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Abstract 

We discuss the phenomenology of jet physics at hadron colliders, concentrating 
on the internal structure of jets, which is studied using the jet shape distribution 
or subjet distributions. 
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1 Introduction 

The inclusive jet rate in hadron collisions appears to be pretty well understood both 
experimentally [l-31 and theoretically [4-61. The data are in good agreement with theory 
over seven orders of magnitude in rate, although with a hint of an excess at high ET. 
There is little dependence on parton distribution functions and the overall theoretical 
error is estimated to be small. 

However, one of the cross-checks often used to ensure that the jet data are well un- 
derstood and modelled is the jet shape: a simple measure of the internal structure of 
the jets, specifically of how broad they are. Here the picture is not so clear [7-91. The 
experiments are in good agreement with each other, giving us confidence in the data, 
but the experimental jets are considerably broader than predicted by hadron-level Monte , 

Carlo event generators, and the dependence on the jet rapidity is not well modelled ei- 
ther. Next-to-leading order (NLO) calculations of the jet rate give a leading order (LO) 
prediction for the internal jet structure [lO, 111. Although these can be tuned to fit the 
data in any given bin in rapidity and transverse momentum, they do not give a good 
prediction of the dependence on those variables [12]. 

In this paper, we briefly summarize a recent study [13] of the extent to which these LO 
predictions should be affected by higher orders, resummation of logarithmically enhanced 
terms to all orders, and by including non-perturbative hadronization corrections. The 
conclusion is that all these effects are important, and we should not be surprised if LO does 
not agree well with data. As part of the study, we asked how well suited currently-used jet 
algorithms are for quantitatively probing the internal structure of jets. We found that the 
iterative cone algorithm [ 141, used by essentially all current experiments, is not infrared 
safe beyond the three-parton final state (i.e. beyond NLO for inclusive jet and dijet cross 
sections, but beyond LO for internal jet properties or three jet cross sections [15]). This 
makes them hopeless for quantitative studies. This problem can be solved by a slight 
modification to the algorithm [16], or better still by abandoning cone-type algorithms 
altogether in favour of the cluster-type I c l  algorithm [17,18]. 

In Sect. 2, we describe the jet definitions in current use. Since each experiment de- 
fines their own slightly different variant of the cone algorithm, we concentrate on one in 
particular, D0’s [19], and only indicate the differences with respect to other experiments’ 
where relevant. We then calculate, in a simple approximation, the cross section to next- 
to-next-to-leading order (NNLO) according to this algorithm, and explicitly show that it 
is not infrared safe. We discuss the solution proposed in [16]. 



In Sect. 3, we calculate the LO predictions for the jet shape in the various algo- 
rithms we have discussed. We estimate the effect of NLO corrections, power-suppressed 
hadronization corrections, and resummation of large logarithms to all orders. 

In Sect. 4, we discuss another way of probing the internal structure of jets: by resolving 
subjets within them. This has many advantages over the jet shape, not least the fact that 
the subjet resolution variable gives us an extra handle to turn. We can choose to sit 
in a very perturbative regime, or to move smoothly into the hadronization regime, and 
eventually for very small resolution parameters, obtain the results of the usual jet shape 
as a limit of the subjet study. 

Finally in Sect. 5 ,  we make some concluding remarks. 

2 Jet definitions and cross sections 

All the algorithms we discuss define the momentum of a jet in terms of the momenta 
of its constituent particles in the same way, inspired by the Snowmass accord [20]. The 
transverse energy, ET, pseudorapidity, Q, and azimuth, 4 ,  are given by: 

We shall always use boost-invariant variables, so whenever we say 'angle', we mean the 
Lorentz-invariant opening angle &j = ,/(vi - ~ j ) ~  + (+i  - q5j)2. Also, whenever we say 
'energy', we mean transverse energy, ET = E sin 8. 

