.

The organisation by Ann Roberts and Coseners staff was efficient and effective and I am
personally indebted to them for leading me successfully through my first year as Director. I
would also like to thank Dave Kelsey and Gareth Smith for providing me with computer
support. I wish Steve King good luck for his year at CERN. I hope he will be able to return
for the School in 1998. On behalf of myself and my predecessor, Ken Peach, I would like to
thank Paul Dauncey for his support over the three years he has tutored at the School.

The School was physically and intellectually demanding but very satisfying and I wish all
the students who attended all the very best for the future.

Steve Lloyd (Director)
Department of Physics
Queen Mary & Westfield College



CONTENTS

LECTURE COURSES

Introduction to Quantum Field Theory and Gauge

Theories
Dr D C Dunbar

Introduction to Quantum Electrodynamics and Quantum
Chromodynamics
Dr S King

The Standard Model
Dr T R Morris

Topics in Standard Model Phenomenology
Dr E W N Glover

Pages

1-46

47 - 104

105 -152

153 -236



INTRODUCTION TO QUANTUM FIELD
THEORY AND GUAGE THEORIES

By Dr D C Dunbar
University of Wales, Swansea

Lectures delivered at the School for Young High Energy Physicists
Rutherford Appleton Laboratory, September 1996






Introduction to Quantum Field Theory and Gauge Theories

David C. Dunbar

University of Wales Swansea

Contents

0)
1)
2)
3)
4)
5)
6)
7)
8)
9)

Introduction

Classical Formulations of Dynamics

Quantum Formulations: Pictures

Free Boson Field Theory

Interacting Boson: Canonical Quantisation and Feynman Diagrams
Path Integral Methods

Gauge Theories 1: Electromagnetism

Gauge Theories 2: Non-Abelian Gauge Theories

Critique of Perturbation Theory

Some things to look out for.

10) Problems

Acknowledgments:

In preparing these lectures I have extensively “borrowed” ideas from the equivalent
courses given by previous speakers especially those of Ian Halliday and Ken Barnes. In
places, this “borrowing” is close to complete. These notes are more extensive in places than
what was actually discussed during the lecture course. In particular the issue of Gauge
fixing was not mentioned during the lectures although I include it here for completeness.
I have also taken into account the “consensus” which was reached on some of the signs.

Finally, I would like to thank Steve Lloyd for his huge efforts in running the school
sucessfully, Ann Roberts for organising things impeccably again and the students for “hang-
ing in” through the rather fast schedule and for still finding time for post-midnight aquatic

excursions.

Feb 5th 1997



Introduction

The purpose of this course is twofold.

Firstly, it is provide a simple introduction to quantum field theory starting from,
roughly, your undergraduate quantum mechanics course. Since you no doubt come from
a very varied background this is not particularly easy and I guess the beginning material
will be fairly familiar to many of you. To ensure a level “playing field” I will assume only
that you are all familiar with the distributed prerequisites. I hope you are! The intended
endpoint will be to enable you to take a general field theory and write down the appropriate
Feynman rules which are used to evaluate scattering amplitudes. There are two formalisms
commonly used for this. The simplest for a simple theory is the “Canonical quantisation”
whereas the more modern approach is to use the “Path Integral Formulation”. I will
cover both during the course although the Path Integral Formulation will be done rather
heuristically.

The second theme will be to consider the quantisation of gauge theories. For various
reasons this is not completely a trivial application of general quantum field theory methods.
Hopefully this will connect up to the other courses at this school.



1. Classical Formulations of Dynamics
There are three “equivalent” but different formulations of classical mechanics which I
will consider here,
¢ Newtonian
e Lagrangian
¢ Hamiltonian

I will illustrate these formulations with a specific example - the simple pendulum, which
approximates to a harmonic oscillator when the perturbations are small. The ideal pen-
dulum which we consider here is an object of mass m described by its positions z and y
connected to the point (0,0) by a rigid string. This is an example of a constrained system
because z and y are forced to satisfy the constraint 22 + y? = L? where L is the length of
the string. The object could equivalently be described by the angle 8 which is a function
of z,y given by tan 8 = —z/y.

e Firstly consider Newtonian Mechanics. Newtonian mechanics are only valid if we
consider inertial coordinates. In this case good coordinates are z = (z,y) and not 6 whence
we have Newton's equations

m—g = F (1.1)
Newton’s equations reduce to a pair of second order coordinates. To these equations we
have to explicitly insert the forces applied by the string.

o Next we consider the Lagrangian method. For Lagrange an important difference is
that any coordinates will do not merely inertial ones. Thus we are free to describe the
pendulum using 6. In general a system will be described by coordinates g.. We construct
the Lagrangian from the kinetic (T') and potential (V') energy terms L = T—V. Lagrange’s
equations in terms of L are

d [ oL ] 0

dt |9¢-|  Ogr
For the simple pendulum, if we use 6 as a coordinate Lagrange’s equation produces a single
second order equation. The advantage over Newton’s method lies in the simplicity in the
way which constraints may be applied.

e We now turn to the Hamiltonian method. The idea is to work with first order
differential equations rather than second order equations. Suppose we define

L=0 (1.2)

oL
pr = 'aq', (1.3)
then we can write Lagrange's equations as
dpr _ 0L (1.4)
dt  Oqr
For a system with Kinetic term
T= Xr: %mrqf (1.5)



then p, is just the normal momentum. The Lagrangian is a function of ¢, and ¢.. We
wish to change variables from ¢,¢ to ¢,p. (This is a very close analogy to what happens
in a thermodynamic system when changing variables from V,S to V,T. ) Examine the
response of L to a small change in ¢, and g,

oL oL _.
1= 3 (g0 + g5 )
—_ Z (ﬁ,ﬁqr + praq.r)
. r .
by eqs.(1.3)and (1.4). We can, by adding and subtracting >, drbpr, rewrite this as
=5(Tpeir) (2 - drip. an
r r
So that by shuffling terms we obtain
5(—1:' + ZP:‘%’) = Z 4rbpr ~ Zﬁraqr (1'8)
r r T

So we have obtained a quantity whose responses are in terms of §p, and §¢,. This is the
Hamiltonian. It is given, in general, in terms of the Lagrangian by

H=) prir—L (1.9)

(1.6)

The Hamiltonian is to be thought of as a function of ¢, and p, only. If T ~ ¢* and
V = V(g), as is the case in many situations, then H = T + V. However the above
expression is the more general. The Hamiltonian equations are then, from (1.8)

A
r —apr
o (1.10)
Pr == aqr

This is a very similar to the situation in thermodynamics if we change from the energy,
E, satisfying dE = T'dS — PdV where E is thought of as a function of S,V to the Free
energy F which is thought of as a function of T,V and dF = —SdT — PdV. Recall that the
relationship between E and F is F' = E ~ ST. In fact, the correct way of thinking about
this is to regard thermodynamics as a dynamical system whence the change from E to F
is precisely a change such as from L to H. The Hamiltonian system is particularly useful
when we consider quantum mechanics because ¢ and p become non-commuting operators
- something which makes sense if we use H(p,q) but which requires more thought if we

use L(g,q). For our simple pendulum, Hamiltonian dynamics will produce a pair of first
order equations.



Before leaving Hamiltonian mechanics, let is define the Poisson Bracket of any two
functions of p and g. Let f and g be any functions of p, ¢ then

_ of 89 _Of 0y
{f'g} a 2(891' dp.  Op. Oqy (1.11)
The Poisson bracket of the variables ¢; and p; are then

{%QJ'} =0

{%Pj} =0ij (1.12)
{Pi,Pj} =0

A Canonical change of coordinates is a change from p, g to coordinates Q(p, ¢) and P(p, q)
which maintain the above Poisson brackets. Hamiltonian dynamics is invariant under such
canonical transformations. ( As an extremely nasty technical point, Quantum mechanics
is not. Thus there are many quantisations of the same classical system , in principle.)
The best known way of quantising a classical system uses the Hamiltonian formalisms,
replaces ¢, and p, by operators and replacing the Poisson brackets by commutators

{} = [...]/ih (1.13)




2. Quantum Pictures
2.1 The Dirac or Interaction Picture

In the prerequisites, the are two equivalent pictures of Quantum mechanics: 1) the
Schrédinger picture where the wavefunction is time dependent and the operators not
and-2) the Heisenberg picture where the wavefunction is time-independent and the time-
dependence is carried by the operators. I will introduce a third picture which is called the
Dirac picture or, frequently, the interaction picture. First we set the scene. Take a typical
situation where the Hamiltonian of a system is described as a “solvable piece” Hy and a
“small perturbation piece” Hj. o ‘

H=Hy+ H; _ (2.1)

Actually the interaction picture doesn’t care whether H is small or not but is really only
useful when it is. One of the depressing/hopeful features of physics is how few problems
have been solved exactly in quantum mechanics. There are actually only two. The first is
the simple harmonic oscillator, the second is the hydrogen atom. (a third should or should
not be added to this according to taste - it is the two dimensional Ising model.) All other
cases which have been solved exactly are equivalent to these two cases. Free Field theory
(non-interacting particles) is, as we will see, solvable because it can be related to a sum of
independent harmonic oscillators. It is also amazing how far we have taken physics with
just these few examples! Perhaps someday someone will solve a further model and physics
will advance enormously.

Since there is so little we can solve exactly a great deal of effort has gone into developing
approximate methods to calculate. The methods I will develop here are for calculating
matrix elements and will be perturbative in the (assumed) small perturbation Hj. These
have proved enormously successful (but don’t answer all questions..) For a given operator
O, we can define the interaction picture operator O; in terms of the Schrédinger operator
by

O =eifot)ge—iHot
—¢iflotg=ifit () giflt o—iHot (2.2)
=U)0OnU~(t)

(We set h = 1 unless explicitly stated otherwise - it is always a useful exercise to reinsert
I in equations.) The operator ‘

U(t) = e'fiote ikt (2.3)

will be critical in what follows. In the case where H; = 0 the interaction picture reduces

to the Heisenberg picture and U(t) = 1. We must make a similar definition for the states
in the Dirac picture

la,t); = e'Fo%|a,t)s = U(t)la) (2.4)

Note that the Dirac picture states contain a time dependence. Since the operators are
transformed as if in the Heisenberg picture for Hy we have

i2-01(t) = (018, o) (2.5)



To calculate in the interaction picture we need to evaluate U (t). It is this object which will
be the focus of perturbation theory. We have

i%l)’(f) = — fyeiflote=ifit 4 giflotg—ifitfy
—iftot fy o —iflt (2.6)
=(Ar)0(t)

where the confusing notation (H 1)1 denotes that the operator H; has been tra.nsformed
into the interaction pxcture Clearly if Hy is a function of operators, Hr(07), then (H;); =
H1(0}).

We are now in a position to solve this equation perturbatively, always assuming that
Hj forms a small perturbation. Expanding U(t) as a series,

Ut)=1+U1 + Uz +Us +--- 2.7)

We can then substitute this into the equation for U(t) and solve order by order. We find
for Uy,
0

iz Ur = H1(2) (2.8)
which can be solved to give t
Uy = —i / Hit)dty (2.9)
" and for U, ’
i%Uz = Hi()U: () (2.10)
giving t .
Iy = (—i)? /0 dt, 0 dt Hy(t2)Hi(t) (2.11)

From this we can guess the rest (or prove recursively)

= _z)n/ dtn /'" dtny -+ / dtlHI(tn)H[(tn..I) H](tg)H](tl) (212)

Notice that in the above t, > t,1 > ...t2 > t;. This can all be massaged into a more
standard form. We define the time ordered product of any two operators by
T(A(t1), B(t2)) =A(t1)B(t2); t1 > t2

. - (2.13)
—B(tz)A(tl)' t2 >4

Note that thhm a time ordered product we can commute two operators as we like. Now
the expression for U; may be written

t2 . . _02 gt t . . ]
(—i)Z/o dt2./o dtlHI(fg)Hj(t1)=( 2l) AdtZA dtlT(HI(tz),HI(tl)) (2.14)



where the integrations now both run from 0 to ¢t. The times ordered product ensures that
the ordering of operators is as before and the factor of 1/2 comes because the integral now
“overcounts”. Similarly we obtain,

n

— y n ! ~ ~ A~ -~
Un= S8 [ leauen) Brttn) - But) Ba) .15
. 0 '.
We are now in a position to formally sum the contributions into an exponential,

Ut) = T(exp(-i‘/: Hi(t)dt)) (2.16)

This is in many senses a formal solution. As we will see later the perturbative evalua-
tion typically involves finding Uy, Uz themselves. We will spend a considerable effort in
evaluating the U; operators later.

2.2 Lagrangian Quantum Mechanics and the Path Integral

We now turn to the second distinct part of this section on Quantum mechanics. This
will involve a formulation of quantum mechanics which involves the Lagrangian rather
than the Hamiltonian. We will present this for a single coordinate ¢ and momentum p.
We will take two steps later: firstly to consider ¢ as a vector of coordinates and secondly
to take it as a field. We will initially work with a simplified Hamiltonian,

R a2
B(p,4) = 37—+ V(@) (217)

Recall that we can consider eigenstates or either position |g) satisfying ¢|g) = q|g) or
momentum |p) satisfying j|p) = p|p) but we cannot have simultaneous eigenstates. In fact
the momentum and position eigenstates can be expressed in terms of each other via

0= [ e, o) = [ dgelg) (218)

We consider the amplitude for a particle to start at initial point ¢; at time ¢t = ¢; and end
up at point g5 at ¢ = t;. In the Schrédinger picture this is

A = (ggle™HYg;) (2.19)

where [g) are the time independent eigenstates of § and we take #; = 0,t; = ¢t. The
following manipulation of this amplitude is due to Feynman originally. We split up the
time interval ¢ into a large number, n, of small steps of length A = (t; — t;)/n. Then,
trivially,

e—ift . g—iHA  —iHS

e e-iI:IA.. .. e—iﬁA (2.20)

and

A= (qfle‘”“ Le—iHA | —ifA e—iFIAIqi) (2.21)

10



In between the terms we now insert representations of one (quantum mechanically)

| / dqlg){ql =1

2.22)

dp (

[ Zieel =1

to obtain the following expression for A,

/ (a71pa)(Prle™ 72 gn-1){gn-11Pn-1)(Prn-1le"#2|gn_s)
gioPi ) (2.23)

x{gn-2|pa-2) - lasMarp1){p1]e ™74 g:)

In the above we may make the replacement
(gilpi) = "7 (2.24)

We may also evaluate approximately

(pale™ "2 lgno1) ~{pal(1 = iB(5,8)A)[gn-1)

=(pnl(1 = iH(Pn,gn-1)A)lgn-1) (2.25)
=e"iH(qun-l)Ae—iPn9n-l '

where we are using the fact that A is small and the form of H. Note that we have turned
operators into numbers in the above. We can now rewrite the amplitude and take the limit
n — 00,

A

n n-—1
= liMp—oo / Hdpi H dq,'{He—iH(P"q‘-l)Ae‘iPiqi-xeimq;}
i=1 i=1 i
n~-1
= limp—oo / fI dpi H dq,-{exp (i Z A((ﬂ'—_g"_l_)_& - H(Pi,q;'-1))} (2.26)
i=1 i=1 i

= [ldgliaple'f #0vi=#

The last line is the Path Integral formulation. It is an interesting question what the symbols
mean in this equation!. In the integrations all intermediate values of p,g contribute. We
can interpret this as an integral over all possible paths a particle may take between g;
and gs. This expression is commonly used but is not quite the Lagrangian formalism. To
obtain this we must evaluate the dp; integrals at the penultimate step (before n — o).
The integral is assuming the simplified form for H = p?/2m + V(q),
/dpie-i%'?:Aeip.-(q;-q:-x) = ei(-ﬁ:%';;)zz
(2.27)

11



where we approximate (g; — ¢i—1) by ¢;A. Using this we can again take n — oo to obtain

the expression
/ [dg)e’ J #tE(@:d) (2.28)

This Formulation of Quantum mechanics is one we will use extensively. A useful object is
the Action, S, defined as

S= / diL (2.29)

whence the path integral is

/ [dg]etS/* (2.30)

(just for fun I reinserted /i in this equation.) The classical significance of S is that it may
be used to obtain the equations of motion. Lagrange’s equations arise by demanding the
Action is at an extremal value, That is, at the classical path

§5=0 (2.31)

oL oL
6L = E&q + -a'—q'6q
since d
] = — 2.
6¢ =+ 6 (2.32)
we may partial integrate to find
oL
55 = lt -— + .5_] 8q(t) + [Sq(ts) — 6q(t:)] (2.33)

I have included the boundary term for completeness. A correct statement of the principle
is the the classical path is the one which extremises the action with the variation zero at
initial and final state. Demanding 6S = 0 for arbitrary such 6¢g(t) then forces Lagrange’s
equation.

A common way to express the path integral, is to say that all paths are summed over,
weighted by e?X2ction | This has a certain appeal. Think about what happens as & — 0. This
formulation has strong analogies with statistical mechanics where the partition function is
the sum over all configurations weighted by the energy

Z~Y e Bl (2.34)
i

however the factor of i should never be forgotten!

12



3. Field Theory: A Free Boson 7

3.1 The classical treatment

In this section we will examine our first Field Theory, look at it initially and then
quantise and solve. This will only be possible because it is a non-interacting field theory.
We will consider a field, ¢(x). That is an object which has a value at every point in space.
This is unlike the harmonic oscillator where, although wavefunctions depend on space these
are merely the probability of observing a particle at that point. A field configuration is
then described by a (continuous) infinity of real numbers as opposed to the single number
describing a harmonic oscillator. This infinity will, of course, complicate the mathematics.
We can regard this as the transition from a finite system described by g, to the case where
the r-index becomes the continuous z,

gr — ¢(z) (3.1)

In this limit we we have to replace
Z — /dx , 6rs = 6(z — y) ' (3.2)
-

We can easily postulate the IXinetic energy of such a field to be

T= / &P ;(8‘5“ )y (3.3)
This gives the field a Kinetic energy at each point. The potential term we take as
_m 3,2 5 Ct 04(z, t)
V-—/dw:¢(zt)+/d Z( i (3.4)

The “mass term” ¢>(z,t) is easy to understand. The remaining kinetic term (id’d—(:f'—))2 is

necessary by Lorentz invariance. (Or one may consider the model of an electric sheet with

potential energy, consider small perturbations and then evaluate the potential energy: a

term such as this then appears.) The ¢ should be the speed of light for Lorentz invariance.
From this we may construct the Lagrangian,

L= [& t LCUR 2Z(a¢£§;t) 1”2—2¢2(x,t)] 55

which we may apply Lagrange’s method to. For fields we often speak of the Lagrangian
density £ where L = [ d32L. Before doing so we will rewrite this form in a more Lorentz
covariant manner. Define a four-vector z* where g = 0---3 and z° = ¢t. We henceforth
set ¢ =1 (otherwise & would be jealous). Then

3«5—3"S cu=0

a¢
=0z -

(3.6)

=1

13



It is a fundamental fact of relativity that z# and 9#¢ are 4-vectors. I.e. they transform in
a well behaved fashion under Lorentz transformations. Four vectors are similar to normal
vectors if one remembers the important minus signs. From the vector z* one can define a
“co-vector” z, by 2o = 2%,,2i = —z,i = 1,2,3. In more fancy language z, = >, uvz’
where g,, are the elements of a 4 x 4 matrix g. In this case g = diag(+1,-1,-1,-1). I
mention this to introduce the Einstein summation convention where we write z, = g,,z"
and the summation is understood. With this convention, z,z# = t? — 22 — y? ~ 22,
The dot product of two four vectors,

3
A B=AuB*=ABy— Y A;B; (3.7)

i=1

is invariant under Lorentz transformations. The action S is
2
5= / d*;c[%a,,ww - 1"2—¢2] (3.8)

which since the measure diz = dtd®z is invariant under Lorentz transformation. I am
actually slipping in a very very important concept here. Namely that symmetries of the
theory are Manifest in the action or Lagrangian. (By contrast the Hamiltonian formulation
also gives Lorentz invariant behaviour but it is not manifestly Lorentz invariant.) Since
symmetries are very important, the Lagrangian formalism is a good place to study them.
We can define the momenta conjugate to the field ¢

oL
(z,t) = =—=———- = 0° 3.9
®9= paeizn = 2 39)
whence the Hamiltonian becomes |
1%(z,t)  1,0¢(z,t)\2 m?
— 3l A=) o 2V ) 42
H—/da[ : +2( = ) + 5 ¢(g,t)] (3.10)

Notice that this is not invariant under Lorentz transformations. let us now solve this
system classically now. First we must present Lagrange’s equations for a field. Because .
of the space derivatives d¢/0x the equations become modified. (We could see this by
returning to S and examining the conditions that S is extremised.)

ofoc] . & [ oL | oL
=l = =] - — = 3.
0t[a¢]+6z' a(-g,%)] 76 0 (3.11)
(where the sum over i is implied). For our Lagrangian this yields
8% 04,
—_—— — = 3.12
g oz T e (3.12)
or
0,0"¢ +m?p =0 (3.13)

14



We now find the general solution to this equation. Since the system is linear in ¢ the sum
of any two solutions is also a solution. Try a plane wave solution,

§(z,t) = Ae'kzmn (3.14)

then substituting this into eq.(_{3.12) gives
A[-0? + B 4 m?] iz =g (3.15)

so that the trial form will be a solution provided

w(k) = £\/k* + m? (3.16)

Notice that there are two solutions. From now on take w(k) to denote the positive one.
The general solution will be

S

a3k . . (k24w
$(z,t) = / TR0 a(k)ei&z=w) 4 o*(~k)eikzt ')] (3.17)

The a(k) and a*(k) are constants. We have also imposed the condition ¢* = ¢ which
is necessary for a real field. For purely conventional reasons we have chosen the normal-
isations given. A classical problem would now just degenerate to finding the a(k) and
a*(k) by e.g., examining the boundary conditions. To finish this section on the classical
properties note that

d3k N i(k-z— . . i(h-z4w
H(_a;,t):/(g—n)-ﬁ[—za(k)e Eez=wt) o jq*(—k)eikzt ')] (3.18)

3.2 The Quantum theory
We will now quantise the theory. The field variables are ¢(z,t) and II(z,t). we must
decide upon the commutation relations for these objects. That is, we want the appropriate

generalisations of (1.12) for the case where the ¢ and p now are a continuous infinite set.
These are

[6(z,1), d(.0)] =0
[z,1), d(,8)] =- iz -y) (3.19)
[fl(a,t), ﬁ(g,t)] =0

This looks reasonable except that the §;; present for a discrete number of coordinate is
replaced by the Dirac-6 function. I'll try to elucidate this in an exercise.
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Let us now, in the Heisenberg picture examine the equations of motion for ¢ and 1,

i$(z,t) = [d(a, 1), A
- [afen Ty
= / d"'y-;-([é(l, t),ﬁ(y,t)]ﬁ(y,t) +1(y, 1) [&(g, ), f(y, t)]) (3.20)
= / dyit(z - y)(v,t)

= iﬁ(x,t)
and for I,
lﬁ(z,t) = [ﬁ(.?.at)’ﬂ]
- 0d(y,t)10d(y, t
- [evy [ 60 2008 | [ oy [, ), 83,00
(3.21)
- [ef T e )a¢(y’) imzé(g,t)63(g-g)}
= 8’@85(_2, )—ingg(g,t)
We can combine and rewrite these two equations as
& ¢( ) 23 _ 23
e Vv eTme (3.22)

I(z,t) = (z, )

which is just as before. However, now these are operator equations with the solution

d*k . .
= A T8 8 i(k-z-wt) ~tr_1. i(k-z+wt)
z,1) / ) [a(k)e +at(=k)e ] (3.23)
Now the @ and &' are operators. This can be rewritten using four vectors in the form
— No—ikT | 2t(L)pikeE
z,t) = / (91r)32w(k) [a(k)e +a'(k)e ] (3.24)

Where the four vector A* is formed from w and k. (It requires a little care and relabelling
under the integral sign to show this.) We can deduce the commutation relationships for
them from those for ¢ and I,

[ae), a(x)] =0
[a(k),at ()] =(2m) 208k - &) (3.25)
[at(), a7 &) =0
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Thus as promised we find an infinite set of harmonic oscillators labeled by the momenta
k. If we substitute the forms for ¢ into the Hamiltonian we find (tediously)

) Bk,
A= / sy 81 (1)a(0) + const (3.26)

So that the Hamiltonian is a sum of independent harmonic oscillators. We can thus apply
our knowledge of such objects to this case. If we denote the ground state by |0) then we
will form states by applying raising operators to the vacuum. at(k) will create a particle
of momentum k and energy fiw(k). (try reinserting the hs!) We can easily check

Ha!(£)|0) = w(k)a'(£)[0) (3.27)
Similarly we may create the two particle states
a'(k; )a' (k,)I0) (3.28)

" etc, etc. Notice that because of the commutation relationships that the 2-particles states
are even under exchange. That means our system is a system of non-interacting bosons.

We have taken ¢ to be a real field. In practise we wish to consider complex fields.
Suppose we have two real fields of the same mass,

2
S = / d4xz(%aﬂ¢,a,,¢,- ’-’,;—2463) - (3.29)
r=1 V" =

then we may define the complex field

X =51 +id2)

1 (3.30)
x! =\—/—§(¢1 —i¢2)
Then we may easily check
S= /d*:c [0"){"3“;( - mz,\"‘x] (3.31)
~Solving Heisenberg's equations as before we find
120 = [ o (K07 + di@e] (3.32)

where b and d are now independent because x is a complex field. these must have com-
mutation relationships '

(b, B8] =(2m)* 2.8k — &)

. (3.33)
[d( k), d*(y)] =(27)*.2w.8%(k - k')
all others being zero, with the Hamiltonian
~ Bl fop, 2 . a
_ FER) 1 dHN( .34
7= [ 5o (1063506 + ()W) + const) (3.34)

This is fairly important. So far no fundamental scalars have not been observed ex-
perimentally although the standard models as we know it contains a fundamental scalar -
the Higgs boson. The Higgs boson is complex rather than real. (if it exists!).

17



4. An interacting Boson Theory: Canonical Quantisation and Feynman Dia-
grams
We are now in a position to consider an interacting theory. As an example consider a
theory which contains a real scalar ¢ and a complex scalar x. The Lagrangian density we
take to be
£¢ + £x +L£,'n¢ ) (41)

where L4 and £, are the Lagrangian densities for a free real and complex scalar (see (3.8)
and (3.31) ). The interaction term we take

Lint = —g%'%é (4.2)

We now work with this system. The Heisenberg equations (which we could solve in the
non-interacting case) are

(a2 + mﬁ) $+ g3tz =0
(32 +m )x + géx =0

where 82 = 9,0". ' These non-linear operator equations have no known solution. We
must attack them approximately. As we can see our system provided g is smallis suited for
analysis in the interaction picture. We can spht the Hamiltonian into the non-interacting
piece Hy plus the small additional Hy = gy t{é. This will allow us to evaluate transitions
and scattering perturbatively.