2.1 The kl algorithm 

We discuss the fully-inclusive k l  algorithm including an R parameter [18]. It  clusters 
particles (partons or calorimeter cells) according to the following iterative steps: 

1. For every pair of particles, define a closeness 



2. For every particle, define a closeness to the beam particles, 

dib = EgiR2. (3) 

3. If min{dij} < min{dib}, merge particles i and j according to Eq. (1) (other merging 
schemes are also possible [17]). 

4. If min{dib} < min{dij}, jet i is complete. 

These steps are iterated until all jets are complete. In this case, all opening angles within 
each jet are < R and all opening angles between jets are > R. 

2.2 The DO algorithm 

Since this is the main algorithm we shall study, we define it in full detail. It is based on 
the iterative-cone concept, with cone radius R. Particles are clustered into jets according 
to the following steps: 

1. The particles are passed through a calorimeter with cell size 60 x 60 in 7 x 4 (in DO, 
So = 0.1). In the parton-level algorithm, we simulate this by clustering together all 
partons within an angle 60 of each other. 

2. Every calorimeter cell (cluster) with energy above Eo, is considered as a ‘seed cell’ 
for the following step (in DO, EO = 1 GeV). 

3. A jet is defined by summing all cells within an angle-R of the seed cell according to 
Eq. (1). 

4. If the jet direction does not coincide with the seed cell, step 3 is reiterated, replacing 
the seed cell by the current jet direction, until a stable jet direction is achieved. 

5. We now have a long list of jets, one for each seed cell. Many are duplicates: these 
are thrown away’. 

6. Some jets could be overlapping. Any jet that has more than 50% of its energy in 
common with a higher-energy jet is merged with that jet: all the cells in the lower- 
energy jet are considered part of the higher-energy jet, whose direction is again 
recalculated according to Eq. (1). 

lIn DO, any with energy below 8 GeV are also thrown away. For jets above 16 GeV, this makes only 
a small numerical difference, which is not important to our discussion, so we keep them. 
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Figure 1: The radius dependence with Eo = 1 GeV (left) and seed cell threshold dependence 
with R = 0.7 (right) of the inclusive jet cross section in the DO jet algorithm in jixed- 
order (solid) and all-orders (dotted) calculations. The error bars come from Monte Carlo 
statistics. 

7. Any jet that has less than 50% of its energy in common with a higher-energy jet is 
split from that jet: each cell is considered part only of the jet to which it is nearest. 

Note that despite the use of a fixed cone of radius R, jets can contain energy at angles 
greater than R from their direction, because of step 6. This is not a particular problem. 
This is essentially also the algorithm used by ZEUS (PUCELL), except that their merg- 
ing/splitting threshold is 75% instead of 50%. The CDF algorithm is similar again, and 
also uses 75%, but has a slightly different splitting procedure. 

2.3 Jet cross sections 

The issue of infrared safety in jet cross sections is discussed in [13]. There we define a 
class of jet definitions that we call 'almost unsafe', in which the definition appears at first 
sight to be unsafe, but that some minor detail makes it safe, although still unreliable. 
The iterative cone algorithm is of exactly this type, as can be seen in Fig. 1, where we 
show the cross section at successive orders, in the double-logarithmic approximation. The 
NNLO cross section depends logarithmically on the energy threshold of a calorimeter cell, 
and for an ideal calorimeter with zero threshold is clearly infinite. This divergence comes 
from the separation of events on the two-/three-jet boundary, and corresponds exactly to 
the divergence to negative infinity found for the three-jet cross section in [15]. 



Figure 2: Illustration of the problem region for the iterative cone algorithm. In (a), there 
are two hard partons, with overlapping cones. In (b) there is an additional soft parton in 
the overlap region. 

The strong EO dependence can be easily understood. It arises from configurations 
that have long been understood to be a problem in cone algorithms, where two partons 
lie somewhere between R and 2R apart in angle, but sufficiently balanced in energy that 
they are both within R of their common centre, defined by Eq. (1). This is illustrated in 
Fig. 2a. According to the iterative cone algorithm, each is a separate jet, because the cone 
around each seed cell contains no other active cells, so is immediately stable. Although 
the two cones overlap, there is no energy in the overlap region, so the splitting procedure 
is trivial, and it is classed as a two-jet configuration. 

Now consider almost the same event, but with the addition of a soft parton, close to 
the energy threshold Eo, illustrated in Fig. 2b. If it is marginally below threshold, the 
classification is as above, with the soft parton being merged with whichever hard parton 
it is nearest. If on the other hand it is marginally above threshold, there is an additional 
seed cell. The cone around this seed encloses both the hard partons and thus a third 
stable solution is reached. Now the merging and splitting procedure produces completely 
different results. In either the CDF or D 0  variants the result is the same: each of the 
outer jets overlaps with the central one, with the overlap region containing 100% of the 
outer one's energy. Thus each is merged with the central one, and it is classified as a 
one-jet configuration. 

The classification is different depending on whether or not there is a parton in the 
overlap region with energy above EO. Since the probability for this to occur can be 
estimated as - F a s  log ET/&, the inclusive jet cross section depends logarithmically 
on the energy threshold above which calorimeter cells are considered seed cells. Thus the 

' 



iterative cone jet definition is not fully infrared safe. 

It is worth recalling how the I c l  algorithm completely avoids this issue, and remains 
infrared safe to all orders. Merging starts with the softest (lowest relative I c l )  partons. 
Thus in the configuration of Fig. 2b, the soft parton is first merged with whichever hard 
parton it is nearer. Only then is any decision made about whether to  merge the two jets, 
based solely on their opening angle. The algorithm has completely ‘forgotten about’ the 
soft parton, and treats the configurations of Figs. 2a and 2b identically. Thus, details of 
the calorimeter’s energy threshold become irrelevant, provided it is significantly smaller 
than the jet’s energy. 

In Fig. 1, results were also shown from an all-orders calculation in the same approx- 
imation. As would be expected, the poor behaviour at small R has been tamed to give 
a well-behaved physical prediction. Surprisingly, the same is true of the Eo-dependence, 
which is much milder in the all-orders result than in the NNLO result. 

This can be understood as a Sudakov-type effect. Although the fraction of events 
with a hard emission in the problem region is small, the probability of subsequent soft 
emission into the overlap of the cones in those events is large, - ?aslogET/Eo - 1. 
This is precisely the logarithmic behaviour seen in the NNLO result of Fig. 1. However, 
when going to the all-orders result, the probability of non-emission exponentiates, and we 
obtain 

+a, ---aslogET/Eo 2CA + 1 - exp (--o,logET/Eo) 2 C A  = 1 - (-) EO , (4) 
7r lr ET 

the much slower behaviour seen in the all-orders result of Fig. 1. 

This result has a simple physical interpretation: in the ‘all-orders environment’, there 
are so many gluons around that there is almost always at least one seed cell in the overlap 
region and the two jets are merged to one. In our simple approximation, the coupling 
does not run. If we retained the running coupling, this statement would become even 
stronger, because the probability to emit soft gluons would be even more enhanced. 

It is precisely this effect that has lead to the belief that the merging issue is a relatively 
unimportant numerical effect: in the experimental environment it is. However, expanding 
out the exponential of Eq. (4) as an order-by-order expansion in os, we obtain large 
coefficients at every order, and no hope of well-behaved theoretical predictions. 

Thus, if we are to study the internal properties of jets quantitatively, we must solve 
the overlap problem, to define jets in a perturbatively-calculable way. 

A simple solution to this problem was proposed some time ago [16]. It is a simple mod- 
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Figure 3: The radius dependence with EO = 1 GeV (left) and seed cell threshold dependence 
with R = 0.7 (right) of the inclusive jet cross section in the improved iterative cone 
algorithm, in which midpoints of pairs of jets are used as additional seeds for  the jet- 
finding, in fixed-order (solid) and all-orders (dotted) calculations. 

ification to the algorithm used in both the theoretical calculation and the experimental 
measurement: 

After finding all possible jets using the seed cells, rerun the algorithm using 
the midpoint of all pairs of jets found in the first stage as additional seeds2. 

This means that the results become insensitive to whether there was a seed cell in the 
overlap region, and hence to the energy threshold EO. Cross sections are well-behaved 
and calculable order by order in perturbation theory, as shown in Fig. 3. Experimental 
results would be little changed by this modification (compare the all-orders results of 
Figs. 1 and 3), but the theoretical predictions would be enormously improved (compare 
the NNLO results of Figs. 1 and 3). 