Recall that in the interaction picture, the crucial object is the operator U(t). In lowest
order this is

(4.3)

. AN
Ulti,tg) =—1 H(t)dt
ti

ey ‘ (4.4)
=—ig | d'zx'%4
t;

We shall use this to examine the transition probability from an initial state containing a

single ¢ boson and a final state consisting of a yx' pair. We will take the initial time ¢;
to be —oco and the final times t; = oo, we have then,
|t = —o0) =&'(£)|0)

|t = 00) =bt(p)d(g)I0) (4.5)

(t = oo| =(0}5(p)d(q)
The initial ¢ boson has four momenta k and the final pair of x — x! particles have momenta

p and ¢. Recall that in the interaction picture the states evolve with time via the U(t)
operator, |a,t); = U(t)|a)y. Thus the initial state &'(k)|0) at ¢ = —co will evolve into

U(~c0,00)a! (1)]0) (4.6)

tl have slipped over the issue of how to deal with complex fields. The correct procedure turns out to

be to treat x and y! as mdependent fields. This can be justified be rewriting y in terms of it’s real
components.
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(Note that if Hy = 0 then the state remains fixed.) The probability that this state at
t = oo is a xx' pair is the overlap of this with bf(E)d"(g)|0). This is the matriz element

(t = 00| U(~00, 00)|t = —o0) = (0]b(p)d(g) (g / d‘z>2*>‘<$) at(k)|o) (4.7)

This probability we now evaluate. Using the expansions for ¢ and yx this is

=—ig (&= [&y [ @0 [ R 0pdg) e + (@) )

4.8)

x (a(k)e™ = + a1 (ke *) (bg el = + dH(g)eie" =)t (k) [0) (
where d®p = d®p/2(27)3w. We will evaluate this by commuting the annihilation operators
to the right where they vanish when acting on the vacuum and the creation operators to
the left where they vanish when multiplied by (0]. Since, for example b commutes with &
we can throw away the b(.‘i ) terms. Similarly the a'(k') term disappears. (and also the
cZ(B’) with a little more thought) leaving

_ig / dt / &y / Pi / ¢ (Olb(p)d(@)B! (2" )a(k)d (g )e="= '+ =¥ at k)l0)  (4.9)

We can continue commuting each annihilation operator to the right, obtaining a variety
of é-functions on route. The final result is

—ig / d*ze= 0 FI=R2(010) = ~ig(27)* 64 (p + ¢ — k)(0]0) (4.10)

The é-function imposes conservation of four-momentum. This is in fact a real perturbative
calculation. Notice that it doesn’t make a lot of sense unless g is small.
In general, to evaluate to a given order, we need to calculate objects of the form

/ dtydty -« dt T(Hy(t,)H1(t2)- - - Hi(tn)) (4.11)

In principle we can carry out the same procedure as before. This is sandwiching between
states and commuting annihilation operators to the right until we obtain some kind of
result. There is a very well specified procedure for doing so in a systematic manner which
is known as Wick’s theorem. The diagrammatic representation of this is more or less
the Feynman diagram approach. We will now think a little more generally in terms of
operators. Since we wish to have operators with annihilation operators acting on the right
we define the normal ordered operator to be precisely this. For example consider the
composite operator T(¢(:r)¢(y)) then

FOHO (4.12)
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is the same operator but with the annihilation operators pushed to the right. T'(é(2)¢(y))
and : ¢(z)¢(y) : differ by a term which we call the contraction

T($(x)$(y)) = d(2)d(y) : +(2)B(v) (413)

since ¢ is linear in operators and hence T(¢(z)¢(y)) quadratic the contraction term will
be a pure number (that is no operator). We may evaluate this by sandwiching the above
equation between (0] and |0) so that

(OIT(#(=)8(¥))I0) = $(=)d(y) (4.14)

We now present Wick’s theorem which tells us how to evaluate large collection of opera-
tors into the normal ordered pieces and the contraction terms. Consider a large class of
operators A, B,C .-+ X,Y, Z which are linear in annihilation/creation operators. Then the
time ordered product may be expanded, :

T(ABC---XYZ)=:4BC---XYZ:

' 4+ A4AB:CD---XYZ:+AC:BD.--XYZ : +perms. :
+ABCD : E---XYZ : +perms. (4.15)
+... ’
+ABCD ---YZ + perms.

(This needs a little modification for fermions.) Now we apply this to the case we are
interested in. Namely the decay of a ¢ particle into a xx! pair. We need to sandwich the
time-ordered products of Hamiltonians

/ dtydty - dtaT(Hi(t)Hi(ts) - Hiltn) (4.16)

between the initial and final states to evaluate the matrix element. We have done this for
n = 1. Let us examine the systematics of n > 1. First we define ‘initial’ and final state
operators (also linear in creation operators),

li >= 0}0), |f >=050/,0) (4.17)

(The operator for creating a ¢-state is in many ways a “sub-operator” of the $ operator.)
The first correction we can take as

9(01T (010, d(e1)R(e1)%!(21)05) 10 (418)

We can evaluate this using Wicks theorem and throwing away all the normal ordered terms
since they vanish we sandwiched between (0] and [0). Fortunately a large number of the
possible contractions are zero. For example the contraction between a ¢ and a x field is
zero since the operators in ¢ commute with those in x. Thus we have

$(x)v(y) = x(=)x(w) = x'(z)x () =0 (4.19)
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and the only non-zero contractions will be between pairs of $ operators and pairs of x and
x! operators. It is a very useful exercise to repeat the previous calculation using Wick’s
theorem. Note that the contraction between a ¢(x) operator and an initjal state operator
is rather simple ¢(x)0' = ¢'*'*, If we consider the next case the correction is

g’ (0IT(0’ 011 4(z1)%(z1)% (1) (22 )x(zz)x"(zz)O.,) l0) (4.20)

Since we have an odd number of ¢ terms the contractions must leave a single ¢ operator
which will vanish when sandwiched. Thus the second correction will be identically zero.
The third is

¢* (01T (0401 (1) ()< (@1 )de2) t(m) R (=2)b(ma) ()% (=)0} ) I0)  (4.21)

This will be non-zero and by Wick’s theorem will produce a whole splurge of terms. Let
us try to organise them. A term will be,

0’,\t(11) 0,\1\( 1) §(x1)(z2) %(z2)%t(z3) H(22)%(z3) 4(z3)0}, (4.22)

If we draw a dlagram with three points z;, z2 and z3 then we can “join the dots* using
the contraction terms as labelled lines and obtain a diagram

Figure 2. A Feynman Diagram.

Similarly for the other terms we can also draw diagrams. The real trick is, of course,
not to do it this way but in reverse. It is much easier to draw diagrams to keep track
of contributions than to look after terms. We draw diagrams with the “Feynman rules”
which are rules for sewing together vertices with propagators. These may be written down
directly from the Lagrangian. In our case we have Hamiltonian ¢xx! and the rule for
vertices is that we have a three point vertex with one ¢ line, one x line and one ! line.
The general case is easy to see (and to understand in terms of what has gone before). For
example if we had

Hy=¢" (4.23)

then we would have a n-point vertex. The vertices are joined together with lines to form
all possibilities. We can then associate with each diagram the appropriate contribution.
The contributions are given in terms of the contractions of pairs of fields. This contraction
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is known as the Feynman propagator. Let us now evaluate the Feynman propagator for

the ¢ field

iAF(z,y) = $(2)d(y) = (O]T(¢(z)())I0)
= (0]/(ik/(Tq(&(k)ei(ﬁ-z—w(k)h)) (&f(_q_)e—i(l'!"’“’(q"?))|0) (4.24)

(we have dropped the terms giving zero trivially) The two operator terms can be commuted
past each other to yield

iAF(z,y) = / dk / dg(2r)*2wb(k — g)eiEz-g)—iltwlti—tauld) (4 95)

The é-function can now be evaluated. In the above we a.ssumed t1 > t; when evaluating.
The result in general is

lsk th-(z—y)—i(t; —t3)w =tk (z~y)—i(t2—
iAp(z,y) = / m[e(tl—tz)e“— P-itthi=taw gg, ) Yo~k @-Y-ilta=t)w| (4 o6)

where 6(t) = 1, > 0 and 6(¢t) = 0,t < 0. There is a more Lorentz invariant looking
expression for the above which is

d4ke—ik-(:-y)

IAF(z,y) = T2 —m?+ie

(4.27)

where we have slipped into relativistic four vector notation. The proof of the equivalence
of these two forms relies upon Cauchy’s theorem. For the more mathematically inclined we
can prove this by examining the integration in iky and continuing to a complex integration.
The poles in the integral occur when

(k2 -k —m? +ie=0 (4.28)

which happens when kg = +w(k) F e The integral in the complex ik plane now lies along
the real axis with poles lying at (—w(k), +i¢€) and (w(k), —i€).

Figure 3. The contour integrations for the Feynman propagator.
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We can close the contour with a semi-circle at infinity to obtain a curve which we then
apply Cauchy’s theorem to. Whether we use the upper or lower hemisphere depends upon
whether ¢; > t2 or not. If t; < 2 then we close in the upper plane and have to evaluate
the residue at (—w(k), +ie. The genera.l case can be combined

6(t: — t2) / (91r)39w e ""”"“““”“’+9(tz-tl)/ o )me’*"“"“"“"“ (4.29)

which is as before. We now have a form of the propagator which integrates over d*k rather
than d®k. We are thus integrating over particles which need not be on mass-shell.

23



5. Functional Methods
I will now rework some of the results of the previous section but using the path integral
approach instead. This is in many ways much slicker. First for a set of discrete coordinates

; define
q W[Ji] = /]_:I[dq,-] exp (i/L(qg,q',-)dt +¥qu]') (5.1)

The J; are dummy variables which will allow us to calculate expectations of g; etc by
derivatives of W[J]. For example

aw(Ji]

OJk J.-=0= / [daidase’® (52)

We with to extend this concept to a field theory. This means extending ¢; — ¢(z). This
gives

WJ(z)] = /[d¢] exp(i/d4a:£+/d4x.](z)¢(z)> (5.3)

Now IW[J(2)] is a functional. That is something which takes a function and produces a
number. Before continuing we must define a functional derivative. Consider a functional
F[J(z)] then _

6F _ . FlU()+eb(z —y)] - FJ(=)]

5~ e (54)
If we consider a simple example,
FUIG) = [ d2r(=)4) (5.5)
then
—_—= hm / é(z — z
3 J(y) (z — y)¢(z) (5.6)
=¢(y)
We now will apply these methods to the theory with Lagrangian,
1 1 0¢ 1 d>
R R 2

This Lagrangian has the free part plus an interaction terms ¢*. We will consider the free
part first. The path integral for the free theory is Gaussian and hence calculable by our
favourite integrals. However we must carefully take the ¢; — ¢(z) transition carefully.
Recall that we can carry our Gaussian integrals where the exponential contains the term,

Z i Kijg; _ (5.8)
i,J
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where I is a matrix. The correct generalisation will be to replace ' by an operator. We
thus wish to transform the exponent in the path integral into the form

/ diz / d*yé(z) - Operator - ¢(y) (5.9)

By integrating by parts (and neglecting surface terms) the Lagrangian density may be
written,

¢(z) [—-36722 + V- m’] é(z) (5.10)

whence we may rewrite W[J] as

i = [lsen(-3 [ &= [ dsrE0 - [d2r@0) G
where
K(x.y) = 6(3:-—y)[ at,-:—v’ m] (5.12)

We may now evaluate Wo[J] in terms of the inverse operator of K. This is the operator
satisfying

/d*yK(z, VA(y,z) = 8(z — 2) (5.13)
and we find
] = exp( =} [ dtad'y (@A) (5.14)
whence
eWwold) |
m J=°— A(:t, y) (5.15)515

Now, the inverse operator A is in fact precisely the Feynman propagator encountered in
canonical methods (up to the odd normalisation factor of i or —1). To see this

. . 5? diL e—ik(z-p)
/d*:[x (z,2)iAr(z,y) = / (14354(13 - 3)(—572 +V? - ) (2r)* ekz —m?
/ 28 (z - 2) / 2 ® et ==y (5.16)
- / d264(z — 2)8%(z — )
=8z -y)

Now if we wish to evaluate, using functional methods, objects such as

[ dtdea(OIT (@) H e eI (5.17)
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then we can obtain these by acting upon Wy[J] with

§ & & &
J() I(y) J(u)* J(v)*

(5.18)

and then setting J = 0. (together with integrating d*u and d*v.) Since, the exponential
is quadratic, and we set J = 0 finally, every time a propagator is brought down a further
functional derivative must act. The end result is that the object is a sum of products of
propagators.

As in the canonical case the simplest way to keep track of the terms is by drawing
Feynman diagrams. This functional approach provides an alternate derivation. In the cases
considered up till now we have seen simple vertices (corresponding to just polynomial terms
in Hy) this will now be the case for gauge theories but the methods still apply.

5.2 Momentum space Feynman diagrams

The Feynman diagrams I have drawn are not really the conventional ones. These are
normally drawn in momentum space rather then = space. The very good reason for this
is that the external states are normally momentum eigenstates. The momentum space is
really just a Fourier transform of the configuration space rules -and it may be regarded as
an exercise to transform these. Just a few points, the rules then require that we draw all
diagrams, the momenta now flowing through the legs is now integrated over and each vertex
has a §-function in momenta. Tree level diagrams in momentum space are then merely the
product of the propagators 1/(k% —m?) however loop diagrams have more integrations over
momenta than there are é- functions and we obtain (the infamously difficult to evaluate)
loop momentum integrations. We always obtain (look at our example) a é-function in our
results which imposes total conservation of energy and momentum. From the examples
we can easily (?!) see what the general rule for vertices will be - whatever is in £z will be
reflected in terms of the rules for the vertex: A ¢xx! vertex leads to a vertex with a ¢ a
x and a x! outgoing state: A : ¢"(z) : Lagrangian will yield a vertex with n outgoing ¢
states. Constants multiplying the vertex (such as g) get reflected in the rules.

t I have cut more corners in this section than I care to think about in an attempt to convey some

understanding of the path integral approach. Some of these corners came back to haunt me in
tutorials.
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6. Gauge Theories 1: Electro-Magnetism

The great success in particle physics has been the ability to use gauge theories to
describe the fundamental forces. As far as we know, both the strong and electro-weak
forces are described by gauge theories. The strong force is believed to be described by a
SU(3) gauge theory known as QCD and the Electro-weak by SU(2) x U(1). Hopefully
these terms will become clearer. I'll take two “bites” at this very important type of field
theory. (Graham will also spend a lot of time on gauge theories as will Jonathon). The
first bite will be simply electro-magnetism or a U(1) gauge theory - although it might not
seem so simple and on the second pass I'll extend to SU(3) and SU(2) (or in fact any
gauge group).

The theory of electromagnetism as descnbed by Maxwell’s equations is our proto-
gauge theory. Maxwell’s equations are

V.B=0
Vx_f_?:—-aa%
| (6.1)
V.-E=p
VX_B_=J+~3—’E'-

As might be familiar to you, it is common to express E and B in terms of the vector and
scalar potentials

A
g=_v¢_%t B=VxA (6.2)
whence the two equations V- B=0and Vx E = —%% become automatic. Our first task

will be to write these equations in manifestly Lorentz covariant form. Firstly we form a
4-vector potential 4, = (¢, —d) and j, = (p,—j) and define a field sirength F,, such that

0 E. E, E
-E. 0 -B. B,

F;IU = —Ey Bz 0 —Bz (6.3)
""Ez —By Bz 0
This definition is in fact equivalent to
F;w = a;tAu - auAp' (64)

With this definition it is fairly easy to see that the last two of Maxwell’s equations (four
equations really) can be written (don’t forget the Einstein summation convention!)

B, F* = ;¥ (6.5)

We now wish to provide a Lagrangian formalism for these equations. It turns out that the
appropriate Lagrangian density is given by

L= iF,,.,F“" + juA* (6.6)
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whose Lagrange eqﬁations are just those of (6.5) . To see this, for example, take the
Lagrange equation for Ay,
0 [6[, ] 7] [ oc

oL
+ 9= ]+(yandzterms)-—--—-—-—0

dtLody! ™ dul0(0:A0) 94

0+ 9 [-’—Fm] +(y and z terms) + p =0 (6.7)
dz

V-E=p

There is a difficulty in carrying out a Hamiltonian approach to electro-magnetism. This is
because the momentum which is conjugate to 4, is identically zero,

HAO = e = (68)

since the Lagrangian density does not depend upon Ao.

Although not so obvious a problem in the Lagrangian formalism, this will rear it’s
ugly head fairly soon. The reason that there is a problem is because, in some ways, we
have too many variables 4, describing the fields. This will lead us into gauge symmetry.
Notice that the field strength F},, is invariant under a transformation

p— A, = Ay + 9uA(z) (6.9)

where A(z) is an arbitrary function of z. Now, classically, the two choices of A, give the
same values of E and B thus since everything can be written in terms of E and B this
symmetry in merely a curiosity. !

Before discussing the quantisation of Electro-magnetism I will consider the theory
coupled to Dirac fermion (or scalar ) If we consider a Dirac fermion 3 then the Lagrangian

Ly = iy, 0" — mip (6.10)
will be invariant under the transformation,
b g = e (6.11)

where here o is a constant and not a function of z. (We could also consider coupling to
the scalar Lagrangian d,x'9%y.) Suppose we would like to extend our transformation so
that a(z). Then the Lagrangian is not invariant but an extra term

—igpyup0-a (6.12)

t An analogy of the problems we are encountering is the simple pendulum. Suppose I was silly enough
to over specify my system by describing it by z, y, and 6. I might be tempted (obviously not but..)
because the kinetic term is simple in z and y whereas the potential is simple in terms of 8. If I then
chose L = %(:i:"’ + §% 4+ 6%) we would obtain the momentum pe = 0. This constraint on (p, ¢) space
is similar to the electromagnetism case.)
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arises. Now we could make the Lagrangian invariant if we add an interaction term
Lint = —gA“%Z‘YM/’ (613)

and the combination
La+Ly+ Lint (6.14)

will be invariant under the combined gauge transformation.
v — e""g"’(‘)zp Ay = Ay + Oua(z) (6.15)

In terms of the fermions the transformation act via multiplication by a phase e'®. Such
phases form a group. A very simple group which is known as U(1)- the group of 1 x 1
unitary matrices. ( U(n) will be the group of n x n unitary matrices). We can include the
interaction term with the kinetic term for 1 by defining the covariant derivative

Dy = (9, +igAu)d (6.16)

This is known as the covariant derivative because it transforms in the same way as ¥,
namely with just a phase.

D, — ™9 D4 ' (6.17)

This general trick of gauging symmetries has been enormously useful. It allows us to build
models which have proved enormously useful in describing physics.

There are several conventions for phases in this area. Later I will use a different
convention which can be obtained by replacing @ by ~a/g. Whence the fields transforms
as

‘l;/' —_ eia¢, A,‘ - A” - %a“a 7 (618)

whence

D, =08, —igA, (6.19)

6.2 Quantum Gauge Theories '

Our naive attempts to quantise electrodynamics will prove to be sick because we
are missing an important point. hLowever, let us see how the sickness develops in the
path integral formulation. We attempt to find the propagator. To do so, we must write
the quadratic part of the Lagrangian as FIELD.OPERATOR.FIELD. The action may be

rewritten
/d"m(aﬂAu - 0,,.4,,)(3".4" — 9" A*)
= / d*zA, (—21;""‘ 0,0" + 23”6”’)A,,. (6.20)

=/d4:zt/d‘;v'.&l,,(x')(&‘(a: — 2') (20" 8,0" +26"8" )) Ay (z)
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we thus have the inverse-propagator organised in position space. When we Fourier trans-
form the above we obtain the momentum space inverse propagator,

Puy = (kuk, — K2n,) (6.21)

This “inverse propagator” has the unfortunate property that it does not have an inverse
(so it is not the inverse of anything!). To observe this note that

PyPyp=— kz(kukp - kz’lup)‘

—— kP, (6.22)
Now any matrix satisfying M2 = A\.M cannot be invertible (unless M = \.I which P
clearly is not.) so P is not an invertible operator.

Now we have reached a problem in the path integral formalism (just as we would have
in canonical methods.) What is the reason for this? The interpretation of the “sickness”
is that we are actually counting too many states in our path integral. If we have field
configurations A, and A, related by a gauge transformation, they only represent a single
equivalent states so we should only count them once rather than twice. In fact an infinite
over-counting occurs in the path integral. Consider the following diagram, where I have
“squeezed” the integration of the path integral onto two dimensions. Configurations related
to a field configuration lie in the orbit of the configuration.

NS

Figure 4. Orbits in gauge configuration space.

In this figure the orbits are shown and a curve which cuts each orbit is shown. Such
a curve is given generically by

gl4] =0 (6.23)

We can think of implementing the gauge fixing by inserting a §-function into the path
integral. (However they are important coefficients!). Such a condition is called a gauge
fixing condition. A good function g[A4] is clearly one which cuts each orbit once and once
only. The implementation of gauge-fixing is important technically in quantising a gauge
theory. I will demonstrate (rather than prove) how to implement this. I will try to switch
back and forth between a two-dimensional analogy and the real situation.
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Consider a two dimensional integral

I=/d:cdyf(z,y) » (6.24)
in analogy with the gauge theories the function f is invariant under rotations thus

f(2,9) = F(r,6) = F(r) (6.25)

by analogy with gauge symmetries let us assume that the different values of 8 should not
be counted. Thus we wish to evaluate

I'= / drrF(r) (6.26)

rather than (6.24) (which differs by a factor of f:" df = 2r. Now we can just implement
this by inserting a é-function within the integral. We define

Iy = / &rf(2,y)6(8 — ¢) = / rdrdF(r,0)5(6 — ¢) = / rdrF(r) = I' (6.27)

We can define this for any function and by definition .

I= / dol, (6.28)

however only for rotationally invariant functions will Iy be independent of ¢. Since I is
independent of ¢, :

I= / dpI, = 2rl,, (6.29)

where ¢g is any value of ¢. In many ways I have just cheated! - I “knew” that the curve
6 = const. cut each orbit one and one only (and also smoothly!). In general we want
to consider a general curve g(x,y) = 0. (analogous to (6.23) ). Again I want to insert
6(g(x,y)) into the integral but now we need factors. We can see these from the identity,

5], _, [ dsstatesn =1 (6.30)

(For intuition on this equation look, for example, at the prerequisites where é(az) =
8(z)/|a].) It is important that

0
Ag(ry) = lE% yo (6.31)
is rotation invariant. To see this note
A7 (ry) = / d6(g(re+¢)) = / d6'6(g(rer)) = A (x) (6.32)
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We may now insert the factor of one in (6.30) into the integral I

1= / dordrf(z,y) / doA(r)s(g(ry)) = ( / d¢) / d’rf(z,y)A¢(r)6(g(r4))  (6.33)

So we can obtain

- / drf(z,5)0,(£)6(g(z,)) (6:34)

As expected we have introduced a é-function but we have a correcting factor A,. In a
quite considerable generalisation to gauge theories there is an identity,

1= Ay(4") / [] v (=) I (s(4+Y) (6.35)

where

Ag(A*) = det(fé) (6.36) -

and U(z) = e'*(3) -we are integrating over elements of the U (1) group. Inserting this into
the functional integral we obtain,

/ [ ar)ection J1a1a,a) [T sto(ar)
= [0y [ atarne=etionss (ag) T] sto(4+)

The formal method of quantising is now rather simple - we just throw away the integration
of the group variables [[dl7]. (analogously to [ d¢) leaving us with a “gauge fixed” path
integral which only counts each orbit once.

Great. We however have one more step before this is any use!. (How do we implement
a general gauge fixing é-function?) Obviously, the gauge fixed path integral is independent
of g. (It’s not easy to show this...) So using the gauge fixing functional

g=g-B (6.38)

(6.37)

where B is just a function of & (just a constant really in functional space!) will give just
the same result. Inserting a factor

/ [@B] ] 6(s(4*Y) - B)e~ ¢ J¢*=B%() (6.39)

instead of [T 6(g(A*Y)) merely changes the path integral by a constant. This is really just

averaging (or smearing) over the gauge functions g— B with a factor ¢”. This trivial trick
allows us to get rid of the §-functions and the gauge fixed path integral is

/d[A"] /[dB]e—ActionAg(Az)]:[ 5(g(A“U _ B)e-,‘%fd"zB?(z)
6.40
— | a1 guy,—Action—z fd‘zg[A]2 P ( )
= [ d[A¥]em T Ag(45)
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So we have promoted the §-function to an extra term in the action - the “gauge-fixing”
term plus a determinant in the action (maybe more later). Many choices of “gauge-fixing”
exist (and thus much effort to find good gauges - in some sense). I'll try to illustrate one
approach via the so-called covariant gauges.

6.3 The Covariant gauges
This gauge choice uses the gauge fixing term,

g[A“] = 9,A" (6.41)
With this gauge choice we find that the gauge fixing term in the action becomes
/ d‘a: (a ArY)? (6;42)
This will affect the quadratic terms in the action ( thankfully!) to be
A, (L-,Lk,,(l - %) - kzn,,,,) A, (6.43)

Now, we can invert this operator and obtain a propagator in momentum space

3 k"
(nuu - "—TE_'(I Ek)k )

k2 +de (6.44)
Amongst this class of gauge choices two special ones are when §{ = 0,1 These are
Feynman Gauge, =1, Py, = QL"T"
— Rk k2 (6.45)
Landau Gauge, { =0, P, = Dy L2

So gauge fixing has resolved this (and in fact all other) problems with quantisation of the
gauge theory.

In the absence of either scalars or fermions, the quantised theory is a free theory and
we may solve as for free scalar theory. (The Lagrangian contains only quadratic terms
and, in the Feynman gauge, the propagator is just §,,/k? which means the 4, act just
like multiple scalar fields.) In the presence of scalar or fermion fields the theory becomes
a real live interacting quantum theory - QED for fermions or scalar-QED for scalars. For
a fermion the covariant derivative contains an interaction term

igPraArY =iy Pa(vu)asths A¥ (6.46)
a,b

implying a Feynman vertex
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Figure 5. Feynman Diagram for QED.
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7. Gauge Theories 2: Non-Abelian gauge theories

In this section we will generalise the concept of a gauge theory to that of a non-
Abelian gauge theory. Both the strong and weak interactions appear to be described by
such theories. Recall that the action of a gauge transformations for electromagnetism act
as

et (7.1)

Now complex phases could, if one were perverse, be described as 1 x 1 unitary matrices.
The U(1) such matrices form a group. The basic definition of group’s I quickly review here

7.1 basic group theory
A group G, is a set of objects with an action, or multiplication, defined such that the
following axioms are satisfied,

1:if a,b € G, then a.b € G (closure)

2 :there exists an identity ,e,s.t.a.e =e.a=a,YVa € G

7.2
3 :for all a € G, there exists an inverse a™? l=¢a la=e (7:2)

4 :a.(b.c) = (a.b).c Va,b,c

,a.a

There are many examples of groups. For example,

a) the numbers {1, -1} under multiplication

b) the real numbers under addition (but not multiplication since zero has no inverse.)

¢) the set of n xn matrices which are unitary ( A~! = A' ) and which have determinant
one. This group is known as SU(N).

d) the set of orthogonal matrices (A~! = AT) of determinant one. This is known as
SO(N).

Examples c) and d) are examples of Lie Groups. Lie groups are groups which depend
smoothly (in a well defines mathematical sense) on parameters. For example, a general
S0O(2) matrix can be written in the form,

cosf siné
Mo = (—sin6 cose) (7:3)

which we can parametrise by 6. Clearly group multiplication (and inverses etc) depend
smoothly upon 8, for example

M(6)M(4) = M(6 + ¢), M~(8) = M(-6) (7.4)
(If you are particularly observant you might notice that there is a lot of similarity be-
tween these matrices and U(1). In fact SO(2) and U(1) are essentially the some algebraic
structure.) If all elements of a group commute,

ab=ba Va,b (7.5)

then we call the group Abelian.
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7.2 Lie Algebras

An important object of interest in a Lie group is it’s algebra. This is defined in
terms of the behaviour of the group elements near the identity. For example consider the
group SU(2), ( A'4 =1, det(4) = 1). If we have an arbitrary element near the identity,
A = I +1iT (where T is small ) then T must satisfy,

T'=T, to(T)=0 (7.6)
thus T can be parametrised as |

3
T= Z a7 (7.7)

L 1(001) 2 100 =) a_1(1 0
T'=3\10)T=35{; o) T=3{0 =1)° (7.8)

The matrices T; generate an algebra under commutation. That is the commutator of any
two T matrices is a sum of T matrices. For example

where

[T’, T2] = iT® (7.9)

In general for SU(N'), if we consider the algebra, then it is generated by hermition traceless
matrices of which there are N2 — 1. This is the dimension of the Lie algebra. For SU(3)
there are thus eight matrices. A standard basis is
0 01
0 00
100

1[0 10 L [0 =i 0 L1 0 0
,\1=3 100,\2=3 i 0 o,\3=§o-10,\4=
“\0 0 0 “\0 0 O 0 0 0
/0 0 0 ; (100
oo-,\s———010
0 i 0 2v3 -2

0 0 —i 0 0O
,\5=% 0 0 O ,\6=;}; 0 0 1|XN=
“\i 0 0 “\0 1 0
(710)

which are closed under commutation. Elements of the Lie algebra are linear combinations
of these. There is a very important relationship between the elements of the algebra and

the group itself. Essentially the group elements can be obtained by exponentiating the
algebra, '

(SR ]

VAR

U(a) = exp z a®T® (7.11)

where the & are no longer infinitesimal. Similar to the case of S U (2), the T, obey com-
mutation relations,

[T“, T"] = ifobere (7.12)

where f%¢ are known as the structure constants of the algebra. For SU(2), febe = eobe,
(We normally normalise the T® such that tr(T°T?) = §°6/2.) Although I won't really
justify this, the structure constants really contain all the information in the group.
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7.3 Representations

The structure of a group is defined abstractly in terms of the multiplication. A concrete
realisation of a group is called A representation. A representation has two objects. Firstly,
there must be a specific object for each element of the group. Normally we will be interested
in matrix representations of a group. So we will have a mapping between the group and
our set of matrices,

Fif(G)= M (7.13)

which preserves the multiplication structure i.e. f(G.H) = f(G).f(H). For our SU(2) and
SU(3) groups we have actually been looking at a representation of the formal mathematical
structure. However, it has been a very special representation - the fundemental. For a given
group there are many representations. For example the is always the trivial representation
where every matrix gets mapped to the number 1. Also very importantly, the matrices
must have a vector space to act upon. Normally we view this as column vectors. A
cultural gap between mathematicians and physicists is that mathematicians focus upon
the matrices whereas physicists focus upon the vector space.

7.4 Non Abelian Gauge symmetries
Let us generalise our gauge transformation acting upon a fermion

Y — U(:B)l/)_ (7.14)

where U is an element of a group G such as SU(2) and % lies in a representation of G.
For example for SU(2) we could take 3 to be a doublet of fermions

¥ = (ﬁ;) (7.15)

If U did not vary with z then the Lagrangian

P19 0,1 + 27" 0utb2 = P 18,9 (7.16)

is invariant, however for a gauge symmetry we wish the gauge transformation to vary with
2. The technique will be to construct a covariant derivative D, such that

D¢ — U(z)D,u¢ (7.17)

which will require

U(z)D"U—l(z) —_ Dl“ (7.18)
We will postulate a form for D* analogously to the U(1) case,

D, =0, +igy T*Wg

37



where T? are the generators of the algebra and W and the gauge fields - which now carry
a group label a. (I have also introduced a coupling constant g.) This implies that the wg
transform as :

W, = UW, U™ - gv(x)apv'*(z) (7.19)

where we define W, = > WiT. Given this strange transformation the covariant deriva-
tive will transform appropriately. We can also define the field strength F,,, = %, Fe,T®
by

Fuy = 0,W, - 3,W, —ig [W", W"] (7.20)
In terms of Fj, this is
Fo, = 9,We-3,We—g  frwiws ' (7.21)
‘ be )

From this matrix, due to this simple transformation property, it is possible to construct
gauge invariant Lagrangians. The appropriate one is

1 , 1 |
£ = +gtrace PP Fu) = 3 S, P (7.29)

which is invariant under Lorentz and gauge transformations. (there are other possibilities
such as using det but these have problems.)

The gauge fixing we applied to the U(1) case will also work here if we chose a gauge
fixing term

trace(d - A)? (7.23)

7.5 Feynman Rules

We now look at the Lagrangian and determine the Feynman rules and comment on
the consequences. Firstly the propagator. The propagator will only be determined by the
quadratic terms in H. These will just look like

WP s WY (7.24)
where P is the propagators for the U(1) case. Thus the (unsurprising) result is that
P:x'zb = Puybas (7.25)

However when we examine the Lagrangian we find there are terms which are both cubic
and quartic in the WW-fields. In particular, the cubic terms are

fe0,W,  WEWY (7.26)

What does this imply for our Feynman rules?. We will still have a 3-point vertex but now
there is considerably more structure in the vertex. When evaluating we will have derivatives
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. of the propagator, which in momentum space will lead to k, terms. The precise answer
for the three point momentum space Feynman vertex, in the Feynman gauge, is

VI?:;(I” g,r) =g (6vp(qu —14) + 6pu(ry — Pv) + 6 (o — Qp)) (7.27)

as we show diagrammatically,

AVAVAV,

Figure 6. Feynman Diagrams for Non-Abelian Gauge Theory.

Note that is has crossing symmetry under interchange of legs and has one power of
momentum in the vertex. The general situation is probably fairly clear from now on. There
will also be a 4-point vertex. This contains no momentum (but a factor of g? rather than

g.)
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8. Critique of Perturbation theory

Perturbation theory has been enormously successful but it does have limitations. First
I'll try to illustrate the “light” and then the “shade”

The Light

Perhaps the most impressive demonstration of perturbative field theory is the evalu-
ation of g — 2 of the electron in QED. The magnetic moment of a fermion is related to it’s
spin via - .

=—g5—5 (8.1)

The classical Dirac Lagrangian gives a prediction for g to be exactly 2. However, as a
purely Quantum mechanical effect, ¢ may not exactly equal 2 but may be anomalous.

This is calculable, using Feynman diagrams, perturbatively.
The great success is

-9
(£5=) =1159657.7 £ 3.5 x 10~° : Experiment

(8.2)
=1159655.4 + 3.3 x 10™° : From Theory

The theoretical, prediction includes Feynman diagrams up to three loops. The only sensible
conclusion is that

PERTURBATION THEORY WORKS

The Shade
Consider the function

f(z)=0:2=0
fla) = €57

This little function has a lot to teach us. It is not a particularly badly behaved function
or very exciting to look at. It is continuous differentiable and it isn’t very difficult to show
that

(8.3)

f’(O) =0 (84)
If fact, with a little more work we can show that
fM)=o0 (8.5)
Thus the Taylof series of f(x) aroundz =0 is
[o <] xn
> fPO)= =04 f(z) (8.6)
n=0

Thus it is a fairly simple example where the Taylor series does not equal the function. Now
a typical decay amplitude is a function of the coupling constant g

R(g)
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We attempt to evaluate R(g) by perturbation theory - this is essentially just it’s Taylor
series. So any component of R which takes the form

~ ell9’ f(g) (8.7)

will never show up in a perturbative expansion. One might argue that such functions are
pathological. Le. that they are really just mathematical and don’t effect real problems
however I'll try to argue the reverse. Consider SU(2) pure gauge theory. Rescale the
potential field

1
Wy = QWL (8.8)

whence 1
F“y - EF;‘V

where F' has no explicit dependence on g. Then the Path integral looks a bit like
~ / [div]es JFu’ (8.9)

Which definitely looks dangerous! Thus we can easily see how contributions not accessi-
ble by perturbative results can creep in. This is especially true in any form of classical
background
B
Ay = Ap +A:‘ (8.10)

(Le. looking at transitions in the presence of a non-zero background.)

I present this example ( another good example is 1/(1 + g% ) not to try to destroy
Feynman diagram techniques but to point out that they are not everything. We must
consider the realm of validity. Unfortunately, we have few alternate techniques. One
technique is to take the path integral and just evaluate it numerically. To do so we must
discretise space-time , the configuration etc etc. It takes a lot of computing effort and still
has yet to be enormously fruitful but , at present, we have nothing else other than Feynman
diagrams (and variations thereof). Despite these concerns, field theory does “produce the
goods”.
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9. Some Things to look out for

In an informal session we tred to peek beyond the standard model and give some
theorists prejudices. I have summarised somr of the areas we covered here. These very
much reflect my personal prejudes and imperfect recollections. you should under no cir-
cumstances take me too seriously!. Firstly, I will try to explain some of the issues inspiring
theoretical interest.

One of the biggest areas of theoretical work is in supersymmetry and many of you
will no doubt be involved in searches for “supersymmetric” partners of the known par-
ticles. Supersymmetry is a symmetry which relates particles of different spins. This is
very different from any other symmetry we have presented to you - and so far has no
experimental realisation. The main prediction of supersymmetry is that every particle
should have a “superpartner” of the same quantum numbers but differing by 1/2 spin.
That is the “photino” would be a fermion of spin 1/2. Examining the standard model no
such pairing has yet been observed!. Thus if supersymmetry were true, there must be a
whole set of partners of the existing known particles waiting to be found. Supersymmetry
predicts that the superpartners have the same mass - It is obviously a broken symmetry!.
Theorists love supersymmetry because supersymmetric theories have much better quan-
tum properties than non-supersymmetric theories. Theorists in the USA and Europe have
had, in general, rather different “cultures” regarding supersymmetry. In Europe it come
~ close to religious fervour amongst some whereas in certain, influential, circles in the USA
there is strong disbelief. This unfortunately has led the US experimentalism to be less ag-
gressive in many cases in supersymmetric partner searches than in Europe. The discovery
of supersymmetric partners to the existing particles would be a great vindication for the
believers. (and extremely exciting for everyone!) The running of the coupling constants
to “unification” scales tends to support supersymmetry rather than not but, despite the
hype, most “neutrals” take rather a cynical view.

An area of great theoretical interest has been in formulations of quantum gravity.
Although of no experimental significance very many theorists think this'is a valid area of
- research both in it’s own right and also for the implications if has for the other forces.
The basic problem is that if one takes the classical Lagrangian known to describe general
relativity (the Einstein-Hilbert action) and applies the perturbative techniques described
in these lectures is just gives nonsense. The nonsense takes the form of infinities which
one encounters in scattering amplitudes and we have no, sensible, way to eliminate these
infinities. One can take two approaches to this problem 1) modify Quantum Mechanics or
2) modify Gravity. Personally I don’t like the approaches which involve modifying quan-
tum mechanics but a surprising number of smart people do. One of the most interesting
modifications to gravity has been “String Theory”. Instead of having point particles the
fundamental objects in one'’s theory are one-dimensional strings. Obviously a string has
an infinite number of degrees of freedom compared to a point particle - easily thought of
a the modes- but one can still just apply Quantum mechanics in principle to the theory.
Although the mathematics is shockingly difficult the Quantum behaviour of the theory is
very good. It appears that the theory is quantum consistent and includes gravity. So far
string theory provides an honest answer to a real question. whether it is the only solution
and whether it is the solution chosen by nature who knows. The mathematics of string
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theory have proven so rich that many theorists are difficult to recognise as physicists now.

To finish with, I'll mention something which doesn’t see a lot of theoretical output
these days but which many people if you ask them in a quite corner, hand on heart might
agree with. This is that quarks and leptons and especially the Higgs might be composite.
Again many of you might get involved in compositness searches. Theories where the Higgs
is composite can be very attractive. These are often called Technicolour theories. However
it’s rather difficult to get them to work convincingly. One major problem with any such
calculations is that, basically, we can only handle weakly interacting theories with much
success. As soon as a theory is strongly coupled life becomes very hard. And any theory
which binds composite objects into quarks/leptons/Higgs must be strongly interacting.
The difficulty in calculating makes it very hard to speculate on the type of theory. Take
the case of QCD: the lattice gauge theory community has poured huge amounts of effort
and time and computer power into evaluating QCD quantities numerically. So far this
has had limited success (this isn’t to criticise - lattice techniques are the only techniques
available). If I visited the office of a local lattice theorist and asked him what are the
masses of the bound states of SU(4) or some other weird theory (so I might compare to
the quark mass spectrum for example) I wont b get a lot of sympathy. Despite the fact
that humans can’t calculate strongly interacting theories doesn’t mean that the universe
can’t and compositness is a very real possibility.
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10. Exercises (selected)
1.1 Consider the double pendulum.

Figure E1. The Double pendulum.

Assuming small oscillations find L(Gl,él,eg,éz). Find Lagranges equations for this
system. Find H and evaluate Hamilton’s equations. Optional- Solve.
1.2 Calculate the Poisson brackets,

(o) {77}

[¢%,5], [¢* 5]

How do these compare with

1.3 Suppose
1 —-1.
L= "2'-’(9) '

then what is H?.
1.4 Show that the time dependence of any function F(p,,¢,) is given by

F= {FH} (10.1)

2.1 In the low temperature limit of the partition function in statistical mechanics it
is the low-energy states whose contributions dominate. In the small- limit which paths
will dominate in the path integral?

3.1 Suppose

L= %6“¢6,,¢ — g™

what are Lagranges equations for this?.
4.1 Suppose we have a single real scalar field ¢(z,t) and

Acint = __/\¢n
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so that Hipe = fdsm/\ : gg" (z,t) ;. For an initial state with two particles of momenta k,
and k,

It = —o0) = a’(kl)a’(k_z)lo)(*)
Suppose the final state has Af-particles

|t = +o0) = a'(p,)a'(p,) - - a'(p,,)I0)

To leading order, (U;) what is the value of M so that the transition is non-zero?
4.2 Suppose we have ¢(z,t) and a complex x(z,t) with Line = —g : xx¢ the case in
the notes ). If we have initial state (*) and final state

[t = +o0) = b¥(p,)---b¥(p,,)d*(g,) -~ d'(g,,)I0)

then
(a) Show to lowest order (U;) that the matrix element is zero
(b) What is the first order where the matrix element is non-zero and for this order what
are the values of M and N? \
6 5
5.1 Compute W‘ and )62 of

a) /dwé(x)J(x)
b [[ s 2
) [ dzb(@)I ()

6.1 Express both F,, F** and €,,p0F,., F?° in terms of E and B.
7.1 An alternate Definition of F,, is

F,, = [D,,,D,]

7.2 Find a set of 3 x 3 matrices which form a representation of SU(2). i.e. matrices
satisfying (7.9)
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1 Introduction

The traditional aim of this course is to teach you how to calculate amplitudes, cross-
sections and decay rates, particularly for quantum electrodynamics, QED, but in principle
also for quantum chromodynamics, QCD. By the end of the course you should be able
to go from a Feynman diagram such as the one for ete™ — p*u~ in Figure 1.1(a), to a
number for the cross-section, for example.

We will restrict ourselves to calculations at tree level but will also look qualitatively
at higher order loop effects which amongst other things are responsible for the running
of the QCD coupling constant, where the coupling appears weaker when you measure it
at higher enegy scales. This running underlies the useful application of perturbative Qcp
calculations to high-energy processes. As you can guess, the sort of diagrams which are
important here have closed loops of particle lines in them: in Figure 1.1(b) is one example
contributing to the running of the strong coupling (the curly lines denote gluons).

In order to do our calculations we will need a certain amount of technology. In
particular, we will need to describe particles with spin, especially the spin-1/2 leptons
and quarks. We will therefore spend some time looking at the Dirac equation and its free
particle solutions. After this will come revision of Fermi’s golden rule to find probability
amplitudes for transitions, followed by some general results on normalisation, flux factors
and phase space, which will allow us to obtain formulas for cross sections and decay rates.

With these tools in hand, we will look at some examples of tree level QED processes.
Here you will get hands-on experience of calculating transition amplitudes and getting
from them to cross sections. We then move on to QcD. This will entail a brief introduction
to renormalisation in both QED and QCD. We will introduce the idea of the running
coupling constant and look at asymptotic freedom in QCD.

In reference [1] you will find a list of textbooks which may be useful.

1.1 Units and Conventions

I will use natural units, ¢ = 1, i = 1, so mass, energy, inverse length and inverse time all
have the same dimensions.

4-vector a* £=0,1,23 a=(aa) (1.1)
scalar product a-b = a%° - a-b = g, a#b” ’

From the scalar product you see that the metric is:

=di ~1.-1, ~ BA — SB — 1 lfﬂzV
g=diag(l,-1,-1-1), o =d={y ;b0 (1.2

For ¢ =1, ¢*” and g,, are numerically the same.
ety ut
e” u
(a) (b)
Figure 1.1 Examples of Feynman diagrams contributing to (a) ete~™ — p*p~ and (b) the
running of the strong coupling constant.
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From the above, you would think it natural to write the space components of a 4-vector as
a for i = 1,2,3. However, for 3-vectors I will normally write the components as a;. This
is confusing only when you convert between ordinary vector equations and their covariant
forms, when you have to remember the sign difference between o and a;.

Note that J, is a covector,
ad

% = o’

O,z = 6y, (1.3)

so Vi = -9 and o* = (8°, V)
My convention for the totally antisymmetric Levi-Civita tensor is:

-1 if an odd permutation (1.4)

{ +1 if {, ¥, A, 0} an even permutation of {0,1,2, 3}
Euu)\a’
0  otherwise

Note that e#* = —¢ 5y, and €#*?p,q,72s, changes sign under a parity transformation
u Pu
(which is obvious because it contains an odd number of spatial components).

1.2 Relativistic Wave Equations

The starting point for this course is the good old Schrodinger equation which can be
written quite generally as:

Hy(t) = za¢( ) (1.5)

where H is the Hamiltonian (i.e. the energy operator). In this equation %(t) is the
wavefunction describing the single particle probability amplitude. In this course we shall
reserve the Greek symbol v for spin 1/2 fermions and ¢ for spin 0 bosons. So for pions
and the like we shall write:

6¢(t)

H(t) =

Now in this course we want to extend non-relatlvistic quantum mechanics into the
relativistic domain. The good news is that the Schrodinger equation as written above
applies equally well in relativistic quantum mechanics. However care must be taken
with the Hamiltonian to ensure that it is relativistically invariant. For example, in non-
relativitic quantum mechanics you are used to writing

(1.6)

H=T+V (1.7)

where T is the kinetic energy and V(r) is the potential energy. A particle of mass m and
momentum p has non-relativistic kinetic energy,

P2

T=— 1.8

™ (1.8)
where capital P is the operator corresponding to momentum p. For a slow moving
particle v <« ¢ (e.g. an electron in a Hydrogen atom) this is adequate, but for relativistic
systems v ~ ¢ the Hamiltonian above breaks down. For a free relativistic particle the
total energy E is given by the Einstein equation

E? =p*+m? (1.9)
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Thus the square of the relativistic Hamiltonian H? is simply given by promoting the
momentum to operator status,
H>=P?+m? (1.10)

So far so good, but now the question arises of how to implement the Schrodinger equation
which is expressed in terms of H rather than H2. Naively the relativistic Schrodinger
equation looks like

3 t
VBT + miyp(t) = ¢() (1.11)
but this is difficult to interpret because of the square root. There are two ways forward:

(1) Work with H2. By iterating the Schrodinger equation we have

0%4(t)
ot?

H%¢(t) = — (1.12)
which is known as the Klein-Gordon (KG) equation. In this case the wavefunction
describes spinless bosons.

(2) Invent a new Hamiltonian Hp which is linear in momentum, and whose square is
equal to H? given above, H3 = P? + m?2. In this case we have

Hou() = 249

(1.13)
which is known as the Dirac equation, with Hp being the Dirac Hamiltonian. In
this case the wavefunction describes spin one half fermions, as we shall see.

1.3 Wavefunctions vs. Fields

You may be wondering why I am talking about wavefunctions while in your field theory
course Dave Dunbar is telling you about fields. Some of you may even be wondering
what is the difference between a wavefunction and a field. Well, you all know that
wavefunctions are just probablility amplitudes for finding the particle. This is fine and
dandy - so why can’t we stick with wavefunctions rather than go to the trouble of
inventing fields? The answer has to do with some problems faced by relativistic quantum
mechanics. As we know from the non-relativistic Schrodinger equation one can define a
probability density

p=1" (1.14)
and a current density
3= L4V - 4V4) (1.15)
which satisfy the so called continuity equation
op .
- =-V. 1.16
o =~ V-d (1.16)

which just expresses conservation of probability. The existence of this equation enables
one to interpret 1*1 as a probability distribution. (This is why probability is indentified
with |1|? rather than say |1| for example.) OK - now what about relativity?

53



In the relativistic domain for the KG and Dirac equations there are analagous con-
tinuity equations for probability but here there are some problems of interpretation. To
begin with the KG equation turns out to have a probability density which can be nega-
tive! This is the tip of a conceptual iceberg because even if it were positive all the time,
we have no right to expect that probability is conserved for bosons which can be created
and destroyed in arbitrary numbers (e.g. any number of pions can be produced when
a high energy proton beam hits a target). There is clearly a conceptual problem with
the single particle interpretation of the wavefunction 9 in this case, and quantum field
theory is the solution! The KG equation also suffers from the problem of having negative
energy solutions, and here again one finds the solution in quantum field theory.

Quantum field theory draws much of its inspiration from electromagnetic fields. We

"are used to thinking of an electromagnetic field as a real physical quantity which can
occupy space and which can contain energy. When you wiggle around a bar magnet as
a child it is quite natural to think of the magnetic field as a real quantity which exists in
the space around the magnet, and gets carried around with the magnet. When this field
encounters some iron filings it interacts with them, and so on. We also know that photons
are packets of energy and that they must be regarded as the result of quantising the
electromagnetic field. Like the pions, photons can be created and destroyed in arbitrary
numbers (e.g. an excited atom can emit one or more photons). This presents no problem
if photons are regarded as quanta of the electromagnetic field, since a state with n photons
just corresponds to a higher level of exitation of the electromagnetic field than a state
with no photons (the vacuum or ground state of the field). Given our experience with
electromagnetism it seems perfectly natural to try to play the same game with spinless
bosons such as pions, and invent a new field analagous to the electromagnetic ﬁeld whose
quantum excitations can be interpreted as spinless bosons.

Such considerations led inevitably to the development of quantum field theory as
the solution to the problem with probability faced by the KG equation. However the
same problem also led Dirac to invent his equation, for which the probability is always
positive, and his now famous prediction of spin and antiparticles. However the existence
of antiparticles implies that particle-antiparticle pairs can be created and destroyed in
arbitrary numbers, just as in the case of bosons, so again there is the problem with the
single particle wavefunction interpretation, and again one is led to quantum field theory.
Indeed here the case is even more compelling since one desires to treat electrons and
photons on the same basis in order to understand their interactions properly, and given
that photons are quanta of the e.m. field one is led to the Dirac field immediately.

It is important to emphasise that a field is a very different beast from a wavefunction.
A wavefunction ¢(r,t) is just a mathematical object, a complex number from which we
can extract information about the whereabouts of the particle. A field on the other hand
is a physical object which exists in space and which can have energy. In order to be
able to carry energy, the field is described by a function ¢(r,t) which is regarded as a
dynamical variable or generalised coordinate. I find it useful to think of the value of
the field at a point in space as a coordinate describing the motion of some (ficticious)
infinitesimal harmonic oscillator associated with that point. The total field describes the
collection of all such little (coupled) harmonic oscillators corresponding to all the points
in space. Each little pretend oscillator is described by its own coordinate, and carries an
infinitesimal energy. The field is in fact analagous to a set of oscillating coupled atoms
in a crystal lattice. However the field variable ¢(r,t) is not to be thought of literally as
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the displacement of some oscillator, but rather something akin to an electric or magnetic
field. Nevertheless the field coordinate at a particular space point can oscillate, does
couple to neighbouring field points, and does carry an infinitesimal energy - just like a
vibrating atom in a crystal - so it is a useful picture to have in your mind.

When Dave Dunbar considers quantum mechanics of the field (quantum field theory)
all he has to do is quantise each of the little oscillators for each space point, in just the
same way as we would quantise the coordinates of atoms in a crystal. Since coordinates
become operators in quantum mechanics this implies that the field variables ¢(r,t) get
promoted to the status of operator. Of course there are some slight technicalities involved
with this proceedure, and so it will take Dave a whole course to explain how to do it!

You have probably noticed that I have used the same symbol ¢ for both the wave-
function and the field, even though one is a complex number and the other is a dynamical
variable which must be regarded as a quantum operator. The reason I am able to get
away with such sloppiness is that it turns out (although this is not obvious) that the
wavefunction and the field obey the same equation of motion, even though they are very
different beasts. So when I talk about the KG equation, I can equally well be talking
about the equation for the wavefunction or the field — they are the same. So you must
have your wits about you at all times to decide if I am talking about the wavefunction
or the field!

1.4 The Klein-Gordon Equation

We now write the KG equation 1.12 in position space, using a rather fancy notation with
which you can impress your friends. In position space we write the momentum operator
as

p — —iV, (1.17)

so that the KG equation 1.12 becomes,
(Q+m?) ¢(z) =0 (1.18)
where we have introduced the impressive box notation,
0 = 9,0* = 8%/ot* — V* (1.19)

and z is the 4-vector (t,x).

The operator O is Lorentz invariant, so the Klein-Gordon equation is relativistically
covariant (that is, transforms into an equation of the same form) if ¢ is a scalar function.
That is to say, under a Lorentz transformation (t,x) — (t',x’),

#(t,x) = ¢'(t',x') = ¢(t,x)

so ¢ is invariant. In particular ¢ is then invariant under spatial rotations so it represents
a spin-zero particle (more on spin when we come to the Dirac equation), there being no
preferred direction which could carry information on a spin orientation.

The Klein-Gordon equation has plane wave solutions

¢(z) = Ne i(Et-Px) (1.20)

where N is a normalisation constant and E = ++/p? + m?. Thus, there are both positive
and negative energy solutions. In the quantum field ¢, these are just associated with
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operators which create or destroy particles. However, they are a severe problem if you
try to interpret ¢ as a wavefunction. The spectrum is no longer bounded below, and you
can extract arbitrarily large amounts of energy from the system by driving it into ever
more negative energy states. Any external perturbation capable of pushing a particle
across the energy gap of 2m between the positive and negative energy continuum of
states can uncover this difficulty.

A second problem with the wavefunction interpretation arises when you try to find
a probability density. Since ¢ is Lorentz invariant, |¢|> doesn’t transform like a density.
To search for a candidate we derive a continuity equation, rather as you did for the
Schrédinger equation in the pre-school problems. Defining p and J by

A 0P 6¢‘)
= | = =0
P ( ot ot (1.21)
J = —i(¢'Vé-¢Ve')
you obtain (see problem) a covariant conservation equation
OuJ* =0 (1.22)

where J is the 4-vector (p,J). It is natural to interpret p as a probability density and J
as a probability current. However, for a plane wave solution (1.20), p = 2|N|?E, so p is
not positive definite since we've already found F can be negative.

> Exercise 1.1
Derive the continuity equation (1.22). Start with the Klein-Gordon equation multiplied
by ¢* and subtract the complex conjugate of the K-G equation multiplied by ¢.

Thus, p may well be considered as the density of a conserved quantity (such as
electric charge), but we cannot use it for a probability density. To Dirac, this and the
existence of negative energy solutions seemed so overwhelming that he was led to intro-
duce another equation, first order in time derivatives but still Lorentz covariant, hoping
that the similarity to Schrodinger’s equation would allow a probability interpretation. In
fact, with the interpretation of ¢ as a quantum field, these problems are not problems at
all: the negative energy solutions will find an explanation in terms of antiparticles and p
will indeed be a charge density as hinted above. Moreover, Dirac’s hopes were unfounded
because his new equation also turns out to admit negative energy solutions. Fortunately
it is just what we need to describe particles with half a unit of spin angular momentum,
so we will now turn to it.
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2 The Dirac Equation

Dirac wanted an equation first order in time derivatives and Lorentz covariant, so it had
to be first order in spatial derivatives too. His starting point was to assume a Hamiltonian
of the form,

Hp =P+ ayPy + a3P; + fm (2.1)

where P; are the three components of the momentum operator P, and a; and S are
some “unknown quantities”, which as will be seen below cannot simply be commuting
numbers. When the requirement that the H3 = P? + m? is imposed, this implies that
o; and S8 must be interpreted as 4 x 4 matrices, as we shall discuss. The first step is to
write the momentum operators explicitly in terms of their differential operators, using
Eq.1.17, then the Dirac equation 1.13 becomes, using the Dirac Hamiltonian in Eq.2.1,

; %—‘t” = (—ia'V + fm)p (2.2)
which is the position space Dirac equation. Remember that in field theory, the Dirac
equation is the equation of motion for the field operator describing spin 1/2 fermions. In
order for this equation to be Lorentz covariant, it will turn out that ¢ cannot be a scalar
under Lorentz transformations. In fact this will be precisely how the equation turns out
to describe spin 1/2 particles. We will return to this below.

If 9 is to describe a free particle it is natural that it should satisfy the Klein-
Gordon equation so that it has the correct energy-momentum relation. This requirement
imposes relationships among the o and 8. To see these, apply the operator on each side
of equation (2.2) twice, i.e. iterate the equation,

2 . . I3 . . .
—%t—lf = [-a'/ VIV? - i (Ba’ + &' B)mV'* + Bm?y

with an implicit sum-over i and j from 1 to 3. The Klein-Gordon equation by comparison
is

0%y i
If we do not assume that the o’ and § commute then the KG will clearly be satisfied if

o0 + oy = 20;4

Poi+aif = 0 (2.4)
g = 1

fori,j =1,2,3. It is clear that the o; and 8 cannot be ordinary numbers, but it is natural
to give them a realisation as matrices. In this case, ¥ must be a multi-component spinor
on which these matrices act.

> Exercise 2.1
Prove that any matrices @ and f satisfying equation (2.4) are traceless with eigenvalues
+1. Hence argue that they must be even dimensional.

In two dimensions a natural set of matrices for the o would be the Pauli matrices

D I (i) R A NS
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However, there is no other independent 2 x 2 matrix with the right properties for 3, so
the smallest dimension for which the Dirac matrices can be realised is four. One choice
is the Dirac representation

= 9) 5=(3 ) 2

Note that each entry above denotes a two-by-two block and that the 1 denotes the 2 x 2
identity matrix. '

There is a theorem due to Pauli which states that all sets of matrices obeying the
relations in (2.4) are equivalent. Since the Hermitian conjugates af and 8! clearly obey
the relations, you can, by a change of basis if necessary, assume that o and 8 are Her-
mitian. All the common choices of basis have this property. Furthermore, we would like
a; and B to be Hermitian so that the Dirac Hamiltonian (2.18) is Hermitian.