It should be stressed that this does not completely remove the problem of merging and 
splitting of overlapping cones. It merely relegates it to a procedural problem: one should 
state clearly the procedure one uses, and apply it equivalently to theory and experiment. 
Provided that that procedure uses information from all the jets in a democratic way 
(i.e. not keeping track of which jets came from seed cells, and which from the additional 
seeds), it will not spoil the improved properties of the algorithm. 

We finish this section by noting that using the I c l  algorithm removes these problems 

2To save computer time, it is sufficient to just do this for jet pairs that are between R and 2R apart. 
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Figure 4: The ‘radius’ dependence of the inclusive jet cross section in the kl jet algorithm 
in jixed-order (solid) and all-orders (dotted) calculations. 

completely. It is fully infrared safe, and has no overlap problem, because every final-state 
particle is assigned unambiguously to one and only one jet. We show results in Fig. 4. 
Unless there are factors of which we are unaware, abandoning the iterative cone algorithm 
and using the kl algorithm instead would be an even better solution than the previous 
one. 

3 The jet shape 

The jet shape is, at present, the most common way of resolving internal jet structure. It 
is inspired by the cone-type jet algorithm, but its use is not restricted to cone jets. It is 
defined by first running a jet algorithm to find a jet axis. The jet shape Q(r ;  R) is then: 

where the sum over i can be over either all particles in the event, as used by CDF and DO, 
or only those particles assigned to the jet, as used by ZEUS. We have found that using 
cone-type jet definitions, there is little difference between the two (less than 10% even at 
the jet edge). However, if the jet is defined in the kl algorithm, there are strong reasons 
for preferring the definition in which the sum is only over those particles assigned to the 
jet. For now, we concentrate on the more commonly-used definition in which the sum is 
over all particles. Thus Q is the fraction of all energy within a cone of size R around the 



jet axis that is within a smaller cone of size r, also around the jet axis. Clearly we have 
Q(R; R) = 1, with Q(r; R) rising monotonically in r. 

It is often more convenient to work in terms of the differential jet shape: 

Thus $dr is the fraction of all energy within a cone of size R around the jet axis that is 
within an annulus of radius r and width dr, centred on the jet axis. 

The NLO matrix elements for the jet cross section determine the jet shape at LO. 
However, we can avoid having to use the virtual matrix elements, by noting that they 
only contribute to $ ( r ;R )  at exactly r = 0. Thus we can calculate $ ( r ;R )  for all r > 0 
from the tree level matrix elements and then get the contribution at r = 0 from the fact 
that it must integrate to 1, i.e. 

where f ( r ;  R), is a distribution defined in terms of the function f ( r ;  R) by f ( r ;  R), = 
f ( r ;  R) for r > 0 and J t  f ( r ;  R)+dr = 0. It is straightforward to integrate the tree- 
level matrix elements to obtain the LO prediction for the jet shape. However, it is also 
useful to have an analytical approximation to the matrix elements to work with. This 
can be done using the modified leading logarithmic approximation (MLLA), in which we 
have contributions from soft and/or collinear final-state emission, and soft initial-state 
emission. For a quark jet we obtain [13] 

where 

(9) 
v- if T < (&ep - I)&, .=( Rsep R i f r > ( & e p - l ) R  ’ 

and Rsep parametrizes the jet algorithm: &ep = 1 in the iterative cone and I c l  algorithms, 
hep = 2 in the improved cone algorithm. For a gluon jet, 

- [- (210g; - (1 - 2) 2 (6 11 - +2+ C A %  2 
2 7 ~  r = 

TRNfas [;(l 2 - q2 ($ - $2 + 2 2 ) ]  + $&), 
+ 2T + 
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Figure 5: The jet shape at leading order in the I c l  algorithm for a 50 GeV jet at 7 = 0 
(left) and 7 = 3 (right), according to the exact tree-level matrix elements (points) and 
our analytical formulae (curves). The contributions of the initial-state component of the 
latter are shown separately as the dotted curves. 

where Nj is the number of flavours. The contribution $+(r) comes from initial-state 
radiation that is clustered into the jet, and is the same for quark and gluon jets. It is 
given by: 

+i(r) = 5 [2r ($ - 1>1 , (11) 
2 T  + 

where C is a factor that  in principle depends on the kinematics and colour flow of the 
hard scattering, but in practice is well approximated by a constant, C - CF N C A / ~ ,  for 
which we use C = C,4/2 for all numerical results. 