>Exercise 2.2
Derive the continuity equation 8,J# = 0 for the Dirac equation with

p=J" =9 2)p(z), T =9Hz)ay(x). (2.7)

We will see in section 2.6 that (p,J) does indeed transform as a four-vector.

2.1 Free Particle Solutions I: Interpretation

We look for plane wave solutions of the form

o= (5oy) e | (28)

where ¢(p) and x(p) are two-component spinors which depend on momentum p but are
independent of x. Using the Dirac representation of the matrices, and inserting the trial
solution into the Dirac equation gives the pair of simultaneous equations

2(3)= (0 Zn) (3). 29
¢ op -m/)\¢ (29)
There are two simple cases for which Eq.2.9 can readily be solved, namely
(1) p =0, m # 0 corresponding physically to an electron in its rest frame.
(2) m =0, p # 0 corresponding physically to a massless neutrino.
. For.case (1), an electron in its rest frame, the equations 2.9 decouple and become
simply,
Ex=myx, FE¢=-m¢ (2.10)
so that in this case we see that y corresponds to solutions with £ = m, while ¢ corre-

sponds to solutions with £ = —m : negative energy solutions!

These negative energy solutions persist for an electron with p # 0 for which the
solutions to Eq.2.9 are readily seen to be

a-p o-p

¢ =.E+m X X=E-m

é. (2.11)
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time

Figure 2.1 Feynman interpretation of a process in which a negative energy electron is absorbed.
Time increases moving upwards.

Thus the general positive energy solutions with E = +|/p? + m?| are:

v@) = (& ) e @, (2.12)

while the general negative energy solutions with E = —|\/p? + m?| are:

a'
et

wo) = (Fp7) e, (2.13)

for arbitrary constant ¢ and x. Clearly when p = 0 these solutions reduce to the
positive and negative energy solutions discussed previously. Now, since E? = p? +m? by
construction, we find, just as we did for the Klein-Gordon equation (1.18), that there exist
positive and negative energy solutions given by equations (2.12) and (2.13) respectively.
Once again, the existence of negative energy solutions vitiates the interpretation of 9 as
a wavefunction.

Dirac interpreted the negative energy solutions by postulating the existence of a
“sea” of negative energy states. The vacuum or ground state has all the negative energy
states full. An additional electron must now occupy a positive energy state since the
Pauli exclusion principle forbids it from falling into one of the filled negative energy
states. By promoting one of these negative energy states to a positive energy one, by
supplying energy, you create a pair: a positive energy electron and a hole in the negative
energy sea corresponding to a positive energy positron. This was a radical new idea, and
brought pair creation and antiparticles into physics. Positrons were discovered in cosmic
rays by Carl Anderson in 1932.

The problem with Dirac’s hole theory is that it doesn’t work for bosons, such as
particles governed by the Klein Gordon equation, for example. Such particles have no
exclusion principle to stop them falling into the negative energy states, releasing their
energy. We need a new interpretation and turn to Feynman for our answer.

According to Feynman and quantum field theory, we should interpret the emission
(absorption) of a negative energy particle with momentum p* as the absorption (emission)
of a positive energy antiparticle with momentum —p¥. So, in Figure 2.1, for example, an
electron-positron pair is created at point A. The positron propagates to point B where
it is annihilated by another electron.

Thus Feynman tells us to keep both types of free particle solution. One is to be used
for particles and the other for the accompanying antiparticles. Let’s return to our spinor
solutions and write them in a conventional form. Take the positive energy solution of
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equation (2.12) and write,

\/E+m( ,.E'X ) e~ = upeTP, (2.14)
E+mAT

For the former negative energy solution of equation (2.13), change the sign of the energy,
E — —E, and the three-momentum, p = —p, to obtain,

vVE+m (E"";(“x') €T = ype'P”, (2.15)

In these two solutions E is now (and for the rest of the course) always positive and given
by E = (p? + m?)"/2. The subscript r takes the values 1,2, with

X1 = ((1)), X2 = (2) (2.16)

For the simple case p = 0 we may interpret x; as the spin-up state and x, as the

spin-down state. Thus for p = 0 the 4-component wavefunction has a very simple

interpretation: the first two components describe electrons with spin-up and spin-down,

“while the second two components describe positrons with spin-up and spin-down. Thus

we understand on physical grounds why the wavefunction had to have four components.

The general case p # 0 is slightly more involved and is considered in the next section.
At this point I would like to introduce another notation, and define

wp = 1/p? + m?, (2.17)

so that, w, is the energy (positive) of a particle or anti-particle with three-momentum
p (I write the subscript p instead of p, but you should remember it really means the
three-momentum). I will tend to use E or w, interchangeably.

The u-spinor solutions will correspond to particles and the v-spinor solutions to
antiparticles. The role of the two x’s will become clear in the following section, where it
will be shown that the two choices of r are spin labels. Note that each spinor solution
depends on the three-momentum p, so it is implicit that p° = w,.

2.2 Free Particle Solutions II: Spin

Now it’s time to justify the statements we have been making that the Dirac equation

describes spin-1/2 particles. The Dirac Hamiltonian in momentum space is given in
Eq.2.1 as

Hp = aP + fm (2.18)
and the orbital angular momentum operator is
L=RxP.
Normally you have to worry about operator ordering ambiguities when going from classical

objects to quantum mechanical ones. For the components of L the problem does not arise
— why not?
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Evaluating the commutator of L with Hp,

[L, Hp] [R x P,a-P]
[R,a-P]x P (2.19)

iax P,

we see that the orbital angular momentum is not conserved (otherwise the commutator
would be zero). We'd like to find a total angular momentum J which is conserved, by
adding an additional operator S to L,

J=L+S, [J,Hp=0 (2.20)

To this end, consider the three matrices,

c 0 .
= (0 a) = —ia 3. (2.21)

where the first equivalence is merely a definition of X and the last equality can read-
ily be verified. The X/2 have the correct commutation relations to represent angular
momentum, since the Pauli matrices do, and their commutators with o and 3 are,

[2, ﬂ] = 0, [2,‘, a_,-] = Zieijkak. (2.22)

>Exercise 2.3
Verify the commutation relations in equation (2.22).

From the relations in (2.22) we find that
[Z, Hp) = —2ia x P.

Comparing this with the commutator of L with Hp in equation (2.19), you readily see
that

[L+1%,Hp| =0,
and we can identify .

as the additional quantity which when added to L in Eq.2.20 yields a conserved total
angular momentum J. We interpret S as an angular momentum éntrinsic to the particle.

Now
Sg=_1_(a-a 0)=§(1 0)
4\ 0 oo 4\0 1/’

and recalling that the eigenvalue of J2 for spin j is j(j+1), we conclude that S represents
spin-1/2 and the solutions of the Dirac equation have spin-1/2 as promised.

We worked in the Dirac representation of the matrices for convenience, but the result
is of course independent of the representation.

Now consider the u-spinor solutions u}, of equation (2.14). Choose p = (0,0, p) and

write
vVE+m 0
0 vVE+m :
up = uy = P |0 w= ul, = 0 . (2.23)
0 —vE-m
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It is easy to see that,

1 1
SzUT = EUT, Szu¢ = —Eui.

So, these two spinors represent spin up and spin down along the z-axis respectively. For
the v-spinors, with the same choice for p, write,

vE-m 0

0 2 —vVE-m
vy = 'U;z = \/m ’ vt ="Up' = 0 ’ (224)
0 vVE+m

where now,

1 1
Sz’U¢ = Ev'b S;’UT = —iv«r.

This apparently perverse choice of up and down for the v’s is because, as you see later for
the quantum Dirac field, 4+ multiplies an annihilation operator which destroys a particle
with momentum p, and spin up, whereas v; multiplies an operator which creates an
antiparticle with momentum p, and spin up.

2.3 Normalisation, Gamma Matrices

We have included a normalisation factor «/E+m in our spinors. With this factor,
1,8 = ot —
Uy Uy = Uy Uy = 2wyl (2.25)

This corresponds to the standard relativistic normalisation of 2w, particles per unit
volume. It also means that u'u transforms like the time component of a 4-vector under
Lorentz transformations as we will see in section 2.6.

> Exercise 2.4
Check the normalisation condition for the spinors in equation (2.25).

I will now introduce (yet) more standard notation. Define the gamma matrices,

Y=8  v=Pa (2.26)

In the Dirac representation,

7°=((1) _01), 'y=(_00 g) (2.27)

In terms of these, the relations between the o and 8 in equation (2.4) can be written
compactly as,

{7, 7"} =2¢". (2.28)
Combinations like @, y* occur frequently and are conventionally written as,
¢ = auy" = "y,

pronounced “a slash.” Note that 4* is not, despite appearances, a 4-vector — it just
denotes a set of four matrices. However, the notation is deliberately suggestive, for when
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combined with Dirac fields you can construct quantities which transform like vectors and
other Lorentz tensors (see the next section).

Let’s close this section by observing that using the gamma matrices the Dirac equa-
tion (2.2) becomes

(i@ —m)yp =0, (2.29)
or in momentum space,
(# —m)y=0. (2.30)
The spinors u and v satisfy
F-mhyy, =0

> Exercise 2.5
Derive the momentum space equations satisfied by uj and v},

2.4 Lorentz Covariance

We want the Dirac equation (2.29) to preserve its form under Lorentz transformations
(LT’s). Let A*, represent an LT,

zt — ¥ = A* 1Y (2.32)

A familiar example of a LT is a boost along the z-axis, for which

vy 0 0 By
0 10 O
B
A% 0 01 0}
By 0 0 «

with as usual 8 = v (in units of ¢) and 4 = (1 — 82)~1/2, LT’s can be thought of as
generalised rotations.

The requirement is,
(0, —m)Y(z) =0 — (in*8, —m)P'(z') =0,
where 0, = A°,0.. This last equality follows because

0 o790 _,, O
BT Dgr  Bzh Bz POz
where Eq.2.32 has been used in the last step. We know that 4-vectors get their com-

ponents mixed. up by LT’s, so we expect that the components of ¥ might get mixed up
also,

¥(z) = ¥'() = S(A)g(z) = S(A)p(A™'2) (2.33)

where S(A) is a 4 x 4 matrix acting on the spinor index of ¥. Note that the argument
A~'z’ is just a fancy way of writing z, so each component of 1(z) is transformed into a
linear combination of components of ¥(z).
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It is helpful to recall that for a vector field, the corresponding transformation is
At (z) = A (2)

where ' = Az. This makes sense physically if one thinks of space rotations of a vector
field. For example the wind arrows on a weather map of England are an example of a
vector field: at each point on the map there is associated an arrow. Consider the wind
direction at a particular point on the map, say Abingdon. If the map of England is rotated,
then one would expect on physical grounds that the wind vector at Abingdon always point
in the same physical direction and have the same length. In order to achieve this, both
the vector itself must rotate, and the point to which it is attached (Abingdon) must be
correctly identified after the rotation. Thus the vector at the point z’ (corresponding to
Abingdon in the rotated frame) is equal to the vector at the point z (corresponding to
Abingdon in the unrotated frame), but rotated so as to keep the physical sense of the
vector the same in the rotated frame (so that the wind always blows towards Oxford, say,
in the two frames). Thus having correctly identified the same point in the two frames all
we need to do is rotate the vector:

A¥(z') = ALAY ().

A similar thing also happens in the case of the 4-component spinor field above, except that
we do not (yet) know how the components of the wavefunction themselves must transform,
i.e. we do not know S.

To determine S we rewrite the Dirac equation in terms of the primed variables (just
a mathematical substitution),

(iv*A°, 8, - m)p(A~'z') =0. (2.34)

Some new matrices can be defined, v = 9#A°, which satisfy the same anticommutation
relations as the y#’s in equation (2.28),

{77} = 2¢". (2.35)
>Exercise 2.6
Check relation (2.35).

Now we invoke the theorem (Pauli’s theorem) which states that any two represen-
tations of the gamma matrices are equivalent. This means that there is a matrix S(A)
such that

7* = S7HA)S(A). (2.36)
This allows us to rewrite equation (2.34) as
(i8] - mS(A)p(A™'z") = O,

or using Eq.2.33,
(73, - m) (&) =0, (2.37)

so that the Dirac equation does indeed preserve its form in the primed frame.
To construct S explicitly we must solve Eq.2.36, which may be written as

1Ak, = STHA)YAS(A). (2.38)
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For an infinitesimal LT, it can be verified that,
A¥, = 6%, — e(g?#8%, — g°H8%)) (2.39)

where € is an infinitesimal parameter and p and o are fixed. Since this expression is
antisymmetric in p and o there are six choices for the pair (p, o) corresponding to three
rotations and three boosts.

For example a boost along the z-axis corresponds to p = 0, o = 3, since in this case,
A¥, = Lo €(g0”63,, — g3u60y)

1 0 0 -
0 10 O
o 01 0}’
- 0 0 1
which can be identified with the previous example with 8 = —e and 4 = 1 in the low
velocity limit.
Writing,
S(A) =1 +des” (2.40)

where s”° is a matrix to be determined for each choice of p and o, we find that equa—
tion (2.36) for +' is satisfied by,

7 = % [V, 7] = —;-a”". (2.41)

Here, I have taken the opportunity to define the matrix ¢?°. Thus S is given explicitly
in terms of gamma matrices, for any LT specified by p, o and e.

>Exercise 2.7
Verify that equation (2.36) relating 4’ and « is satisfied by s*° defined through equa-
tions (2.40) and (2.41).

We have thus determined how 1+ transforms under LT’s. To find quantities which
are Lorentz invariant, or transform as vectors or tensors, we need to introduce the Pauli
and Dirac adjoints. The Pauli adjoint 9 of a spinor 9 is defined by

=iy’ =yl (2.42)
The Dirac adjoint of a matriz A is defined by
(YAP)* = ¢ A. (2.43)
For Hermitian 4° it is easy to show that
A=~0A10 (2.44)

Some properties of the Pauli and Dirac adjoints are:
(AA+pB) = MA + B,

AB = -B'_?_l_,
Ay = YA
With these definitions, 9 transforms as follows under LT’s:
T =PS() (2.45)

> Exercise 2.8
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(1) Verify that y#t = 4%9#40. This says that 7* = y*.

(2) Using (2.40) and (2.41) verify that 1°St(A)7® = S~}(A), i.e. § = S~1. So S is not
unitary in general, although it is unitary for rotations (when p and o are spatial
indices). This is because the rotations are in the unitary O(3) subgroup of the

nonunitary Lorentz group. Here you show the result for an infinitesimal LT, but it
is true for finite LT"s.

(3) Show that 9 satisfies the equation

— .‘-.
p(-i§ -m)=0
where the arrow over @ implies the derivative acts on .

(4) Hence prove that 9 transforms as in equation (2.45).

Note that result (2) of the problem above can be rewritten as S(A) = S~!(A), and
equation (2.36) for the similarity transformation of v# to v takes the form,

S8 = A*4". (2.46)

Combining the transformation properties of 1 and ¥ in equations (2.33) and (2.45)
we see that the bilinear v is Lorentz invariant. In section 2.6 we'll consider the trans-
formation properties of general bilinears.

Let me close this section by recasting the spinor normalisation equations (2.25) in
terms of “Dirac inner products.” The conditions become,

Tpu, = 2md"
T, 0 = Ty, (2.47)

T 0y S — ]
Tpvp 2mé

i

>Exercise 2.9 ‘
Verify the normalisation properties in the above equations (2.47).

2.5 Parity

In the next section we are going to construct quantities bilinear in 1 and %, and classify
them according to their transformation properties under LT’s. We normally use LT’s
which are in the connected Lorentz Group, SO(3,1), meaning they can be obtained by
a continuous deformation of the identity transformation. Indeed in the last section we
considered LT’s very close to the identity in equation (2.39). The full Lorentz group has
four components generated by combining the SO(3, 1) transformations with the discrete
operations of parity or space inversion, P, and time reversal, T,

1 0 0 O -1 000
0 -1 0 0 0100
Ar=1, 0o -1 ofl° M= 0010
0 0 0 -1 0001

LT’s satisfy ATgA = g (see the preschool problems), so taking determinants shows
that det A = +1. LT’s in SO(3,1) have determinant 1, since the identity does, but the
P and T operations have determinant —1.
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Let’s now find the action of parity on the Dirac wavefunction and determine the
wavefunction ¥p in the parity-reversed system. According to the discussion of the previ-
ous section, and using the result of equation (2.46), we need to find a matrix S satisfying

5v°8 =4, 5+4'S = —+..

It’s not hard to see that S = S = 4? is an acceptable solution, from which it follows that
the wavefunction ¥p is

Pp(t,x) = 7°Y(t, —x). (2.48)

In fact you could multiply 4° by a phase and still have an acceptable definition for the
parity transformation.
In the nonrelativistic limit, the wavefunction i approaches an eigenstate of parity.

Since
0 1 0
7= 0 -1/’
the u-spinors and v-spinors at rest have opposite eigenvalues, corresponding to particle
and antiparticle having opposite intrinsic parities.

2.6 Bilinear Covariants

Now, as promised, we will construct and classify the bilinears. To begin, observe that by
forming products of the gamma matrices it is possible to construct 16 linearly independent
quantities. In equation (2.41) we have defined

i R
wo— Srap v
o _ 2[’7 ”Y ]’
and now it is convenient to define
7% =7 = i7", (2.49)
with the properties, ‘
n=r {17} =0
Then the set of 16 matrices

{19, 9", Y75, 0"}

form a basis for gamma matrix products.

Using the transformations of ¥ and ¥ from equations (2.33) and (2.45), together
with the similarity transformation of 4* in equation (2.46), construct the 16 fermion
bilinears and their transformation properties as follows:

VW oo Py S scalar
Pysy — det(A) Prysy P pseudoscalar
VY o ALY V vector (2.50)
51“ s —  det(A) AP @y sy A axial vector
Yol = ARAANY Doy T tensor

> Exercise 2.10
Verify the transformation properties of the bilinears in equation (2.50).
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Observe that Py*y = (p,J) is just the current we found earlier in equation (2.7).
Classically p is positive definite, but for the quantum Dirac field you find that the space
integral of p is the charge operator, which counts the number of electrons minus the
number of positrons,

Q~ /daa: Pl ~ /d3p [b'b — dtd)].

The continuity equation d,J#* = 0 expresses conservation of electric charge.

2.7 Charge Conjugation

There is one more discrete invariance of the Dirac equation in addition to parity. It is
charge conjugation, which takes you from particle to antiparticle and vice versa. For
scalar fields the symmetry is just complex conjugation, but in order for the charge conju-
gate Dirac field to remain a solution of the Dirac equation, you have to mix its components
as well:

Y=o =CyT.

Here T = 4T4* and C is a matrix satisfying the condition
C”ny"'l =~V
In the Dirac representation,

. 0 —ig?
C=iry = (-—ia2 0 )

I refer you to textbooks such as [1] for details.

When Dirac wrote down his equation everybody thought parity and charge conju-
gation were exact symmetries of nature, so invariance under these transformations was
essential. Now we know that neither of them, nor the combination CP, are respected by
the standard electroweak model.

2.8 Neutrinos

In the particle data book [2] you will find only upper limits for the masses of the three
neutrinos, and in the standard model they are massless. Let’s look therefore at solutions
of the Dirac equation with m = 0. From Eq.2.9 we have in this case

E¢=0px, Ex=op¢. (2.51)

These equations can easily be decoupled by taking the linear combinations and defining
in a suggestive way the two component spinors v;, and vp,

VREX+$, VL=XxX—¢ (2.52)
which leads to
Evg =o0-pug, Evy,=—-opuy. (2.53)
Since E = |p| for massless particles, these equations may be written,
op op
—v; = -V, ~—Vp =V 2.54
pI2 =T TR R (254
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Since %’ﬁ is identified as the helicity operator (i.e. the spin operator projected in the
direction of motion of the momentum of the particle) we see that the v, corresponds to
solutions with negative helicity, while vg corresponds to solutions with positive helicity.
In other words vy descibes a left-handed neutrino while vp describes a right-handed
neutrino — and each type of neutrino is descibed by a two-component spinor.

The two-component spinors describing neutrinos transform very simply under LT’s,
v — e%a'(a_w)l/[, (2.55)

vg = e170+9) o (2.56)

“where § = nf corresponding to space rotations through an angle  about the unit n
axis, and ¢ = v¢ corresponding to Lorentz boosts along the unit vector v with a speed
v = tanh ¢. Under parity transformations they become transformed into each other,

VL € Vp (257)

so a theory which involves only v, without vg (such as the standard model) manifestly
violates parity.

Although massless neutrinos can be described very simply using two component
spinors as above, they may also be incorporated into the four-component formalism as
follows. From equation (2.2) we have, in momentum space,

[plY = a-p 9.

For such a solution, S

a-p ‘P

VY =5 Dl Y=2 Ip|

using the spin operator S = {3 = 375, with X defined in equation (2.21). But S-p/|p|

is the projection of spin onto the direction of motion, known as the helicity, and is equal

to £1/2. Thus (14+s)/2 projects out the neutrino with helicity 1/2 (right handed) and
(1—~s)/2 projects out the neutrino with helicity —1/2 (left handed),

S R L VR (2.58)

(D

which defines the four-component spinors ¥g and ¥.
To date, only left handed neutrinos have been observed, and only left handed neu-
trinos appear in the standard model. Since

1 1
’)’05(1"’)’5)"/1 = '2'(1'*"75)’701/),

any theory involving only left handed neutrinos necessarily violates parity - as we saw
before in the two-component formalism.
Finally note that in the Dirac representation which we have been using,

7= ((1) (1)) , (2.59)

and the relation between the two-component and four-component formalisms is via the
change of variables in Eq.2.52. However there exists a representation in which this change
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of variables is done automatically and the (massless) Dirac equation falls apart into the
two two-component equations discussed above. In this chiral representation,

pe(20), -

= () 7= (0) e

where we have identified vz and v, as the two-component spinors discussed previously.
These results are also applicable to the electron in the approximation that its mass is
neglected, by the simple transcription vg — eg, v — er. In fact in the standard model
the electrons start out massless, so these results will be of use to Tim Morris in his course.

and hence,

The standard model (and the minimal supersymmetric standard model) contains only left
handed massless neutrinos, and neutrino mass terms are forbidden by gauge symmetry,
at least given the limited number of fields present in the standard model. If extra fields
(e.g. right handed neutrinos) are added then neutrino masses become possible. If neutrino
oscillations are confirmed as the solution to the solar neutrino problem, or are discovered
in laboratory experiments, then such a modification would become a necessity.
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3 Cross Sections and Decay Rates

In section 4 we will learn how to calculate quantum mechanical amplitudes for elec-
* tromagnetic scattering and decay processes. These amplitudes are obtained from the
Lagrangian of QED, and contain information about the dynamics underlying the scat-
tering or decay process. This section is a brief review of how to get from the quantum
mechanical amplitude to a cross section or decay rate which can be measured. We will
commence by recalling Fermi’s golden rule for transition probabilities.

3.1 Fermi’s Golden Rule

Consider a system with Hamiltonian H which can be written
H=H+V (3.1)

We assume that the eigenstates and eigenvalues of Hy are known and that V is a small,
possibly time-dependent, perturbation. The equation of motion of the system is,

i [0 = (Ho + V) [9(2). (5:2)

If V vanished, we could calculate the time evolution of |(t)) by expanding it as a
linear combination of energy eigenstates. When V does not vanish, the eigenstates of
Hj are no longer eigenstates of the full Hamiltonian so when we expand in terms of
" Hy eigenstates, the coefficients of the expansion become time dependent. To develop
a perturbation theory in V we will change our basis of states from the Schrédinger
picture to the interaction or Dirac picture, where we hide the time evolution due to Hy
and concentrate on that due to V. Thus we define the interaction picture states and
operators by,

i (@) = et (),  Oi(t) = eto(g)e e, (3.3)

so that the interaction picture and Schrédinger picture states agree at time t = 0,
|¥r(0)) = |¢(0)), with a similar relation for the operators. In the new basis, the equation
of motion becomes,

2 r(e)) = Vi) W4 (3.4

which can be iterated to yield an infinite series in V,

0 1 st t ta1
[Yi(t)) = [1 +n§1’i; _7{%1 _7%2/_%2" Viit))Vi(ta) - - - Vi(ta) |l (=T/2)) . (3.5)

The interation involves formally integrating Eq.3.4 by writing

/_tT/zdl‘b'(tl)) = /_tm %Vl(tl) [¥rt1)) dts

To first order we insert |1f;¢;)) = [¢;(~7/2)) into the rhs so that we have,

i) ~ W T/ + [ Vit r-T72) (36)
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Then this solution is used in the rhs of the original equation to improve the approxima-
tion, and so on. This process of iteration is useful only if the perturbation V; is small
and so a small number of terms in the serles (i.e. a small number of iterations) may be
taken.

Here, we have chosen to start with some (known) state |;(—T/2)), at time —T/2,
and have evolved it to |1(t)) at time ¢. The evolution is done by the operator, U, that
you've seen in the field theory course: '

[:(t)) = U(t, =T/2) 1 (-T/2)) .
For an infinitesimal time interval the operator U is given by
U(t + 6t,t) = I — iVi(t)ét (3.7)

which is the formal solution to Eq.3.4 over an infinitesimal time.
Now consider the calculation of the probability of a transition to an eigenstate |b)
at time t. The amplitude is,

Glp)) = (brlen(t))
(b] e=*Hot |3y ()
e~ B (b1 (2)),

SO ,(blz,b t))l = l(blz,/), t))' We let V be time independent and consider the amplitude
for a transition from an eigenstate |a) of Hp at t = —T'/2 to an orthogonal eigenstate
|b) at t = T/2. The idea is that at very early or very late times Hy describes some set
of free particles. We allow some of these particles to approach each other and scatter
under the influence of V, then look again a long time later when the outgoing particles
are propagating freely under Hy again. To first order in V, using Eq.3.6 we find

(blr(T/2)) = =i | 7;/:2 (bl Vi(t) |a) dt = i(8|V]a) | ’:/”2 givatys,

(b1 (T/2)) = —i<bIV|a>£sin<wbaT/2) (3.8)
where wy, = Ej — E,.

>Exercise 3.1
Show that for T — oo the first order transition amphtude for general V' can be written

in the covariant form
(b lr(o0)) = =i [d'z 63}V bule),

where ¢;(z) = ¢i(x)e~Ft and ¢;(x) is the usual Schrédinger wavefunction for a stationary
state of Hyp, with energy E;.

The transition rate W, for time independent V is just given by the probability of
the scattering taking place divided by the time T taken,

(b ler(T/2)) |
T

W, = | 2 4sin? wbaT/ 2).

= |®1Via)|
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If E, # E,, this probability tends to zero as T' — oco. However, for E, = E, we use the

result,
1 sin*(wpT/2)

T
21T (wba/2)? = Sl (39)
For long times the transition rate becomes,
2
Wao = 27|(8[V|a)| 6(Es - E.). (3.10)

We need V small for the first order result to be useful and T large so that the delta-
function approximation is good. However, T' cannot be too large since the transition
probability grows with time and we don’t want probabilities larger than one.

The above result assumes a well-spaced discrete set of states. Typically scattering
takes place from some initial state |a) into one of a continuous number dn of final states
closely spaced around |b). In this case since there are dn states to scatter into rather
than just one, we multiply by dn to give a differential transition rate,

dWia = 2dn|(O|V |a)[ (B, ~ E.). (3.11)

If we define a density of final states p(E;) = ﬁ; around |b) with energy E,, the differential
transition rate may be integrated over the final state energy,

Wy = / 27r|(b|V|a)|26(Eb — E,)p(Ey)dE, = 27 p(E,) (b|V|a)|2. (3.12)

This is Fermi’s golden rule. In words it says simply:
transition rate = 27 x density of final states x |amplitude|?.

>Exercise 3.2
Justify the result of equation (3.9) and hence verify Fermi’s golden rule in equation (3.12).

I'll stop at first order in V. The answer you get from the formal solution in equa-

tion (3.5) depends on the form of V and the initial conditions. Your field theory course

~ gives you a systematic way to perform perturbative calculations of transition amplitudes

in field theories by the use of Feynman diagrams. In particular, you've seen the operator

method of generating these diagrams, which I've mirrored in deriving the Golden Rule.

Let’s now move on to see how to get from these amplitudes to cross-sections and decay
rates. This corresponds to finding the density of states factor in the Golden Rule.

3.2 Transition Rates in Quantum Field Theory

We now apply these ideas to quantum field theory. We first discuss the quantum field
theory prediction for the amplitude, then discuss the number of final states, hopefully get-
ting all the normalisation factors straight. We then define the famous Lorentz Invariant
Phase Space.
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Figure 3.1 Scattering (a) and decay (b) processes.

3.2.1 The Amplitude

We saw in the previous section that (b[yr(co)) gives the probability amplitude to go
from state |a) in the far past to state [b) in the far future. In quantum field theory you
calculate the amplitude to go from state |¢) to state |f) to be,

iMgi(2m) 84 (Ps — P), (3.13)

where iMy; is the result obtained from a Feynman diagram calculation, and the overall
energy-momentum delta function has been factored out (so when you draw your Feynman
diagrams you conserve energy-momentum at every vertex). We have in mind processes
where two particles scatter, or one particle decays, as shown in Figure 3.1.

Attempting to take the squared modulus of this amplitude produces a meaningless
square of a delta function. This is a technical problem because our amplitude is expressed
between non-normalisable plane wave states. These states extend throughout space-time
so the scattering process occurs everywhere all the time. To deal with this properly
you can construct normalised wavepacket states which do become well separated in the
far past and the far future. We will be low-budget and put our system in a box of
volume V = L3 1. We also imagine that the interaction is restricted to act only over a
time of order T. The final answers come out independent of V and T, reproducing the
luxury wavepacket ones. We are in good company here: Nobel Laureate Steven Weinberg
says in his recent book, when discussing cross sections and decay rates, “...(as far as
I know) no interesting open problems in physics hinge on getting the fine points right
regarding these matters.” «

In infinite spacetime with plane wave states the transition amplitude from i to f is
given by (3.13). However in our box of finite size L and for our finite time T the amplitude
is given by Eq.3.13 but with the Dirac delta functions replaced by well behaved functions:

(2m)*6*(P; — P) — I(E; - E;, T)I3(P; — P;, L) (3.14)

where for example,

I(E; - B, T) = (E——!l;@ssin (@L—Z—E)—T) (3.15)

Please do not confuse the volume of the cube V = L3 with the potential V introduced earlier
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which is familiar from Eq.3.8. This function has the property that, as T — oo,
I(Ej - E,',T) - 27T5(Ef - E,) (316)
and also
I2(Ef - E,',T) - 27TT5(Ef - E,) (317)

with analagous results for I(Ps — P;, L). Thus in our spacetime box we have the approx-
imate result, ,

|(27r)454(Pf - P.-)I2 ~ VT (2n)*6*(P; - P). (3.15)

The second ingredient in the amplitude is a factor of 1/(2E;V)'/2 for every particle
in the initial or final state (here I am using E; synonymously with wg,). This comes from
converting between relativistic and box normalisations for the states.

The box states are normalised to one particle in volume V and the relativistic states have
2wy, particles per unit volume, thus the states which occur in the amplitude are related by

1K) et ¢— V2V K)o
We shall henceforth use box normalisation for the final states which we simply label by
|7) = |ki,...,ky) and similarly for the initial states which we write as
IR (i @
Allowing for one or two particles in the initial state and NV in the final state,
. 4cd N 1 1
box amp = iM;(2m)*6*(Py — P,)f]__[=1 [\/—ZE—IT/.] ];[ [\/—2=EJ—/—] ,
The squared matrix element is thus:
N
Ibox amp|? = | M [2VT(2r)464(P; — !1’[=1 [ 5 E,V] I [2 E,-V] , (3.20)

where we have used Eq.3.18.

3.2.2 The Number of Final States

For a single particle final state, the number of available states dn in some momentum
range k to k + dk is, in the box normalisation,
d3k
=——V 3.21
dn @) (3.21)
This result is proved by recalling that the allowed momenta in the box have components
which can only take on discrete values such as k; = 2wn,/L where n is an integer. Thus
dn = dngdnydn, and the result follows.
For a two particle final state we have

dn = dn;dn,
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where Pk Pk
1 2
=—=V, dipg=-—
1= Gy = gy
where dn is the number of final states in some momentum range k; to k; +dk, for particle
1 and k; to ks + dk, for particle 2. There is an obvious generalisation to an N particle

final state,

dn

N o, v
dn =] )

=1

(3.22)

3.2.3. Lorentz Invariant Phase Space (LIPS)

Our experience with Fermi’s Golden Rule tells us that the differential transition rate is

given by

[box amp|?dn
T

Note that the energy delta function in Fermi’s Golden Rule has already been taken into
account by the presence of the energy delta function multiplying the original amplitude in
Eq.3.13.

dW = (3.23)

~ Using Eqs.3.22 and Eq.3.20 we find,

AW = | M) '8 (B, — PV ] [ 1 ]1‘[[ . ] ] LV (3.24)
= fi T f i i 2EfV - 2E,V = (271')3 . .
AW = |MyP(r)s Py~ PIVT] | 1 | ] ~Lks (3.25)
, fi f i LU 2BV P (2m)32E; .
This can be written as
_ 12 1 ]
aW =5 |1MuPV ] [2 7] X (LIPS), | (3.26)
where the LIPS is,
N 3
LIPS = (2n)'6*(P; - P) ][ -—od (3.27)

f=1 (271’)3 2Ef )

Observe that everything in the transition rate is Lorentz invariant save for the initial
energy factor and the factors of V (using d3% /2E = d*k&*(k* — m?)0(k®), which is
manifestly Lorentz invariant, where E = (k% + m?)!/2). For a one particle initial state
the factor of V' cancels, and we can breath a sigh of relief (after all we would not expect
physical quantities to depend on the size of our artificial box). For a two initial particle
scattering situation the factors of V' will also cancel in the physical cross-section as we
will show in the next section. I have smuggled in one extra factor, S, in equation (3.23)
for the transition probability. If there are some identical particles in the final state, we
will overcount them when integrating over all momentum configurations. The symmetry
factor S takes care of this. If there n; identical particles of type 7 in the final state, then

s=1I 51-, (3.28)
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>Exercise 3.3
Show that the expression for two-body phase space in the centre of mass frame is given
by
d3k, d3k, 1
(27)3 2wy, (27)3 2wi, 32n2s
where s = P? is the centre of mass energy squared, dQ* is the solid angle element for the
angle of one of the outgoing particles with respect to some fixed direction, and

(27)464 (P — ky — kp) = A2(s, m2, m2)dQ*, (3.29)

AMa,b,¢) = a® + b® + c* — 2ab — 2bc — 2ca. (3.30)

3.3 Cross Sections

The total cross-section for a static target and a beam of incoming particles is defined as
the total transition rate for a single target particle and a unit beam flux. The differential
cross-section is similarly related to the differential transition rate. We have calculated
the differential transition rate with a choice of normalisation corresponding to a single
“target” particle in the box, and a “beam” corresponding also to one particle in the box.
A beam consisting of one particle per volume V with a velocity v has a lux IV given by

v
No=1

particles per unit area per unit time. Thus the differential cross-section ¢ is related to
the differential transition rate in Eq.3.26 by

daw |4
do = Ne = dW x ” (3.31)
where as promised the factors of V' cancel in the cross-section.

Now let us generalise to the case where in the frame where you make your measure-
ments the “beam” has a velocity v; but the “target” particles are also moving with a
velocity v5. In a colliding beam experiment for example v; and v, will point in opposite
directions in the laboratory. In this case the definition of the cross-section is retained as
above, but now the beam flux of particles N is effectively increased by the fact that the
target particles are moving towards it. The effective flux in the laboratory in this case is
given by | |

U1 — Uz
Ny = v
which is just the total of particles per unit area which run past each other per unit time.
I denote the velocities with arrows to remind you that they are vector velocities which
must be added using the vector law of velocity addition not the relativistic law. In the
general case, then, the differential cross-section is given by

aw _ 1 1
No |51 — 9| 4E\E;

where we have used Eq.3.26 for the transition rate, and the box volume V has again
cancelled (phew!). ? We re-emphasise that the velocities in the flux factor, 1/|5; —

do =

S|M ,.-F x LIPS (3.32)

?Because the result is independent of the dimensions of the box, you can think of making the box as
large as you like - say as large as CERN or perhaps as large as the Earth, or the Universe! This means
that there is no reason to worry about the box.
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Figure 3.2 2 — 2 scattering.

7|, are subtracted nonrelativistically. The amplitude-squared and phase space factors
are manifestly Lorentz invariant. What about the initial velocity and energy factors?
Observe that ‘

E\Ey (9 — ©2) = Eop1 — Erpa.

In a frame where p; and p; are collinear,
2

|E2p1 — E1pal® = (p1-p2)? ~ m¥m3, ‘
and the last expression is manifestly Lorentz invariant. Hence the differential cross section
is Lorentz invariant, as is the total cross section,

1 1

0= —— S /
,'Ul - v2| 4E1E2 Z final states

|Mgil* x LIPS. (3.33)

3.3.1 Two-body Scattering
An important special case is 2 — 2 scattering (see Figure 3.2),

a(pa) + b(ps) — c(pc) + d(pa)-

> Exercise 3.4
Show that in the centre of mass frame the differential cross section is,

do S AY%(s,m? mj)
dQ* ~ 647w2s \V/2(s, m2,m?)
The result of equation (3.34) is valid for any | M ;|?, but if [M;|? is a constant you
can trivially get the total cross section.

Invariant 2 — 2 scattering amplitudes are frequently expressed in terms of the
Mandelstam variables, defined by,

|M gl (3.34)

s = Pat+m)? = (pc+pa)

(pa - pc)2 (pb = pd)2 (3'35)
(pa - pd)2 = (Pb = pc)2

In fact there are only two independent Lorentz invariant combinations of the available
momenta in this case, so there must be some relation between s, t and .

> Exercise 3.5
Show that

U

s+t+u=m?+m}+m?+ml
> Exercise 3.6
Show that for two body scattering of particles of equal mass m,

s > 4m?, t <0, u < 0.
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3.4 Decay Rates

With one particle in the initial state the total transition rate is

W:-SZ/ IMi? x LIPS

final states

Only the factor 1/2F is not manifestly Lorentz invariant. In the rest frame, for a particle
of mass m, we have

r=— Z / IMil? x LIPS. (3.36)

final stat&s

This is the “decay rate.” In an arbltrary frame we find, W = (m/FE)I', which has the
expected Lorentz dilatation factor. In the master formula (equation 3.26) this is what
the product of 1/2E; factors for the initial particles does.

3.5 Optical Theorem

When discussing the Golden Rule, we encountered the evolution operator U(t', t), which
you also met in the field theory course. This takes a state at time ¢ and evolves it to
time ¢. The scattering amplitudes we calculate in field theory are between states in
the far past and the far future: hence they are matrix elements of U(oo, —o0), which is
known as the scattering operator or S-operator,

S = U(oo, —00)
Since the S-operator is unitary, we can write,
(S=I)(S'-N)=-((S-N+(S-1D)}). (3.37)

Note that S — I is the quantity of interest, since we generally ignore cases where there is
no interaction (the “I” piece of S). In terms of the invariant amplitude,

(fIS=1Ii) = iMp(2n)*6*(Ps - P)
(FIS-Di) = —iMi(2m)*6*(P; — P)

Sandwiching the above unitarity relation (equation 3.37) between states |7) and |f), and
inserting a complete set of states between the factors on the left hand side,

;(flS—IIm)(m|sf—1|i)
= ZM,mM (27)884(Py — P)8* (P — P,,,)H(2 )32E
= % [MmMin(27)*5*(P; = P)Dn

where D,, is the LIPS for the state labelled by m, containing r,, particles, Dy =
D, (P:;ky,...,k.,). Hence,

) [MinMi D = My = Mp).
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If the intermediate state m contains n; identical particles of type i, there is an extra
symmetry factor S, with,.
1
S=]|]=
]‘:I n,-!

on the left hand side of the above equation to avoid overcounting. The same factor (see
equation 3.28) appears in the cross section formula (equation 3.32) when some of the final
state particles are identical.

If |i) and |f) are the same two particle state, corresponding to two particles scattering
elastically in the forward direction, then

2Im Mi,' = 4ETpi g. (3.38)

This is the optical theorem which relates the forward part of the scattering amplitude to
the total cross-section. If particles of masses m; and m, scatter, then Ey = s!/2 and
4sp? = A(s,m?, m3), where ) is the function defined in equation (3.30). Then the optical
theorem reads, Im My = Ai(s,m?, m3)o.
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4 Quantum Electrodynamics

4.1 The Free Dirac Field

Dirac Field Theory is defined to be the theory whose field equations correspond to the
Dirac equation. We regard the two Dirac fields ¥(z) and ¥(z) as being dynamically
independent fields and postulate the Dirac Lagrangian density:

L = P(z)(iv*0, — m)y(z) (4.1)

The Euler-Lagrange equation
o oL o _, an

leads to the Dirac equation.
The canonical momentum is

_oec ..
@) = 5o0s = W'@) | (4.3)
The Hamiltonian density
H=n)-L= zpfz "/’ (4.4)

which is not positive definite. The general solution to the Dirac equation may be ex-
panded in terms of plane waves

d’k m a —ikz 4 gt a ik.z
Y(x,t) = Wk—o Zz[ba(k)u (k)e + d! (k)v®(k)e*™ 7] (4.9)
a=l,

Boe ) = [ KIS B 0T +du (97" 0e ] (46)

(2m3 ko S5 * '

The total Hamiltonian is
H= / i (4.7)
After some algebra we find
d*k m ! (k t

=[Gk Fobo 2 [EL0)ta 1) ~ (i)l () (4.8)

So far no commutation relations have been assumed, and H could quite easily be
negative, unlike the Hamiltonian in the case of the charged scalars for example which
was positive definite. In order to give a positive definite Hamiltonian we require the
creation and annihilation operators to satisfy anticommutation relations, first proposed
by Wigner:

{ba(1), 81,1} = 21228k = K (49)

{d (k), a'(k')} = (2 7r)3%63(k— K')6oar (4.10)

81



{ba(k), bu (K')} =0 (4.11)

{BL(K), b (K)} =0 (4.12)
{da(k), do(K)} =0 (4.13)
{dl(k),dL ()} =0 (4.14)

The Hamiltonian is then defined as the normal ordered version of Eq.4.8 but with a
change of sign for each interchange of operator

H= / d3x.-¢fi%t'/i: (4.15)
whiéh results in
d’k m ' ’r
H= / ik 2 2[b L (k)b (k) + da(k)df, (k)] (4.16)

which is now postive definite.
Anticommutation implies Fermi statistics-for example:

{8k.(k), B, (&)} =0

= b} (k)bl (k) =0
= bl (k)b! (k)]0 >=0

so that two quanta in the same state are not allowed (Pauli exclusion principle).
The charge operator is

Q= f d*x : jo(z) : / d’x : ylioy

Q= [ 5k 098 (K) — dL (el (@17)

a—l 2

which shows that b' creates fermions while d' creates antifermions of opposite charge.
Finally the equal time commutation relations are (after some algebra):

{Bi(x, 1), ¥1(x, 1)} = 63(x ~ x')d (4.18)
{¢i(x, t)1¢j(x’1t)} =0 (419)
{vlx1), 0}, 0)} =0 (4.20)

In fact at all times we have:

{¢(2),¥()} =0 (4.21)
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4.2 The Free Electromagnetic Field

The four Maxwell equations are:

v.E=? vxg=_2B
€0 ot

V-B=_0 VxB=,uoj+uoeoaa—Et:

It is straightforward to show that
9p

'5t'+v'.]=0

In covariant form,
0uj* =0

where j* = (cp, j).
It is convenient (and even essential) to introduce scalar and vector potentials ¢ and
A by defining
B=VxA E=-V¢-—0A/ot.

whence two of the Maxwell equations become automatic.
Recall the gauge invariance of electrodynamics which says that E and B are un-
changed when

A—A+VA and ¢—-)¢—%:-

for any scalar function A. Gauge invariance corresponds to a lack of uniqueness of the
scalar and vector potentials. This lack of uniqueness can be reduced by imposing a
further condition on the scalar and vector potentials, for example

104
V-A=-52E

Assuming that ¢ and A can be combined into a four vector
A* = (¢/c, A)

this can be written as
0,A" =0 (4.22)

which is known as the Lorentz gauge condition. Gauge invariance in four-vector notation
is just:
A¥ 5 A+ 9,A (4.23)

Note that even the imposition of the Lorentz gauge condition does not completely fix the
vector potential; it merely restricts the function A to satisfy

8°A =0 (4.24)
With the Lorentz gauge condition Maxwell’s equations are equivalent to

8% A* = poj*
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The tensor F,, is defined by
FI'“I = al_‘Ay - ayA”
F,, clearly has six independent components, and can be written:

0 E E, E
~E, 0 -B, B,
-E, B, 0 -B
-E, -B, B, 0

F, =

It is straightforward to show that,

2
F,,F* = -3 (% - 32)

euupaFupra- = __i'E‘B

where

—1 if pvpo is an odd permutation of 0123
0  otherwise
This gives the relativistic invariants which can be constructed from E and B.
It is easy to see that in any gauge the Maxwell equations can be written,

{ +1 if pvpo is an even permutation of 0123
Hvrr —

9, F™ = j*

The Maxwell equations, in this compact form, can be reproduced by the following La-
grangian density,

L= —-}Fu,,F’“’ A (4.25)

via the Euler-Lagrange equations for each of the four A, fields separately.
In Lorentz gauge the Lagrangian density has the more general form:

L=~ ~ A%~ 515(3,,#)2 (4.26)

where £ is a free parameter. The EL equations then imply
8™ + %6"(3,‘#‘) = (4.27)

which reduce to Maxwell’s equations in Lorentz gauge. The extra term in the Lagrangian
density —513(6,‘A“)2 thus has no effect on physics in Lorentz gauge. In fact it is possible
to turn the argument around and use this term to fix the gauge to be Lorentz gauge
by imposing current conservation instead of obtaining it as a consequence of Maxwell’s
equations. If one adds the extra term to the Lagrangian and imposes current conservation
then Eq.4.27 implies immediately the Lorentz gauge condition by the antisymmetry of
F*¥, For this reason the extra term is referred to as a gauge fizing term and € is a

Lagrange multiplier. The choice £ =1 is known as Feynman gauge although it is within
the framework of the Lorentz gauge.
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As usual we can expand the field A,(z) in its Fourier components

Auz)(x,t) = / (2d;113<2 [a,(k)e™** + a3, (k)e™?] (4.28)

where w = kg = |k|. The Lorentz gauge condition implies

k.a(k) =0 (4.29)

This implies that X
ao(k) = k.a(k)

where k = k/|k|. Thus the time component of a, equals the longitudinal component
a.k. Of course only the transverse components are physical (since the E and B fields are
always orthogonal to the three momentum) and it can be shown that the contribution
to the Hamiltonian from the time component and longitudinal component cancel against
each other. In fact it is possible to completely specify the gauge by requiring that

ao(k) = k.a(k) =0
which is called' Coulomb gauge. In Coulomb gauge we can write

k)= 3 AR

A=1,2

where e;\t(k) are two orthonormal spacelike vectors in the plane transverse to k.
In a general Lorentz gauge we can write:

au(k) = > a*k)ey(k)

A=0,1,2,3

where now e,’)(k) are arbitrary unit four-vectors. Suppose that k is along the third axis,
k = (w,0,0,w) then we can define the basis vectors as:

1 0 0 0

o_10 1|1 2_ 10 3_ 1|0

=10l €=lol €=11| €=10 (4.30)
0 0 0 1

so that we call A = 1,2 the physical transverse polarisations, A = 0 the unphysical
timelike polarisation and A = 3 the unphysical longitudinal polarisation. Clearly,

ke? =0

and

e =gM

which is in fact a basis independent result, although we shall always work in this basis.

We shall now quantise the free e.m. theory (j# = 0). To quantise the theory
canonically we introduce the canonical momenta
ac

= (4.31)
m
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and impose the equal time covariant canonical commutation relations

[Au(x,t), 7 (X', )] = igé®(x — x') (4.32)
[Au(x,1), A, (X, 2)] =0 (4.33)
[ru(x,t), 7, (x',t)] =0 (4.34)
Now if the Lagrangian were simply
1
£ - —ZF‘“,F”U (4.35)
then we would find that . ocr
T =——=0
dA,

which would imply that 7% always commutes with A°, which loses us both covariance
and quantum mechanics at a stroke!

We clearly need a n° that does not vanish. In order to do this we need to change
the Lagrangian without changing the physics. But we have learned how to do this in
Lorentz gauge ‘which corresponds to the Lagrangian:

L= —%F#VF“" - —g(a AH)? (4.36)

and the field equations: .
amw—u—?@@Aﬂ=o (4.37)

Henceforth for simplicity we shall take £ = 1 which is called Feynman gauge (a sub-class
of Lorentz gauge).

At first sight this doesn’t help us because we find

oL
m 0 — = —B”A“
04,
which apparently vanishes in Lorentz gauge. However we shall only assume that matrix
elements of 9, A* vanish rather than imposing the operator condition that it vanish.
In Feynman gauge we have the field equations:

A, =0 (4.38)
and we can once again expand the A, field in plane wave solutions similar to the previous
section:

Ay(z) = 2d§§‘2 f:[e#(k (k)= + " (k)a (k)] (4.39)

Here e;}(k) are the set of four linearly independent vectors defined in Eq.4.30, but now we

regard a and its hermitian conjugate as operators whose commutation relations readily
follow from Eq.4.32

[@*(k), @ (k)] = =™ 2ko(2m)%8% (k — K) (4.40)
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For longitudinal and transverse photons quantisation proceeds in the usual way. But for
timelike photons with A = A’ = 0 we have a negative quantity on the rhs which gives
problems. This leads to timelike photons with negative norm. However it is possible to
overcome these problems using the Gupta-Bleuler formalism. However at this point we
prefer to abandon the canonical approach and move on to the path integral approach
which has its own problems.

We have seen that the freedom to make gauge transformations means that the A#*
fields are not uniquely specified, and this causes problems with the theory in the canonical
formalism. It should be no surprise that these problems persist in the path integral
approach.

The generating functional in this case is

Zo[J] / DA, e[ d'alerira,) (4.41)
where £ is the Lagrangian for the free photon field which we might naively take to be
L= —%F,,,,F“" (4.42)

(since we have already found problems with this form in the canonical formalism it really
is naive to expect it to work here). The field equations in this case are as in Eq.4.27

8,F* =0 (4.43)

which can be written as

(900® — 8,8,)A* =0 (4.44)

After partial integration and discarding surface terms we can write the generating func-
tional as
ZolJ) o [ DAy et o 0,014 4) (4.45)

By now.we know that the photon propagator D,, is going to be the inverse of the operator
in square brackets, and it will satisfy the equation:

(910 = 8,8,) D" (z — y) = 6,6%(z — ) (4.46)

If we multiply this equation by 8* we get zero multiplying D”*(z — y) on the lhs and
something non-zero on thhe rhs, which would seem to imply that D¥*(z — y) is infinite.
In fact the problem is that the operator in square brackets does not have an inverse! To
show this all we need to do is show that it has a zero eigenvalue, and this can easily be
done:

(9 0® — 8,0,)0"2 =0
for any function (.

From the point of view of the path integral the problem is that the functional
integral is taken over all A, including those related by a gauge transformation, leading
to an infinite overcounting in the calculation of the generating functional, and hence an
infinite overcounting for the Green’s functions which are obtained from it by functional

differentiation. To cure this problem we need to fix a particular gauge, and we do this
by imposing the Lorentz gauge condition:

0,A* =0 (4.47)
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Recall the Lagrangian with gauge ﬁxing term,
1

L=-7

F F™ — ‘,z—lf(a,‘,cw)2 (4.48)
and the field equations: .
0°Au—(1- Z)au(auA”) =0 (4.49)

After partial integration and discarding surface terms we can now write the generating

functional as P .
ZolJ] / DA, ([ 4'o3 41000+ (3 -1)0,0,]4" +1 Ay (4.50)

and the operator in square brackets now has an inverse given by

kuke
d*k [g“u + (£ - 1)"1‘3—] e—ik-(z=v)

Du(z —y) = (2m)¢ - k2 + i€ (4.51)
The Fourier transform of the Feynman propagator is thus
G + (€ — 1) 23

D (k) = - [ow + (€ - V] (4.52)

k? + ie
Amongst this class of gauge choices two common choices are Feynman gauge (£ = 1) and
Landau gauge (€ = 0).
4.3 Feynman Rules of QED

QED involves the interaction of electrons and photons where the interaction corresponds
to the Lagrangian

Lint = —ePpy* A . (4.53)

Such an interaction may be introduced by the concept of “minimal substitution” familiar
from classical electrodynamics. The momentum and energy become:

P—=p—€cA
E—wE-ed

or in four vector notation, the four momentum becomes:

Applying this classical concept of minimal substitution to the Dirac equation gives:

(P -m)lp=0 (4.54)
where we have introduced the covariant derivative notation
D, =0, +ieA,

The QED Lagrangian describing electrons, photons and their interactions is then given

by,
L= —%F#,,F‘“’ - %(B”A")z +B6D - m)y. (4.55)
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Here, D, = 9, + ieA, is the electromagnetic covariant derivative, F,, = 9,4, — 8,4
and (8-A)%/2 is the gauge fixing term for Feynman gauge.

The QED Lagrangian is invariant under a symmetry called gauge symmetry, which
consists of the simultaneous gauge transformations of the photon field:

u

A, A+ 0A (4.56)
and a phase transformation on the electron field
P — e~y (4.57)

The point is that the value of the phase transformation given by the same gauge function
A(z) as controls the photon gauge transformation. It is important to emphasise that
A(z) is a function of = so that the action of a derivative on e~**1) will yield two terms
by the product rule. However the simultaneous gauge transformation of the photon field
means that the covariant derivative of ¢ transforms like % itself under the combined
gauge transformations above:

Dyp — e D,y (4.58)

Thus the QED Lagrangian is invariant under the simultaneous transformations above,
referred to collectively as a gauge transformation.

In this section we are going to get some practice calculating cross sections and decay
rates in QED. The starting point is the set of Feynman rules in Table 4.1 derived from the

For every ... draw ... write ...
. —ig"’
Internal photon line $ ¢ -
p ANNANNN e
.. 1 m
Internal fermion line d - M
p— p? —m? +ie
B a
Vertex g —ieYhs
bu
Outgoing electron T,
Incoming electron up
Outgoing positron vp
Incoming positron Uy
"‘Outgoing photon e
Incoming photon e

¢ Attach a directed momentum to every internal line
e Conserve momentum at every vertex

Table 4.1 Feynman rules for QED. p, v are Lorentz indices and a, 3 are spinor indices.
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Figure 4.1 Lowest order Feynman diagram for electron-muon scattering.

QED Lagrangian above. The fermion propagator is (up to factors of i) the inverse of the
operator, g —m, which appears in the quadratic term in the fermion fields, as discussed in
Dave Dunbar’s lectures. The derivation of the photon propagator, along with the need for
gauge fixing, was discussed in section 4.2. The external line factors are easily derived by
considering simple matrix elements in the operator formalism, where they are left behind
from the expansions of fields in terms of annihilation and creation operators, after the
operators have all been (anti-)commuted until they annihilate the vacuum. One could
consider for example the process ¥ — e*e~. In path integral language the natural objects
to compute are Green functions, vacuum expectation values of time ordered products of
fields: it takes a little more work to convert them to transition amplitudes and see the
external line factors appear.

The spinor indices in the Feynman rules are such that matrix multiplication is per-
formed in the opposite order to that defining the flow of fermion number. The arrow on
the fermion line itself denotes the fermion number flow, not the direction of the momen-
tum associated with the line: I will try always to indicate the momentum flow separately
as in Table 4.1. This will become clear in the examples which follow. We have already
met the Dirac spinors v and v. I will say more about the photon polarisation vector ¢
when we need to use it.

4.4 Electron—Muon Scattering

To lowest order in the electromagnetic coupling, just one diagram contributes to this
process. It is shown in Figure 4.1. The amplitude obtained from this diagram is

iMy; = (—ie) T(pc)v"u(pa) (_Zi”") (—ie) T(pa)vou(ps)- (4.59)

Note that I have changed my notation for the spinors: now I label their momentum as an
argument instead of as a subscript, and I drop the spin label unless I need to use it. In
constructing this amplitude we have followed the fermion lines backwards with respect
to fermion flow when working out the order of matrix multiplication.