In Fig. 5 we show the results of both the full LO matrix element integration, and 
our analytical approximation to  it, for the k l  algorithm. As with all the numerical 
results in this paper, we use the CTEQ4M parton distribution functions [21]. We see 
remarkably good agreement between the full result and the analytical approximation. 
The contribution from initial-state radiation is shown separately, and is clearly essential 
for this good agreement. 

Having seen that the analytical results approximate the full LO matrix element well, 
we move to  higher orders to  see how much we can improve them. We find that the jet 
shape in the iterative cone algorithm is strongly dependent on the seed cell threshold, 
as anticipated from the arguments of the previous section. We neglect i t  from further 
discussion. 

In Fig. 6 we show results in the improved cone algorithm and the I c l  algorithm. 
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Figure 6: The jet shape in the improved cone (left) and k l  (right) jet algorithms in jixed- 
order (solid) and all-orders (dotted) calculations. 

In the improved cone algorithm, the NLO corrections are rather large (note that the 
normalization is outside the control of this approximation, and we should look at the 
shape of the corrections only). Close to the jet edge, they diverge to negative infinity, a 
typical ‘Sudakov shoulder’ effect [22], analogous to the C-parameter distribution in e+e- 
annihilation for C N i. The corresponding logarithms of (R-r)  must be resummed to 
all orders for a reliable prediction. The correction in both algorithms becomes large and 
negative at  small r due to logarithmic terms in T ,  which can be resummed to all orders 
in as to give a physically-behaved prediction [13]. 

In the k l  algorithm, the NLO corrections diverge to positive infinity near the edge of 
the jet. As discussed in [13], this is an artifact of the fact that we define the jet shape 
using all particles in the event. If we instead use only those particles assigned to the jet, 
we .obtain a NLO result that is continuous at r = R. To avoid these large higher order 
terms, we recommend that in future the jet shape be defined using only those particles 
assigned to the jet by the jet algorithm. 

A formalism has been developed over many years for summing various logarithmically- 
enhanced terms to all orders in as. In doing so, one inevitably ends up integrating over 
the Landau pole of the running coupling in perturbative calculations, signalling that non- 
perturbative confinement effects play a crucial d e .  In the Dokshitzer-Webber approach 
[23], these enter through a priori unknown, but universal, constants. The same one 
determines the jet shape as the average value of several event shapes in e+e- annihilation, 
like thrust. Thus jet shapes offer an excellent opportunity to test this universality, by 
comparing the quark-dominated jets of e+e- annihilation with the gluon-dominated jets 
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Figure 7: Total efect of running coupling, power corrections and resummation on the 
shape of a 50 GeV (left) and 250 GeV (right) jet in the kl algorithm: LO (dashed) and 
with everything (solid). 

of hadron collisions. More details can be found in [13]. The net result of these corrections 
is shown in Fig. 7. At ET = 50 GeV, they roughly double the amount of energy near the 
edge of the jet. Even at high transverse energy, ET = 250 GeV, it is increased by about 
50%, although most of this is accounted for by running coupling effects. 

Looking at Figs. 6 and 7, one sees that neglected NLO, logarithmically enhanced, and 
power-suppressed terms are all very important in determining the jet shape distribution. 
We should not therefore be terribly surprised if LO predictions do not fit data very well. 
Quantitative studies of internal jet structure will only be possible once the long-awaited 
NLO corrections have been calculated. 