The cross-section involves the squared modulus of the amplitude, which is

4
2= pu
IMal™ = 5 Ly Ly o
where the subscripts e and u refer to the electron and muon respectively and,

Ligy = ©(pe) v u(pa)a(pa )y u(pe),

. . . . “p
with a similar expression for Lé‘:).
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> Exercise 4.1
~ Verify the expression for [M ;|2

Usually we have an unpolarised beam and target and do not measure the polarisation
of the outgoing particles. Thus we calculate the squared amplitudes for each possible spin
combination, then average over initial spin states and sum over final spin states. Note that
we square and then sum since the different possibilities are in principle distinguishable.
In contrast, if several Feynman diagrams contribute to the same process, you have to
sum the amplitudes first. We will see examples of this below.

The spin sums are made easy by the following results (I temporarily restore spin

labels on spinors): .

Zwm'@)=¢+m

(4.60)
EW@W@ p-m

> Exercise 4.2
Derive the spin sum relations in equation (4.60).

Using the spin sums we find,

= E Mgl = — tr( “Batme) 1 (Botme)) tr (v tm, ) etm,)).

spms

Since all calculations of cross sections or decay rates in QED require the evaluation of
traces of products of gamma matrices, you will generally find a table of “trace theorems”
in any quantum field theory textbook [1]. All these theorems can be derived from the
fundamental anticommutation relations of the gamma matrices in equation (2.28) to-
-gether with the invariance of the trace under a cyclic change of its arguments. For now

it suffices to use,
te(dl) = 48b

tr(dliidd) = 4(abed—a-cbd+adbc) (4.61)
tr(y#t--.q#*) = 0 forn odd

b Exercise 4.3
Derive the trace results in equation (4.61)

Using these results, and expressing the answer in terms of the Mandelstam variables
of equation (3.35), we find,

- Z |Mfz|2 (s + u? —4(m +m )(s+u) +6(m§+m2)2),

spms

This can now be used in the 2 — 2 cross section formula (3.34) to give, in the high energy

. ) 2 2
limit, s,u > Mg, M,
4

d 2 4 g2
g __€ s+u . (4.62)
dQ* 32m%s .2
for the differential cross section in the centre of mass frume.

> Exercise 4.4 :
Derive the result for the electron-muon scattering cross section in equation (4.62).
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Po — Pd = Db —

Figure 4.2 Lowest order Feynman diagrams for electron-electron scattering.

Other calculations of cross sections or decay rates will follow the same steps we have
used above. You draw the diagrams, write down the amplitude, square it and evaluate
the traces (if you are using spin sum/averages). There are one or two more wrinkles to
be aware of, which we will meet below.

4.5 Electron—Electron Scattering

Since the two scattered particles are now identical, you can’t just replace m, by m, in
the calculation we did above. If you look at the dlagram of Figure 4.1 (with the muons
replaced by electrons) you will see that the outgoing legs can be labelled in two ways.
Hence we get the two diagrams of Figure 4.2.

The two diagrams give the amplitudes,

. e _ _
iMy = -(pe) 1 u(Pa)B(pa)Yut(ps),

t. 0
iMay

—%E(Pd)')’“ u(Pa)T(Pe) Vuu(P)-

Notice the additional minus sign in the second amplitude, which comes from the anti-
commuting nature of fermion fields. You should accept as part of the Feynman rules for
QED that when diagrams differ by an interchange of two fermion lines, a relative minus
sign must be included. This is important because

IMpl? = M+ My,

so the interference term will have the wrong sign if you don’t include the extra sign
difference between the two diagrams.

4.6 Electron—Positron Annihilation
4.6.1 ete” —ete”

For this process the two diagrams are shown in Figure 4.3, with the one on the right
known as the annihilation diagram. They are just what you get from the diagrams for
electron-electron scattering in Figure 4.2 if you twist round the fermion lines. The fact
that the diagrams are related this way implies a relation between the amplitudes. The
interchange of incoming particles/antiparticles with outgoing antiparticles/particles is
called crossing. This is a case where the general results of crossing symmetry can be
applied, and our diagrammatic calculations give an explicit realisation. Theorists spent
a great deal of time studying such general properties of amplitudes in the 1960’s when
quantum field theory was unfashionable.
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Figure 4.3 Lowest order Feynman diagrams for electron—positron scattering in QED.

4.6.2 ete~ — putp~ and ete” — hadrons

If electrons and positrons collide and produce muon-antimuon or quark-antiquark pairs,
then the annihilation diagram is the only one which contributes. At sufficiently high
energies that the quark masses can be neglected, this immediately gives the lowest order
QED prediction for the ratio of the annihilation cross section into hadrons to that into
ptu,

o(e*e~ — hadrons) _

k= olete = ptp~)

3 ij Q% (4.63)

where the sum is over quark flavours f and @y is the quark’s charge in units of e. The
3 comes from the existence of three colours for each flavour of quark. Historically this
was important: you could look for a step in the value of R as your e*e™ collider’s cMm
energy rose through a threshold for producing a new quark flavour. If you didn’t know
about colour, the height of the step would seem too large. Incidentally, another place
the number of colours enters is in the decay of a 7° to two photons. There is a factor of
3 in the amplitude from summing over colours, without which the predicted decay rate
would be one ninth of its real size.

At the energies used today at LEP, of course, you have to remember the diagram
with a Z replacing the photon. We will say some more about this later.

> Exercise 4.5

Show that the cross-section for ete™ — u*pu™ is equal to 47a?/(3s), neglecting the lepton
masses.

4.7 Compton Scattering

The diagrams which need to be evaluated to compute the Compton cross section for
ve — ~ye are shown in Figure 4.4. For unpolarised initial and/or final states, the cross
section calculation involves terms of the form

EA: " (p) (p), (4.64)

where A represents the polarisation of the photon of momentum p. Since the photon
is massless, the sum is over the two transverse polarisation states, and must vanish
when contracted with p, or p,. In addition, however, since the photon is coupled to
the electromagnetic current J* = yy#9) of equation (2.7), any term in the polarisation
sum (4.64) proportional to p* or p” does not contribute to the cross section. This is
because the current is conserved, §,J# = 0, so in momentum space p,J* = 0. The
upshot is that in calculations you can use,

; &"(p) &x(p) = —g**, (4.65)
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Figure 4.4 Feynman diagrams for Compton scattering.

since the remaining terms on the right hand side do not contribute.

94



Figure 5.1 Diagrams for vertex renormalisation in QED up to one loop.

5 Introduction to Renormalisation

5.1 Renormalisation of QED

Let’s start by considering how the electric charge is defined and measured. This will
bring up the question of what happens when you try to compute higher loop corrections.
In fact, the expansion in the number of loops is an expansion in Planck’s constant £, as
you can show if you put back the factors of % for once.

The electric charge ¢ is usually defined as the coupling between an on-shell electron
and an on-shell photon: that is, as the vertex on the left hand side of Figure 5.1 with
p? = p? = m?, where m is the electron mass, and ¢% = 0. It is € and not the Lagrangian
parameter e which we measure. That is,

e _ 1
4~ 137

We call é the renormalised coupling constant of QED. We can calculate € in terms of e
in perturbation theory. To one loop, the relevant diagrams are shown on the right hand
side of Figure 5.1, and the result takes the form,

2
é=e+es[alln£2-+b1]+--- (51)
m

where a; and b, are constants obtained from the calculation. The €3 term is divergent,
so we have introduced a cutoff M to regulate it. This is called an ultraviolet divergence
since it arises from the propagation of high momentum modes in the loops. The cutoff
amounts to selecting only those modes where each component of momentum is less than
M in magnitude. Despite the divergence in (5.1), it still relates the measurable quantity é
to the coupling e we introduced in our theory. This implies that e itself must be divergent.
The property of renormalisability ensures that in any relation between physical quantities
the ultraviolet divergences cancel: the relation is actually independent of the method used
to regulate divergences.

As an example, consider the amplitude for electron—electron scattering, which we
considered at tree level in section 4.5. Some of the contributing diagrams are shown in
Figure 5.2, where the crossed diagrams are understood (we showed the crossed tree level
diagram explicitly in Figure 4.2). Ultraviolet divergences are again encountered when
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Figure 5.2 Some diagrams for electron-electron scattering in QED up to one loop.
the diagrams are evaluated, and the result is of the form,

M2
iMy; = coe? + €[y l“}'n_z"'d‘] 4o (5.2)

where ¢y, ¢; and d; are constants, determined by the calculation. In order to evalu-
ate My; numerically, however, we must express it in terms of the known parameter é.
Combining (5.1) and (5.2) yields,

M2
iMfi = Coé\2 + é4 [(CI - 20160) ln —T)’? + d1 - 2blco] 4. (53)

where the ellipsis denotes terms of order €° and above. Since |M;|? is measurable,
consistency (renormalisability) requires,

= 20100.

This result is indeed borne out by the actual calculations, and the relation between M;
and € contains no divergences:

iMy; = coé® + €*(d; — 2b1co) + O(E°). (5.4)

To understand how this cancellation of divergences happened we can study the con-
vergence properties of loop diagrams (although we shall not evaluate them). Consider
the third diagram on the right hand side in Figure 5.1 and the middle diagram in Fig-
ure 5.2. These both contain a loop with one photon propagator, behaving like 1/k? at
large momentum &, and two electron propagators, each behaving like 1/k. To evaluate
the diagram we have to integrate over all momenta, leading to an integral,

d*k

I~ -—
large k k4 ’

(5.5)

which diverges logarithmically, leading to the In M? terms in (5.1) and (5.2). Notice,
however, that the divergent terms in these two diagrams must be the same, since the
divergence is by its nature independent of the finite external momenta (the factor of two
in equation (5.3) arises because there is a divergence associated with the coupling of each
electron in the scattering process). In this way we can understand that at least some of
the divergences are common in both (5.1) and (5.2). What about diagrams such as the
third box-like one in Figure 5.27 Now we have two photon and two electron propagators,
leading to, )
I~ &E
large k kS

This time the integral is convergent.
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Figure 5.4 Diagram containing a primitive divergence.

Detailed study like this reveals that ultraviolet divergences always disappear in re-
lations between physically measurable quantities. We discussed above the definition of
the physical electric charge é. A similar argument applies for the electron mass: the
Lagrangian bare mass parameter m is divergent, but we can define a finite physical mass
m.

In fact you find that all ultraviolet divergences in QED stem from graphs of the
type shown in Figure 5.3 and known as the primitive divergences. Any divergent graph
will be found on inspection to contain a divergent subgraph of one of these basic types.
For example, Figure 5.4 shows a graph where the divergence comes from the primitive
divergent subgraph inside the dashed box. Furthermore, the primitive divergences are
always of a type that would be generated by a term in the initial Lagrangian with a
divergent coefficient. Hence by rescaling the fields, masses and couplings in the original
Lagrangian we can make all physical quantities finite (and independent of the exact
details of the adjustment such as how we regulate the divergent integrals). This is what
we mean by renormalisability.

This should be made clearer by an example. Consider calculating the vertex correc-
tion in QED to one loop,

ulle
=a(p)[Ay* + Ba*q, + Cg*y* + - - |u(p).
Ve PN\

The calculation shows that A is divergent. However, we can absorb this by adding a
cancelling divergent coefficient to the 1Ay term in the QED Lagrangian (4.55). The B
and C terms are finite and unambiguous. This is just as well, since an infinite part of B,
for example, would need to be cancelled by an infinite coefficient of a term of the form,

Yo" Fu 9,

which is not available in (4.55).

In fact, the B term gives the QED correction to the magnetic dipole moment, g, of
the electron or muon (see page 160 of the textbook by Itzykson and Zuber [1]). These
are predicted to be 2 at tree level. You can do the one-loop calculation (it was first done
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by Schwinger between September and November 1947 (3]) with a few pages of algebra to -

find,
a
g= 2(1+ -2_71")

This gives g/2 = 1.001161, which is already impressive compared to the experimental
values [2]:
(9/2)etectron 1.001159652193(10),
(9/2)muon 1.001165923(8).

Higher order calculations show that the electron and muon magnetic moments differ at
two loops and above. Kinoshita and collaborators have devoted their careers to these
calculations and are currently at the four loop level. Theory and experiment agree for
the electron up to the 11th decimal place.

The C term gives the splitting between the 2s;/2 and 2p,/, levels of the hydrogen
atom, known as the Lamb shift. Bethe’s calculation [4] of the Lamb shift, done during a
train ride to Schenectady in June 1947, was an early triumph for quantum field theory.
Here too, the current agreement between theory and experiment is impressive.

In discussing the vertex correction in QED, we said that the divergent part of the
A term could be absorbed by adding a cancelling divergent coefficient to the ¥ At term
in the QED Lagrangian (4.55). When a theory is renormalisable, all divergences can be
removed in this way. Thus, for QED, if the original Lagrangian is (ignoring the gauge-
fixing term),

1 — — -
£ = —ZF;WF”V + “P(?%b - e’/’Ad’ - m"p"/)s
then redefine everything by:

v=2" s,  A=2"4
. Z . .
e=Zee=ZZ—;/—Ze, m = Znm,

where the subscript R stands for “renormalised.” In terms of the renormalised fields,

1 v . - AT Aoty
L= _ZZ3FRuuF£ + 1229 @R — 21EY R ARYR — Zm ZoTp pYR.

Writing each Z as Z = 1 + 6Z, reexpress the Lagrangian one more time as,

1 v o = "=
£ =~ FruF} +bpfvn - nhrdn — ippr + (62 terms).

Now it looks like the old lagrangian, but written in terms of the renormalised fields, with
the addition of the § Z counterterms. Now when you calculate, the counterterms give you
new vertices to include in your diagrams. The divergences contained in the counterterms
cancel the infinities produced by the loop integrations, leaving a finite answer.

The old A and v are called the bare fields, and e and m are the bare coupling and
mass.

Note that to maintain the original form of £, you want Z, = Z,, so that the @ and
éA terms combine into a covariant derivative term. This relation does hold, and is a
consequence of the electromagnetic gauge symmetry: it is known as the Ward identity.
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5.2 Renormalisation in Quantum Chromodynamics

Qcp is a theory of interactions between spin-1/2 quarks and spin-1 gluons. It is a
nonabelian gauge theory based on the group SU(3), with Lagrangian,
L——lG“ G““"+Z$ 6D - my) +ga.ugeﬁxinga.nd (5.6)
T T4 Tw 7 / II¥f T ghost terms '

Here, a is a colour label, taking values from 1 to 8 for SU(3), and f runs over the quark
flavours. The covariant derivative and field strength tensor are given by,

5.7
Gh, = OuA, -0, A +yg f“"cAZAf,, 67
where the f°% are the structure constants of SU(3) and the T° are a set of eight in-
dependent Hermitian traceless 3 x 3 matrix generators in the fundamental or defining
representation (see the pre school problems and the quantum field theory course).

As in QED gauge fixing terms are needed to define the propagator and ensure that
only physical degrees of freedom propagate. The gauge fixing procedure is more compli-
cated in the nonabelian case and necessitates, for certain gauge choices, the appearance
of Faddeev-Popov ghosts to cancel the contributions from unphysical polarisation states
in gluon propagators. However, the ghosts first appear in loop diagrams, which we will
not compute in this course.

There are no Higgs bosons in pure QCD. The only relic of them is in the masses for
the fermions which are generated via the Higgs mechanism, but in the electroweak sector
of the standard model.

A fundamental difference between QCD and QED is the appearance in the nonabelian
case of interaction terms (vertices) containing gluons alone. These arise from the nonva-
nishing commutator term in the field strength of the nonabelian theory in equation (5.7).
The photon is electrically neutral, but the gluons carry the colour charge of QCD (specif-
ically, they transform in the adjoint representation). Since the force carriers couple to
the corresponding charge, there are no multi photon vertices in QED but there are multi
gluon couplings in Qcp. This difference is crucial: it is what underlies the decreasing
strength of the strong coupling with increasing energy scale.

In Qcp, hadrons are made from quarks. Colour interactions bind the quarks, produc-
ing states with no net colour: three quarks combine to make baryons and quark-antiquark
pairs give mesons. It is generally believed that the binding energy of a quark in a hadron
is infinite. This property, called confinement, means that there is no such thing as a free
quark. Because of asymptotic freedom, however, if you hit a quark with a high energy
projectile it will behave in many ways as a free (almost) particle. For example, in deep
inelastic scattering, or DIS, a photon strikes a quark in a proton, say, imparting a large
momentum to it. Some strong interaction corrections to this part of the process can be
calculated perturbatively. As the quark heads off out of the proton, however, the brown
muck of myriad low energy strong interactions cuts in again and “hadronises” the quark
into the particles you actually detect. This is illustrated schematically in Figure 5.5.

We now try to repeat the procedure we used for renormalising the coupling in QED,
but this time in QCD, which is also a renormalisable theory. If we define the renormalised
coupling § as the strength of the quark-gluon coupling, then in addition to the diagrams
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Figure 5.5 Schematic depiction of deep inelastic scattering. An incident lepton radiates a
photon which knocks a quark out of a proton. The struck quark is detected indirectly only
after hadronisation into observable particles.

()

]

Figure 5.6 Additional diagrams for vertex renormalisation in QCD up to one loop. The dashed
line denotes a ghost. For some gauge choices and some regularisation methods not all of these
are required.

of Figure 5.1, with the photons replaced by gluons, there are more diagrams at one loop,
shown in Figure 5.6. Looking at the second of these new diagrams, it is ultraviolet
divergent (containing a In M2 term), but also infrared divergent, since there is no mass
to regulate the low momentum modes. In QED all the loop diagrams contain at least
one electron propagator and the electron mass provides an infrared cutoff (you still have
to worry when the electron is on-shell, but this is not our concern here). In the second
diagram of Figure 5.6 there is no quark in the loop. Now suppose we choose to define
the renormalised coupling off-shell at some non-zero ¢g2. The finite value of ¢? provides
the infrared regulator and the diagram has a term proportional to In(M?%/¢?).

Thus in QCD we can’t define a physical coupling constant from an on-shell vertex.
This is not really a serious restriction since the QCD coupling is not directly measurable
anyway. Now the renormalised coupling depends on how we define it and therefore on
at least one momentum scale (in almost all practical cases, only one momentum scale).
The renormalised strong coupling is thus written,

a(g®).

When physical quantities are expressed in terms of §(g?) the coefficients of the pertur-
bation series are finite. :
It would of course be possible to define the renormalised QED coupling to depend on

some momentum scale. However, the on-shell definition used above is a natural one to
pick.
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Figure 5.7 Running of the strong coupling constant with renormalisation scale.

You can define counterterms for QCD in the same way as was demonstrated for
QED. Now the gauge coupling g enters in many terms where it could get renormalised
in different ways. In fact, the gauge symmetry imposes a set of relations between the
renormalisation constants, known as the Slavnov—Taylor identities, which generalise the
Ward identity of QED.

' We have just seen that the renormalised coupling in QCD, §(q?), depends on the
momentum at which it is defined. We say it depends on the renormalisation scale, and
commonly refer to § as the “running coupling constant.” We would clearly like to know
just how § depends on ¢?, so we calculate the diagrams in Figures 5.1 and 5.6, to get the
first terms in a perturbation theory expansion:

R M?
i =g+¢'laln g +b] 4o (5.8)

where a; and b, are constants and g is the “bare” coupling from the Lagrangian (5.6).
I have switched to using u? in place of ¢2, and have written § as a function of u for
convenience. From this equation it follows that,

% = B(g) = 2015+ - (59)

The discovery by Politzer and by Gross and Wilczek, in 1973, that a; > 0 led to the
possibility of using perturbation theory for strong interaction processes, since it implies
that the strong interactions get weaker at high momentum scales — §(oo) = 0 is a stable
solution of the differential equation (5.9). Keeping just the §3 term, we can solve (5.9)
to find,

) 4n

4t Boln(u?A2)’
where A is a constant of integration and By = 327%a;. Thus a;(u) decreases logarith-
mically with the scale at which it is renormalised, as shown in Figure 5.7. If for some .
process the natural renormalisation scale is large, there is a chance that perturbation
theory will be applicable. The value of S is,

os(p) = (5.10)

fo=11- %nf, . (5.11)

where n; is the number of quark flavours. The crucial discovery when this was first
calculated was the appearance of the “11” coming from the self-interactions of the gluons

101



- via the extra diagrams of Figure 5.6. Quarks, and other non-gauge particles, always con-
tribute negatively to By. Nonabelian gauge theories are the only ones we know where you
can have asymptotic freedom (providing you don’t have too much “matter” — providing
the number of flavours is less than or equal to 16 for Qcp).

What is the significance of the integration constant A? The original Qcp La-
grangian (5.6) contained only a dimensionless bare coupling g (the quark masses don’t
matter here, since the phenomenon occurs for a pure glue theory), but now we have a
dimensionful parameter. The real answer is that the radiative corrections (in all field
theories except finite ones) break the scale invariance of the original Lagrangian. In
QED there was an implicit choice of scale in the on-shell definition of é&. Lacking such a
canonical choice for QCD, you have to say “measure o at u = Mz” or “find the scale
where a; = 0.2,” so that a scale is necessarily involved. The phenomenon was called
dimensional transmutation by Coleman. A is given by,

-

and is p-independent. The explicit x dependence is cancelled by the implicit x depen-
dence of the coupling constant. Today it has become popular to specify the coupling by
giving the value of A itself.

We’ve seen that the coupling depends on the scale at which it is renormalised.
Moreover, there are many ways of defining the renormalised coupling at a given scale,
depending on just how you have regulated the infinities in your calculations and which
momentum scales you set equal to u. The value of §(u) thus depends on the renormal-
isation scheme you pick, and with it, A. In practice, the most popular scheme today
is called modified minimal subtraction, MS, in which integrals are evaluated in 4 — ¢
dimensions and divergences show up as poles of the form e~" for positive integer n. In
the particle data book [2] you will find values quoted for Ajg around 200 MeV (it also
depends on the number of quark flavours). Don’t buy a value of A unless you know which
renormalisation scheme was used to define it.

In Figure 5.7 you see that the coupling blows up at # = A. This is an artifact of
using perturbation theory. We can’t trust our calculations if as(x) > 1. In practice,
you can perhaps use scales for 4 down to about 1GeV, but not much lower, and 2 GeV
is probably safer. This region is a murky area where people try to match perturbative
calculations onto results obtained from a variety of more or less kosher techniques.

(5.12)

> Exercise 5.1
Extending the expansion of § in terms of g in (5.8) to two loops gives

.\ M? M2 M?2
g(ﬂ’) =g+g3[alln'_2"+b1] +gs[a21n27+b21n7+c2],

with a similar equation for §(u,) in terms of g. Renormahsablhty implies that §(u) can
be expanded in terms of §(u,),

§() = 30 87 (o)X

n=0
where the X, are finite coefficients. Show that this implies that a, is determined once
the one loop coefficient a, is known. In fact a; determines all the terms (o5 In p)*, called

the leading logarithms: from a one loop calculation, you can sum up all the leading
logarithms.

102



For QED there is no positive contribution to the beta function, so the electromagnetic
coupling has a logarithmic increase with renormalisation scale. However the effect is small
even going up to LEP energies: o goes from 1/137 to about 1/128. The so called Landau
pole, where « blows up, is safely hidden at an enormous energy scale.

103



Acknowledgements

I would like to thank Jonathan Flynn for donating to me his notes, and his beautiful latex
files of this course from which I stole shamelessly. These notes are based heavily on those,
and some sections are copied almost verbatim. According to Jonathan his notes owe a
similar debt to his predecessors Chris Sachrajda and Tim Jones, who should therefore
also be thanked. It is a pleasure to thank Steve Lloyd for organising and the school and
Ann Roberts for keeping everything running smoothly. I would also like to thank my
fellow lecturers, the tutors and the students for making the school so entertaining.

References

(1] T J R Aitchison and A J G Hey Gauge theories in particle physics, 2nd ed Adam
Hilger 1989
J Bjorken and S Drell Relativistic Quantum Mechanics McGraw-Hill 1964
F Mandl and G Shaw Quantum Field Theory Wiley 1984
L Ryder Quantum Field Theory Cambridge University Press 1985

[2] Particle Data Group, Physical Review D50 (1994) 1173
[3] J Schwinger, Physical Review 73 (1948) 416
[4] H A Bethe, Physical Review 72 (1947) 339

104



THE STANDARD MODEL

By Dr T R Morris
University of Southampton

Lectures delivered at the School for Young High Energy Physicists
Rutherford Appleton Laboratory, September 1996



106



September, 1996.

The Standard Model.

Tim R. Morris

Physics Department
University of Southampton
Southampton, SO17 1BJ, UK

107



Contents.
1. Introduction.
1.1 Perturbative Renormalisability.
1.2 The Field Content of the Standard Model.

2. The Strong Interactions.
3. Left Handed and Right Handed Fermion Fields.
4. The Electroweak Interactions and The Leptons.

5. Spontaneous Symmetry Breaking.
5.1. A Global U(1) Model.
5.2. A Local U(1) Model.
5.3. The Higgs.
5.4. Weak Interactions of Quarks.
5.5. The CKM Matrix.

6. Why Renormalisability?

7. Problems.

108



1. Introduction.

The form of the Lagrangian of the standard model is completely determined by
three general requirements:

1) Invariance under the gauge group: SU(3) x SU(2) x U(1).

2) The choice of matter fields (i.e. fermions and scalars) together with their transfor-
mation properties under the gauge group (i.e. the representation).

3) Perturbative renormalisability.

Do not worry if this is not obvious! I will shortly explain why the form of the La-
grangian is completely constrained by these requirements. I will try to point out where
these requirements and choices are practically inevitable (for phenomenological or theo-

retical reasons) and where there are uncertainties.

Requirements (1) and (2) summarise all the qualitative information we have gleaned
so far from experiment. Requirement (3) is a theoretical consideration, the motivation for
which will be discussed in the last lecture, which leads to the following further constraint

on the form of the Lagrangian:

A perturbatively renormalisable Lagrangian is constructed by including in the
Lagrangian all and only those couplings allowed by symmetries, with zero or

positive mass dimension, and all possible mass terms allowed by the sxmmetries.1

This further constraint thus leads to certain predictions that can be tested by exper-
iment. In principle one could also require some global symmetries be satisfied, e.g. the
continuous U(1) groups corresponding to baryon number conservation, and conservation
of the three separate Lepton numbers, or discrete symmetries such as CPT, but these

symmetries turn out to be already automatically satisfied once the above constraints are
imposed.

Notice that the above requirements determine only the form of the Lagrangian. They

do not determine the parameters, i.e. physically the couplings, masses etc. We will see

1 Actually there is a rather important proviso to this rule: the kinetic terms must not hide any
mass parameters. We will come back to this later.
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that the standard model Lagrangian has 19 parameters in total, and at present we can
only know the physical values of these parameters by determining them from precision

experiments.

1.1. Perturbative Renormalisability.

As I have already stated, I will leave the motivation for this rule to the last lecture,
but let me note here that this is really two issues, namely, “Why renormalisability?”
and “Why perturbative?”. The second of these issues is easy to answer, so I will do
so here. For the electromagnetic interactions, the weak interactions (those mediated by
the intermediaf:e vector bosons), and at high energies also the strong interactions (as a
consequence of asymptotic freedom), the strength of the interaction is small and therefore
treating the interactions as perturbations (of a world with no interactions) seems sensible.

The situation is much less clear for the Higgs sector.

1.2. The Field Content of the Standard Model.

I believe that by now, barring only the Higgs field, the qualitative features of the
standard model can be regarded as so well experimentally tested and established that there
can be little doubt that these features are correct. There could in principle be even other
low energy physics beyond the standard model hiding away in the present data (if they are
sufficiently difficult to detect e.g. neutrino masses, axions etc. ) and certainly there has to
be higher energy physics beyond the standard model, but all of these represent additions
to the standard model and not modifications of the presently posited gauge group, field
content and representations (viz. assignment of charges). Therefore I will for the most part |
simply state what these are, with the odd few ounces of justification, and leave the task

of demonstrating just how solid the phenomenological evidence is, to my colleague Nigel

Glover.
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2. The Strong Interactions.

All the hadrons we have seen so far (with the possible exception of the odd resonance)
correspond to one of two types: baryons with three quarks (and of course antibaryons with
three anti-quarks) or mesons with a quark and an anti-quark. This pattern can be neatly
understood if the quarks are assumed to come in three colours, i.e. each quark is a vector

of three Dirac fermions
Qred
g = | Qgreen )
dblue

forming a 3 of SU(3), subject to a colour force mediated by 8 bi-coloured gluons — the
gauge particles of local SU(3). It is then energetically favourable for the bound states to
be colour neutral, much as it is in QED for charged particles to be bound in electrically

neutral atoms. The colour neutral combinations are nothing but
g

and
€ijk9i4;9k

describing the mesons and baryons. Here 1, 7, k are colour indices.