4 Subjet structure of jets 

The jet shape is largely inspired by cone-type jet algorithms, although it can be studied 
in cluster algorithms. In cluster algorithms however, it may seem more natural to study 
internal jet structure by using the same clustering algorithm, but stopping before the jet 
is complete, to define subjets. This is much more closely related to how we think that 
jets evolve: not by a gradual spreading in angle, but by iteratively splitting into subjets, 
subsubjets and so on, until eventually splitting to hadronic resonances and thence to 
stable hadrons. 

Within the cluster algorithm, subjets can be defined by keeping track of which particles 
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Figure 8: Leading order (dashed) and resummed 
results for the subjet multiplicity in a I00 GeV jet 
at the Tevatron. 

Figure' 9: The subjet multiplicity in 
a 900 GeV jet at detector level in 
various models, normalized to the 
data. 

ended up in the jet we are interested in, and rerunning the clustering algorithm using only 
those particles. The clustering is stopped when all the dij are above some cutoff 

- 
Yzj = 

di j 
';jet 

> Ycut. 

This is very similar to the way in which quark jets are studied in e+e- annihilation. 

The simplest quantity one can imagine studying is the average number of subjets as 
a function of ycut. As discussed in [24], when gcut is small, the perturbati;e expansion is 
spoiled by large terms that arise at every order, a! log2" ycut, and these must be summed 
to all orders for a reliable prediction. These come from final-state emission, and are 
identical to those in e+e- annihilation, as are part of the next-to-leading correction, 
a: log2"-l ycut. However, at this level, initial-state radiation also contributes, making 
the results differ from the e fe-  annihilation case. These terms can also be resummed, 
giving a prediction that is uniformly reliable for all ycut [24]. The results are shown in 
Fig. 8. We see that the resummation is essential for small ycut, and that the inclusion 
of the initial-state terms only makes a relatively small difference. In Fig. 9, we show 
the experimental results for a 300 GeV jet at detector level in comparison with various 
Monte Carlo event generators [25]. The agreement is remarkable, at least with models 
that include a full account of colour coherence [26]. At the left-hand side of the plot 
we are probing 300 GeV jets at a scale of only 1 GeV. More recent data can be found 
in [27,28]. 



Once we have defined and counted the subjets, we can probe their distribution relative 
to the jet axis in just the same way as one normally does with the particles in a jet. The 
cutoff, gcut, can be tuned to choose to sit in a fully perturbative regime (large gcut), or 
a fully hadronized regime (for gcut + 0 every hadron is considered a subjet of its own). 
That way we can start in a well-understood perturbative region, and gradually switch 
on hadronization in a controlled way. For example one can define the jet shape using 
subjets rather than particles, and one finds almost negligible parton+hadron corrections 
for reasonable gcut values [27,28]. 

5 Summary 

In recent years there has been a growth of interest in the internal structure of jets. This 
is being given added impetus at the moment by the fact that a full NLO calculation is 
expected soon. By studying jets’ internal structure, we are able to learn a great deal 
about the process by which hard partons are confined into jets of hadrons. 

This renewed interest, and the ever-increasing accuracy of theoretical calculations, 
has prompted a critical evaluation of the quality of jet definitions in current use. We 
have found that they are insufficient for the level of accuracy required, and should be 
improved as described above, or better still replaced by cluster-type definitions like the 
I c l  algorithm. 

Higher order corrections, all-orders resummation and non-perturbative hadronization 
corrections are all expected to be important in determining the jet shape, and we should 
not be surprised if LO calculations do not describe the data well. 

Subjet studies offer a much greater degree of flexibility than the jet shape alone. 
One can choose to  work in a highly-perturbative regime, which should be an ideal place 
to measure a, once we have NLO calculations, since most dependence on the absolute 
normalization and parton distribution functions drops out. Or one can choose to lower 
gcut and study the onset of hadronization, eventually ending up at the usual hadronic final 
state. In this case, one has the confidence of knowing that the perturbative ‘background’ 
is under good control, and can ascribe deviations to the non-perturbative hadronization 
process. 

It is to be hoped that with the NLO calculation to hand, and a greater degree of dia- 
logue between theorists and experimenters, a new generation of internal jet measurements 
will emerge, shedding new light on the nature of jets and confinement. 
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