Aside: A quick reminder how the ‘construction kit’ for the Lagrangian looks for any
gauge group. (See Dave Dunbar’s course.) If we want some non-Abelian symmetry to be

a local symmetry so that the global symmetry
P(z) = UP(z)
where U is some ‘rotation’ (i.e. representation of a non-Abelian group), becomes instead
P(z) = U(z)p(z)

then wherever fields in different places are compared e.g. in ¥ (z)y*8,%(z), we need to
introduce a gauge field A,(z) to soak up the remainder resulting from different amounts
of rotation in the two different places. We do this by replacing 0, by

D, =0, —igA,T*
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where T are the generators of the group - satisfying
[Ta., Tb] = ifabcTc ,
and fob¢ are the structure constants. Now, since

¥(2) = ¢t @)U (z) = 912U (2)

for a unitary group, Jy“D,,z,b is invariant providing that
D, Zzl(:z:)D“Ll‘l(:z:) . (2.1)
Substituting in the formula for D, we see that A, gauge transforms as

A%(2)T° > U(z) ASTU (z) + gU(x)BuU'l(m)

For a general .gauge transformation like this, there is not any simpler form, but for a small

gauge transformation U(z) = expie®(z)T?, the answer can be written down as

SA%(2)T® = =8,e%(z)T* — i[ALT®, e°T°

Q= |

or 6A%(z) = ~0,e%(z) + fr AL (z)e%(z)

We need something now to act as the gauge invariant kinetic term? for the gauge field.

The unique answer lies in considering the field strength
e i
T F:u(x) = E[Dp)Du]

Despite appearances, this is not a differential operator but a field. Indeed, if you use the
fact that

0u{f(z)¥(2)} - f(2)0u¥(z) = {0,f (z) }o(z) ,
(where f(z) here is any function), you see that
T*Fp, = 8,AST® — 8,A%T° — ig[ALT®, AST] |

so that
Fj(z) = 8,A% — 8,A% + g f** AL AS

2 .. aterm in the Lagrangian with only two fields and with two or less space-time derivatives
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Now, using equation (2.1) we have,
T°F2,(z) ~ U(z)FS, (z)T°U ™ (z)
and thus . b b
Fig(z)Fs(z) = 2T {(T°F25)(T°F25)}
— Tr {U(z)(TF2g) (T Fs)U~ (7))} .

We see that the U’s cancel by cyclicity of the trace, and therefore F;, F°H is invariant as
required. (N.B. it can be shown that f abe i5 totally antisymmetric.3 ) End of Aside.

(@2)

Quarks have been discovered in six flavours, u,d, ¢, s, ¢, b, but QCD is flavour blind and
treats them all the same (hence the approximate strong interaction symmetries of isospin
which ‘rotates’ u into d etc). Renormalisability only allows the field strength squared
term and minimal coupling of the glue to the quarks, and thus (given the conventional?
normalisation of the kinetic, bi-linear terms) we obtain uniquely

ACQCD = Cglue + ['19 + Z (iquq - mqqq) ) (2'3)
flavours
where Lotue = —%G{}UG’A“" ’ (2.5)
A 1

The field strength and the covariant derivative are given by
G4, =08,G8 - augﬁ + 93 f4BCGEGS AB,C=1,---,8 ,
and D, =08, - z‘g3GﬁT4

Here the (TA){ 's are the eight 3 x 3 traceless Hermitian matrices, the generators of the
SU(3) group, conventionally normalised so that

Tr (TATB) = %6'48

(Let me clear up some possible sources of confusion: I will for the most part understand

the T4’s as matrices, the spinors (g) as column vectors, and the barred spinors (g= a'v)

® Exercise! Proof follows from £ = Tr ([T°, T%|T*).
4 except that they must of course have the right sign!
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as row vectors in the colour space, and therefore suppress the explicit indices i, j, k,+ - -
(and so-on also for other internal groups). Of course I am also doing that for the Dirac
indices so réally g = Qia, Where i is a colour index and a a Dirac index. Once you get
used to it, it does not take long to figure out from the context all the different indices that
ought to be attached in various places. Secondly note that G{} is the gluon gauge boson
and Gﬁ,, is its field strength. You can tell the two apart by the number of Lorentz indices,
so it is helpful just to call them both G.)

Aside: We could have taken the flavours j = u,d, ¢, s,t,b, and written a mass matrix
so that the fermion terms take the form

Lquark = inDQj - Qjmjqu ) (26)

where the matrix mji is required Hermitian for Lqusrx to be real. But by a unitary
transformation in flavour space gx —> Qxxrqrr, we can diagonalize the matrix Mmjk, i.e. we
choose Qi so that (Qf)ij Qjx = bix, and

m, 0 0 0 0 0
0 mg 0 0 0 0O
Am=1 4 o 9 me, 0 0
0 0 0 0 m O
0 0 0 0 0 my

Because this leaves the g¢'s kinetic term (~ J;; in flavour space) alone, this transformation
turns this Lagrangian back into the original Locp. Therefore Lagrangian (2.6) is effectively
identical to that in (2.3). We should mention that these Lagrangians do not describe the
real way the quarks get masses. They are allowed, in fact required by renormalisability,

at the moment but they will not be allowed once we consider the charges under weak
interactions. '

You see that there are actually two sorts of field-strength squared. The second one, the
QCD 9 term, is a bit peculiar (although clearly allowed since any arrangement of Lorentz
indices in (2.2) gave a gauge invariant term). It can be shown to be a total divergence
Ly = 9,K,, and so it is tempting to throw it away since what actually enters in the path
integral is the action S = f d% L. Therefore, Ly results in just a ‘surface term’. But for

certain special field configurations these surface terms cannot be ignored. For small g3,
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the important configurations are called ‘instantons’ and lead to non-perturbative effects
of order ~ exp —872/g3. Now notice that Ly violates CP. (It is easiest to see this by
noting that L9 ~ Go1Ga3 etc. must violate T invariance [t — —t and Gy — —Gy) and
then use the fact that for all field theories CPT is conserved.) Experimentally however,
CP appears to be conserved by QCD! The strongest bound on strong CP violation comes
from putting limits on the neutron electric dipole moment implying 9gcp < 10~7. Why
is it so small? No-one knows. This is the strong CP puzzle. (For completeness, let me add
-without explanation- that the bound above applies only once we have chosen our quark

masses all to be real —otherwise these also result in CP violating effects.)

We can read off from the Lagrangian the QCD Feynman rules. The propagators are

the same as have appeared in the other lectures (up to a few more Kronecker delta’s):

—i§4B8
TR

W

Fig.1. The gluon propagator.

(Actually, this is only true in a certain gauge called Feynman gauge.)

Fig.2. The quark propagator.

while the Feynman rules are
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P
9f45C [g* (p - )P + g"P(g — )" + ¢°*(r — p)"]
r
0
B q
) C
Fig.3. The gluon three-point interaction.
u A c D
—i92 [fEABfECD (gypgua' - guagup)
+ fE'ACfEDB (guagpu — g;wgpo')
+ fEADfEBC’ (guugcp _ gupgau) ]
p
B
v C
Fig.4. The gluon four-point interaction.
i
101
A v
g (T ) J-'Ygﬁ
i
j

B

Fig.5. The gluon-quark interaction.

Note that the 9gcp term does not have Feynman rules because it is a surface term with
effect only at |z| = oo (i.e. only global effects); it fails to appear at any order of perturbation
theory! Also along with the gauge fixing one obtains ghosts and their propagators and
interactions (see Dave Dunbar’s course).
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Of course, there are fermions other than the quarks in the standard model. These are
the leptons which, by definition, do not feel the strong force. The gluons carry no other
charges except colour, but the quarks do carry other charges. Their electromagnetic charges
are Q = —1/3 for d,s,band Q = 2/3 for u, c, t (as follows from the quark assignements and
electromagnetic charges of the hadrons). In addition the quarks feel the weak interactions
— which is our next subject. '

3. Left Handed and Right Handed Fermion Fields.

We will very soon need to talk about left handed and right handed Fermi fields because
the weak interactions are chiral (that is, they depend on the handedness). We can project
out the left handed and right handed components of a (massless) fermion by introducing

the ‘projection operators’
Pr=2(1-1s) and Pp=3(1+17s)
We then define
YL = Py and Yr=PFry ,
where 1 is a Dirac fermion. Because Pr, + Pr =1 (c.f. Problem 1), 4 can be split in two:

Y = (PL+ Pr)Y =vr +¥r
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Physically, these fields correspond to the following situation (c.f. Problem 1):

p

Fig.6. The physical meaning behind left handed and right handed helicity. Note that
the “right handedness” refers to the fact that classically the spin turns as a right-handed
screw.

These two guys are mirror images of each other, so you can see that chiral interactions
must break parlty 5 Now, the kinetic term for the Dirac field also splits into two

= )@Y = iYL @Y1, + iPrPUr
because $rdvr = ' PLy°+*8, Pry
| = Y11 Pry*0,Pay
= ¢1y%y#0,PLPrY =0
and similarly ®r@¢r = 0. (These steps follow using the results from Problems 1 and 2.)

From this we see again that for massless fields we can just have left handed or right handed
spinors — throwing the other half away. Not so, if they are massive since

myyp = m(YrYL + YLYR)

(c.f. Problem 2). We see that the mass, by coupling right handed spinors to left handed

spinors acts as an amplitude for flipping the helicity; helicity is not conserved for massive
fermions.®

5 Parity = a reflection + a rotation.

6 This is fundamentally because spin is not conserved, only the total angular momentum J =
L + S is conserved. See Steve King’s course.
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4. The Electroweak Interactions and The Leptons.

We start with the leptons because their interactions are easier to describe than those of
the quarks, for a reason that will become clear later. By now, numerous experiments have
shown that the weak interactions allow transmutation of the left handed component of the
lepton into a left handed neutrino (and vice versa). (This started with the famous Cobalt
60 experiment of Mme. Wu et al [1956] in which the electron in the 8 decay was seen
to be preferentially polarised.) Right handed neutrinos, so far as we can tell, are never
produced or transmuted by the weak interactions. These interactions are well described

by the process

Fig.7. Leptonic decay of the muon by weak interactions.
for example, which mathematically requires the introduction of the left handed and right
handed spinors and assignement of the left handed lepton and corresponding left handed

neutrino into SU(2) doublets (weak isospin):

w02 () ()

i=e,u,T
Here, you should understand that v,, Vu, Vr stand for the left handed fermion fields only.
Since no evidence for right handed v’s exists, we do not introduce them. The right handed
leptons I; = eg, pg, Ty (with i = e, 1, 7) do not couple to the charged weak vector bosons
so they must be SU(2) singlets. (Note the notation: a little ! for a singlet and a big L for
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doublet. This pattern will be used consistently through the lectures.) The action of the
weak isospin SU(2) is defined by the generators which may be represented as T, = 0,/2

on the doublets, where the o, are the Pauli matrices

01 _ (0 - _(1 o0
a=(13) »=(i5) =0 3)
The action of the generators on the singlets is trivial:

Tali =0 i.e. Ta

0 for a=1,2,3.

The electric charge matrix @ must be a generator of the gauge group, so that the
photon and QED are incorporated. Notice that the entries in the doublets differ by unit
charge and so eQ must have a component eQ ~ €T3, but clearly this is not enough because
the charges of the doublets would be *e/2, and the singlets !; would have charge 0. On
the other hand you see that the charges in the singlets and doublets are right if we shift
by a constant charge (—3 for the doublets, —1 for the singlets). Thus

eQ=e{T3+Y/2} , (4.1)

where Y is the hypercharge and is just proportional to the unit matrix on both doublets
and singlets ~ and thus is the generator of a separate U(1) group: [T,,Y] = 0. This
explains the assignement of SU(2) x U(1) for the electroweak gauge group. We have the
weak hypercharges Y = —2 for singlets and Y = —1 for doublets i.e.

Yi; = -2l YL;=-L;

Now we are in a position to write down the Lagrangian

1

1
Low =~ SWa,W - 2B*B, IueakEuvos W H W

NS

YT 3272
. - . ao"" 1 . “L -

+1 _ Z Lj |0 - zngy-i- + -2‘2913;4 TG (4.2)

+i Y T (8, +ig1Bu) vl

J=e,n,T
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Here we have introduced the U(1) gauge field B, which couples to weak hypercharge. Its
corresponding coupling is g;. The triplet of gauge fields W couple to weak isospin - and
their coupling is g2. The field strengths are

W2, = 0, W2 — 8, W2 + gae P WEW; a,b,c=1,2,3
B“u = a“By - a,,B#

Once again, the Lagrangian is completely determined by the requirement of renormalis-
abity.

You see that there is also a ¥ term for the SU(2) gauge fields. Just as in QCD, this
leads to non-perturbative effects ~ exp —872 /g2 but because weak interactions are so small
(g2 << 1), these effects are so negligable (at least in normal situations) that it is not usual
to include this term in the standard model. The B field does not have such a term: the
reason is that certain topological arguments’ show that unless the gauge group is ‘bigger
than or equal to’ SU (2) (strictly contains SU(2) as a subgroup) then the surface terms
can indeed be ignored.

Note that the Lagrangian contains no mass terms! Preservation of gauge invariance
forbids us from writing down mass terms ~ mZW;"W,“z etc. for the gauge fields and we
cannot write down masses for the fermions because the right handed guys transform dif-
ferently from the left handed guys. (We would want to try to write ~ m[Ll + L] but L
is a vector and [ is a scalar in weak isospin space so these indices do not match and nor
are the combinations hypercharge neutral.) Obviously these masslessness properties are a
phenomenological disaster: electrons, muons and taus do have masses, and there is no such
thing as a long range (~ 1/r%) SU(2) weak force so three gauge bosons must somehow get
a mass also, leaving. massless the one gauge boson coupling to the charge Q.

At the moment the electric charge is somewhat hidden in the couplings to the fermions:
Y
92T3W3 + 01 EB#

but because the kinetic terms for these guys

1
~1 {(6“W3 - 6.,W3)2 + (ayBu - avBu)z}

7 which would unfortunately take too long to explain
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are just the canonical sum of squares we can rotate to a new basis
B, \ _ [cosdw ~—sindw A,
w3 ~ \sindw cosdw z, ’
leaving the kinetic terms still properly normalised. In this new basis the couplings look as
. Y R 4
(gz sindwTs + g1 cos ﬂw? Ay + | g2c0s9wT3 — g3 sin ﬂw; Zy .

Thus, if A, is to be the massless photon we need

g2sindy =e and. gicosdw =e
9192

Vi + 93

50 tandw = g1/92 and e=

This is illustrated in the little diagram below.

Fig.8. Definition of the Weinberg angle.
Yw is the Weinberg angle. Z, is the Z boson that better somehow become heavy. We see

that it couples to the fermions as

ez, (cbt IwTs — tan ﬂw-lg—)

= € — sin?
Zu sin 9y cos Iw (75 = sin® 9w Q)

In this last step I have used the formula (4.1) for Q. You see that Z,, unlike the photon,

couples to neutrinos (through T3) thus generating ‘neutral current’ weak interactions such
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as v, e~ scattering:

Fig.9. v, e~ scattering via their neutral current weak interactions.

Let us look at just one of the fermions f (i.e. f = e, u,T, or one of the neutrinos)
but both its left handed component and right handed component (if it has one). Both

couplings of the Z, can be written then as

z _ €
T sin 9w cos Ow

{FLZP,(ts — sin® 9w) fL + FRZPyu(—sin® OwQ) fr}

where I have written ¢3 as the eigenvalue of T3, used the fact that T3fr = 0, and written
eQ as the electric charge of f. Note that for neutrinos the fr term disappears anyway

because Q = 0 in this case. Now we reexpress this in terms of Dirac fermions,

fovtfo =i —s)f
fRY*fr=F*3Q+s)f

resulting in

LZ = ¢ f L f -— f .
int 92sin 6W cos "9W fZP"Y (CV CA75)f
where

Cﬁ =13 and C{, = t3 — 2sin® IwQ
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Thus we can write the Feynman rule

f
(0
yA —ie
wl(rf _ S
2 sin Oy cos Oy | (CV CA”“)
T
f

B

Fig.10. The Z-fermion interaction.

With this information, Problem 3 of the problems can now be attacked. We will see

later that the same Feynman rule applies to quarks. You only need that they effectively

form SU(2) doublets ~ ( 3) With this information, Problem 4 may also be started.

Note that the Z° is chargeless because [@, T3] = 0, while the couplings TYW}} + T2 W?

do not commute with Q. If we change basis by writing this sum as

] Wl - iw? W1+ W2
o (Ty +iTy) T (T —iTy) 2
VAL f“ ) V2
T, —— T ———
Wi | W

where T, = (8 é) and T_ = ((1) g), are SU(2) raising and lowering operators

respectively, then we see that Wui have charges +e because
(@, T:) = (T3, Te] = 2T

With the changes to physical vector particles all in place, one can read off the Feynman

rules from Legw. The gauge boson self-couplings are
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p
A k e[(k = Q)aguw + (2 = P)ugru + (2 — k) 920
A"
q
W
Fig.11. The AWW interaction.
+
Wy,
ecot dy [(k - Q)z\g;.w + (q - p)ugz\u + (P - k)yg)\u]
Wi

Fig.12. The ZWW interaction.

Guector bosons [2gyvg)\p = Gur9vp — g#pgw\]

P

Fig.13. The weak vector boson four-point interactions.

where gyector bosons are the following weights, depending on the vector bosons involved in
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the four-point interactions:
gww+w-w- = ie2/sin? 9y
gw+w-aa = —ie?
gw+w-zz = —ie? cot? 9y
GW+W-4AZ = —ie? cot I
Let me cheat a little and put the masses Mz and My + in anyway so that we can do some
phenomenology. (Later we will see that the following steps are correct after all.) Let us

look again at the charged current interaction of figure 7. Plugging the change of variables
above, into the Lagrangian Lpw we see that the relevant interactions are [check it!]:

92 - -, I
=YW Ve = ——————E7Y*W I (1 - 75)1,
\/5 LY Wy Ve 2\/§sin19w 24 y.( 75) e
and similarly

e
— 4P WH(1 -
2v/2sin 9y WY W (L =)

The propagator (Feynman gauge)

W, A Wy i
3! v g% — M, +ie
q
Fig.14. The weak vector boson propagator.

collapses to the simple form ig,,/M% at low momenta and so the Feynman diagram in
figure 7, is equivalent at low energies to an interaction

. 2 .
(—Z) (2\/52;2“9‘”) (A;%,) 17“')”'"(1 - 75)ﬂé7ﬂ(1 - 75)Ve

(Here the first three factors of ¢ all come from the ¢ in ezs.) But this is the old Fermi
current-current interaction, except that the coupling would be written —Gr/v/2. Thus we

deduce the Fermi constant:

v
"~ 8M3, sin® 9w
(Now you have all that is needed for Problem 4.)

Gr

The neutral current that couples to Z* is given above

JNC = ¥ (05 - was) f o
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and evidently leads to the same effective form

2
_ e 1 \ ,nc N  _ _o . GF Nc NCH
(2sin19wcosﬁw) (Mg) Jude” = 2p\/§J“ I ’

where the p parameter is given as

- My
P= MZcos?ow

and you see that 2p is the ratio of neutral and charged current interaction strengths.

5. Spontaneous Symmetry Breaking.

Why can we not just write down masses as we did above? It breaks the gauge invariance,
but you should ask: do we really need gauge invariance? The real problem is not gauge
invariance but the loss of fenormalisability and/or unitarity. In the kinetic part of the field
strength for say the Z boson, which in momentum space looks as Z,, ~ p,Z, — p,Z,, the
longitudinal component Zﬁ'  p, slips through:

szf —puzﬁ =0

When we add a mass term

2
mzzﬁ ~ m? (Z{;) +ee

to the Lagrangian, it is the only term that appears for the longitudinal component and
thus has to play the role that the momentum dependent kinetic term normally plays. To
apply the requirements of perturbative renormalisability we then have to normalise this

term by Zﬁ’ — Z{; /m so that its ‘kinetic’ term appears as

S= %/d“z (z5)*

In this form Zﬁ has mass dimension two, and so you will find it cannot have any inter-
actions (i.e. cubic or higher in the fields) with itself or anything else without introducing

perturbatively non-renormalisable couplings (i.e. with negative mass dimension).
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(Perhaps you have asked yourself why you cannot simply add a term that will give a
sensible kinetic term for Z, e.g. (8,Z,)2. If you have not, then ignore this paragraph!
The answer is that adding such a term always results in a wrong sign for one of the

components of the Z:
~1(8,2,)* = —3(8,20)* + }(8.21)* + 3(0,25)? + 1(8,2s)*

This then leads to severe unphysical behaviour such as negative probabilities etc. . Gauge
invariance is there to eliminate this unphysical behaviour, which it does because the time
component may always be gauged away to Zp = 0 — but remember we have now broken
the gauge invariance.)

A way out of this apparently insuperable problem is to use spontaneous symmetry
breaking.

5.1. A Global U(1) Model.

The simplest example for our purposes is a single complex scalar field
£ = 8up* 00 — V(lo]?)
The theory is invariant under a global U(1) symmetry, namely phase redefinition
(16"
prre @
By perturbative renormalisability, the interaction potential has the form

V(Ilel?) = M2l + Aol*

but in principle there is nothing wrong with M2 < 0. In this case the potential looks as
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| Red

Fig.15. The potential V(|p|?) with negative M2.
We can think-of this ¢ field as loads of little arrows,

Imé¢
N

¢ (x)

—>Red

Fig.16. Complex ¢(z) field as coupled set of ‘arrows’.
one for each position in space, nearest neighbours weakly coupled together through the
kinetic term 8,¢*0*¢. Indeed, if we had chosen the arrows not to live in a plane but in
three dimensional space (i.e. ¢ = %, a = 1,2,3 instead) then this would be a model for
a ferromagnet. (¢ would represent the local magnetization — the total spin in some small
domain.) With the potential in the form above, the minimum energy of the system is not
where ¢ = 0 but with ¢ equal to some value g on the circle

As a result the system has ‘spontaneously magnetized’, and the vacuum (that is, the
lowest energy state) has spontaneously broken the U(1) symmetry. So far this discussion
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has been purely classical, but the same is true in the quantum field theory: although
quantum fluctuations can alter the position of the ‘spins’ locally, they cannot ‘pick up’ the
whole vacuum state and rotate it to a new bosition wo because the whole vacuum has too
much inertia. (In the ferromagnet analogy: although quantum fluctuations cause spihs
to fluctuate locally, they cannot cause a macroscopic change of direction for the overall
magnetization, in any finite time interval, because this would cost a macroscopic amount
of energy.) We can see intuitively what the fluctuations correspond to, also. There will be
radial fluctuations o (along the direction y,) that see a potential ~ m2¢2 and are therefore
massive. On the other hand there are fluctuations where the ‘spins’ fluctuate away from ¢g
by going round the circle (‘spin waves’). These cost no potential energy and are therefore
massless. In fact in any situation where the energetics are such that the vacuum state
spontaneously breaks a (global) symmetry of the theory, there will be alternative vacua
(reached mathematically by applying the symmetry to the vacuum state) and there will be
massless modes corresponding to local fluctuations along these directions. These massless

modes are known as Goldstone bosons.

Returning to our example, let us use phase invariance to set ¢p to be real:

[ M2
where v= -

(Here the factor of 1/v/2 has been taken out of the definition of v, just for convenience.)

po =

Sl

We write
o(e) = 5 [o-+o(@) + ina)]

where sigma and 7 are real, so that o and 7 represent the fluctuation fields around the

vacuum ezpectation value v. Substituting, one obtains, after some algebra,
L=1(8,0) + 3(0um)? = W?0? + Line

where Lint = =Mv(c? + 7%)o — %(a2 + 72)?
We see that indeed the o particle has a mass
m2 = 2\v?

and = is the massless Goldstone boson.
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5.2. A Local U(1) Model.

Next consider what happens when we make the invariance local:
1 . . . .
Loa=—7FuF* + (9, +igAu)p* (0" — igd¥)p — V(l¢?)

With the same potential as before, the field ¢ will again want to choose |p|? = —M?2/(2)).
But this time the Goldstone boson m(z), corresponding to local phase fluctuations, is not

entirely physical because ¢ — e oW ¢(z) can be undone with a gauge transformation
1
Au(z) = Au(z) + 7 wa(z)

i.e. the 7 field can be considered instead to be part of the vector field! To see clearly what
is going on, we need to pick the unitary gauge which corresponds to using the local phase
invariance to fix everywhere ¢(z) to be real. In this gauge, fluctuations about the vacuum
expectation value are just

o(z) = [v+0(z)] /V2 (5.1)
and

Loa= —%F,,,,F‘“’ + %gzvaz + %(6,,0)2 — Mv?0? 4 cubic and quartic interactions

The gauge field has gained a mass,
my =g ,

and Goldstone’s 7 field has disappeared. It has been ‘eaten’ by the gauge field: the massive
vector field now has three degrees of freedom (at rest, it points in some spatial direction)
while the massless vector field had only two (two transverse polarizations of the photon).
This is the so-called Higgs mechanism. It is worth remarking that this local U(1) L is
almost precisely the phenomenological Lagrangian used to describe superconductivity. In-
side the superconductor, the photon is indeed massive (the Meissner effect). It is called
‘Phenomenological’ because the field ¢ is used to describe the average effect of the con-
densate of Cooper pairs of electrons. All that is required is that the field be bosonic (so

that its particles form a condensate) and have the right quantum numbers (g = —2e in
this case).
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Now I want to finish this section with something strange (that does not have any
interpretation in terms of superconductivity). Suppose that there existed a fermion whose
right handed component ¥ was electrically neutral, but whose left handed component v,
had charge g = —2e. In this case the constraints of gauge invariance and renormalisability
uniquely determine the 1 part of the Lagrangian £ = L,4 + Ly so that

Ly = QUL + WPrPVR — My PLOVR — AyPrY Yy

(Notice that the two Yukawa interaction terms are complex conjugates of each other — as
required by the reality of £.) You see that no mass term is allowed because ~my (Prr +
PrYyL) is not chargeless. But once the symmetry is broken as in eqn. (5.1), we obtain
Yukawa interactions with the o field, and a mass term for ¢ with

my = Agv/V2 ()

We can use this relation to replace the Yukawa coupling Ay, in Ly by the ratio of the mass
of the fermion and the vacuum expectation value of the scalar field:

/\¢ = ?m,,, . (5.2)

Now let us apply these ideas to solve the problem of mass in the standard model.

5.3. The Higgs.

Spontaneous symmetry breaking solves our previous problems because this way of gain-
ing mass is renormalisable. The problems of renormalisability come from the very short
wavelength high energy interactions and these modes could not care less that a zero energy-
momentum infinitely long wavelength part has chosen some non-zero solution of the equa-
tions of motion. The properties of renormalisability are encoded in the Lagrangian — not
the solutions of the equations of motion. (Nevertheless, the fact that renormalisability does

now follow, is not at all obvious mathematically and it was 't Hooft’s great acheivement
in 1971, to prove that this is so.)

All we need now is something bosonic with the right quantum numbers and a choice
of couplings that make it condense. It could be a single scalar Higgs field, i.e. a single
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representation, or it could be several representations. It could be just as fundamental as
the other fields or it could be standing in for a condensate of bound states, like ¢ did for
the Cooper pairs, or something more exotic.

While the Higgs these days is beginning to be constrained by the precision LEP exper-
iments, the Higgs sector is still much the weakest in the standard model. The standard
model corresponds to the simplest assumption: namely that the Higgs is a ‘genuine’ scalar
field H(z) in a single representation. The solution is then unique. Since we want to provide
masses for the leptons, H(z) better be equivalent to a weak isospin SU(2) doublet with
hypercharge Y = 1 so that the combination ~ A(LHI+IH!L) is invariant and hypercharge
neutral. [check it!] Remembering the formula (4.1) for the electric charge, we have,

ht
=)

with the charges as indicated.

By global SU(2) x U(1) transformations, we can always choose the vacuum expectation
value to be real and in the h? direction — which is what we want if we require Q to take
its conventional form [c.f. (4.1)):

Q=Ts+Y/2 <« Q(0)=0

v

(In another basis @ is still defined to be the one unbroken generator. Things look different
mathematically but the physics is just the same.)

Renormalisability now fixes uniquely the form of the Higgs and Yukawa sector of the
standard model to be: 4

LHiggs = [(3u + ing,‘I%— + %.«th)H *] [(3“ - ing"“%- - %mB“)H t]

- MH'H - X(H'H)® - Y X (LHL+LHIL)

i=e,p,T

(5.3)

For spontaneous symmetry breaking we require M2 < 0, then the Higgs will choose a
non-zero vacuum expectation value

ht =0
R =v/V2
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where again the factor of 1/v/2 is introduced just for convenience, and
v = —-M?/)

(just as in the U(1) model). In the unitary gauge, the Higgs field everywhere is chosen to
have just a real h® component and so fluctuations are simply given by

1 0
H(x)— -\7_5 (v+a'(z)) . : (54)
The one real Higgs, o(z), survives with mass
m2 = 2\v? = —2M?

(Again this is just the same equation as in the U(1) model.) The three Goldstone bosons
have been eaten and given Wi and Z]) masses. The vacuum expectation value has provided
the electron, mu and tau with their masses. To see this, substitute the above unitary gauge
Higgs into Lpiges and set o(z) = 0. (We are not for the moment interested in o and its
A interactions.) If you look at just the electron’s Yukawa couplings, these become

Ae(EeHle+TeHLe)'—>>\e{('7e EL)(U/?/‘,Z>6R+ER(0 v/\/f)(:;)}
=,\el’ﬁ(az,eg+éﬁez,) |

The same manipulations hold for z and 7, and thus we identify their masses as

v

V2

m; = A i=epuT . (5.5)

Similarly you can show [i.e. check it!] that the mass terms for the gauge bosons read

L ([ + 2] + (050 - o))

Now using the fact that the terms in square brackets can be written 2W,‘}‘W"" and that,
from inverting our previous rotation,

Z, = sindwB, — cosIw W}

i.e. \/gf +g§ Z,=gqB, - 92W3 )
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we see that the mass terms read,

My WIW=*# + IM32,2"

with 1
Mwi = iggv
1 ev : (5.6)
~ 2sindw
and 1
Mz = Y 93+ 92
1 ev (5.7)
~ 2sindw cos dw

In particular we have
cos 9w = My [Mz

All these relations are classical (tree level) relations and get corrected (a little) quantum
mechanically. A common convention is to define the ‘physical’ value of 9 to be given by
the above relation. The measured values of My and Mz are

My = 80.338 + .04of'g(1)2 GeV

Mz = 91.1863 £ .002 GeV

and thus
+.0003

—.0002
Being totally ahistorical, we can use these numbers together with o = €2/(4n) = 1/137,
to obtain a tree level estimate of the Fermi constant

V2e?

" 8M3, sinZ Oy

sin? 9w = 1 — ME, /M2 = .2238 + .0008

Gr ~1.12 x 107° (GeV) ™2

which should be compared to the measured value
Gr = 1.16637(2) x 10™° (GeV)~2

On the other hand we have at tree level that (twice) the ratio of neutral to charged current
interactions )
M,
% cos? dw
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This is not an accident but a consequence of a hidden approximate symmetry (broken only
when the electric charge e # 0) called custodial SU(2). Not all Higgs representations have
this symmetry so the fact that p is indeed measured to be very close to 1 is strong indirect

evidence for this class of representations.

Substituting these numbers into the equations for the Z and W# masses, (5.6) and

(5.7), one obtains the tree level estimate for the electroweak breaking scale:
v~ 250 GeV

This fixes the ratio m2 /X = 2v? but neither the Higgs mass nor its self coupling is known
“separately (if indeed the Higgs exists as such!). Some weak constraints on m2 are being
deduced indirectly from precision LEP experiments (see Nigel). Note that, from (5.4) and
(5.5), the Higgs Yukawa couplings are
mye =
_'_v'):fo'f f=6,[£,T )

so the Higgs couples strongest to the most massive particle. (This will be true for the quarks
also.) As well as these Yukawa interactions, substitution of the unitary gauge Higgs, (5.4),

leads to many interactions of the Higgs with the gauge bosons. In the standard way these

turn into Feynman rules (which I have chosen to write in terms of e, Mw, 9w and m,):

W+ﬂ
1
' 1eM w
c sin '!9W v
WV

Fig.17. The Higgs-WW interaction.
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ieMw
sin 9w cos? dw

Guv

Fig.18. The Higgs-ZZ interaction.

+
W . O
i e g
2sin® 9y
W, c

Fig.19. The Higgs-Higgs-WW interaction.

Zy

. O
./"/ \

yd i e 0

. - .

2 sin 9w cos? dw "

N _
'-\...
Z,

Fig.20. The Higgs-Higgs-ZZ interaction.
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‘\*-.‘ 3 e m2
Vi ¢ 2 sin 9w Mw

Fig.21. The Higgs three-point self-interaction.

C . + O

;g2 2
3 e m;

P 4 sin® 9w ME,

G .,"..' .‘.‘- 6
Fig.22. The Higgs four-point self-interaction.

Just as in the QCD case much earlier, we could have used mass matrices:

———Z{m,JL Hl; +myHYL;}

Here they are really Yukawa couphng matrices A;;, but anticipating formulae like (5.2) and
(5.5), we write A;; = v2m;;/v, and so defining the mass matrix m;; in the process. Note
that now the mass matrix need not be Hermitian. But once again this is entirely equivalent

to the previous Lagrangian, because now we can use different unitary transformations in
flavour space

LJ' = (QR)J'J"IJ" Li— (QL),',;IL,'I
and use the fact that any matrix can be diagonalised by two unitary transformations:
me O 0
AmQp=[0 m, 0
0 0 ms
You can check that this leaves the rest of the lepton Lagrangian invariant, because these
bits are still proportional to unit matrices in flavour space (z e. ;8;j+++lj and L;;j--- L;)

and couple only ! to ! and L to L.
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5.4. Weak Interactions of Quarks.

The weak interactions for the quarks take a very similar form to those for the leptons,
for example B decay n — pe~ 7., or m~ — e~ v, is described at the quark level by

Fig.23. A d quark weak decay.
and similarly e.g. charm decay D+ — K%+ is described as

Fig.24. A c quark weak decay.

so that quarks also form weak isospin doublets according to the generation, i.e.

o =) () @)

1 =u,c,t
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Actually we know this is not quite correct: the weak interactions mix generations e.g. in

the strangeness-changing decay K+ — u*y,

Fig.25. The strangeness changing weak decay: K+ — ptuy,.
but let us persist with the above assignments and see what happens. First of all we see

that the hyper-charge of the @; doublets is

o —

so that (4.1) comes out right. The right handed partners must all exist, if all the quarks are
to have masses, but since the right handed quarks do not have charged current interactions

they must be assigned to singlets. Thus the right handed hypercharges are just twice their

charges:
u 4
g; = uR,CRlR Y= 3
i =u,c,t
d 2
g =dRr,Sr,br Y = —’3'
i=d,sb

We have already defined all the other parts of the standard model so now we can write
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down uniquely (by renormalisability) the quark sector:

. = . . o® 1.
Lovarks= & » @ (3u —igsGaT4 — ig;Wp— — 329131;) Qi

k2
t=u,c,t
. . 2,
+1 ' Z a; (6,, - zggG,‘fTA - §zngp) v g}
z=1f,c,t
. . 1,
+i ) g (6,, - igsGATA + —zng,,) g
i=d,s,b 3 (5.8)

\/5 = *
- E {m{-’jQ,-Hq;?+mf,- tj;-’HfQ.-}
i=u,c,t
j=d,s,b

- ? > {m% % Qi x H)+mi; (Qi x H") gf}
ij=u,c,t
I have put in.the gluon interactions because the quark part of Locp I gave you much
earlier, in (2.3) and (2.6), was wrong and should be replaced with the above. (It was
wrong because I had not of course included the SU(2) x U(1) gauge fields, and you see
that quark masses are now forbidden - by the SU(2) x U(1) charges.) The funny looking
interactions on the last line are a consequence of a little serendipitous accident of SU(2).
Rotations in the two dimensional plane of the vectors u and v leave (u x v) invariant i.e.

u X v is a two dimensional scalar
UXVU=UV —vi1u2

This is true for complex vectors uq, v, and SU(2) rotations U,® too because in both cases
the ‘rotations’ have unit determinant:

€%bugvp — €2V, Up? uevyg
—_——

(detU)e?
[\
1
Since
= e 20 1\ e A ore
QxH =Q(_1 O)H = Q (io.H*)
is SU(2) invariant, it follows that
I? = iO’zH'
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transforms as an SU(2) doublet. (The proof is simple ~ can you see it?) Now we can write

the up Yukawa terms in a more normal way

——‘/v—i S {myQuftey +myc g AQ:)

i,j=u,ct

(Ezercise: check that you understand that Lgyqrks is invariant under SU(2) weak isospin

and check that it is indeed hypercharge neutral.)
The full Lagrangian of the standard model has now been written! It is
Lsm = Lgiue + Ly + LEw + LHiggs + Lquarks

the formulae for the various parts appearing in (2.5), (2.4), (4.2), (5.3), (5.8), respectively.
(Another ezercise: Convince yourself that there are no other renormalisable interaction
term consistent with the local SU(3) x SU(2) x U(1) symmetry, the chosen field content
and their representations! i.e. that this is indeed the unique solution to the three principles

we started with.)

5.5. The CKM Matriz.

In unitary gauge, recal that H takes the form (5.4). This implies that

-5 (5)

Putting these into the quark Yukawa interaction terms you see that we obtain
- — = O -~ .
~Dym®Dg — Uym*Ug - %DLmdDR - ;ULm“UR + complex conjugates,

where I have introduced the notations

ur, URr dL dR
Ur=|cL Ur=| cr D=1 sz Dp=| sp
tr tr br br
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This is a more helpful notation now that SU(2) invariance is broken. The first two terms
are the mass matrices and we can diagonalize them, like in the lepton case, by separate
unitary transformations on each flavour vector:

U =QiU;
Ur = QxUp 5o
Dy =QiDy (59)
Dp =Q4D}p

chosen so that

m, 0 0
@fmes={0 m 0

0 0 my

; mg O 0
Q) m*Qt=| 0 m, 0
0 0 my

and thus the Yukawa terms simply read

- Z (1+Z)mq‘7,ql
v
flavours
Now for the quarks, this is not the end of the story. Unlike for the leptons our flavour
transformations Q% # ¢ are different for the top and bottom part of SU(2) doublets!
Therefore t;his transformation messes up those interactions in Lgps that ‘cared’ that Q ~

gﬁ ) was an SU(2) doublet. (In the lepton case this problem does not arise because

the standard model has no right handed neutrinos and therefore the ailalogous second
mass term ~ m{-’jf/,-fl (VR)J- is missing.) We must distinguish, then, between the primed
‘basis U’ and D’ that propagate with well defined masses — and are thus called the mass

eigenstates, and the original basis [DJL , Ur, Dr which form (irreducible) representations
L

of the SU(2) x U(1) algebra and are thus called weak eigenstates. Roughly speaking, the
weak eigenstates do the interacting, while the mass eigenstates do the propagating (e.g.

outwards into the detector). We see that there is a (non-trivial) unitary transiormation
between them.

The parts of L5y that do not care, are all the terms diagonal in flavour space. Therefore
the quark kinetic terms are left invariant by (5.9). Also the Z, and A, couplings are left
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invariant since T3 is diagonal in flavour space. (You easily see from Lgyqarks, LEw and the
analysis given there, that these couplings take the same form as for the leptons - only the
values of t3 and Q [i.e. Y] differ.) Therefore there are no flavour changing neutral currents
(part of the GIM mechanism ~ after Glashow, Iliopoulos and Maiani).

The only parts that do care about the doublet structure are the charged current inter-
actions:

e —
—_—  Up*WID +complex conjugate
V2sin 9w \—-—,—-—'L’y s L P me

UY*W}F(1 - v5)D

(compare ,—p interaction earlier). These become

e -
————U'y*WF(1 — 45)VD’ 4 complex conjugate,
T 2 (1= 7s) P jug
where
' Vuda Vus Vi
V=)' Q= Ve Ves Vo
Vie Vis Vo

is a unitary matrix — the famous Cabibbo-Kobayashi-Maskawa matriz (and in the standard
model is responsible for the cross-generational decays we have so far been ignoring).

The CKM matrix, being a unitary 3 x 3 matrix, has 9 ‘angles’ [the 8 rotations of SU(3)
and an overall phase. This last allowed because detV is in general a phasé, rather than
1 as for SU(3)]. On the other hand not all these angles are physical. If we make a phase
redefinition on each quark u +— e*vu etc. , nothing further changes in the Lgyqrks except
that

ee 0 0 eve 0 0
Ve 0 e 0 |V 0 v 0 | .
0 0 e 0 0 e

If all these phases were equal, V' would not change at all, so we can only define away 5
phases this way, leaving 4 physical parameters in V. If V had been real it would be a
three dimensional rotation and described by three Euler angles, therefore the full complex
V has 3 Euler angles and one phase. A popular parametrisation® is:

€12€13 . $12€13 s o1 e~ifis
V = | —s12c23 — C12823513 '?;6" €12C23 — S12523513 €° ;’ 523C13
512523 — C12€23513€°"'®  —C12823 — 512€23513€"° C23C13

8 There are many possible parametrisations — all physically equivalent.
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- ¢ij = cosdyj, Sij = sind;;, 1,j being generation labels. Experimentally, the magnitudes
Vi) are

0.218-0.224 0.9738-0.9752  0.032-0.048

0.9747-0.9759 0.218-0.224 0.002-0.005
IVtJI = '
0.004-0.015 0.030-0.048 0.9988-0.9995

(taken from the 1994 Particle Data Book). 4,3 is known to lie between 0 and 27 (!). Since
[Vis| is so close to 1, c13 = c23 = 1 to an excellent approximation, so Vi = s;12. This is
the sine of the Cabbibo angle — the only mixing angle there would be if there were just two

generations. What is the significance of §;37 The interactions with ;3 in, are again -

¢ ] > - -
5w (O Wi (L= 1)V D} + Dy Wiy (1= 16)ViUi}
Under CP:
¥ 510
¢ '9; C"/;T where C = i'yz'yo ,

and so-on, the two terms are interchanged but without changing V;; into V3, therefore if
there is irremovable complexity in the CKM matrix, it is a signal of CP violation. This is

the case, if § # 0 or =.

Final erercise: Count the number of parameters in the standard model and verify it is

nineteen.

6. Why Renormalisability?

I want to stress this has ultimately nothing to do with the voodoo idea of “sweeping
infinities under the carpet”! This was Dirac’s pejorative comment, but this 1940’s way
of apologising for renormalisation was replaced by a complete intuitive understanding of
the meaning of renormalisation after Wilson’s work of the 1970’s. (Incidentally the prime-
movers behind perturbative renormalisation, namely Feynman and Schwinger, had already

an understanding much closer to that of Wilson than Dirac.)
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Energy

pl

A,

High Energy

(Boring region.)

...............
............................................

Low energy - Interesting region.

N
L

Fig.26. The energy scales relevant to the issue of renormalisability. The ‘Interesting
region’ includes all accessible physics — in particular all the masses of the particles in the
standard model. The ‘Boring region’ covers a range of energy scales very much larger than
the ‘Interesting region’. The bare Lagrangian Ly is defined at the ultra-high energy scale
Ag, and contains parameters tuned to ensure that all physical masses m are very much

less than Ag.

The real reason for renormalisability has to do physically with very high energies,
for example the Planck mass Mpianck = v/Ac/GNewton ~ 101°GeV: the energy where
quantum gravity effects must become important. We know gravity exists but we do not
know how to describe it quantum mechanically, and in particular it is not part of the
standard model. (Actually, any very high energy physics which is not included in the
standard model will do for this argument.) Therefore we have to conclude that the standard
model is only an effective description: just a goc;d approximation up to some energy scale
Ao < Mpignck. Let us assume however that this energy scale A is still very much higher

than all the particle masses in the standard model. (We will mention later what happens
if this is not the case.)
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To construct our effective description we supply a ‘bare’ Lagrangian £y and compute
the field theory ‘path integral’ by restricting by hand, in some way, all the energies that
arise so that they are in the well described region, i.e. less than Ag. In other words we use
A as an ultraviolet cutoff.

Now we have a very peculiar situation: It is not at all the generic situation in quantum
field theory that the particle masses m measure much less than the highest allowed energy.
On the contrary, the particles experience so much inertia from ‘wading’ through the sea of
virtual particles that, unless there is some very special reason, their effective masses are
all m ~ Ap (or they could be even heavier than this in which case they fail to propagate
at all. Recall, virtual particles of energy E continually pop out of the vacuum for some
time At S h/E, as allowed by Heisenberg’s uncertainty principle. If you prefer to draw
Feynman diagrams, then they take the sort of form shown below. Nevertheless the result
above simply follows from dimensional analysis.)

+ .
& .
. .
’ [}
. ]
1 )
[ v
. ]
. »
3 .
) 0
) -
N Ss 2?
............... 20002 csncccsccncnncacace
-

Fig.27. Self-energy diagrams are interactions of real particles with the virtual sea and

result in effective masses mess ~ Ag unless something very special happens. Shown are
a fermion interacting with a virtual gauge boson, and a scalar self-interacting through a
virtual pair.

This “very special reason” for small effective masses, could be symmetries for special
sorts of particles (gauge bosons of unbroken local symmetfy are always massless — like the
photon; unbroken chiral symmetry can ensure massless fermions — as we will see later), but
for bog-standard particles it can only come about from tuning values of the parameters
in the bare Lagrangian £y so that the classical values in the Lagrangian almost precisely
cancel out the big ~ A effects arising quantum mechanically. (Roughly speaking we choose
the classical values to be almost the negative of the resulting quantum effects.) When this is
done, the interesting part of the quantum field theory is governed by very long wavelength
excitations A ~ 1/m compared to the small length scale of the bare Lagrangian ~ 1/Aq.
Consequentially, nearly all these small length details are washed out, i.e. are invisible to the

interesting long wavelength excitations: we are left with a universal quantum description
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(up to very tiny corrections ~ m?/A3 which for the moment we ignore) that depends on
only finitely many parameters. These finitely many parameters are nothing but the fine-
tuned differences remaining after cancelling the large quantum effects. We see that the
fine-tuned differences just correspond physically to all the couplings with zero or positive
mass dimensions, and all the masses, because only these parameters can receive large
quantum corrections (by dimensional arguments again: any coupling of dimension d will
get a high energy quantum correction of ~ Ag, which is large if and only if d > 0. Zero
mass dimensions must be included because dimensionless couplings can suffer logarithmic
divergences ~ In(Ag/m).) These fine-tuned differences are the real couplings and masses,
i.e. the parameters that are measured by experiment. They are called renormalised to

distinguish them from the bare parameters in the bare Lagrangian L.

It is a very important and deep fact that the resulting quantum field theory is universal,
so it is worth repeating this with different words. The precise choice of £y (and also the
precise way the theory is cutoff) is entirely irrelevant: there are infinitely many different
bare Lagrangians (and cutoffs) which yield exactly the same answer once a sufficient num-
ber of parameters are fine-tuned. (This infinite set of choices is called the “universality
class”.) The real physics is the universal physics we obtain at energies much lower than
Ag: all the rest is theoretical scaffolding (usually) mathematically required in order to
construct the real physics — but finally when the real physics is produced, it is independent
of how the scaffolding was constructed.

The simplest bare Lagrangian we can take is one in which we include all and only those
parameters which need fine-tuning to cancel large quantum effects. This is the modern
understanding of what it means to have a renormalisable Lagrangian: it is just the simplest

bare Lagrangian capable of producing (by fine tuning) the universal low energy behaviour
we actually want.

So which parameters must we include? For a theory in which quantum effects could be
strongly interacting throughout the region of interest, this is a hard theoretical problem
and no general answer is known. Fortunately, if we assume that the standard model is
weakly interacting, and therefore treatable by perturbation theory — as has already been
argued, the answer is easy: to lowest order we can ignore the quantum effects entirely and -
the renormalised couplings observed in the low energy region are then simply the same as
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the bare couplings appearing in L£o. But as underlined above the renormalised couplings
are all the parameters with non-negative mass dimensions and so we have the following
general rule, already quoted at the very beginning of these lectures, for constructing a
perturbatively renormalisable bare Lagrangian:

A perturbatively renormalisable Lagrangian is constructed by including in the

Lagrangian all and only those couplings with zero or positive mass dimension

and all possible mass terms.

All these couplings and masses are known as the (perturbatively) renormalisable cou-
plings. All the couplings, infinite in number, that we are leaving out, are known as (per-
turbatively) non-renormalisable couplings. We can now see why the requirements (1), (2)
and (3) mentioned in the first lecture, fix the Lagrangian completely. We do not have any

freedom over the choice of couplings once the symmetries and field content are fixed.
Let me finish this section with some paranthetical comments.

Where are the infinities that have been swept under the carpet? Theoretically it is often
helpful to imagine that the standard model (or other partial theory) is actually valid up
to infinite energies — even though we know this is not true. To obtain these circumstances
we send Ag — 00, and as a result we find that unless we fine-tune the bare couplings with
infinite precision, interactions with the virtual sea over the infinite range of energy will

result in infinite answers.

Note well that our choice of bare Lagrangian is by itself very little connected to reality,
rather most of it (as a result of universality) is a figment of the theorists imagination! We
can add any, or as many, of the so-called non-renormalisable couplings to the Lagrangian,
as we wish, but after the requisite amount of fine-tuning, the experimentally measurable
results are guaranteed — to very good accuracy - to be unchanged, by universality. Put
another way, universality tells us that we are guaranteed to be almost totaily blind to
physics with very high energies ~ Ag. The blind-ness of the low energy, long wavelength,
physics to the ultra-high energy, short distance, cutoff-scale physics is not complete: effects
of order ~ m?/A} can seep through, but if Ag is sufficiently large these will be practically
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unobservable unless they correspond to some process which would be forbidden by the
renormalisable Ly. '

We have all the while been assuming that Ag >> m i.e. the cutoff scale is much greater
than energy scale of the interesting region. What happens if the opposite is assumed
true and the standard model is assumed only valid to slightly higher energies than the
interesting region? In this case we must assume Ag is quite low, and the corrections to
universality that we have just been discussing become very important. In this case we
can predict virtually nothing because all the infinitely many couplings we can add to Lo
crucially affect the answer, and obviously it is useless to attempt an infinite number of
experiments to fix them all! On the other hand nor should we be able to predict anything
in this case because if the standard model breaks down at this low energy scale then by the
same token the new physics (be it new particles with masses Ao or whatever) crucially
affects the physics at energies below A through virtual effects. (This was very much the
situation with strong interaction physics during the 1960’s, before the underlying theory
of QCD was ixypothesised, and led some people to disbelieve in quantum field theory for a
while.)
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7. Problems.

1. Check that v = 1 and {7s,7,} = 0. Show that Py = 3(1 — v5) and Pr = (1 + 75)
are projection operators, i.e.

Pt=P, Pi=Pp PPr=PrPLr=0 Pr+Pr=1

Consider a massless fermion with p, = (£, 0,0, E) Show that Pru(p) and Pgu(p) are
eigenstates of the helicity & with eigenvalues —- and +2 respectively.

pelZB_ 177D
2 |2| - 2 E

2. Show Pry* = 4#¥Pp and Pry* = y*Pr. Show YrYR =YL =0 (so these cannot be
included in a Lagrangian) and hence

myp = m (YrYL + PLYR)

3. The decay rate for the two-body decay Z — ff is

_ 1 2 _ 1 2
1“‘2Mz/D|M| ”64«2Mz/dQ|M| '

where D denotes the phase space measure. Recall that the Zff vertex is

—ie
2sindw cos 9w

* (C{/ - Cﬁ'rs)

First show that, summing over the fermion and averaging over the boson spins,

2
IM|2= 1 e

.ﬁ Sin2 19W cos2 ﬁw [(C‘f/)z + (Cfl)z] (—gpu)'-rr (’y“’r . kl'yu’y . kz) .

where k1, k2 are the fermion momenta and the gauge boson polarisation sum is

A)=_(A qud
> e 6,(,)=—g,w+—;/[—§
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Hence show that the decay rate is

1 e?
48w sin® 9w cos? Iy

[+ (chr?] Mz

. Using the explicit forms for Cy and C4 in the standard model, derive expressions for
the decay rates Z — VePe, Z — ete™, Z — uii and Z — dd in terms of sin? dyp.

What is the total width of the Z in the standard model?

[Take GF = 1.2 x 1073 (GeV)~2, sin® 9w = .23, and Mz = 91 GeV ]

. By carefully comparing the form of the relevant current-vector interactions, show that
‘the decay rate of W+ — et is '

P(e) _ 1 e?

—_— M,
487 sin? Oy w

. Hence predict the total width of the W (before LEP measures it!).

(Hints: Use the calculations of Problems 3 and 4. Use weak eigenstates!)
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5. Precision Electroweak Physics at
LEP

o Parameters and Observables
¢ Radiative corrections from Vacuum Polarisation
® p parameter
¢ LEP Physics
- Lineshape: Mz, 'z and peak cross section

= Bhabha scattering and Luminosity
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lepton asymmetries: / a
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Table 20: Summary of measurements Included in'the combined analysis of Standard Model parameters, . - +
Section a) summarites LEP averages, Section b) SLD results for sin?0}i¥* from the measurement of ) ’Tnb = I#( x , ‘ G’-V 4+ CHanwoasia
the left-right polariation asymmetry, for Ry and for A, and A, fiom polasized forward-backward d
asymunetries and Section ¢) electrowenk precision m ts from pP colliders and »N scattering. { m — qg + 199 &V
The Standard Model results in column 2 and the pulls (difference between measutement and fit in : H = - 63 xl_ 25 /, ”
units of the total measurement errar) in column J are d:;lved frfom the Standard Model fit including . ! =
all data (Table 22, columa 2) with the Higgs mass treated as a free paraineter, . . ~ . )
(*)For nu( “which ce:nbin LEP and SLD heavy fsvor measurements we use a3 input the heavy flavor sesults ! . ds (HQ) s 0.122 = 0.00%
given {n Equition (11) and thelt cortelation matiix In Table 14 in Section 4 of this note. -
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6. LEPII Physics

o Standard Model Processes at LEPII

¢ Radiative return to the Z - a back of the envelope calculation
o W pair production

o W mass measurement

¢ Anomalous gauge boson couplings
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7. Higgs Physics

e General arguments

¢ Experimental bounds on my and m,
¢ Theorctical bounds on myr and m,

¢ Higgs Decays

¢ Higps scarch at LEP-I

¢ Higgs search at LEP-II

o Higgs search at LHC
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Questions
1. Show that
¢Lys = 0.
2. The Gottfricd sum rule, s
[ S - A,
has been measured by the NMC Collaboration to be,

.8
— P, ==
o3 9= (r2 (2) = F"(2)) = 0.236 4 0.008 £ 0.0014,

Assuming that this can be extrapolated to cover the whole z range,
o
/o g:- (Fi"(z) ~ F3*(z)) ~ 0.258 £ 0.017,
what can be said about, .
/° d2(Uren(2) = drea(2))?

3. Bearing in mind that F3?(s) is constant or increasing as £ — 0, what can be said about
the number of up quarks in the proton,

i ! u(x)ds?

4. Data for the ratio F3"(x)/F3?(z) was shown in the lecture. Explain why this ratio tends
to 1 as £ — 0. What can be said about d,/u, at large £ where the sea quark density
functions are negligible?

8. For the 7° —+ qJg process at centre-of-mass energy /3, %1, 2 and z3 are the scaled
energy fractions earried by the quark, antiquark and gluon respectively. Show that the
invariant mass of the quark and antiquark pair Is given by 2g1.9 = (1 ~ z3).

6. Show that In the limit where the quark and gluon momenta are parallel,

1 2 gt [N =-1\21+(1-2")1 1
1 =Ml = 50 55 i Ml

7. Show that in the limit whete the giuon momentum is soft,

m 3
42""‘3" ( 2N )q,.kk.q,lzl B

8. Show that & o
(]
Oty + Ogqty) = T8

9. Show that if z; >> 23, 13,

Orm Yt~ 1)1 - 7)1 - 73)

L]

Show that the maximum value of Dy is 1/2/3 for a three jet cvent.

10. Show that in the limit £3 ~ 0, By ~+ 0. Show that in the limit that the quark nnd
gluon are parallel, Dy — 0.

11. Starting from,

1 do N’ -1 =}
0%dx,dzy 2!’ 201 - 21)(1 - :1)
show that the thrust distribution for qqg events involving a scalar gluon is,

war =2 (") (s (F7) + 525 ).

JON ' f(2) - S(1)
b (1-2); dr= =y =

12. Given that

show that,
i ' P2}z =0,
where,
Pz} =4 ((: te S - :))

What is the significance of this result?

13. Draw Feynman diagrams to motivate why the pp — 7+ jet process is sensitive to the
gluon density function,

14. Considering only nd scattering, show that the W asymmetry,
do(1V4) _ dagwv-)
i
Aw(y) = =0V ;,,;..-.
dy

effectively determines the dfu satio in pji eollisions,



